勾股定理单元 易错题难题测试提优卷试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理单元 易错题难题测试提优卷试卷
一、选择题
1.如图,在矩形纸片ABCD 中,AD =9,AB =3,将其折叠,使点D 与点B 重合,折痕为EF ,那么折痕EF 的长为( )
A .3
B .6
C .10
D .9
2.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为12cm ,在容器内壁离容器底部4 cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,且离容器上沿4 cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为15 cm ,则该圆柱底面周长为( )cm .
A .9
B .10
C .18
D .20
3.如图钢架中,∠A =15°,现焊上与AP 1等长的钢条P 1P 2,P 2P 3…来加固钢架,若最后一根钢条与射线AB 的焊接点P 到A 点的距离为4+23,则所有钢条的总长为( )
A .16
B .15
C .12
D .10
4.如图,在ABC 中,90A ∠=︒,6AB =,8AC =,ABC ∠与ACB ∠的平分线交于点O ,过点O 作⊥OD AB 于点D ,若则AD 的长为( )
A 2
B .2
C 3
D .4
5.如图,在△ABC 中,∠C =90°,AD 是△ABC 的一条角平分线.若AC =6,AB =10,则点
D到AB边的距离为()
A.2 B.2.5 C.3 D.4
6.如图所示,用四个全等的直角三角形和一个小正方形拼成一个大正方形已知大正方形的面积为49,小正方形的面积为4.用,表示直角三角形的两直角边(),请仔细观察图案.下列关系式中不正确的是()
A.B.
C.D.
7.已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的面积是( )
A.2n﹣2B.2n﹣1C.2n D.2n+1
8.在平面直角坐标系内的机器人接受指令“[α,A]”(α≥0,0°<A<180°)后的行动结果为:在原地顺时针旋转A后,再向正前方沿直线行走α.若机器人的位置在原点,正前方为y轴的负半轴,则它完成一次指令[4,30°]后位置的坐标为( )
A.(-2,23)B.(-2,-23)C.(-2,-2)D.(-2,2)
9.如图,是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=10,BE=24,则EF的长是()
A.14 B.13 C.3D.2
10.《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,末折抵地,去本四尺,问折
者高几何?”意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)()
A.3 B.5 C.4.2 D.4
二、填空题
11.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=10,则S2的值是_________.
12.如图,∠MON=90°,△ABC的顶点A、B分别在OM、ON上,当A点从O点出发沿着OM向右运动时,同时点B在ON上运动,连接OC.若AC=4,BC=3,AB=5,则OC 的长度的最大值是________.
13.如图,四边形ABDC中,∠ABD=120°,AB⊥AC,BD⊥CD,AB=4,CD=43,则该四边形的面积是______.
14.如图是由边长为1的小正方形组成的网格图,线段AB ,BC ,BD ,DE 的端点均在格点上,线段AB 和DE 交于点F ,则DF 的长度为_____.
15.如图,在ABC △中8,4,AB AC BC AD BC ===⊥于点D ,点P 是线段AD 上一个动点,过点P 作PE AB ⊥于点E ,连接PB ,则PB PE +的最小值为________.
16.在等腰Rt ABC △中,90C ∠=︒,2AC =,过点C 作直线l
AB ,F 是l 上的一
点,且AB AF =,则FC =__________.
17.如图,△ABC 中,AB=AC=13,BC=10,AD 是BAC ∠的角平分线,E 是AD 上的动点,F 是AB 边上的动点,则BE+EF 的最小值为_____.
18.如图,在△ABC 中,AB =AC =10,BC =12,AD 是角平分线,P 、Q 分别是AD 、AB 边上的动点,则BP +PQ 的最小值为_______.
19.如图,在Rt ABC ∆中,90ACB ∠=,2AC BC ==,D 为BC 边上一动点,作如图所示的AED ∆使得AE AD =,且45EAD ∠=,连接EC ,则EC 的最小值为__________.
20.如图,由两个直角三角形和三个正方形组成的图形,已知25AB = ,24AC = 其中阴影部分面积是_____________平方单位.
三、解答题
21.如图,,90,8,6,,ABC B AB cm BC cm P Q ︒
∆∠===是边上的两点,点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 沿B C A →→运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒. (1)出发2秒后,求线段PQ 的长;
(2)求点Q 在BC 上运动时,出发几秒后,PQB 是等腰三角形; (3)点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.
22.(1)计算:1312248233⎛÷ ⎝ (2)已知a 、b 、c 满足2|2332(30)0a b c -+-=.判断以a 、b 、c 为边能否构成三角形?若能构成三角形,说明此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.
23.已知ABC ∆中,如果过项点B 的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为ABC ∆的关于点B 的二分割线.例
如:如图1,Rt ABC ∆中,90A ︒∠=,20C ︒∠=,若过顶点B 的一条直线BD 交AC 于点D ,若20DBC ︒∠=,显然直线BD 是ABC ∆的关于点B 的二分割线.
(1)在图2的ABC ∆中,20C ︒∠=,110ABC ︒∠=.请在图2中画出ABC ∆关于点B 的二分割线,且DBC ∠角度是 ;
(2)已知20C ︒∠=,在图3中画出不同于图1,图2的ABC ∆,所画ABC ∆同时满足:①C ∠为最小角;②存在关于点B 的二分割线.BAC ∠的度数是 ;
(3)已知C α∠=,ABC ∆同时满足:①C ∠为最小角;②存在关于点B 的二分割线.请求出BAC ∠的度数(用α表示).
24.如图, ABD 为边长不变的等腰直角三角形,AB AD =,90BAD ∠=︒,在 ABD 外取一点 E ,以A 为直角顶点作等腰直角AEP △,其中 P 在
ABD 内部,90EAP ∠=︒,2AE AP ==E 、P 、D 三点共线时,7BP =
下列结论:
①E 、P 、D 共线时,点B 到直线AE 5 ②E 、P 、D 共线时, 13ADP ABP S S ∆∆+=
=5
32
ABD S ∆+③
④作点 A 关于 BD 的对称点 C ,在 AEP 绕点 A 旋转的过程中,PC 的最小值为
5+232;
⑤AEP △绕点A 旋转,当点E 落在AB 上,当点P 落在AD 上时,取BP 上一点N ,使得
AN BN =,连接 ED ,则AN ED ⊥.
其中正确结论的序号是___.
25.如图,在△ABC 中,∠C =90°,把△ABC 沿直线DE 折叠,使△ADE 与△BDE 重合.
(1)若∠A =35°,则∠CBD 的度数为________; (2)若AC =8,BC =6,求AD 的长;
(3)当AB =m(m>0),△ABC 的面积为m +1时,求△BCD 的周长.(用含m 的代数式表示) 26.如图,△ABC 中,90BAC ∠=︒,AB=AC ,P 是线段BC 上一点,且045BAP ︒<∠<︒.作点B 关于直线AP 的对称点D, 连结BD ,CD ,AD . (1)补全图形.
(2)设∠BAP 的大小为α.求∠ADC 的大小(用含α的代数式表示).
(3)延长CD 与AP 交于点E,直接用等式表示线段BD 与DE 之间的数量关系.
27.如图,己知Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =,ED 为AB 垂直平分线,且23DE =,连接DB ,DA .
(1)直接写出BC=__________,AC=__________;
(2)求证:ABD
∆是等边三角形;
(3)如图,连接CD,作BF CD
⊥,垂足为点F,直接写出BF的长;
(4)P是直线AC上的一点,且
1
3
CP AC
=,连接PE,直接写出PE的长.
28.如图,点A是射线OE:y=x(x≥0)上的一个动点,过点A作x轴的垂线,垂足为B,过点B作OA的平行线交∠AOB的平分线于点C.
(1)若OA=2,求点B的坐标;
(2)如图2,过点C作CG⊥AB于点G,CH⊥OE于点H,求证:CG=CH.
(3)①若点A的坐标为(2,2),射线OC与AB交于点D,在射线BC上是否存在一点P 使得△ACP与△BDC全等,若存在,请求出点P的坐标;若不存在,请说明理由.
②在(3)①的条件下,在平面内另有三点P122),P2(2,2),P3(2,22),请你判断也满足△ACP与△BDC全等的点是.(写出你认为正确的点)
29.已知:四边形ABCD是菱形,AB=4,∠ABC=60°,有一足够大的含60°角的直角三角
尺的60°角的顶点与菱形ABCD的顶点A重合,两边分别射线CB、DC相交于点E、F,且∠EAP=60°.
(1)如图1,当点E是线段CB的中点时,请直接判断△AEF的形状是.
(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.
30.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
(1)如图1,连接AF、CE.求证:四边形AFCE为菱形.
(2)如图1,求AF的长.
(3)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,点P的速度为每秒1cm,设运动时间为t秒.
①问在运动的过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t和点Q的速度;若不可能,请说明理由.
②若点Q的速度为每秒0.8cm,当A、P、C、Q四点为顶点的四边形是平行四边形时,求t 的值.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【分析】
交AD于点H,因此要求出EF的长,只要求出EH和HF即可;由折叠做点F做FH AD
的性质可得BE=DE=9-AE ,在Rt ABE △中应用勾股定理求得AE 和BE ,同理在
Rt BC F 'Rt ABE △中应用勾股定理求得BF ,在Rt EFH 中应用勾股定理即可求得EF . 【详解】
过点F 做FH AD ⊥交AD 于点H .
∵四边形EFC B '是四边形EFCD 沿EF 折叠所得, ∴ED=BE ,CF=C F ',3BC CD '== ∵ED=BE ,DE=AD-AE=9-AE ∴BE=9-AE
∵Rt ABE △,AB=3,BE=9-AE ∴()2
2293AE AE -=+ ∴AE=4 ∴DE=5
∴9C F BC BF BF '=-=- ∴Rt BC F ',3BC '=,9C F BF '=- ∴()22293BF BF -+= ∴BF=5,EH=1
∵Rt EFH ,HF=3,EH=1 ∴22223110EF EH HF =+=+故选:C .
【点睛】
本题考查了翻折变换,矩形的性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题.
2.C
解析:C 【分析】
将容器侧面展开,建立A 关于上边沿的对称点A’,根据两点之间线段最短可知A’B 的长度为最短路径15,构造直角三角形,依据勾股定理可以求出底面周长的一半,乘以2即为所求. 【详解】 解:如图,
将容器侧面展开,作A 关于EF 的对称点'A ,连接'A B ,则'A B 即为最短距离, 根据题意:'15A B cm =,12412BD AE cm =-+=,
2222'15129A D A B BD ∴--'==.
所以底面圆的周长为9×2=18cm.
故选:C .
【点睛】
本题考查了平面展开——最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.
3.D
解析:D
【分析】
根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,求出钢条的根数,然后根据最后一根钢条与射线AB 的焊接点P 到A 点的距离即AP 5为3AP 1=a ,作P 2D ⊥AB 于点D ,再用含a 的式子表示出P 1P 3,P 3P 5,从而可求出a 的值,即得出每根钢条的长度,从而可以求得所有钢条的总长.
【详解】
解:如图,∵AP 1与各钢条的长度相等,∴∠A=∠P 1P 2A=15°,
∴∠P 2P 1P 3=30°,∴∠P 1P 3P 2=30°,∴∠P 3P 2P 4=45°,
∴∠P 3P 4P 2=45°,∴∠P 4P 3P 5=60°,∴∠P 3P 5P 4=60°,
∴∠P 5P 4P 6=75°,∴∠P 4P 6P 5=75°,∴∠P 6P 5B=90°,
此时就不能再往上焊接了,综上所述总共可焊上5根钢条.
设AP 1=a ,作P 2D ⊥AB 于点D ,
∵∠P 2P 1D =30°,∴P 2D=12P 1P 2,∴P 1D 3, ∵P 1P 2=P 2P 3,∴P 1P 3=2P 13a ,
∵∠P 4P 3P 5=60°,P 3P 4=P 4P 5,∴△P 4P 3P 5是等边三角形,∴P 3P 5=a ,
∵最后一根钢条与射线AB 的焊接点P 到A 点的距离为3,
∴AP 5=a 3a +a =3
解得,a =2,
∴所有钢条的总长为2×5=10,
【点睛】
本题考查了三角形的内角和、等腰三角形的性质、三角形外角的性质、等边三角形的判定与性质以及勾股定理等知识,发现并利用规律找出钢条的根数是解答本题的关键.
4.B
解析:B
【分析】
过点O作OE⊥BC于E,OF⊥AC于F,由角平分线的性质得到OD=OE=OF,根据勾股定理求出BC的长,易得四边形ADFO为正方形,根据线段间的转化即可得出结果.
【详解】
解:过点O作OE⊥BC于E,OF⊥AC于F,
∵BO,CO分别为∠ABC,∠ACB的平分线,
所以OD=OE=OF,
又BO=BO,
∴△BDO≌△BEO,∴BE=BD.
同理可得,CE=CF.
又四边形ADOE为矩形,∴四边形ADOE为正方形.
∴AD=AF.
∵在Rt△ABC中,AB=6,AC=8,∴BC=10.
∴AD+BD=6①,
AF+FC=8②,
BE+CE=BD+CF=10③,
①+②得,AD+BD+AF+FC=14,即2AD+10=14,
∴AD=2.
故选:B.
【点睛】
此题考查了角平分线的定义与性质,以及全等三角形的判定与性质,属于中考常考题型.5.C
【分析】
作DE⊥AB于E,由勾股定理计算出可求BC=8,再利用角平分线的性质得到DE=DC,设DE=DC=x,利用等等面积法列方程、解方程即可解答.
【详解】
解:作DE⊥AB于E,如图,
在Rt△ABC中,BC=22
106
=8,
∵AD是△ABC的一条角平分线,DC⊥AC,DE⊥AB,
∴DE=DC,
设DE=DC=x,
S△ABD=1
2
DE•AB=
1
2
AC•BD,
即10x=6(8﹣x),解得x=3,
即点D到AB边的距离为3.
故答案为C.
【点睛】
本题考查了角平分线的性质和勾股定理的相关知识,理解角的平分线上的点到角的两边的距离相等是解答本题的关键..
6.D
解析:D
【解析】
【分析】
利用勾股定理和正方形的面积公式,对公式进行合适的变形即可判断各个选项是否争取.【详解】
A中,根据勾股定理等于大正方形边长的平方,它就是正方形的面积,故正确;B中,根据小正方形的边长是2它等于三角形较长的直角边减较短的直角边即可得到,正确;
C中,根据四个直角三角形的面积和加上小正方形的面积即可得到,正确;
D中,根据A可得,C可得,结合完全平方公式可以求得
,错误.
故选D.
【点睛】
本题考查勾股定理.在A、B、C选项的等式中需理解等式的各个部分表示的几何意义,对于D选项是由A、C选项联立得出的.
7.A
解析:A
【分析】
连续使用勾股定理求直角边和斜边,然后再求面积,观察发现规律,即可正确作答.
【详解】
解:∵△ABC 是边长为1的等腰直角三角形
121111222ABC S -∆
∴=⨯⨯== , ∴2222AC 112,AD (2)(2)2=+==+=
2232
12212:2122122
AACD ADE S S --∆∴=⨯⨯===⨯⨯== ∴第n 个等腰直角三角形的面积是22n - ,
故答案为A.
【点睛】
本题的难点是运用勾股定理求直角三角形的直角边,同时观察、发现也是解答本题的关键.
8.B
解析:B
【解析】
根据题意,如图,∠AOB=30°,OA=4,则AB=2,OB=23,所以A(-2,-23),故选B.
9.D
解析:D
【分析】
24和10为两条直角边长时,求出小正方形的边长14,即可利用勾股定理得出EF 的长.
【详解】
解:∵AE=10,BE=24,即24和10为两条直角边长时,
小正方形的边长=24-10=14,
∴221414142+=
故选D .
【点睛】
本题考查了勾股定理、正方形的性质;熟练掌握勾股定理是解决问题的关键.
10.C
解析:C
【分析】
根据题意可设折断处离地面的高度OA 是x 尺,折断处离竹梢AB 是(10-x )尺,结合勾股定理即可得出折断处离地面的高度.
【详解】
设折断处离地面的高度OA 是x 尺,则折断处离竹梢AB 是(10-x )尺,
由勾股定理可得:222=OA OB AB +
即:()2
224=10x x +-,
解得:x =4.2
故折断处离地面的高度OA 是4.2尺.
故答案选:C .
【点睛】
本题主要考查直角三角形勾股定理的应用,解题的关键是熟练运用勾股定理.
二、填空题
11.103. 【解析】 试题解析:将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y , ∵正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3,S 1+S 2+S 3=10, ∴得出S 1=8y+x ,S 2=4y+x ,S 3=x ,
∴S 1+S 2+S 3=3x+12y=10,故3x+12y=10,
x+4y=103
, 所以S 2=x+4y=
103. 考点:勾股定理的证明.
12.5
【解析】
试题分析:取AB 中点E ,连接OE 、CE ,在直角三角形AOB 中,OE=AB ,利用勾股定理的逆定理可得△ACB 是直角三角形,所以CE=AB ,利用OE+CE≥OC ,所以OC 的最大值为OE+CE ,即OC 的最大值=AB=5.
考点:勾股定理的逆定理,
13.163. 【分析】 延长CA 、DB 交于点E ,则60C ∠=°,30E ∠=︒,在Rt ABE ∆中,利用含30角的直角三角形的性质求出28BE AB ==,根据勾股定理求出43AE =.同理,在Rt DEC ∆中求出283CE CD ==,2212DE CE CD =-=,然后根据CDE ABE ABDC S S S ∆∆=-四边形,计算即可求解.
【详解】
解:如图,延长CA 、DB 交于点E ,
∵四边形ABDC 中,120ABD ∠=︒,AB AC ⊥,BD CD ⊥,
∴60C ∠=°,
∴30E ∠=︒,
在Rt ABE ∆中,4AB =,30E ∠=︒,
∴28BE AB ==,
2243AE BE AB ∴=-=.
在Rt DEC ∆中,30E ∠=︒,43CD =,
283CE CD ∴==,
2212DE CE CD ∴=-=,
∴1443832
ABE S ∆=⨯⨯=, 143122432
CDE S ∆=⨯⨯=, 24383=163CDE ABE ABDC S S S ∆∆∴=-=-四边形.
故答案为:163.
【点睛】
本题考查了勾股定理,含30角的直角三角形的性质,图形的面积,准确作出辅助线构造直角三角形是解题的关键.
14.2
【分析】
连接AD 、CD ,由勾股定理得:2243
5AB DE ==+=,224225BD =+=,
22125CD AD ==+=,得出AB =DE =BC ,222BD AD AB +=,由此可得△ABD 为
直角三角形,同理可得△BCD 为直角三角用形,继而得出A 、D 、C 三点共线.再证明
△ABC ≌△DEB ,得出∠BAC =∠EDB ,得出DF ⊥AB ,BD 平分∠ABC ,再由角平分线的性得出DF =DG =2即可的解.
【详解】
连接AD 、CD ,如图所示:
由勾股定理可得,
22435AB DE ==+=,224225BD =+=22125CD AD ==+, ∵BE=BC=5,∴AB=DE =AB =BC ,222BD AD AB +=,
∴△ABD 是直角三角形,∠ADB =90°,
同理可得:△BCD 是直角三角形,∠BDC =90°,
∴∠ADC =180°,∴点A 、D 、C 三点共线,
∴225AC AD BD ===,
在△ABC 和△DEB 中,
AB DE BC EB AC BD =⎧⎪⎨⎪=⎩
=,∴△ABC ≌△DEB(SSS),∴∠BAC =∠EDB ,
∵∠EDB+∠ADF =90°,∴∠BAD+∠ADF =90°,
∴∠BFD =90°,∴DF ⊥AB ,
∵AB=BC ,BD ⊥AC ,∴BD 平分∠ABC ,
∵DG ⊥BC ,∴DF =DG =2.
【点睛】
本题考查全等三角形的性质与判定以及勾股定理的相关知识,解题的关键是熟练掌握勾股定理和过股定理的逆定理.
15.15 【分析】 根据题意点B 与点C 关于AD 对称,所以过点C 作AB 的垂线,与AD 的交点即点P ,求出CE 即可得到答案
【详解】
∵8,AB AC AD BC ==⊥
∴点B 与点C 关于AD 对称
过点C 作CE ⊥AB 于一点即为点P ,此时PB PE +最小
∵8,4,AB AC BC AD BC ===⊥
∴BD=2
在Rt △A BC 中, 222282215AD AB BD =
-=-= ∵S △ABC=1122
BC AD AB CE ⋅⋅=⋅⋅ ∴42158CE ⨯=
得15CE =
故此题填15
【点睛】
此题考察最短路径,根据题意找到对称点,作直角三角形,利用勾股定理解决问题
16.31+或31-
【解析】
如图,l AB ,2AC =,作AD l ⊥于点D ,
∴1AD =,
∵222AF AB ==⋅=,且F 有2个, ∴2212213DF DF ==-=,
∵1DC AD ==,
∴1113
CF CD DF =+=+, 2231CF DF CD =-=-.
点睛:本题考查了勾股定理的运用,通过添加辅助线,可将问题转化到直角三角形中,利用勾股定理解答,考查了学生的空间想象能力.
17.
12013
【解析】 ∵AB=AC ,AD 是角平分线,
∴AD ⊥BC ,BD=CD ,
∴B 点,C 点关于AD 对称,
如图,过C 作CF ⊥AB 于F ,交AD 于E ,
则CF=BE+FF 的最小值,
根据勾股定理得,AD=12,
利用等面积法得:AB ⋅CF=BC ⋅AD ,
∴CF=BC AD AB ⋅=101213⨯=12013
故答案为
12013. 点睛:本题主要考查的是翻折的性质、垂线段最短、勾股定理的应用及三角形面积的等积法.明确当CF ⊥AB 时,CF 有最小值是解题的关键.
18.6
【解析】
∵AB=AC ,AD 是角平分线,
∴AD ⊥BC ,BD=CD ,
∴B 点,C 点关于AD 对称,
如图,过C 作CQ ⊥AB 于Q ,交AD 于P ,
则CQ=BP+PQ 的最小值,
根据勾股定理得,AD=8,
利用等面积法得:AB ⋅CQ=BC ⋅AD ,
∴CQ=
BC AD AB ⋅=12810
⨯=9.6 故答案为:9.6. 点睛:此题是轴对称-最短路径问题,主要考查了角平分线的性质,对称的性质,勾股定理,等面积法,用等面积法求出CQ 是解本题的关键.
19.22-【分析】
根据已知条件,添加辅助线可得△EAC ≌△DAM (SAS ),进而得出当MD ⊥BC 时,CE 的值最小,转化成求DM 的最小值,通过已知值计算即可.
【详解】
解:如图所示,在AB 上取AM=AC=2,
∵90ACB ∠=,2AC BC ==,
∴∠CAB=45°,
又∵45EAD ∠=,
∴∠EAC+∠CAD=∠DAB+∠CAD=45°,
∴∠EAC =∠DAB ,
∴在△EAC 与△DAB 中
AE=AD ,∠EAF =∠DAB ,AC =AM ,
∴△EAC ≌△DAM (SAS )
∴CE=MD ,
∴当MD ⊥BC 时,CE 的值最小,
∵AC=BC=2, 由勾股定理可得2222AB AC BC =
+= ∴222=BM ,
∵∠B=45°,
∴△BDM 为等腰直角三角形,
∴DM=BD ,
由勾股定理可得222+BD DM =BM
∴DM=BD=22∴CE=DM=22-
故答案为:22-
【点睛】
本题考查了动点问题及全等三角形的构造,解题的关键是作出辅助线,得出全等三角形,找到CE 最小时的状态,化动为静.
20.49
【分析】
先计算出BC 的长,再由勾股定理求出阴影部分的面积即可.
【详解】
∵∠ACB=90︒,25AB = ,24AC =,
∴22222252449BC AB AC =-=-=,
∴阴影部分的面积=249BC =,
故答案为:49.
【点睛】
此题考查勾股定理,能利用根据直角三角形计算得到所需的边长,题中根据勾股定理的图形得到阴影部分面积等于BC 的平方是解题的关键.
三、解答题
21.(1)出发2秒后,线段PQ 的长为2132)当点Q 在边BC 上运动时,出发
83
秒后,△PQB 是等腰三角形;(3)当t 为5.5秒或6秒或6.6秒时,△BCQ 为等腰三角形.
【分析】
(1)由题意可以求出出发2秒后,BQ 和PB 的长度,再由勾股定理可以求得PQ 的长度; (2)设所求时间为t ,则可由题意得到关于t 的方程,解方程可以得到解答; (3)点Q 在边CA 上运动时,ΔBCQ 为等腰三角形有三种情况存在,对每种情况进行讨论可以得到解答.
【详解】
(1)BQ=2×2=4cm ,BP=AB−AP=8−2×1=6cm ,
∵∠B=90°,
由勾股定理得:22224652213BQ BP +=+==
∴出发2秒后,线段PQ 的长为13
(2)BQ=2t ,BP=8−t
由题意得:2t =8−t
解得:t=8 3
∴当点Q在边BC上运动时,出发8
3
秒后,△PQB是等腰三角形;
(3) ∵∠ABC=90°,BC=6,AB=8,∴AC=22
68
+=10.
①当CQ=BQ时(图1),则∠C=∠CBQ,
∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=5,
∴BC+CQ=11,∴t=11÷2=5.5秒;
②当CQ=BC时(如图2),则BC+CQ=12
∴t=12÷2=6秒
③当BC=BQ时(如图3),过B点作BE⊥AC于点E,
∴BE=
6824
105 AB BC
AC
⋅⨯
==,
所以22
BC BE
-=18
5
=3.6,
故CQ=2CE=7.2,
所以BC+CQ=13.2,
∴t=13.2÷2=6.6秒.
由上可知,当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.
【点睛】
本题考查三角形的动点问题,利用分类讨论思想和方程方法、综合力学的运动知识和三角形边角的有关知识求解是解题关键.
22.(1)42
3
;(2)以a、b、c为边能构成三角形,此三角形的形状是直角三角形,
6
【分析】
(1)根据二次根式的加减法法则、除法法则和二次根式的性质求出即可;
(2)先根据绝对值,偶次方、算术平方根的非负性求出a、b、c的值,再根据勾股定理的逆定理得出三角形是直角三角形,再求出面积即可.
【详解】
解:(1)
1
31224823
3

÷

=
2
(63343)23
3
÷
=
28
(3)(23) 3
÷
=42
3

(2)以a、b、c为边能构成三角形,此三角形的形状是直角三角形,理由是:
∵a、b、c满足2
|a2332b(c30)0
-+-=,
∴a﹣3=0,2﹣b=0,c300,
∴a=3,b=2,c30
∵32303302,3302,
∴以a、b、c为边能组成三角形,
∵a=3,b=2,c30
∴a2+b2=c2,
∴以a、b、c为边能构成直角三角形,直角边是a和b,
则此三角形的面积是123322
⨯⨯=36. 【点睛】 此题考查了计算能力,掌握二次根式的加减法法则、除法法则和二次根式的性质,绝对值,偶次方、算术平方根的非负性,勾股定理的逆定理是解题的关键.
23.(1)作图见解析,20DBC ∠=︒;(2)作图见解析,35BAC ∠=︒;(3)∠A =45°或90°或90°-2α或1452
α︒-,或α=45°时45°<∠BAC <90°.
【分析】
(1)根据二分割线的定义,只要把∠ABC 分成90°角和20°角即可;
(2)可以画出∠A=35°的三角形;
(3)设BD 为△ABC 的二分割线,分以下两种情况.第一种情况:△BDC 是等腰三角形,△ABD 是直角三角形;第二种情况:△BDC 是直角三角形,△ABD 是等腰三角形分别利用直角三角形的性质、等腰三角形的性质和三角形的内角和定理解答即可.
【详解】
解:(1)ABC ∆关于点B 的二分割线BD 如图4所示,20DBC ∠=︒;
故答案为:20°;
(2)如图所示:∠BAC=35°;
(3)设BD 为△ABC 的二分割线,分以下两种情况.
第一种情况:△BDC 是等腰三角形,△ABD 是直角三角形,易知∠C 和∠DBC 必为底角, ∴∠DBC =∠C =α.
当∠A =90°时,△ABC 存在二分分割线;
当∠ABD =90°时,△ABC 存在二分分割线,此时∠A =90°-2α;
当∠ADB =90°时,△ABC 存在二分割线,此时α=45°且45°<∠A <90°;
第二种情况:△BDC 是直角三角形,△ABD 是等腰三角形,
当∠DBC =90°时,若BD =AD ,则△ABC 存在二分割线,此时
1809014522
A αα︒-︒-∠==︒-;
当∠BDC =90°时,若BD =AD ,则△ABC 存在二分割线,此时∠A =45°,
综上,∠A =45°或90°或90°-2α或1452α︒-,或α=45°时,45°<∠BAC <90°.
【点睛】
本题考查的是二分割线的理解与作图,属于新定义题型,主要考查了等腰三角形的性质、直角三角形的性质和三角形的内角和定理等知识,正确理解二分割线的定义、熟练掌握等腰三角形和直角三角形的性质是解答的关键.
24.②③⑤
【分析】 ①先证得ABE ADP ≅,利用邻补角和等腰直角三角形的性质求得90PEB ∠=︒,利
用勾股定理求出BE ,即可求得点B 到直线AE 的距离;
②根据①的结论,利用APD ABP ABE APB S S S S ∆∆∆+=+AEP BEP S S ∆∆=+即可求得结论; ③在Rt AHB 中,利用勾股定理求得2AB ,再利用三角形面积公式即可求得ABD S ∆; ④当A P C 、、共线时,PC 最小,利用对称的性质,AB BC =的长,再求得AC 的长,即可求得结论;
⑤先证得
ABP ADE ≅,得到ABP ADE ∠=∠,根据条件得到ABP NAB ∠=∠,利
用互余的关系即可证得结论.
【详解】
①∵ABD 与AEP 都是等腰直角三角形,
∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =,45APE AEP ∠=∠=︒, ∴EAB PAD ∠=∠, ∴()ABE ADP SAS ≅,
∴180********AEB APD APE ∠=∠=︒-∠=︒-︒=︒,
∴1354590PEB AEB AEP ∠=∠-∠=︒-︒=︒,
∴222PE BE PB +=,
∵2AE AP ==
,90EAP ∠=︒, ∴22PE AE =
=, ∴()22227BE +=,
解得:3BE =,
作BH ⊥AE 交AE 的延长线于点H ,
∵45AEP ∠=︒,90PEB ∠=︒,
∴180180904545HEB PEB AEP ∠=︒-∠-∠=︒-︒-︒=︒, ∴26sin 45322HB BE =︒==, ∴点B 到直线AE 的距离为
6,故①错误; ②由①知:ABE ADP ≅,2EP =,3BE =,
∴APD ABP ABE APB S S S S ∆∆∆∆+=+
AEP BEP S S ∆∆=+
1122
AE AP PE EB =⨯⨯+⨯⨯ 11222322
=⨯⨯+⨯⨯ 13=+,故②正确;
③在Rt AHB 中,由①知:62EH HB ==
, ∴62AH AE EH =+=+, 22
222256623AB AH BH ⎛⎫⎛⎫=+=++=+ ⎪ ⎪ ⎪ ⎪⎭⎝⎭, 21153222
ABD S AB AD AB ∆=
⋅==+,故③正确; ④因为AC 是定值,所以当A P C 、、共线时,PC 最小,如图,连接BC ,
∵A C 、关于 BD 的对称,
∴523AB BC ==+
∴225231043AC BC ==+=+
∴ min PC AC AP =-,
10432=+
⑤∵ABD 与AEP 都是等腰直角三角形,
∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =, 在ABP 和ADE 中,AB AD BAP DAE AP AE =⎧⎪∠=∠⎨⎪=⎩

∴()ABP ADE SAS ≅,
∴ABP ADE ∠=∠,
∵AN BN =,
∴ABP NAB ∠=∠,
∴EAN ADE ∠=∠,
∵90EAN DAN ∠+∠=︒,
∴90ADE DAN ∠+∠=︒,
∴AN DE ⊥,故⑤正确;
综上,②③⑤正确,
故答案为:②③⑤.
【点睛】
本题是三角形的综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理的应用,三角形的面积公式,综合性强,全等三角形的判定和性质的灵活运用是解题的关键.
25.(1)∠CBD=20°;(2)AD=16
4;(3) △BCD 的周长为m+2 【分析】
(1)根据折叠可得∠1=∠A=35°,根据三角形内角和定理可以计算出∠ABC=55°,进而得到∠CBD=20°;
(2)根据折叠可得AD=DB ,设CD=x ,则AD=BD=8-x ,再在Rt △CDB 中利用勾股定理可得x 2+62=(8-x )2,再解方程可得x 的值,进而得到AD 的长;
(3)根据三角形ACB 的面积可得112
AC CB m =+, 进而得到AC •BC=2m+2,再在Rt △CAB 中,CA 2+CB 2=BA 2,再把左边配成完全平方可得CA+CB 的长,进而得到△BCD 的周长.
【详解】
(1)
∵把△ABC 沿直线DE 折叠,使△ADE 与△BDE 重合,
∴∠1=∠A=35°,
∵∠C=90°,
∴∠ABC=180°-90°-35°=55°,
∴∠2=55°-35°=20°,
即∠CBD=20°;
(2)∵把△ABC 沿直线DE 折叠,使△ADE 与△BDE 重合,
∴AD=DB ,
设CD=x ,则AD=BD=8-x ,
在Rt △CDB 中,CD 2+CB 2=BD 2,
x 2+62=(8-x )2,
解得:x=
74, AD=8-74=164; (3)∵△ABC 的面积为m+1, ∴12
AC •BC=m+1, ∴AC •BC=2m+2,
∵在Rt △CAB 中,CA 2+CB 2=BA 2,
∴CA 2+CB 2+2AC •BC=BA 2+2AC •BC ,
∴(CA+BC )2=m 2+4m+4=(m+2)2,
∴CA+CB=m+2,
∵AD=DB ,
∴CD+DB+BC=m+2.
即△BCD 的周长为m+2.
【点睛】
此题主要考查了图形的翻折变换,以及勾股定理,完全平方公式,关键是掌握勾股定理,以及折叠后哪些是对应角和对应线段.
26.(1)见解析;(2)∠ADC=45α︒+;(3)2BD DE =
【分析】
(1)根据题意画出图形即可;
(2)根据对称的性质,等腰三角形的性质及角与角之间的和差关系进行计算即可;
(3)画出图形,结合(2)的结论证明△BED 为等腰直角三角形,从而得出结论.
【详解】
解:(1)如图所示;
(2)∵点B 与点D 关于直线AP 对称,∠BAP=α,
∴∠PAD=α,AB=AD ,
∵90BAC ∠=︒,
∴902DAC α∠=︒-,
又∵AB=AC ,
∴AD=AC ,
∴∠ADC=1[180(902)]2
α⨯︒-︒-=45α︒+; (3)如图,连接BE ,
由(2)知:∠ADC=45α︒+,
∵∠ADC=∠AED+∠EAD ,且∠EAD=α,
∴∠AED=45°,
∵点B 与点D 关于直线AP 对称,即AP 垂直平分BD ,
∴∠AED=∠AEB=45°,BE=DE ,
∴∠BED=90°,
∴△BED 是等腰直角三角形,
∴22222BD BE DE DE =+=,
∴2BD DE =.
【点睛】
本题考查了轴对称的性质,等腰三角形的性质,勾股定理等知识,明确角与角之间的关系,学会添加常用辅助线构造直角三角形是解题的关键.
27.(1)2,2)证明见解析(3(4【分析】
(1)根据含有30°角的直角三角形的性质可得BC=2,再由勾股定理即可求出AC 的长; (2)由ED 为AB 垂直平分线可得DB=DA ,在Rt △BDE 中,由勾股定理可得BD=4,可得BD=2BE ,故∠BDE 为60°,即可证明ABD ∆是等边三角形;
(3)由(1)(2)可知,AC AD=4,进而可求得CD 的长,再由等积法可得BCD ACD ACBD S S S =+四边形,代入求解即可;
(4)分点P 在线段AC 上和AC 的延长线上两种情况,过点E 作AC 的垂线交AC 于点Q ,构造Rt △PQE ,再根据勾股定理即可求解.
【详解】
(1)∵Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =,
∴122
BC AB =
=,∴AC = (2)∵ED 为AB 垂直平分线,∴ADB=DA ,
在Rt △BDE 中,
∵122BE AE AB ==
=,DE =
∴BD =,
∴BD=2BE ,∴∠BDE 为60°,
∴ABD ∆为等边三角形;
(3))由(1)(2)可知,AC ,AD=4,
∴CD =
∵BCD ACD ACBD S S
S =+四边形, ∴111()222
BC AD AC AC AD BF CD +⨯=⨯+⨯,
∴7BF =
(4)分点P 在线段AC 上和AC 的延长线上两种情况,
如图,过点E 作AC 的垂线交AC 于点Q ,
∵AE=2,∠BAC=30°,∴EQ=1, ∵=23AC ,∴=3CQ QA =,
①若点P 在线段AC 上, 则23=3333PQ CQ CP =-=, ∴22233
PE PQ EQ =+; ②若点P 在线段AC 的延长线上, 则2533333PQ CQ CP =+=, ∴22221=3
PE PQ EQ =+; 综上,PE 23221. 【点睛】 本题考查勾股定理及其应用、含30°的直角三角形的性质等,解题的关键一是能用等积法表示并求出BF 的长,二是对点P 的位置要分情况进行讨论.
28.(1)(5,0);(2)见解析;(3)①P (4,2),②满足△ACP 与△BDC 全等的点是P 1、P 2,P 3.
理由见解析
【分析】
(1)由题意可以假设A (a ,a )(a >0),根据AB 2+OB 2=OA 2,构建方程即可解决问题; (2)由角平分线的性质定理证明CH=CF ,CG=CF 即可解决问题;
(3)①如图3中,在BC 的延长线上取点P ,使得CP=DB ,连接AP .只要证明△ACP ≌△CDB (SAS ),△ABP 是等腰直角三角形即可解决问题;
②根据SAS 即可判断满足△ACP 与△BDC 全等的点是P 1、P 2,P 3;
【详解】
解:(1)∵点A 在射线y =x (x ≥0)上,故可以假设A (a ,a )(a >0),
∵AB ⊥x 轴,
∴AB=OB=a,即△ABO是等腰直角三角形,
∴AB2+OB2=OA2,
∴a2+a2=(52)2,
解得a=5,
∴点B坐标为(5,0).
(2)如图2中,作CF⊥x轴于F.
∵OC平分∠AOB,CH⊥OE,
∴CH=CF,
∵△AOB是等腰直角三角形,
∴∠AOB=45°,
∵BC∥OE,
∴∠CBG=∠AOB=45°,得到BC平分∠ABF,
∵CG⊥BA,CF⊥BF,
∴CG=CF,
∴CG=CH.
(3)①如图3中,在BC的延长线上取点P,使得CP=DB,连接AP.
由(2)可知AC平分∠DAE,
∴∠DAC=1
2
∠DAE=
1
2
(180°﹣45°)=67.5°,
由OC平分∠AOB得到∠DOB=1
2
∠AOB=22.5°,。

相关文档
最新文档