高考物理易错题专题复习-法拉第电磁感应定律练习题含答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理易错题专题复习-法拉第电磁感应定律练习题含答案解析
一、法拉第电磁感应定律
1.如图甲所示,一个电阻值为R,匝数为n的圆形金属线圈与阻值为2R的电阻R1连接成闭合回路。
线圈的半径为r1。
在线圈中半径为r2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图乙所示,图线与横、纵轴的截距分别为t0和B0。
导线的电阻不计,求0至t1时间内
(1)通过电阻R1上的电流大小及方向。
(2)通过电阻R1上的电荷量q。
【答案】(1)
2
02
0 3
n B r
Rt
π
电流由b向a通过R1(2)
2
021
3
n B r t
Rt
π
【解析】
【详解】
(1)由法拉第电磁感应定律得感应电动势为
2
202
2
n B r
B
E n n r
t t t
π
π
∆Φ∆
===
∆∆
由闭合电路的欧姆定律,得通过R1的电流大小为
2
02
33
n B r
E
I
R Rt
π
==
由楞次定律知该电流由b向a通过R1。
(2)由
q
I
t
=得在0至t1时间内通过R1的电量为:
2
021
1
3
n B r t
q It
Rt
π
==
2.如图所示,在垂直纸面向里的磁感应强度为B的有界矩形匀强磁场区域内,有一个由均匀导线制成的单匝矩形线框abcd,线框平面垂直于磁感线。
线框以恒定的速度v沿垂直磁场边界向左运动,运动中线框dc边始终与磁场右边界平行,线框边长ad=l,cd=2l,线框导线的总电阻为R,则线框离开磁场的过程中,求:
(1)线框离开磁场的过程中流过线框截面的电量q;
(2)线框离开磁场的过程中产生的热量 Q;
(3)线框离开磁场过程中cd两点间的电势差U cd.
【答案】(1)22Bl q R =(2) 234B l v
Q R
=(3)43cd Blv U =
【解析】 【详解】
(1)线框离开磁场的过程中,则有:
2E B lv =g
E I R = q It = l t v
=
联立可得:2
2Bl q R
=
(2)线框中的产生的热量:
2Q I Rt
=
解得:234B l v
Q R
=
(3) cd 间的电压为:
2
3
cd U I R =g
解得:43
cd Blv
U =
3.如图(a )所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上。
在区域I 内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b )所示。
t =0时刻在轨道上端的金属细棒ab 从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd 在位于区域I 内的导轨上由静止释放。
在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好。
已知cd 棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g 。
求:
(1)通过cd 棒电流的方向和区域I 内磁场的方向; (2)ab 棒开始下滑的位置离EF 的距离;
(3)ab 棒开始下滑至EF 的过程中回路中产生的热量。
【答案】(1)通过cd 棒电流的方向从d 到c ,区域I 内磁场的方向垂直于斜面向上;(2)3l (3)4mgl sin θ。
【解析】 【详解】
(1)由楞次定律可知,流过cd 的电流方向为从d 到c ,cd 所受安培力沿导轨向上,由左手定则可知,I 内磁场垂直于斜面向上,故区域I 内磁场的方向垂直于斜面向上。
(2)ab 棒在到达区域Ⅱ前做匀加速直线运动,
a =
sin mg m
θ
=gs in θ cd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后,回路中产生的感应电动势不变,则ab 棒在区域Ⅱ中一定做匀速直线运动,可得:
1Blv t
∆Φ
=∆ 2(sin )x x
B l I
BI g t t θ⋅⋅= 解得
x t =
ab 棒在区域Ⅱ中做匀速直线运动的速度
1v
则ab 棒开始下滑的位置离EF 的距离
2
1232
x h at l l =
+= (3)ab 棒在区域Ⅱ中运动时间
22x
l t v =
= ab 棒从开始下滑至EF 的总时间
2x t t t =+= 感应电动势:
1E Blv ==
ab 棒开始下滑至EF 的过程中回路中产生的热量:
Q =EIt =4mgl sin θ
4.如图所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度L =1 m ,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接阻值为R =0.40 Ω的电阻,质量为m =
0.01 kg 、电阻为r =0.30 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g =10 m/s 2(忽略ab 棒运动过程中对原磁场的影响),求:
(1) ab 棒1.5 s-2.1s 的速度大小及磁感应强度B 的大小; (2)金属棒ab 在开始运动的1.5 s 内,通过电阻R 的电荷量; (3)金属棒ab 在开始运动的1.5 s 内,电阻R 上产生的热量。
【答案】(1) v =7 m/s B =0.1 T (2) q =0.67 C (3)0.26 J 【解析】 【详解】
(1)金属棒在AB 段匀速运动,由题中图象得:
v =
x
t ∆∆=7 m/s 根据欧姆定律可得:
I =
BLv
r R
+ 根据平衡条件有
mg =BIL
解得:
B =0.1T
(2)根据电量公式:
q =I Δt
根据欧姆定律可得:
I =
()R r t
∆Φ
+∆
磁通量变化量
ΔΦ=
S t
∆∆B 解得:
q =0.67 C
(3)根据能量守恒有:
Q =mgx -
12
mv 2 解得:
Q =0.455 J
所以
Q R =
R
r R
+Q =0.26 J 答:(1) v =7 m/s B =0.1 T (2) q =0.67 C (3)0.26 J
5.两间距为L=1m 的平行直导轨与水平面间的夹角为θ=37° ,导轨处在垂直导轨平面向下、 磁感应强度大小B=2T 的匀强磁场中.金属棒P 垂直地放在导轨上,且通过质量不计的绝缘细绳跨过如图所示的定滑轮悬吊一重物(重物的质量m 0未知),将重物由静止释放,经过一 段时间,将另一根完全相同的金属棒Q 垂直放在导轨上,重物立即向下做匀速直线运动,金 属棒Q 恰好处于静止状态.己知两金属棒的质量均为m=lkg 、电阻均为R=lΩ,假设重物始终没有落在水平面上,且金属棒与导轨接触良好,一切摩擦均可忽略,重力加速度g=l0m/s 2,sin 37°=0.6,cos37°=0.8.求:
(1)金属棒Q 放上后,金属棒户的速度v 的大小;
(2)金属棒Q 放上导轨之前,重物下降的加速度a 的大小(结果保留两位有效数字); (3)若平行直导轨足够长,金属棒Q 放上后,重物每下降h=lm 时,Q 棒产生的焦耳热.
【答案】(1)3m/s v = (2)22.7m/s a = (3)3J 【解析】 【详解】
(1)金属棒Q 恰好处于静止时
sin mg BIL θ=
由电路分析可知E BLv = ,2E I R
= , 代入数据得,3m/s v =
(2)P 棒做匀速直线运动时,0sin m g BIL mg θ=+, 金属棒Q 放上导轨之前,由牛顿第二定律可得
00sin ()m g mg m m a θ-=+
代入数据得,22.7m/s a =
(3)根据能量守恒可得,0sin m gh mgh Q θ=+总 由于两个金属棒电阻串联,均为R ,可知 Q 棒产生的焦耳热为3J 2
Q Q =
=总
6.如图所示,竖直平面内两竖直放置的金属导轨间距为L1,导轨上端接有一电动势为E、内阻不计的电源,电源旁接有一特殊开关S,当金属棒切割磁感线时会自动断开,不切割时自动闭合;轨道内存在三个高度均为L2的矩形匀强磁场区域,磁感应强度大小均为B,方向如图。
一质量为m的金属棒从ab位置由静止开始下落,到达cd位置前已经开始做匀速运动,棒通过cdfe区域的过程中始终做匀速运动。
已知定值电阻和金属棒的阻值均为R,其余电阻不计,整个过程中金属棒与导轨接触良好,重力加速度为g,求:
(1)金属棒匀速运动的速度大小;
(2)金属棒与金属导轨间的动摩擦因数μ;
(3)金属棒经过efgh区域时定值电阻R上产生的焦耳热。
【答案】(1);(2);(3)mgL2。
【解析】
【分析】
(1)金属棒到达cd位置前已经开始做匀速运动,根据平衡条件结合安培力的计算公式求解;
(2)分析导体棒的受力情况,根据平衡条件结合摩擦力的计算公式求解;
(3)根据功能关系结合焦耳定律求解。
【详解】
(1)金属棒到达cd位置前已经开始做匀速运动,根据平衡条件可得:mg=BIL1,
由于
解得:;
(2)由于金属棒切割磁感线时开关会自动断开,不切割时自动闭合,则在棒通过cdfe区域的过程中开关是闭合的,此时棒受到安培力方向垂直于轨道向里;
根据平衡条件可得:mg=μF A,
通过导体棒的电流I′=,则F A=BI′L1,
解得μ=;
(3)金属棒经过efgh区域时金属棒切割磁感线时开关自动断开,此时导体棒仍匀速运动;
根据功能关系可知产生的总的焦耳热等于克服安培力做的功,而W克=mgL2,
则Q 总=mgL 2,
定值电阻R 上产生的焦耳热Q R =Q 总=mgL 2。
【点睛】
对于电磁感应问题研究思路常常有两条:一条从力的角度,根据牛顿第二定律或平衡条件列出方程;另一条是能量,分析涉及电磁感应现象中的能量转化问题,根据动能定理、功能关系等列方程求解。
7.如图所示,两根相距为L 的光滑平行金属导轨CD 、EF 固定在水平面内,并处在竖直向下的匀强磁场中,导轨足够长且电阻不计.在导轨的左端接入阻值为R 的定值电阻,将质量为m 、电阻可忽略不计的金属棒MN 垂直放置在导轨上,可以认为MN 棒的长度与导轨宽度相等,且金属棒运动过程中始终与导轨垂直并接触良好,不计空气阻力.金属棒MN 以恒定速度v 向右运动过程中,假设磁感应强度大小为B 且保持不变,为了方便,可认为导体棒中的自由电荷为正电荷.
(1)请根据法拉第电磁感应定律,推导金属棒MN 中的感应电动势E ;
(2)在上述情景中,金属棒MN 相当于一个电源,这时的非静电力与棒中自由电荷所受洛伦兹力有关.请根据电动势的定义,推导金属棒MN 中的感应电动势E .
(3)请在图中画出自由电荷所受洛伦兹力示意图.我们知道,洛伦兹力对运动电荷不做功.那么,金属棒MN 中的自由电荷所受洛伦兹力是如何在能量转化过程中起到作用的呢?请结合图中自由电荷受洛伦兹力情况,通过计算分析说明.
【答案】(1)E BLv =;(2)v E BL =(3)见解析 【解析】 【分析】
(1)先求出金属棒MN 向右滑行的位移,得到回路磁通量的变化量∆Φ ,再由法拉第电磁感应定律求得E 的表达式;
(2)棒向右运动时,电子具有向右的分速度,受到沿棒向下的洛伦兹力,1v f e B =,棒中电子在洛伦兹力的作用下,电子从M 移动到N 的过程中,非静电力做功v W e Bl =,根据电动势定义
W
E q
=
计算得出E. (3)可以从微观的角度求出水平和竖直方向上的洛伦兹力做功情况,在比较整个过程中做功的变化状况. 【详解】
(1)如图所示,在一小段时间∆t 内,金属棒MN 的位移 x v t ∆=∆
这个过程中线框的面积的变化量S L x Lv t ∆=∆=∆ 穿过闭合电路的磁通量的变化量
B S BLv t ∆Φ=∆=∆
根据法拉第电磁感应定律 E t
∆Φ
=∆ 解得 E BLv =
(2)如图所示,棒向右运动时,正电荷具有向右的分速度,受到沿棒向上的洛伦兹力
1v f e B =,f 1即非静电力
在f 的作用下,电子从N 移动到M 的过程中,非静电力做功
v W e BL =
根据电动势定义 W E q
= 解得 v E BL =
(3)自由电荷受洛伦兹力如图所示.
设自由电荷的电荷量为q ,沿导体棒定向移动的速率为u .
如图所示,沿棒方向的洛伦兹力1f q B =v ,做正功11ΔΔW f u t q Bu t =⋅=v 垂直棒方向的洛伦兹力2f quB =,做负功
22ΔΔW f v t quBv t =-⋅=-
所以12+=0W W ,即导体棒中一个自由电荷所受的洛伦兹力做功为零.
1f 做正功,将正电荷从N 端搬运到M 端,1f 相当于电源中的非静电力,宏观上表现为“电
动势”,使电源的电能增加;2f 做负功,宏观上表现为安培力做负功,使机械能减少.大量自由电荷所受洛伦兹力做功的宏观表现是将机械能转化为等量的电能,在此过程中洛伦兹力通过两个分力做功起到“传递”能量的作用. 【点睛】
本题较难,要从电动势定义的角度上去求电动势的大小,并学会从微观的角度分析带电粒子的受力及做功情况.
8.如图所示,两平行光滑的金属导轨MN 、PQ 固定在水平面上,相距为L ,处于竖直向下的磁场中,整个磁场由n 个宽度皆为x0的条形匀强磁场区域1、2、3、…n 组成,从左向右依次排列,磁感应强度的大小分别为B 、2B 、3B 、…nB ,两导轨左端MP 间接入电阻R ,一质量为m 的金属棒ab 垂直于MN 、PQ 放在水平导轨上,与导轨电接触良好,不计导轨和金属棒的电阻。
(1)对导体棒ab 施加水平向右的力,使其从图示位置开始运动并穿过n 个磁场区,求导体棒穿越磁场区1的过程中,通过电阻R 的电荷量q 。
(2)对导体棒ab 施加水平向右的恒力F0,让它从磁场1左侧边界处开始运动,当向右运动距离为时做匀速运动,求棒通过磁场区1所用的时间t 。
(3)对导体棒ab 施加水平向右的恒定拉力F1,让它从距离磁场区1左侧x=x0的位置由静止开始做匀加速运动,当棒ab 进入磁场区1时开始做匀速运动,此后在不同的磁场区施加不同的水平拉力,使棒ab 保持该匀速运动穿过整个磁场区,求棒ab 通过第i 磁场区时的水平拉力Fi 和棒ab 通过整个磁场区过程中回路产生的电热Q 。
【答案】⑴;⑵;⑶
【解析】
试题分析:⑴电路中产生的感应电动势。
通过电阻的电荷量。
导体棒穿过1区过程。
解得
(2)棒匀速运动的速度为v ,则
设棒在前x0/2距离运动的时间为t1,则
由动量定律:F0 t 1-BqL=mv ;解得: 设棒在后x0/2匀速运动的时间为t2,则
所以棒通过区域1所用的总时间:
(3)进入1区时拉力为,速度,则有。
解得;。
进入i 区时的拉力。
导体棒以后通过每区都以速度做匀速运动,由功能关系有
解得。
考点:动能定理的应用;导体切割磁感线时的感应电动势;电磁感应中的能量转化
9.如图甲所示,光滑且足够长的平行金属导轨MN 和PQ 固定在同一水平面上,两导轨间距L=0.2m ,电阻R=0.4Ω,导轨上停放一质量m=0.1kg 、电阻r=0.1Ω的金属杆,导轨电阻忽略不计,整个装置处在磁感应强度B=0.5T 的匀强磁场中,磁场的方向竖直向下,现用一外力F 沿水平方向拉杆,使之由静止开始运动,若理想电压表示数U 随时间t 变化关系如图乙所示。
求:
(1)金属杆在5s 末的运动速率 (2)第4s 末时外力F 的功率
【答案】(1) 2.5m/s v = (2) 0.18W P = 【解析】(1)由题意,电压表的示数为R
U BLv R r
=⋅+ 5s 末电压表的示数0.2V U = , 所以代入数据可得 2.5m/s v = (2)由R
U BLv R r
=
⋅+及U -t 图像可知,U 随时间均匀变化,导体棒在力F 作用下匀加速运动
()1R r v U a t R BL t
+∆∆=
=⋅⋅∆∆ 代入数据可得20.5m/s a = 在4s 末,金属杆的切割速度为()1
2m/s R r v U R
BL
⋅'='+=
⋅
此时拉力F 为22B L v F ma R r
-
=+'
所以4s 末拉力F 的功率为0.18W P Fv =='
【点睛】本题是电磁感应与电路、力学知识的综合,由电路的串联关系先求出电动势,再求出速度;由加速度的定义,求出加速度;根据瞬时功率的表达式,求出第5秒末外力F 的功率.
10.如图甲所示为发电机的简化模型,固定于绝缘水平桌面上的金属导轨,处在方向竖直向下的匀强磁场中,导体棒ab 在水平向右的拉力F 作用下,以水平速度v 沿金属导轨向右做匀速直线运动,导体棒ab 始终与金属导轨形成闭合回路.已知导体棒ab 的长度恰好等于平行导轨间距l ,磁场的磁感应强度大小为B ,忽略摩擦阻力.
(1)求导体棒ab 运动过程中产生的感应电动势E 和感应电流I ;
(2)从微观角度看,导体棒切割磁感线产生感应电动势是由于导体内部的自由电荷受到沿棒方向的洛伦兹力做功而产生的.如图乙(甲图中导体棒ab )所示,为了方便,可认为导体棒ab 中的自由电荷为正电荷,每个自由电荷的电荷量为q ,设导体棒ab 中总共有N 个自由电荷.
a.求自由电荷沿导体棒定向移动的速率u ;
b.请分别从宏观和微观两个角度,推导非静电力做功的功率等于拉力做功的功率. 【答案】(1) Blv F Bl
(2) F NqB 宏观角度
【解析】
(1)根据法拉第电磁感应定律,感应电动势E Blv = 导体棒水平向右匀速运动,受力平衡,则有F BIl F ==安
联立解得:F
I Bl
=
(2)a 如图所示:
每个自由电荷沿导体棒定向移动,都会受到水平向左的洛伦兹力1f quB = 所有自由电荷所受水平向左的洛伦兹力的合力宏观表现为安培力F 安 则有:1F Nf NquB F ===安 解得:F u NqB
=
B, 宏观角度:非静电力对导体棒ab 中所有自由电荷做功的功率等于感应电源的电功率,则有:P P EI Fv ===非电 拉力做功的功率为:P Fv =拉
因此P P =非拉, 即非静电力做功的功率等于拉力做功的功率; 微观角度:如图所示:
对于一个自由电荷q ,非静电力为沿棒方向所受洛伦兹力2f qvB = 非静电力对导体棒ab 中所有自由电荷做功的功率2P Nf u 非= 将u 和2f 代入得非静电力做功的功率P Fv =非 拉力做功的功率P Fv =拉
因此P P =非拉 即非静电力做功的功率等于拉力做功的功率.
11.如图甲所示,两根完全相同的光滑平行导轨固定,每根导轨均由两段与水平面成θ=30°的长直导轨和一段圆弧导轨平滑连接而成,导轨两端均连接电阻,阻值R 1=R 2=2Ω,导轨间距L =0.6m .在右侧导轨所在斜面的矩形区域M 1M 2P 2P 1内分布有垂直斜面向上的磁场,磁场上下边界M 1P 1、M 2P 2的距离d =0.2m ,磁感应强度大小随时间的变化规律如图乙所示.t =0时刻,在右侧导轨斜面上与M 1P 1距离s =0.1m 处,有一根阻值r =2Ω的金属棒ab 垂直于导轨由静止释放,恰好独立匀速通过整个磁场区域,取重力加速度g =10m/s 2,导轨电阻不计.求:
(1)ab在磁场中运动速度的大小v;
(2)在t1=0.1s时刻和t2=0.25s时刻电阻R1的电功率之比;
(3)整个过程中,电路产生的总热量Q.
【答案】(1)1m/s(2)4:1(3)0.01 J
【解析】
试题分析:(1)由mgs·sinθ=mv2
得
(2)棒从释放到运动至M1P1的时间
在t1=0.1 s时,棒还没进入磁场,有
此时,R2与金属棒并联后再与R1串联
R总=3 Ω
由图乙可知,t=0.2s后磁场保持不变,ab经过磁场的时间
故在t2=0.25 s时ab还在磁场中运动,电动势E2=BLv=0.6V
此时R1与R2并联,R总=3Ω,得R1两端电压U1′=0.2V
电功率,故在t1=0.1 s和t2=0.25 s时刻电阻R1的电功率比值
(3)设ab的质量为m,ab在磁场中运动时,通过ab的电流
ab受到的安培力F A=BIL
又mgsinθ= BIL
解得m=0.024kg
在t=0~0.2s时间里,R2两端的电压U2=0.2V,产生的热量
ab最终将在M2P2下方的轨道区域内往返运动,到M2P2处的速度为零,由功能关系可得在t=0.2s后,整个电路最终产生的热量Q=mgdsinθ+mv2=0.036J
由电路关系可得R2产生的热量Q2=Q=0.006J
故R 2产生的总热量Q 总= Q 1+ Q 2=0.01 J
考点:法拉第电磁感应定律、欧姆定律、能量守恒定律
【名师点睛】本题是法拉第电磁感应定律、欧姆定律以及能量守恒定律等知识的综合应用,关键要搞清电路的连接方式及能量转化的关系,明确感应电动势既与电路知识有关,又与电磁感应有关.
12.如图甲所示,光滑的平行金属导轨水平放置,导轨间距L =1 m ,左侧接一阻值为R =0.5 Ω的电阻.在MN 与PQ 之间存在垂直轨道平面的有界匀强磁场,磁场宽度d =1 m .一质量m =1 kg 的金属棒a b 置于导轨上,与导轨垂直且接触良好,不计导轨和金属棒的电阻.金属棒ab 受水平力F 的作用从磁场的左边界MN 由静止开始运动,其中,F 与x (x 为金属棒距MN 的距离)的关系如图乙所示.通过电压传感器测得电阻R 两端电压随时间均匀增大.则:
(1)金属棒刚开始运动时的加速度为多少? (2)磁感应强度B 的大小为多少?
(3)若某时刻撤去外力F 后金属棒的速度v 随位移s 的变化规律满足v =v 0﹣
22
B L mR
s (v 0为撤去外力时的速度,s 为撤去外力F 后的位移),且棒运动到PQ 处时恰好静止,则金属棒从MN 运动到PQ 的整个过程中通过左侧电阻R 的电荷量为多少?外力F 作用的时间为多少?
【答案】(1)a=0.4m/s 2;(2)B=0.5T ;(3)t=1s 【解析】 【详解】
解:(1)金属棒开始运动时,0x =,0v =,金属棒不受安培力作用 金属棒所受合力为:0.4N F = 由牛顿第二定律得:20.4m/s F
a m
=
= (2)由题意可知,电阻R 两端电压随时间均匀增大,即金属棒切割磁感线产生的感应电动势随时间均匀增大,由E BLv =可知,金属棒的速度v 随时间t 均匀增大,则金属棒做初速度为零的匀加速运动.加速度:20.4m/s a = 由匀变速直线运动的位移公式可得:22v ax = 由图乙所示图象可知,0.8m x =时,0.8N F =
由牛顿第二定律得:22B L v
F ma R
-=
解得:0.5T B =
(3)金属棒经过磁场的过程中,感应电动势的平均值: B S BLd
E t t t
ϕ∆∆===∆∆∆ 感应电流的平均值:E
I R
=
通过电阻R 的电荷量:q I t =∆ 解得:1C BLd
q R R
ϕ∆=
== 设外力F 的作用时间为t ,力F 作用时金属棒的位移为:2
12
x at =
撤去外力后,金属棒的速度为:022
B s v v L Rm
=-
到PQ 恰好静止,0v =
则撤去外力后金属棒运动的距离为:22
mR
at B L s •=
则 22212B L at at d Rm
+•= 解得:1s t =
13.如图甲所示,光滑且足够长的平行金属导轨MN 、PQ 固定在同一水平面上,两导轨间距030m .L =.导轨电阻忽略不计,其间连接有固定电阻0.40R =Ω.导轨上停放一质量0.10kg m =、电阻020Ω.r =的金属杆ab ,整个装置处于磁感应强度0.50T B =的匀强磁场中,磁场方向竖直向下.用一外力F 沿水平方向拉金属杆ab ,使之由静止开始做匀加速运动,电压传感器可将R 两端的电压U 即时采集并输入电脑,获得电压U 随时间t 变化的关系如图乙所示.
(1)计算加速度的大小; (2)求第2s 末外力F 的瞬时功率;
(3)如果水平外力从静止开始拉动杆2s 所做的功035J .W =,求金属杆上产生的焦耳热.
【答案】(1)21m/s (2)0.35W (3)25.010J -⨯ 【解析】 【详解】
(1)根据,,R R
E Blv v at U E R r
===+ 结合图乙所示数据,解得:a =1m/s 2.
(2)由图象可知在2s 末,电阻R 两端电压为0.2V 通过金属杆的电流R
U I R
=
金属杆受安培力F BIL =安
设2s 末外力大小为F 2,由牛顿第二定律,2安F F ma -= , 故2s 末时F 的瞬时功率22035W .P F v ==
(3)设回路产生的焦耳热为Q ,由能量守恒定律,2
2
12
W Q mv =+ 电阻R 与金属杆的电阻r 串联,产生焦耳热与电阻成正比 金属杆上产生的焦耳热r Qr
Q R r
=
+ 解得:2r 5010J .Q -=⨯ .
14.如图(a)所示,足够长的光滑平行金属导轨JK 、PQ 倾斜放置,两导轨间距离为L=l.0 m ,导轨平面与水平面间的夹角为θ=30°,磁感应强度为B 的匀强磁场垂直于导轨平面向上,导轨的J 、P 两端连接阻值为R=3.0Ω的电阻,金属棒ab 垂直于导轨放置并用细线通过光滑定滑轮与重物相连,金属棒ab 的质量m=0.20 kg ,电阻r=0.50 Ω,重物的质量M=0.60 kg ,如果将金属棒和重物由静止释放,金属棒沿斜面上滑距离与时间的关系图像如图(b)所示,不计导轨电阻, g=10 m/s 2 。
求:
(1)t=0时刻金属棒的加速度
(2)求磁感应强度B 的大小以及在0.6 s 内通过电阻R 的电荷量; (3)在0.6 s 内电阻R 产生的热量。
【答案】(1)a=6.25m/s 2 2
55
C (3)Q R =1.8J 【解析】 【分析】
根据电量公式q=I•△t ,闭合电路欧姆定律E
I R r
=
+,法拉第电磁感应定律:E t ∆Φ=∆,
联立可得通过电阻R 的电量;由能量守恒定律求电阻R 中产生的热量。
【详解】
(1) 对金属棒和重物整体 Mg-mgsinθ=(M+m)a 解得:a=6.25m/s 2 ;
(2) 由题图(b)可以看出最终金属棒ab 将匀速运动,匀速运动的速度
3.5s
m v s t
∆=
=∆
感应电动势E=BLv 感应电流E
I R r
=
+ 金属棒所受安培力22B L v
F BIL R r
==
+ 速运动时,金属棒受力平衡,则可得
22sin B L v
mg Mg R r
θ+=+
联立解得:B =
在0.6 s 内金属棒ab 上滑的距离s=1.40m 通过电阻R 的电荷量
5
BLs q C R s =
=+; (3) 由能量守恒定律得
21
sin ()2
Mgx mgx Q M m v θ=+++
解得Q=2.1 J
又因为
R R
Q Q R r
=
+ 联立解得:Q R =1.8J 。
【点睛】
本题主要考查了电磁感应与力学、电路知识的综合,抓住位移图象的意义:斜率等于速度,根据平衡条件和法拉第定律、欧姆定律等等规律结合进行求解。
15.如图所示,水平放置的平行金属导轨宽度为d =1 m ,导轨间接有一个阻值为R =2 Ω的灯泡,一质量为m =1 kg 的金属棒跨接在导轨之上,其电阻为r =1 Ω,且和导轨始终接触良好.整个装置放在磁感应强度为B =2 T 的匀强磁场中,磁场方向垂直导轨平面向下.金属棒与导轨间的动摩擦因数为μ=0.2,现对金属棒施加一水平向右的拉力F =10 N ,使金属棒从静止开始向右运动.求:
则金属棒达到的稳定速度v 是多少?此时灯泡的实际功率P 是多少? 【答案】6 m/s 32W 【解析】 由1
Bdv I R r
=
+和F 安=BId 可得221
B d v F R r
=
+安 根据平衡条件可得F =μmg +F 安 解得v 1=6 m/s 由P=I 2R 得P=32W。