二次函数表达式三种形式练习题

合集下载

专题训练(二)确定二次函数的表达式五种方法

专题训练(二)确定二次函数的表达式五种方法

专题训练(二)确定二次函数的表达式五种方法 ► 方法一 利用一般式求二次函数表达式1.已知抛物线过点A(2,0),B(-1,0),与y轴交于点C,且OC=2.则这条抛物线的表达式为( )A.y=x2-x-2B.y=-x2+x+2C.y=x2-x-2或y=-x2+x+2D.y=-x2-x-2或y=x2+x+22.若二次函数y=x2+bx+c的图象经过点(-4,0),(2,6),则这个二次函数的表达式为______________.3.一个二次函数,当自变量x=-1时,函数值y=2;当x=0时,y=-1;当x=1时,y=-2.那么这个二次函数的表达式为____________.4.如图2-ZT-1,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(-2,-4),O(0,0),B(2,0)三点.(1)求抛物线的表达式;(2)若M是该抛物线的对称轴上的一点,求AM+OM的最小值.图2-ZT-1► 方法二 利用顶点式求二次函数表达式5.已知二次函数y =ax 2+bx +c ,当x =1时,有最大值8,其图象的形状、开口方向与抛物线y =-2x 2相同,则这个二次函数的表达式是( )A .y =-2x 2-x +3B .y =-2x 2+4C .y =-2x 2+4x +8D .y =-2x 2+4x +66.已知y 是x 的二次函数,根据表中的自变量x 与函数y 的部分对应值,可判断此函数的表达式为( )x …-1012…y…-154254…A .y =x 2B .y =-x 2C .y =(x -1)2+234D .y =-(x -1)2+2347.[2018·巴中改编]一位篮球运动员在距离篮框中心水平距离4m 处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m 时,达到最大高度3.5m ,然后准确落入篮框内.已知篮框中心距离地面高度为3.05m .在如图2-ZT -2所示的平面直角坐标系中,此抛物线的表达式是________.8.已知抛物线y 1=ax 2+bx +c 的顶点坐标是(1,4),它与直线y 2=x +1的一个交点的横坐标为2.(1)求抛物线的函数表达式;(2)在如图2-ZT -3所示的平面直角坐标系中画出抛物线y 1=ax 2+bx +c 及直线y 2=x +1,并根据图象,直接写出使得y 1≥y 2成立的x 的取值范围.图2-ZT -3► 方法三 利用交点式求二次函数表达式9.若抛物线的最高点的纵坐标是,且过点(-1,0),(4,0),则该抛物线的表达式为( )254A .y =-x 2+3x +4 B .y =-x 2-3x +4C .y =x 2-3x -4D .y =x 2-3x +410.抛物线y =ax 2+bx +c 与x 轴的两个交点坐标为(-1,0),(3,0),其形状及开口方向与抛物线y =-2x 2相同,则抛物线的函数表达式为( )A .y =-2x 2-x +3B .y =-2x 2+4x +5C .y =-2x 2+4x +8D .y =-2x 2+4x +6► 方法四 利用平移求二次函数表达式11.[2018·广西]将抛物线y =x 2-6x +21向左平移2个单位后,得到新抛物线的表达式12为( )A .y =(x -8)2+5B .y =(x -4)2+51212C .y =(x -8)2+3D .y =(x -4)2+3121212.如果将抛物线y =2x 2+bx +c 先向左平移3个单位,再向下平移2个单位,得到了抛物线y=2x2-4x+3.(1)试确定b,c的值;(2)求出抛物线y=2x2+bx+c的顶点坐标和对称轴.► 方法五 利用对称轴求二次函数表达式13.如图2-ZT-4,已知抛物线y=-x2+bx+c的对称轴为直线x=1,且与x轴的一个交点坐标为(3,0),那么它对应的函数表达式是______________.图2-ZT-414.如果两个二次函数的图象关于y轴对称,我们就称这两个二次函数互为“关于y轴对称二次函数”,如图2-ZT-5,二次函数y1=x2+2x+2与y2=x2-2x+2是“关于y轴对称二次函数”.(1)直接写出两条“关于y轴对称二次函数”图象所具有的特点.(2)二次函数y=2(x+2)2+1的“关于y轴对称二次函数”的表达式为__________;二次函数y=a(x-h)2+k的“关于y轴对称二次函数”的表达式为____________;(3)平面直角坐标系中,记“关于y轴对称二次函数”的图象与y轴的交点为A,它们的两个顶点分别为B,C,且BC=6,顺次连接点A,B,O,C,得到一个面积为24的菱形,求“关于y轴对称二次函数”的表达式.图2-ZT-5教师详解详析1.[解析]C 由题意可知点C 的坐标是(0,2)或(0,-2).设抛物线的表达式为y =ax 2+bx +c .由抛物线经过点(2,0),(-1,0),(0,2),得解得{4a +2b +c =0,a -b +c =0,c =2,)则抛物线的表达式是y =-x 2+x +2.同理,由抛物线经过点(2,0),(-1,0),(0,-2)求{a =-1,b =1,c =2,)得该抛物线的表达式为y =x 2-x -2.故这条抛物线的表达式为y =-x 2+x +2或y =x 2-x -2.2.[答案]y =x 2+3x -4[解析]将点(-4,0),(2,6)代入y =x 2+bx +c ,得解得{16-4b +c =0,4+2b +c =6,){b =3,c =-4,)∴这个二次函数的表达式为y =x 2+3x -4.3.y =x 2-2x -14.解:(1)把A (-2,-4),O (0,0),B (2,0)代入y =ax 2+bx +c ,得{4a -2b +c =-4,4a +2b +c =0,c =0,)解这个方程组,得{a =-12,b =1,c =0,)所以抛物线的表达式为y =-x 2+x .12(2)由y =-x 2+x =-(x -1)2+,可得抛物线的对称轴为直线x =1,并且对称轴垂直121212平分线段OB ,∴OM =BM ,∴AM +OM =AM +BM .连接AB 交直线x =1于点M ,则此时AM +OM 的值最小.过点A 作AN ⊥x 轴于点N ,在Rt △ABN 中,AB ===4,因此AM +OM 的最小值为4.AN 2+BN 242+42225.D6.[解析]D ∵函数图象过点(0,)和(2,),∴函数图象的对称轴为直线x =1,故该函数5454图象的顶点坐标为(1,2).设函数表达式为y =a (x -1)2+2.把(-1,-1)代入,得4a +2=-1,解得a =-,∴此函数表达式为y =-(x -1)2+2.34347.[答案]y =-x 2+3.515[解析]∵抛物线的顶点坐标为(0,3.5),∴可设抛物线的表达式为y =ax 2+3.5.∵篮框中心(1.5,3.05)在抛物线上,将它的坐标代入表达式,得3.05=a ×1.52+3.5,∴a =-,∴y =-x 2+3.5.15158.解:(1)∵抛物线与直线y 2=x +1的一个交点的横坐标为2,∴交点的纵坐标为2+1=3,即此交点的坐标为(2,3).设抛物线的表达式为y 1=a (x -1)2+4.把(2,3)代入,得3=a (2-1)2+4,解得a =-1,∴抛物线的表达式为y 1=-(x -1)2+4=-x 2+2x +3.(2)令y 1=0,即-x 2+2x +3=0,解得x 1=3,x 2=-1,∴抛物线与x 轴的交点坐标为(3,0)和(-1,0).在平面直角坐标系中画出抛物线与直线,如图所示:根据图象可知,使得y 1≥y 2成立的x 的取值范围为-1≤x ≤2.9.[解析]A 由抛物线的轴对称性可知该抛物线的对称轴为直线x =×(-1+4)=,故1232该抛物线的顶点坐标为(,).设该抛物线的表达式为y =a (x +1)(x -4).将(,)代入,得3225432254=a (+1)(-4),解得a =-1,故该抛物线的表达式为y =-(x +1)(x -4)=-x 2+3x +4.注2543232意:本题也可运用顶点式求抛物线的表达式.10.[解析]D 设抛物线的函数表达式为y =a (x -x 1)(x -x 2).因为抛物线y =ax 2+bx +c 与x 轴的两个交点坐标为(-1,0),(3,0),所以y =a (x -3)(x +1).又因为其形状及开口方向与抛物线y =-2x 2相同,所以y =-2(x -3)(x +1),即y =-2x 2+4x +6.11.[解析]D y =x 2-6x +2112=(x 2-12x )+2112=[(x -6)2-36]+2112=(x -6)2+3,12故y =(x -6)2+3向左平移2个单位后,12得到新抛物线的表达式为y =(x -4)2+3.1212.解:(1)∵y =2x 2-4x +3=2(x 2-2x +1-1)+3=2(x -1)2+1,∴将其向上平移2个单位,再向右平移3个单位可得原抛物线,即y =2(x -4)2+3,∴y =2x 2-16x +35,∴b =-16,c =35.(2)由y =2(x -4)2+3得顶点坐标为(4,3),对称轴为直线x =4.13.[答案]y =-x 2+2x +3[解析]∵抛物线y =-x 2+bx +c 的对称轴为直线x =1,∴=1,解得b =2,b2又∵抛物线与x 轴的一个交点坐标为(3,0),∴0=-9+6+c ,解得c =3,故函数表达式为y =-x 2+2x +3.14.解:(1)(答案不唯一)顶点关于y 轴对称,对称轴关于y 轴对称.(2)y =2(x -2)2+1 y =a (x +h )2+k (3)若点A 在y 轴的正半轴上,如图所示:顺次连接点A ,B ,O ,C ,得到一个面积为24的菱形,由BC =6,得OA =8,则点A 的坐标为(0,8),点B 的坐标为(-3,4).设一个抛物线的表达式为y =a (x +3)2+4.将点A 的坐标代入,得9a +4=8,解得a =.49二次函数y =(x +3)2+4的“关于y 轴对称二次函数”的表达式为y =(x -3)2+4.4949根据对称性,开口向下的抛物线也符合题意,则“关于y 轴对称二次函数”的表达式还可以为y =-(x +3)2-4,y =-(x -3)2-4.4949综上所述,“关于y 轴对称二次函数”的表达式为y =(x +3)2+4,y =(x -3)2+4或4949y =-(x +3)2-4,y =-(x -3)2-4.4949。

中考数学二次函数练习题

中考数学二次函数练习题

二次函数课前检测1. 抛物线y=﹣(x+)2﹣3的顶点坐标是()A .(,﹣3)B .(﹣,﹣3)C .(,3)D .(﹣,3)2. 将抛物线y=x2向右平移2个单位,再向上平移1个单位,所得抛物线相应的函数表达式是()A.y=(x+2)2+1 B.y=(x+2)2﹣1 C.y=(x﹣2)2+1 D.y=(x﹣2)2﹣13. 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,以下四个结论:①a>0;②c>0;③b2﹣4ac>0;④﹣<0,正确的是()A.①②B.②④C.①③D.③④4. (2017齐齐哈尔)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示,则下列结论:①4a﹣b=0;②c <0;③﹣3a+c>0;④4a﹣2b>at2+bt(t 为实数);⑤点(﹣,y1),(﹣,y2),(﹣,y3)是该抛物线上的点,则y1<y2<y3,正确的个数有()A .4个B .3个C .2个D .1个5. (2017贵州)如图,抛物线y=ax2+bx+c (a≠0)的对称轴为直线x=﹣1,给出下列结论: ①b2=4ac ;②abc >0;③a >c ;④4a ﹣2b+c >0,其中正确的个数有( )A .1个B .2个C .3个D .4个一、二次函数的概念一般地,形如y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数. 二、二次函数解析式的三种形式(1)一般式:y =ax 2+bx +c (a ,b ,c 为常数,a ≠0).(2)顶点式:y =a (x –h )2+k (a ,h ,k 为常数,a ≠0),顶点坐标是(h ,k ).(3)交点式:y =a (x –x 1)(x –x 2),其中x 1,x 2是二次函数与x 轴的交点的横坐标,a ≠0. 三、二次函数的图象及性质 1.二次函数的图象与性质解析式 二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)对称轴x =–2b a知识梳理顶点 (–2ba,244ac b a -)a 的符号a >0a <0图象开口方向开口向上 开口向下 最值当x =–2ba 时, y 最小值=244ac b a-当x =–2ba时, y 最大值=244ac b a-最点抛物线有最低点抛物线有最高点增减性当x <–2ba时,y 随x 的增大而减小;当x >–2ba时,y 随x 的增大而增大 当x <–2ba时,y 随x 的增大而增大;当x >–2ba时,y 随x 的增大而减小 2. 字母的符号图象的特征 aa >0 开口向上 a <0 开口向下b b =0对称轴为y 轴ab >0(a 与b 同号) 对称轴在y 轴左侧 ab <0(a 与b 异号)对称轴在y 轴右侧c c =0经过原点 c >0 与y 轴正半轴相交 c <0 与y 轴负半轴相交 b 2–4ac b 2–4ac =0与x 轴有唯一交点(顶点)b 2–4ac >0 与x 轴有两个交点 b 2–4ac <0与x 轴没有交点四、抛物线的平移1.将抛物线解析式化成顶点式y =a (x –h ) 2+k ,顶点坐标为(h ,k ). 2.保持y =ax 2的形状不变,将其顶点平移到(h ,k )处,具体平移方法如下:3.注意二次函数平移遵循“上加下减,左加右减”的原则,据此,可以直接由解析式中常数的加或减求出变化后的解析式;二次函数图象的平移可看作顶点间的平移,可根据顶点之间的平移求出变化后的解析式. 五、二次函数与一元二次方程的关系1.二次函数y =ax 2+bx +c (a ≠0),当y =0时,就变成了一元二次方程ax 2+bx +c =0(a ≠0). 2.ax 2+bx +c =0(a ≠0)的解是抛物线y =ax 2+bx +c (a ≠0)的图象与x 轴交点的横坐标. 3.(1)b 2–4ac >0⇔方程有两个不相等的实数根,抛物线与x 轴有两个交点;学#科网 (2)b 2–4ac =0⇔方程有两个相等的实数根,抛物线与x 轴有且只有一个交点; (3)b 2–4ac <0⇔方程没有实数根,抛物线与x 轴没有交点.考向一 二次函数的有关概念1.二次函数的一般形式的结构特征:①函数的关系式是整式;②自变量的最高次数是2;③二次项系数不等于零.学科+网2.一般式,顶点式,交点式是二次函数常见的表达式,它们之间可以互相转化.典例1 下列函数中,二次函数是 A .y =–4x +5B .y =x (2x –3)C .y =(x +4)2–x 2D .y =21x典例2 函数y =211mm x ++()是二次函数,则m 的值是考点突破C .–1D .以上都不对1.下列函数中,y 关于x 的二次函数是 A .y =ax 2+bx +c B .y =x (x –1)C .y =21xD .y =(x –1)2–x 22.如果y =(a –1)x 2–ax +6是关于x 的二次函数,那么a 的取值范围是 A .a ≠0B .a ≠1C .a ≠1且a ≠0D .无法确定考向二 二次函数的图象二次函数的图象是一条关于某条直线对称的曲线,叫做抛物线,该直线叫做抛物线的对称轴,对称轴与抛物线的交点叫做抛物线的顶点.典例3 函数y =ax 2+bx +a +b (a ≠0)的图象可能是A .B .C .D .典例4 如果二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,那么下列不等式成立的是C.ac<0 D.bc<03.如果a、b同号,那么二次函数y=ax2+bx+1的大致图象是A.B.C.D.4.已知函数y=ax+b的大致图象如图所示,那么二次函数y=ax2+bx+1的图象可能是A.B.C.D.5.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论正确的是A.a<0 B.c>0C.a+b+c>0 D.b2–4ac<0考向三二次函数的性质二次函数的解析式中,a决定抛物线的形状和开口方向,h、k仅决定抛物线的位置.若两个二次函数的图象形状完全相同且开口方向相同,则它们的二次项系数a必相等.学科#网典例5二次函数y=x2+2x+3的图象的开口方向为A.向上B.向下C.向左D.向右典例6对于抛物线y=–(x+2)2+3,下列结论中正确结论的个数为①抛物线的开口向下;②对称轴是直线x=–2;③图象不经过第一象限;④当x>2时,y随x的增大而减小.A.4 B.3C.2 D.16.如果二次函数y=ax2+bx+c的图象全部在x轴的下方,那么下列判断正确的是A.a<0,b<0 B.a>0,b<0C.a<0,c>0 D.a<0,c<07.对于下列结论:①二次函数y=6x2,当x>0时,y随x的增大而增大.②关于x的方程a(x+m)2+b=0的解是x1=–2,x2=1(a、m、b均为常数,a≠0),则方程a(x+m+2)2+b=0的解是x1=–4,x2=–1.③设二次函数y=x2+bx+c,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c的取值范围是c≥3.其中,正确结论的个数是A.0个B.1个C.2个D.3个考向四二次函数的平移1.抛物线在平移的过程中,a的值不发生变化,变化的只是顶点的位置,且与平移方向有关.2.涉及抛物线的平移时,首先将表达式转化为顶点式y=a(x–h)2+k的形式.3.抛物线的移动主要看顶点的移动,y=ax2的顶点是(0,0),y=a(x–h)2的顶点是(h,0),y=a(x–h)2+k的顶点是(h,k).4.抛物线的平移口诀:自变量加减左右移,函数值加减上下移.典例7如果将抛物线y=–x2–2向右平移3个单位长度,那么所得到的新抛物线的表达式是A.y=–x2–5 B.y=–x2+1C.y=–(x–3)2–2 D.y=–(x+3)2–2典例8如图,如果把抛物线y=x2沿直线y=x向上方平移22个单位后,其顶点在直线y=x上的A处,那么平移后的抛物线解析式是A.y=(x+22)2+22B.y=(x+2)2+2C.y=(x–22)2+22D.y=(x–2)2+28.已知抛物线C:y=x2+2x–3,将抛物线C平移得到抛物线C′,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是A.将抛物线C沿x轴向右平移52个单位得到抛物线C′B.将抛物线C沿x轴向右平移4个单位得到抛物线C′C.将抛物线C沿x轴向右平移72个单位得到抛物线C′D.将抛物线C沿x轴向右平移6个单位得到抛物线C′9.把抛物线y=12x2–1先向右平移1个单位长度,再向下平移2个单位长度,得到的抛物线的解析式为A.y=12(x+1)2–3 B.y=12(x–1)2–3C.y=12(x+1)2+1 D.y=12(x–1)2+1考向五二次函数与一元二次方程、不等式的综合抛物线y=ax2+bx+c(a≠0)与x轴的交点个数及相应的一元二次方程根的情况都由Δ=b2–4ac决定.1.当Δ>0,即抛物线与x轴有两个交点时,方程ax2+bx+c=0有两个不相等的实数根,这两个交点的横坐标即为一元二次方程的两个根.2.当Δ=0,即抛物线与x轴有一个交点(即顶点)时,方程ax2+bx+c=0有两个相等的实数根,此时一元二次方程的根即为抛物线顶点的横坐标.3.当Δ<0,即抛物线与x轴无交点时,方程ax2+bx+c=0无实数根,此时抛物线在x轴的上方(a>0时)或在x轴的下方(a<0时).典例9二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表,则方程ax2+bx+c=0的一个解的范围是x 6.17 6.18 6.19y–0.03 –0.01 0.02A.–0.03<x<–0.01 B.–0.01<x<0.02典例10如图是二次函数y=a(x+1)2+2图象的一部分,则关于x的不等式a(x+1)2+2>0的解集是A.x<2 B.x>–3C.–3<x<1 D.x<–3或x>110.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c>0的解集是A.–1<x<5 B.x>5C.x<–1 D.x<–1或x>511.抛物线y=2x2–4x+m的部分图象如图所示,则关于x的一元二次方程2x2–4x+m=0的解是__________.考向六二次函数的实际应用在生活中,我们常会遇到与二次函数及其图象有关的问题,解决这类问题的一般思路:首先要读懂题意,弄清题目中牵连的几个量的关系,并且建立适当的直角坐标系,再根据题目中的已知条件建立数学模型,即列出函数关系式,然后运用数形结合的思想,根据函数性质去解决实际问题.典例11如图,正方形ABCD的边长为5,点E是AB上一点,点F是AD延长线上一点,且BE=DF.四边形AEGF是矩形,则矩形AEGF的面积y与BE的长x之间的函数关系式为A.y=5–x B.y=5–x2C.y=25–x D.y=25–x2典例12烟花厂为雁荡山旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=–52t2+20t+1,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为A .3 sB .4 sC .5 sD .6 s12.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x 元后,每星期售出商品的总销售额为y 元,则y 与x 的关系式为A .y =60(300+20x )B .y =(60–x )(300+20x )C .y =300(60–20x )D .y =(60–x )(300–20x )13.图(1)是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶(拱桥洞的最高点)离水面2 m ,水面宽4 m .如图(2)建立平面直角坐标系,则抛物线的关系式是A .y =–2x 2B .y =2x 2C .y =–0.5x 2D .y =0.5x 21.若273m y m x -=-()是二次函数,则m 的值是 A .±3 B .3C .–3D .92.将抛物线y =x 2平移得到抛物线y =x 2+5,下列叙述正确的是 A .向上平移5个单位长度 B .向下平移5个单位长度 C .向左平移5个单位长度D .向右平移5个单位长度3.二次函数y =x 2–2x +1的图象与x 轴的交点情况是达标测评A .有一个交点B .有两个交点C .没有交点D .无法确定4.二次函数y =ax 2+bx +c 与一次函数y =ax +c 在同一直角坐标系内的大致图象是A .B .C .D .5.二次函数y =(x –2)2+m 的图象如图所示,一次函数y =kx +b 的图象经过该二次函数图象上的点A (1,0)及点B (4,3),则满足kx +b ≥(x –2)2+m 的x 的取值范围是A .1≤x ≤4B .x ≤1C .x ≥4D .x ≤1或x ≥46.如图,已知正方形ABCD 的边长为4,P 是BC 边上一动点(与B ,C 不重合),连接AP ,作PE ⊥AP 交∠BCD 的外角平分线于E ,设BP =x ,△PCE 的面积为y ,则y 与x 的函数关系式是A .y =–x 2+4xB .2122y x x =-C .2122y x x =-+D .y =x 2–4x7.如图是抛物线形拱桥,当拱顶高离水面2 m 时,水面宽4 m ,水面下降2.5 m ,水面宽度增加A.1 m B.2 mC.3 m D.6 m8.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc<0;②3a+c>0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac.其中正确的结论的有A.2个B.3个C.4个D.5个9.抛物线y=(x–2)(x+3)与y轴的交点坐标是__________.10.若A(–3.5,y1)、B(–1,y2)、C(1,y3)为二次函数y=–x2–4x+5的图象上三点,则y1,y2,y3的大小关系是__________.(用>连接)11.二次函数y=x(x–6)的图象的对称轴是__________.12.已知一个二次函数的图象经过A(1,6)、B(–3,6)、C(0,3)三点,求这个二次函数的解析式,并指出它的开口方向.学#科网13.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25 m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40 m的栅栏围住(如图).设绿化带的BC边长为x m,绿化带的面积为y m2.(1)求y与x之间的函数关系式,并写出自变量x的取值范围.(2)当x为何值时,满足条件的绿化带的面积最大?14.已知二次函数y=–12x2–x+72.(1)用配方法把这个二次函数的解析式化为y=a(x+m)2+k的形式;(2)写出这个二次函数图象的开口方向、顶点坐标和对称轴;(3)将二次函数y=–12x2的图象如何平移能得到二次函数y=–12x2–x+72的图象,请写出平移方法.1.(2017•长沙)抛物线y =2(x –3)2+4顶点坐标是 A .(3,4) B .(–3,4)C .(3,–4)D .(2,4)2.(2017•牡丹江)若抛物线y =–x 2+bx +c 经过点(–2,3),则2c –4b –9的值是 A .5B .–1C .4D .183.(2017•金华)对于二次函数y =–(x –1)2+2的图象与性质,下列说法正确的是 A .对称轴是直线x =1,最小值是2B .对称轴是直线x =1,最大值是2C .对称轴是直线x =–1,最小值是2D .对称轴是直线x =–1,最大值是24.(2017•连云港)已知抛物线y =ax 2(a >0)过A (–2,y 1)、B (1,y 2)两点,则下列关系式一定正确的是A .y 1>0>y 2B .y 2>0>y 1C .y 1>y 2>0D .y 2>y 1>05.(2017•眉山)若一次函数y =(a +1)x +a 的图象过第一、三、四象限,则二次函数y =ax 2–axA .有最大值4a B .有最大值–4aC .有最小值4aD .有最小值–4a6.(2017•陕西)已知抛物线y =x 2–2mx –4(m >0)的顶点M 关于坐标原点O 的对称点为M ′,若点M ′在这条抛物线上,则点M 的坐标为 A .(1,–5) B .(3,–13)C .(2,–8)D .(4,–20)7.(2017•丽水)将函数y =x 2的图象用下列方法平移后,所得的图象不经过点A (1,4)的方法是 A .向左平移1个单位 B .向右平移3个单位 C .向上平移3个单位D .向下平移1个单位实战演练8.(2017•成都)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是A.abc<0,b2–4ac>0 B.abc>0,b2–4ac>0C.abc<0,b2–4ac<0 D.abc>0,b2–4ac<09.(2017•兰州)下表是一组二次函数y=x2+3x–5的自变量x与函数值y的对应值:x 1 1.1 1.2 1.3 1.4y–1 –0.49 0.04 0.59 1.16 那么方程x2+3x–5=0的一个近似根是A.1 B.1.1 C.1.2 D.1.310.(2017•日照)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a–b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是A.①②③B.③④⑤C.①②④D.①④⑤11.(2017•邵阳)若抛物线y=ax2+bx+c的开口向下,则a的值可能是__________.(写一个即可)12.(2017•锦州)如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(12,1),下列结论:①abc>0;②a=b;③a=4c–4;④方程ax2+bx+c=1有两个相等的实数根,其中正确的结论是__________.(只填序号即可)13.(2017•衡阳)已知函数y=–(x–1)2图象上两点A(2,y1),B(a,y2),其中a>2,则y1与y2的大小关系是y1__________y2(填“<”“>”或“=”).14.(2017•百色)经过A(4,0),B(–2,0),C(0,3)三点的抛物线解析式是__________.15.(2017•阿坝州)某商品的进价为每件40元,售价为每件60元时,每个月可卖出100件;若每件商品的售价每上涨1元,则每个月少卖2件.设每件商品的售价为x元(x为正整数),每个月的销售利润为y元.(1)当每件商品的售价是多少元时,每个月的利润刚好是2250元?(2)当每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?16.(2017•广东)如图,在平面直角坐标系中,抛物线y=–x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=–x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.附:二次函数专题训练一、关于等腰三角形问题1、如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点(4,0)A -、(2,0)B ,交y 轴于点(0,6)C ,在y 轴上有一点(0,2)E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值;(3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.2、如图,直线3y交x轴于A点,交y轴于B点,过A、B两点的抛物线交x轴于另一点3+=xC(3,0).⑴求抛物线的解析式;⑵在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q 点坐标;若不存在,请说明理由.二、二次函数关于垂直问题1、如图,△ABC是直角三角形,∠ACB=90,AC=BC,OA=1,OC=4,抛物线2=++经过A,By x bx c两点,抛物线的顶点为D.(1)求b,c的值;(2)点E是直角三角形ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标;(3)在(2)的条件下:①求以点E、B、F、D为顶点的四边形的面积;②在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形? 若存在,求出所有点P的坐标;若不存在,说明理由.26题图26题备用图2、如图,是将抛物线y=-x2平移后得到的抛物线,其对称轴为x=1,与x轴的一个交点为A(-1,0),另一交点为B,与y轴的交点为C.(1)求抛物线的函数表达式;(2)若点N为抛物线上一点,且BC⊥NC,求点N的坐标;(3)点P是抛物线上一点,点Q是一次函数y=32x+32的图象上一点,若四边形OAPQ为平行四边形,这样的点P,Q是否存在?若存在,分别求出点P,Q的坐标;若不存在,说明理由.三、二次函数关于平行四边形问题1、如图,是将抛物线y=﹣x2平移后得到的抛物线,其对称轴为x=1,与x轴的一个交点为A (﹣1,0),另一个交点为B,与y轴的交点为C.(1)求抛物线的函数表达式;(2)若点N为抛物线上一点,且BC⊥NC,求点N的坐标;(3)点P是抛物线上一点,点Q是一次函数y=x+的图象上一点,若四边形OAPQ为平行四边形,这样的点P、Q是否存在?若存在,分别求出点P、Q的坐标;若不存在,说明理由.2、如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.(1)求二次函数y=ax2+bx+c的表达式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.四、二次函数关于相似问题1、如图,把抛物线2=向左平移1个单位,再向下平移4个单位,得到抛物线2y x=-+.()y x h k所得抛物线与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,顶点为D.(1)写出h k、的值;(2)判断△ACD的形状,并说明理由;(3)在线段AC上是否存在点M,使△AOM∽△ABC?若存在,求出点M的坐标;若不存在,说明理由.2、如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求抛物线的解析式;(2)若点D 在抛物线上,点E 在抛物线的对称轴上,且A 、O 、D 、E 为顶点的四边形是平行四边形,求点D 的坐标;(3)P 是抛物线上的第一象限内的动点,过点P 作PM ⊥x 轴,垂足为M ,是否存在点P ,使得以P 、M 、A 为顶点的三角形△BOC 相似?若存在,求出点P 的坐标;若不存在,请说明理由.3、如图,抛物线()20y ax bx c a =++≠的顶点坐标为()21,-,并且与y 轴交于点()03,C ,与x 轴交于A 、B 两点.(1)求抛物线的表达式.(2)如图1,设抛物线的对称轴与直线BC交于点D,点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F,问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似.若存在,求出点E的坐标;若不存在,请说明理由.4、如图,直线y=-23x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=-43x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的表达式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其他两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.。

【经典必考】待定系数法求二次函数表达式30题含详细答案

【经典必考】待定系数法求二次函数表达式30题含详细答案

…………○……………○…………线……学校:_______________…………○……………○…………线……待定系数法求二次函数表达式30题含详细答案1.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.2.如图,在平面直角坐标系中,抛物线y=ax 2+2x+c 与x 轴交于A (﹣1,0)B (3,0)两点,与y 轴交于点C ,点D 是该抛物线的顶点. (1)求抛物线的解析式和直线AC 的解析式;(2)请在y 轴上找一点M ,使△BDM 的周长最小,求出点M 的坐标;(3)试探究:在拋物线上是否存在点P ,使以点A ,P ,C 为顶点,AC 为直角边的三角形是直角三角形?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.3.如图,已知二次函数y=ax 2+bx+3的图象交x 轴于点A (1,0),B (3,0),交y 轴于点C .(1)求这个二次函数的表达式;(2)点P 是直线BC 下方抛物线上的一动点,求△BCP 面积的最大值;(3)直线x=m 分别交直线BC 和抛物线于点M ,N ,当△BMN 是等腰三角形时,直接写出m 的值.试卷第2页,总11页○…………装……○…………订………线…………○……※※请※※不※※要※※※※订※※线※※内※※答○…………装……○…………订………线…………○……4.如图,抛物线y =x 2 +bx +c 与x 轴交于A (﹣1,0),B (3,0)两点. (1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P ,当点P 在该抛物线上滑动到什么位置时,满足S △P AB =8,并求出此时P 点的坐标.5.如图,已知抛物线2y ax bx c =++的顶点为()4,3A ,与y 轴相交于点()0,5B -,对称轴为直线l ,点M 是线段AB 的中点.(1)求抛物线的表达式;(2)写出点M 的坐标并求直线AB 的表达式;(3)设动点P ,Q 分别在抛物线和对称轴l 上,当以A ,P ,Q ,M 为顶点的四边形是平行四边形时,求P ,Q 两点的坐标.6.如图所示抛物线2y ax bx c =++过点()1,0A -,点()0,3C ,且OB OC = (1)求抛物线的解析式及其对称轴;(2)点,D E 在直线1x =上的两个动点,且1DE =,点D 在点E 的上方,求四边形…外…………○…………装…………○…………线………学校:___________姓名:____________…内…………○…………装…………○…………线………ACDE 的周长的最小值;(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3∶5两部分,求点P 的坐标.7.如图,抛物线y=ax 2+6x+c 交x 轴于A ,B 两点,交y 轴于点C .直线y=x ﹣5经过点B ,C .(1)求抛物线的解析式;(2)过点A 的直线交直线BC 于点M .①当AM ⊥BC 时,过抛物线上一动点P (不与点B ,C 重合),作直线AM 的平行线交直线BC 于点Q ,若以点A ,M ,P ,Q 为顶点的四边形是平行四边形,求点P 的横坐标; ②连接AC ,当直线AM 与直线BC 的夹角等于∠ACB 的2倍时,请直接写出点M 的坐标.8.如图,已知抛物线y=2x +mx+3与x 轴交于A ,B 两点,与y 轴交于点C ,点B 的坐标为(3,0),(1)求m 的值及抛物线的顶点坐标.(2)点P 是抛物线对称轴l 上的一个动点,当PA+PC 的值最小时,求点P 的坐标.试卷第4页,总11页○…………外………装…………○…………订……………○……※※要※※在※※装※※订※※线※※内※※答○…………内………装…………○…………订……………○……9.如图,抛物线y=a (x ﹣1)(x ﹣3)(a >0)与x 轴交于A 、B 两点,抛物线上另有一点C 在x 轴下方,且使△OCA ∽△OBC (1)求线段OC 的长度;(2)设直线BC 与y 轴交于点M ,点C 是BM 的中点时,求直线BM 和抛物线的解析式;(3)在(2)的条件下,直线BC 下方抛物线上是否存在一点P ,使得四边形ABPC 面积最大?若存在,请求出点P 的坐标;若不存在,请说明理由.10.抛物线y=﹣x 2+bx +c 与x 轴交于A (﹣3,0),B (1,0)两点,与y 轴交于点C . (1)求该抛物线的解析式;(2)在抛物线上求一点P ,使S △PAB =S △ABC ,写出P 点的坐标;(3)在抛物线的对称轴上是否存在点Q ,使得△QBC 的周长最小?若存在,求出点Q 的坐标,若不存在,请说明理由.11.如图,在平面直角坐标系中,二次函数2y x bx c =++的图象与x 轴交于A 、B 两…………○…………………线…………学校:_________…………○…………………线…………点,B 点的坐标为(3,0),与y 轴交于点C (0,-3),点P 是直线BC 下方抛物线上的一个动点.(1)求二次函数解析式;(2)连接PO ,PC ,并将△POC 沿y 轴对折,得到四边形POP'C .是否存在点P ,使四边形POP'C 为菱形?若存在,求出此时点P 的坐标;若不存在,请说明理由; (3)当点P 运动到什么位置时,四边形ABPC 的面积最大?求出此时P 点的坐标和四边形ABPC 的最大面积.12.如图,已知A (﹣2,0),B (4,0),抛物线y=ax 2+bx ﹣1过A 、B 两点,并与过A 点的直线y=﹣12x ﹣1交于点C . (1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P ,使四边形ACPO 的周长最小?若存在,求出点P 的坐标,若不存在,请说明理由;(3)点M 为y 轴右侧抛物线上一点,过点M 作直线AC 的垂线,垂足为N .问:是否存在这样的点N ,使以点M 、N 、C 为顶点的三角形与△AOC 相似,若存在,求出点N 的坐标,若不存在,请说明理由.13.如图,已知抛物线y=13x 2+bx+c 经过△ABC 的三个顶点,其中点A (0,1),点B (-9,10),AC ∥x 轴,点P 是直线AC 下方抛物线上的动点. (1)求抛物线的解析式;(2)过点P 且与y 轴平行的直线l 与直线AB 、AC 分别交于点E 、F ,当四边形AECP 的面积最大时,求点P 的坐标;(3)当点P 为抛物线的顶点时,在直线AC 上是否存在点Q ,使得以C 、P 、Q 为顶点试卷第6页,总11页…………装…………○…………线…………○…※※请※※不※※要※※在※※装※※订…………装…………○…………线…………○…的三角形与△ABC 相似,若存在,求出点Q 的坐标,若不存在,请说明理由.14.如图,已知抛物线经过点A (﹣1,0),B (4,0),C (0,2)三点,点D 与点C 关于x 轴对称,点P 是x 轴上的一个动点,设点P 的坐标为(m ,0),过点P 做x 轴的垂线l 交抛物线于点Q ,交直线BD 于点M . (1)求该抛物线所表示的二次函数的表达式; (2)已知点F (0,12),当点P 在x 轴上运动时,试求m 为何值时,四边形DMQF 是平行四边形?(3)点P 在线段AB 运动过程中,是否存在点Q ,使得以点B 、Q 、M 为顶点的三角形与△BOD 相似?若存在,求出点Q 的坐标;若不存在,请说明理由.15.抛物线y=﹣x 2+bx+c 经过点A 、B 、C ,已知A (﹣1,0),C (0,3). (1)求抛物线的解析式;(2)如图1,P 为线段BC 上一点,过点P 作y 轴平行线,交抛物线于点D ,当△BDC 的面积最大时,求点P 的坐标;(3)如图2,抛物线顶点为E ,EF ⊥x 轴于F 点,M (m ,0)是x 轴上一动点,N 是线段EF 上一点,若∠MNC=90°,请指出实数m 的变化范围,并说明理由.……○…………外……装…………○…线…………○……____姓名:___________班……○…………内……装…………○…线…………○……16.已知抛物线2y x bx c =-++经过点A (3,0),B (﹣1,0). (1)求抛物线的解析式; (2)求抛物线的顶点坐标.17.在平面直角坐标系中,二次函数y=ax 2+53x+c 的图象经过点C (0,2)和点D (4,﹣2).点E 是直线y=﹣13x+2与二次函数图象在第一象限内的交点. (1)求二次函数的解析式及点E 的坐标.(2)如图①,若点M 是二次函数图象上的点,且在直线CE 的上方,连接MC ,OE ,ME .求四边形COEM 面积的最大值及此时点M 的坐标.(3)如图②,经过A 、B 、C 三点的圆交y 轴于点F ,求点F 的坐标.18.如图,抛物线y=ax 2+bx+2交x 轴于点A(-3,0)和点B(1,0),交y 轴于点C (1)求这个抛物线的函数表达式.(2)点D 的坐标为(-1,0),点P 为第二象限内抛物线上的一个动点,求四边形ADCP 面积的最大值.(3)点M 为抛物线对称轴上的点,问:在抛物线上是否存在点N ,使△MNO 为等腰直角三角形,且∠MNO 为直角?若存在,请直接写出点N 的坐标;若不存在,请说明理由.试卷第8页,总11页………○………………订…………○※※请※※不※※※内※※答※※题※※………○………………订…………○19.若二次函数y=ax 2+bx+c 的图象的顶点是(2,1)且经过点(1,﹣2),求此二次函数解析式.20.已知二次函数的图象以A (﹣1,4)为顶点,且过点B (2,﹣5) (1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A 、B 两点随图象移至A′、B′,求△O A′B′的面积.21.如图,已知二次函数212y x bx c =-++的图象经过()2,0A ,()0,6B -两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x 轴交于点C ,连接BA ,BC ,求ABC ∆的面积. 22.如图,二次函数y=(x+2)2+m 的图象与y 轴交于点C ,点B 在抛物线上,且与点C 关于抛物线的对称轴对称,已知一次函数y=kx+b 的图象经过该二次函数图象上的点A (﹣1,0)及点B .(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足(x+2)2+m≥kx+b 的x 的取值范围.23.在平面直角坐标系中,点()0,0O ,点1,0A .已知抛物线22y x mx m =+-(m 是常数),顶点为P .(Ⅰ)当抛物线经过点A 时,求顶点P 的坐标;(Ⅱ)若点P 在x 轴下方,当45AOP ∠=︒时,求抛物线的解析式;(Ⅲ) 无论m 取何值,该抛物线都经过定点H .当45AHP ∠=︒时,求抛物线的解析式.○…………装…………○…………○…………学校:___________姓名:___________班:___________○…………装…………○…………○…………24.如图,抛物线y=ax 2+bx(a <0)过点E(10,0),矩形ABCD 的边AB 在线段OE 上(点A 在点B 的左边),点C ,D 在抛物线上.设A(t,0),当t=2时,AD=4. (1)求抛物线的函数表达式.(2)当t 为何值时,矩形ABCD 的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD 不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G ,H ,且直线GH 平分矩形的面积时,求抛物线平移的距离.25.在平面直角坐标系中,将二次函数()20y axa =>的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x 轴交于点A 、B (点A 在点B 的左侧),1OA =,经过点A 的一次函数()0y kx b k =+≠的图象与y 轴正半轴交于点C ,且与抛物线的另一个交点为D ,ABD ∆的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E 在一次函数的图象下方,求ACE ∆面积的最大值,并求出此时点E 的坐标;(3)若点P 为x 轴上任意一点,在(2)的结论下,求35PE PA +的最小值. 26.如图,抛物线顶点P (1,4),与y 轴交于点C (0,3),与x 轴交于点A ,B . (1)求抛物线的解析式.(2)Q 是抛物线上除点P 外一点,△BCQ 与△BCP 的面积相等,求点Q 的坐标. (3)若M ,N 为抛物线上两个动点,分别过点M ,N 作直线BC 的垂线段,垂足分别为D ,试卷第10页,总11页…装…………○…………………线…………不※※要※※在※※装※※订※※线※※…装…………○…………………线…………E .是否存在点M ,N 使四边形MNED 为正方形?如果存在,求正方形MNED 的边长;如果不存在,请说明理由.27.已知抛物线y =ax 2+bx +c 经过A(-1,0)、B(3,0)、C(0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标;(3)在直线l 上是否存在点M ,使△MAC 为等腰三角形?若存在,直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.28.已知k 是常数,抛物线y =x 2+(k 2+k -6)x +3k 的对称轴是y 轴,并且与x 轴有两个交点.(1)求k 的值:(2)若点P 在抛物线y =x 2+(k 2+k -6)x +3k 上,且P 到y 轴的距离是2,求点P 的坐标. 29.如图,已知抛物线2y x bx c =-++与x 轴交于A 、B 两点,4AB =,交y 轴于点C ,对称轴是直线1x =.…外…………○…………线…………○……学校:_____…内…………○…………线…………○…… (1)求抛物线的解析式及点C 的坐标;(2)连接BC ,E 是线段OC 上一点,E 关于直线1x =的对称点F 正好落在BC 上,求点F 的坐标; (3)动点M 从点O 出发,以每秒2个单位长度的速度向点B 运动,过M 作x 轴的垂线交抛物线于点N ,交线段BC 于点Q .设运动时间为()0t t >秒. ①若AOC ∆与BMN ∆相似,请直接写出t 的值; ②BOQ ∆能否为等腰三角形?若能,求出t 的值;若不能,请说明理由. 30.在平面直角坐标系xOy 中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=14x 与抛物线交于A 、B 两点,直线l 为y=﹣1. (1)求抛物线的解析式; (2)在l 上是否存在一点P ,使PA+PB 取得最小值?若存在,求出点P 的坐标;若不存在,请说明理由. (3)知F (x 0,y 0)为平面内一定点,M (m ,n )为抛物线上一动点,且点M 到直线l 的距离与点M 到点F 的距离总是相等,求定点F 的坐标.参考答案1.(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x .(2)2()1,M -;(3)P 的坐标为(1,2)--或(1,4)-或3(1,2+-或3(1,)2-. 【解析】分析:(1)先把点A ,C 的坐标分别代入抛物线解析式得到a 和b ,c 的关系式,再根据抛物线的对称轴方程可得a 和b 的关系,再联立得到方程组,解方程组,求出a ,b ,c 的值即可得到抛物线解析式;把B 、C 两点的坐标代入直线y=mx+n ,解方程组求出m 和n 的值即可得到直线解析式;(2)设直线BC 与对称轴x=-1的交点为M ,此时MA+MC 的值最小.把x=-1代入直线y=x+3得y 的值,即可求出点M 坐标;(3)设P (-1,t ),又因为B (-3,0),C (0,3),所以可得BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t-3)2=t 2-6t+10,再分三种情况分别讨论求出符合题意t 值即可求出点P 的坐标.详解:(1)依题意得:1203b a a b c c ⎧-=-⎪⎪++=⎨⎪=⎪⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为223y x x =--+.∵对称轴为1x =-,且抛物线经过()1,0A ,∴把()3,0B -、()0,3C 分别代入直线y mx n =+, 得303m n n -+=⎧⎨=⎩,解之得:13m n =⎧⎨=⎩, ∴直线y mx n =+的解析式为3y x =+.(2)直线BC 与对称轴1x =-的交点为M ,则此时MA MC +的值最小,把1x =-代入直线3y x =+得2y =,∴()1,2M -.即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为()1,2-. (注:本题只求M 坐标没说要求证明为何此时MA MC +的值最小,所以答案未证明MA MC +的值最小的原因).(3)设()1,P t -,又()3,0B -,()0,3C ,∴218BC =,()2222134PB t t =-++=+,()()222213610PC t t t =-+-=-+, ①若点B 为直角顶点,则222BC PB PC +=,即:22184610t t t ++=-+解得:2t =-, ②若点C 为直角顶点,则222BC PC PB +=,即:22186104t t t +-+=+解得:4t =, ③若点P 为直角顶点,则222PB PC BC +=,即:22461018t t t ++-+=解得:1t =2t =.综上所述P 的坐标为()1,2--或()1,4-或⎛- ⎝⎭或⎛- ⎝⎭. 点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题. 2.(1)抛物线解析式为y=﹣x 2+2x+3;直线AC 的解析式为y=3x+3;(2)点M 的坐标为(0,3);(3)符合条件的点P 的坐标为(73,209)或(103,﹣139), 【解析】分析:(1)设交点式y=a (x+1)(x-3),展开得到-2a=2,然后求出a 即可得到抛物线解析式;再确定C (0,3),然后利用待定系数法求直线AC 的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(-3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=-13x+b,把C点坐标代入求出b得到直线PC的解析式为y=-13x+3,再解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.详解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得3p qq-+=⎧⎨=⎩,解得33pq=⎧⎨=⎩,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM 的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M 的坐标为(0,3);(3)存在.过点C 作AC 的垂线交抛物线于另一点P ,如图2,∵直线AC 的解析式为y=3x+3,∴直线PC 的解析式可设为y=﹣13x+b , 把C (0,3)代入得b=3,∴直线PC 的解析式为y=﹣13x+3, 解方程组223133y x x y x ⎧-++⎪⎨-+⎪⎩==,解得03x y =⎧⎨=⎩或73209x y ⎧=⎪⎪⎨⎪=⎪⎩,则此时P 点坐标为(73,209); 过点A 作AC 的垂线交抛物线于另一点P ,直线PC 的解析式可设为y=﹣x+b ,把A (﹣1,0)代入得13+b=0,解得b=﹣13, ∴直线PC 的解析式为y=﹣13x ﹣13, 解方程组2231133y x x y x ⎧-++⎪⎨--⎪⎩==,解得10x y =-⎧⎨=⎩或103139x y ⎧=⎪⎪⎨⎪=-⎪⎩,则此时P 点坐标为(103,﹣139). 综上所述,符合条件的点P 的坐标为(73,209)或(103,﹣139). 点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短路径问题;会运用分类讨论的思想解决数学问题.3.(1)这个二次函数的表达式是y=x 2﹣4x+3;(2)S △BCP 最大=278;(3)当△BMN 是等腰三角形时,m,1,2.【解析】分析:(1)根据待定系数法,可得函数解析式;(2)根据平行于y 轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PE 的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案;(3)根据等腰三角形的定义,可得关于m 的方程,根据解方程,可得答案.详解:(1)将A (1,0),B (3,0)代入函数解析式,得309330a b a b ++⎧⎨++⎩==, 解得14a b ⎧⎨-⎩==, 这个二次函数的表达式是y=x 2-4x+3;(2)当x=0时,y=3,即点C (0,3),设BC 的表达式为y=kx+b ,将点B (3,0)点C (0,3)代入函数解析式,得300k b b +⎧⎨⎩==, 解这个方程组,得13k b -⎧⎨⎩== 直线BC 的解析是为y=-x+3,过点P 作PE ∥y 轴,交直线BC于点E(t,-t+3),PE=-t+3-(t2-4t+3)=-t2+3t,∴S△BCP=S△BPE+S CPE=12(-t2+3t)×3=-32(t-32)2+278,∵-32<0,∴当t=32时,S△BCP最大=278.(3)M(m,-m+3),N(m,m2-4m+3)MN=m2-3m,|m-3|,当MN=BM时,①m2(m-3),解得②m2(m-3),解得当BN=MN时,∠NBM=∠BMN=45°,m2-4m+3=0,解得m=1或m=3(舍)当BM=BN时,∠BMN=∠BNM=45°,-(m2-4m+3)=-m+3,解得m=2或m=3(舍),当△BMN是等腰三角形时,m,1,2.点睛:本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质,解(3)的关键是利用等腰三角形的定义得出关于m的方程,要分类讨论,以防遗漏.4.(1)y=x2﹣2x﹣3;(2)抛物线的对称轴x=1,顶点坐标(1,﹣4);(3)(1+4)或(1-4)或(1,﹣4).【分析】(1)由于抛物线y=x 2+bx+c 与x 轴交于A (﹣1,0),B (3,0)两点,那么可以得到方程x 2+bx+c=0的两根为x=﹣1或x=3,然后利用根与系数即可确定b 、c 的值.(2)根据S △PAB =8,求得P 的纵坐标,把纵坐标代入抛物线的解析式即可求得P 点的坐标.【详解】解:(1)∵抛物线y=x 2+bx+c 与x 轴交于A (﹣1,0),B (3,0)两点,∴方程x 2+bx+c=0的两根为x=﹣1或x=3,∴﹣1+3=﹣b ,﹣1×3=c , ∴b=﹣2,c=﹣3,∴二次函数解析式是y=x 2﹣2x ﹣3.(2)∵y=﹣x 2﹣2x ﹣3=(x ﹣1)2﹣4,∴抛物线的对称轴x=1,顶点坐标(1,﹣4).(3)设P 的纵坐标为|y P |,∵S △PAB =8, ∴12AB•|y P |=8, ∵AB=3+1=4,∴|y P |=4,∴y P =±4,把y P =4代入解析式得,4=x 2﹣2x ﹣3,解得,x=1±, 把y P =﹣4代入解析式得,﹣4=x 2﹣2x ﹣3,解得,x=1,∴点P 在该抛物线上滑动到(4)或(1﹣,4)或(1,﹣4)时,满足S △PAB =8.【点睛】考点:1.待定系数法求二次函数解析式;2.二次函数的性质;3.二次函数图象上点的坐标特征.5.(1)21452=-+-y x x ;(2)()2,1M -,25y x =-;(3)点P 、Q 的坐标分别为(6,1)、(4,-3)或(2,1)、(4,5)或(2,1)、(4,1).【分析】(1)函数表达式为:y=a (x-4)2+3,将点B 坐标代入上式,即可求解;(2)A (4,3)、B (0,-5),则点M (2,-1),设直线AB 的表达式为:y=kx-5,将点A 坐标代入上式,即可求解;(3)分当AM 是平行四边形的一条边、AM 是平行四边形的对角线两种情况,分别求解即可.【详解】解:(1)设函数表达式为:()243y a x =-+,将点B 坐标代入上式并解得:12a =-, 故抛物线的表达式为:21452=-+-y x x ; (2)()4,3A 、()0,5B -,则点()2,1M -,设直线AB 的表达式为:5y kx =-,将点A 坐标代入上式得:345k =-,解得:2k =,故直线AB 的表达式为:25y x =-;(3)设点()4,Q s 、点21,452P m m m ⎛⎫-+- ⎪⎝⎭, ①当AM 是平行四边形的一条边时,当点Q 在A 的下方时,点A 向左平移2个单位、向下平移4个单位得到M ,同样点P (m ,-12m 2+4m-5)向左平移2个单位、向下平移4个单位得到Q (4,s ), 即:m-2=4,-12m 2+4m-5-4=s , 解得:m=6,s=-3,故点当点Q 在点A 上方时,AQ=MP=2,同理可得点Q 的坐标为(4,5),②当AM 是平行四边形的对角线时,由中点定理得:4+2=m+4,3-1=-12m 2+4m-5+s ,解得:m=2,s=1,故点P 、Q 的坐标分别为(2,1)、(4,1);综上,P 、Q 的坐标分别为(6,1)、(4,-3)或(2,1)、(4,5)或(2,1)、(4,1).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图象的面积计算等,其中(3),要主要分类求解,避免遗漏.6.(1)2y x 2x 3=-++,对称轴为直线1x =;(2)四边形ACDE 的周长最小值为1;(3)12(4,5),(8,45)P P --【分析】(1)OB=OC ,则点B (3,0),则抛物线的表达式为:y=a (x+1)(x-3)=a (x 2-2x-3)=ax 2-2ax-3a ,即可求解;(2)CD+AE=A′D+DC′,则当A′、D 、C′三点共线时,CD+AE=A′D+DC′最小,周长也最小,即可求解;(3)S △PCB :S △PCA =12EB×(y C -y P ):12AE×(y C -y P )=BE :AE ,即可求解. 【详解】(1)∵OB=OC ,∴点B (3,0),则抛物线的表达式为:y=a (x+1)(x-3)=a (x 2-2x-3)=ax 2-2ax-3a ,故-3a=3,解得:a=-1,故抛物线的表达式为:y=-x 2+2x+3…①;对称轴为:直线1x =(2)ACDE 的周长=AC+DE+CD+AE ,其中、DE=1是常数,故CD+AE 最小时,周长最小,取点C 关于函数对称点C (2,3),则CD=C′D ,取点A′(-1,1),则A′D=AE ,故:CD+AE=A′D+DC′,则当A′、D 、C′三点共线时,CD+AE=A′D+DC′最小,周长也最小,四边形ACDE 的周长的最小值(3)如图,设直线CP 交x 轴于点E ,直线CP 把四边形CBPA 的面积分为3:5两部分,又∵S △PCB :S △PCA =12EB×(y C -y P ):12AE×(y C -y P )=BE :AE , 则BE :AE ,=3:5或5:3,则AE=52或32, 即:点E 的坐标为(32,0)或(12,0), 将点E 、C 的坐标代入一次函数表达式:y=kx+3,解得:k=-6或-2,故直线CP 的表达式为:y=-2x+3或y=-6x+3…②联立①②并解得:x=4或8(不合题意值已舍去),故点P 的坐标为(4,-5)或(8,-45).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图象面积计算、点的对称性等,其中(1),通过确定点A′点来求最小值,是本题的难点.7.(1)抛物线解析式为y=﹣x 2+6x ﹣5;(2)①P 点的横坐标为4或2或2;②点M 的坐标为(136,﹣176)或(236,﹣76). 【解析】 分析:(1)利用一次函数解析式确定C (0,-5),B (5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程-x 2+6x-5=0得A (1,0),再判断△OCB 为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB 为等腰直角三角形,所以,接着根据平行四边形的性质得到,PQ ⊥BC ,作PD ⊥x 轴交直线BC 于D ,如图1,利用∠PDQ=45°得到PQ=4,设P (m ,-m 2+6m-5),则D (m ,m-5),讨论:当P 点在直线BC 上方时,PD=-m 2+6m-5-(m-5)=4;当P 点在直线BC 下方时,PD=m-5-(-m 2+6m-5),然后分别解方程即可得到P 点的横坐标;②作AN ⊥BC 于N ,NH ⊥x 轴于H ,作AC 的垂直平分线交BC 于M 1,交AC 于E ,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM 1B=2∠ACB ,再确定N (3,-2),AC 的解析式为y=5x-5,E 点坐标为(12,-52),利用两直线垂直的问题可设直线EM 1的解析式为y=-15x+b ,把E (12,-52)代入求出b 得到直线EM 1的解析式为y=-15x-125,则解方程组511255y x y x -⎧⎪⎨--⎪⎩==得M 1点的坐标;作直线BC 上作点M 1关于N 点的对称点M 2,如图2,利用对称性得到∠AM 2C=∠AM 1B=2∠ACB ,设M 2(x ,x-5),根据中点坐标公式得到3=13+62x ,然后求出x 即可得到M 2的坐标,从而得到满足条件的点M 的坐标.详解:(1)当x=0时,y=x ﹣5=﹣5,则C (0,﹣5),当y=0时,x ﹣5=0,解得x=5,则B (5,0),把B (5,0),C (0,﹣5)代入y=ax 2+6x+c 得253005a c c ++=⎧⎨=-⎩,解得15a b =-⎧⎨=-⎩, ∴抛物线解析式为y=﹣x 2+6x ﹣5;(2)①解方程﹣x 2+6x ﹣5=0得x 1=1,x 2=5,则A (1,0),∵B (5,0),C (0,﹣5),∴△OCB 为等腰直角三角形,∴∠OBC=∠OCB=45°,∵AM ⊥BC ,∴△AMB 为等腰直角三角形,∴AM=2AB=2×, ∵以点A ,M ,P ,Q 为顶点的四边形是平行四边形,AM ∥PQ ,∴PQ ⊥BC ,作PD ⊥x 轴交直线BC 于D ,如图1,则∠PDQ=45°,∴×=4, 设P (m ,﹣m 2+6m ﹣5),则D (m ,m ﹣5),当P 点在直线BC 上方时,PD=﹣m 2+6m ﹣5﹣(m ﹣5)=﹣m 2+5m=4,解得m 1=1,m 2=4,当P 点在直线BC 下方时,PD=m ﹣5﹣(﹣m 2+6m ﹣5)=m 2﹣5m=4,解得m 1,m 2综上所述,P 点的横坐标为4; ②作AN ⊥BC 于N ,NH ⊥x 轴于H ,作AC 的垂直平分线交BC 于M 1,交AC 于E ,如图2,∵M1A=M1C,∴∠ACM1=∠CAM1,∴∠AM1B=2∠ACB,∵△ANB为等腰直角三角形,∴AH=BH=NH=2,∴N(3,﹣2),易得AC的解析式为y=5x﹣5,E点坐标为(12,﹣52,设直线EM1的解析式为y=﹣15x+b,把E(12,﹣52)代入得﹣110+b=﹣52,解得b=﹣125,∴直线EM1的解析式为y=﹣15x﹣125解方程组511255y xy x=-⎧⎪⎨=--⎪⎩得136176xy⎧=⎪⎪⎨⎪=-⎪⎩,则M1(136,﹣176);作直线BC上作点M1关于N点的对称点M2,如图2,则∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),∵3=13+ 62x∴x=236,∴M2(236,﹣76).综上所述,点M 的坐标为(136,﹣176)或(236,﹣76). 点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、等腰直角的判定与性质和平行四边形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.8.(1)m=2,顶点为(1,4);(2)(1,2).【分析】(1)首先把点B 的坐标为(3,0)代入抛物线y=2x -+mx+3,利用待定系数法即可求得m 的值,继而求得抛物线的顶点坐标;(2)首先连接BC 交抛物线对称轴l 于点P ,则此时PA+PC 的值最小,然后利用待定系数法求得直线BC 的解析式,继而求得答案.【详解】解:(1)把点B 的坐标为(3,0)代入抛物线y=2x -+mx+3得:0=23-+3m+3,解得:m=2,∴y=2x -+2x+3=()214x --+,∴顶点坐标为:(1,4).(2)连接BC 交抛物线对称轴l 于点P ,则此时PA+PC 的值最小,设直线BC 的解析式为:y=kx+b ,∵点C (0,3),点B (3,0),∴033k b b =+⎧⎨=⎩,解得:13k b =-⎧⎨=⎩, ∴直线BC 的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC 的值最小时,点P 的坐标为:(1,2).考点:二次函数的性质.9.(1);(2)y=3x ,抛物线解析式为y=3x 2﹣3;(3)点P 存在,坐标为(94,﹣8). 【分析】 (1)令y=0,求出x 的值,确定出A 与B 坐标,根据已知相似三角形得比例,求出OC 的长即可;(2)根据C 为BM 的中点,利用直角三角形斜边上的中线等于斜边的一半得到OC=BC ,确定出C 的坐标,利用待定系数法确定出直线BC 解析式,把C 坐标代入抛物线求出a 的值,确定出二次函数解析式即可;(3)过P 作x 轴的垂线,交BM 于点Q ,设出P 与Q 的横坐标为x ,分别代入抛物线与直线解析式,表示出坐标轴,相减表示出PQ ,四边形ACPB 面积最大即为三角形BCP 面积最大,三角形BCP 面积等于PQ 与B 和C 横坐标之差乘积的一半,构造为二次函数,利用二次函数性质求出此时P 的坐标即可.【详解】解:(1)由题可知当y=0时,a (x ﹣1)(x ﹣3)=0,解得:x 1=1,x 2=3,即A (1,0),B (3,0),∴OA=1,OB=3∵△OCA ∽△OBC ,∴OC :OB=OA :OC ,∴OC 2=OA•OB=3,则(2)∵C 是BM 的中点,即OC 为斜边BM 的中线,∴OC=BC ,∴点C 的横坐标为32,又C 在x 轴下方,∴C (32设直线BM的解析式为y=kx+b,把点B(3,0),C(323032k bk b+=⎧⎪⎨+=⎪⎩,解得:b=∴x又∵点C(3 2解得:a=3,∴抛物线解析式为x2(3)点P存在,设点P坐标为(xx2,过点P作PQ⊥x轴交直线BM于点Q,则Q(x∴2)=x2x﹣当△BCP面积最大时,四边形ABPC的面积最大,S △BCP =12PQ (3﹣x )+12PQ (x ﹣32)=34PQ=2 当x=﹣9=24b a 时,S △BCP 有最大值,四边形ABPC 的面积最大,此时点P 的坐标为(94,﹣). 【点睛】此题属于二次函数综合题,涉及的知识有:二次函数图象与性质,待定系数法确定函数解析式,相似三角形的判定与性质,以及坐标与图形性质,熟练掌握各自的性质是解本题的关键.10.(1)y=﹣x 2﹣2x +3;(2)所求P 点的坐标为(﹣2,3)或(﹣1,﹣3)或(﹣1,﹣3);(3)点Q 的坐标是(﹣1,2).【分析】(1)将A (-3,0),B (1,0)两点代入y=-x 2+bx+c ,利用待定系数法求解即可求得答案; (2)首先求得点C 的坐标为(0,3),然后根据同底等高的两个三角形面积相等,可得P点的纵坐标为±3,将y=±3分别代入抛物线的解析式,求出x 的值,即可求得P 点的坐标; (3)根据两点之间线段最短可得Q 点是AC 与对称轴的交点.利用待定系数法求出直线AC 的解析式,将抛物线的对称轴方程x=-1代入求出y 的值,即可得到点Q 的坐标.【详解】(1)∵抛物线y=﹣x 2+bx+c 与x 轴交于A (﹣3,0),B (1,0)两点,∴930{10b c b c -++=-++=,解得23b c =-⎧⎨=⎩, ∴抛物线的解析式为:y=﹣x 2﹣2x+3;(2)∵y=﹣x 2﹣2x+3,∴x=0时,y=3,∴点C 的坐标为(0,3).设在抛物线上存在一点P (x ,y ),使S △PAB =S △ABC ,则|y|=3,即y=±3. 如果y=3,那么﹣x 2﹣2x+3=3,解得x=0或﹣2,x=0时与C 点重合,舍去,所以点P (﹣2,3);如果y=﹣3,那么﹣x 2﹣2x+3=﹣3,解得x=﹣,所以点P (﹣,﹣3);综上所述,所求P 点的坐标为(﹣2,3)或(﹣,﹣3)或(﹣1,﹣3); (3)连结AC 与抛物线的对称轴交于点Q ,此时△QBC 的周长最小.设直线AC 的解析式为:y=mx+n ,∵A (﹣3,0),C (0,3),∴30{3m n n -+==,解得:13m n ==⎧⎨⎩, ∴直线AC 的解析式为:y=x+3.∵y=﹣x 2﹣2x+3的对称轴是直线x=﹣1,∴当x=﹣1时,y=﹣1+3=2,∴点Q 的坐标是(﹣1,2).【点睛】此题考查了抛物线与x 轴的交点,待定系数法求函数的解析式,二次函数的性质,三角形的面积以及轴对称-最短路线问题.正确求出函数的解析式是解此题的关键.11.(1)223y x x =--;(2)存在这样的点,此时P ,32-);(3)P 点的坐标为(32,−154),四边形ABPC 的面积的最大值为758. 【分析】 (1)将B 、C 的坐标代入抛物线的解析式中即可求得待定系数的值;.(2)由于菱形的对角线互相垂直平分,若四边形POP′C 为菱形,那么P 点必在OC 的垂直平分线上,据此可求出P 点的纵坐标,代入抛物线的解析式中即可求出P 点的坐标;. (3)由于△ABC 的面积为定值,当四边形ABPC 的面积最大时,△BPC 的面积最大;过P 作y 轴的平行线,交直线BC 于Q ,交x 轴于F ,易求得直线BC 的解析式,可设出P 点的横坐标,然后根据抛物线和直线BC 的解析式求出Q 、P 的纵坐标,即可得到PQ 的长,以PQ 为底,B 点横坐标的绝对值为高即可求得△BPC 的面积,由此可得到关于四边形ACPB 的面积与P 点横坐标的函数关系式,根据函数的性质即可求出四边形ABPC 的最大面积及对应的P 点坐标.【详解】。

第二章 二次函数专题训练(三)求二次函数表达式的常见类型(含答案)

第二章 二次函数专题训练(三)求二次函数表达式的常见类型(含答案)

专题训练(三)求二次函数表达式的常见类型►类型一已知三点求表达式1.已知:如图3-ZT-1,二次函数y=ax2+bx+c的图象经过A,B,C三点,求此抛物线的表达式.图3-ZT-12.如图3-ZT-2①,已知抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3).(1)求抛物线的表达式;(2)求抛物线的顶点坐标和对称轴;(3)把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S(图②中阴影部分).图3-ZT-2►类型二已知顶点或对称轴求表达式3.如图3-ZT-3,已知抛物线y=-x2+bx+c的对称轴为直线x=1,且与x轴的一个交点为(3,0),那么它对应的函数表达式是______________.图3-ZT-34.在平面直角坐标系内,二次函数图象的顶点为A(1,-4),且过点B(3,0),求该二次函数的表达式.5.已知抛物线经过点A(1,0),B(0,3),且对称轴是直线x=2,求该抛物线的表达式.6.如图3-ZT-4,已知抛物线的顶点为A(1,4),与y轴交于点B(0,3),与x轴交于C,D两点,点P是x轴上的一个动点.(1)求此抛物线的表达式;(2)当P A+PB的值最小时,求点P的坐标.图3-ZT-4►类型三已知抛物线与x轴的交点求表达式7.抛物线与x轴交于点(-1,0)和(3,0),与y轴交于点(0,-3),则此抛物线的表达式为()A.y=x2+2x+3 B.y=x2-2x-3C.y=x2-2x+3 D.y=x2+2x-38.如图3-ZT-5,已知抛物线过A,B,C三点,点A的坐标为(-1,0),点B的坐标为(3,0),且3AB=4OC,则抛物线的表达式为______________.图3-ZT-59.已知抛物线的顶点坐标为(1,9),它与x轴有两个交点,两交点间的距离为6,求抛物线的表达式.► 类型四 根据图形平移求表达式10.一个二次函数图象的形状与抛物线y =-2x 2相同,顶点坐标为(2,1),则这个二次函数的表达式为______________________________.11.将抛物线y =12x 2平移,使顶点的坐标为(t ,t 2),并且经过点(1,1),求平移后抛物线对应的函数表达式.12.把抛物线y =x 2先向左平移1个单位长度,再向下平移4个单位长度,得到如图3-ZT -6所示的抛物线.(1)求此抛物线的表达式;(2)在抛物线上存在一点M ,使△ABM 的面积为20,请直接写出点M 的坐标.图3-ZT -613.如图3-ZT -7,经过点A (0,-6)的抛物线y =12x 2+bx +c 与x 轴相交于B (-2,0),C 两点.(1)求此抛物线的表达式和顶点D 的坐标;(2)将(1)中求得的抛物线先向左平移1个单位长度,再向上平移m (m >0)个单位长度得到新抛物线y 1,若新抛物线y 1的顶点P 在△ABC 内,求m 的取值范围.图3-ZT -7详解详析1.解:把(-1,0),(0,-3),(4,5)代入y =ax 2+bx +c ,得⎩⎨⎧a -b +c =0,c =-3,16a +4b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-2,c =-3.所以此抛物线的表达式为y =x 2-2x -3.2.解:(1)把(0,3),(3,0),(4,3)代入y =ax 2+bx +c ,得⎩⎨⎧c =3,9a +3b +c =0,16a +4b +c =3,解得⎩⎪⎨⎪⎧a =1,b =-4,c =3.所以抛物线的表达式为y =x 2-4x +3. (2)因为y =x 2-4x +3=(x -2)2-1,所以抛物线的顶点坐标为(2,-1),对称轴是直线x =2. (3)阴影部分的面积为2. 3.[答案] y =-x 2+2x +3[解析] ∵抛物线y =-x 2+bx +c 的对称轴为直线x =1,∴b2=1,解得b =2.∵抛物线与x 轴的一个交点为(3,0),∴0=-9+6+c ,解得c =3, 故抛物线对应的函数表达式为y =-x 2+2x +3. 4.解:∵二次函数图象的顶点为A (1,-4),∴设该二次函数的表达式为y =a (x -1)2-4.将(3,0)代入表达式,得a =1, 故该二次函数的表达式为y =(x -1)2-4,即y =x 2-2x -3.5.解:∵抛物线的对称轴是直线x =2且经过点A (1,0), ∴由抛物线的对称性可知,抛物线还经过点(3,0). 设抛物线的表达式为y =a (x -1)(x -3). 把(0,3)代入表达式,得3=3a , ∴a =1,∴该抛物线的表达式为y =(x -1)(x -3), 即y =x 2-4x +3.6.解:(1)∵抛物线的顶点坐标为(1,4), ∴设此抛物线的表达式为y =a (x -1)2+4. ∵抛物线过点B (0,3),∴3=a (0-1)2+4,解得a =-1,∴此抛物线的表达式为y =-(x -1)2+4,即y =-x 2+2x +3.(2)作点B 关于x 轴的对称点E (0,-3),连接AE 交x 轴于点P . 设直线AE 的表达式为y =kx +b ,则⎩⎨⎧k +b =4,b =-3,解得⎩⎨⎧k =7,b =-3,∴直线AE 的表达式为y =7x -3. 当y =0时,x =37,∴当P A +PB 的值最小时,点P 的坐标为(37,0).7.[解析] B 由抛物线与x 轴交于点(-1,0)和(3,0),设此抛物线的表达式为y =a (x +1)(x -3).又因为抛物线与y 轴交于点(0,-3),把x =0,y =-3代入y =a (x +1)(x -3),得-3=a (0+1)(0-3),即-3a =-3,解得a =1,故此抛物线的表达式为y =(x +1)(x -3)=x 2-2x -3.故选B.8.[答案] y =-x 2+2x +39.解:由抛物线的对称性可知抛物线与x 轴的两个交点分别为(-2,0)和(4,0),所以设其表达式为y =a (x +2)(x -4).将(1,9)代入表达式,得9=a (1+2)(1-4), 解得a =-1.所以抛物线的表达式为y =-(x +2)(x -4), 即y =-x 2+2x +8.10.[答案] y =-2x 2+8x -7或y =2x 2-8x +911.解:根据题意,得平移后的抛物线的表达式为y =12(x -t )2+t 2.∵平移后的抛物线经过点(1,1), ∴1=12(1-t )2+t 2,解得t =1或t =-13,∴平移后抛物线对应的函数表达式为y =12(x -1)2+1或y =12(x +13)2+19,即y =12x 2-x +32或y =12x 2+13x +16.12.解:(1)此抛物线的表达式为y =(x +1)2-4,即y =x 2+2x -3.(2)∵当y =0时,x 2+2x -3=0,解得x 1=-3,x 2=1,∴A (1,0),B (-3,0),∴AB =4.设点M 的坐标为(m ,n ). ∵△ABM 的面积为20, ∴12AB ·|n |=20,解得n =±10. 当n =10时,m 2+2m -3=10,解得m =-1+14或m =-1-14,∴M (-1+14,10)或M (-1-14,10);当n =-10时,m 2+2m -3=-10,此方程无解. 故点M 的坐标为(-1+14,10)或(-1-14,10). 13.解:(1)∵点A 的坐标为(0,-6),∴y =12x 2+bx -6.∵该抛物线过点B (-2,0),∴12×(-2)2-2b -6=0,解得b =-2, ∴此抛物线的表达式为y =12x 2-2x -6.∵y =12x 2-2x -6=12(x -2)2-8,∴抛物线的顶点D 的坐标为(2,-8).(2)平移后所得新抛物线的表达式为y 1=12(x -2+1)2-8+m ,即y 1=12(x -1)2-8+m ,∴顶点P 的坐标为(1,m -8).对于y =12x 2-2x -6,令y =0,得12x 2-2x -6=0,解得x 1=6,x 2=-2,∴C (6,0),∴直线AC 的表达式为y =x -6,当x =1时,y =-5. ∵点P 在△ABC 内,∴⎩⎨⎧m -8<0,m -8>-5,解得3<m <8.。

二次函数的三种表示方式(解析版)

二次函数的三种表示方式(解析版)

二次函数的三种表示方式高中必备知识点1:一般式形如下面的二次函数的形式称为一般式:y =ax 2+bx +c (a ≠0);典型考题【典型例题】已知抛物线y =ax 2+bx +c 的对称轴为x =﹣1,且过点(﹣3,0),(0,﹣3). (1)求抛物线的表达式.(2)已知点(m ,k )和点(n ,k )在此抛物线上,其中m ≠n ,请判断关于t 的方程t 2+mt +n =0是否有实数根,并说明理由.【答案】(1)y =x 2+2x ﹣3;(2)方程有两个不相等的实数根. 【解析】(1)抛物线y =ax 2+bx +c 的对称轴为x =﹣1,且过点(﹣3,0),(0,3) 9a ﹣3b +c =0930312a b c c b a⎧⎪-+=⎪=-⎨⎪⎪-=-⎩ 解得a =1,b =2,c =﹣3 ∴抛物线y =x 2+2x ﹣3;(2)∵点(m ,k ),(n ,k )在此抛物线上, ∴(m ,k ),(n ,k )是关于直线x =﹣1的对称点, ∴+2m n=﹣1 即m =﹣n ﹣2 b 2﹣4ac =m 2﹣4n =(﹣n ﹣2)2﹣4n =n 2+4>0∴此方程有两个不相等的实数根.【变式训练】抛物线的图象如下,求这条抛物线的解析式。

(结果化成一般式)【答案】【解析】由图象可知抛物线的顶点坐标为(1,4),设此二次函数的解析式为y=a(x-1)2+4把点(3,0)代入解析式,得:4a+4,即a=-1所以此函数的解析式为y=-(x-1)2+4故答案是y=-x2+2x+3.【能力提升】如图,在平面直角坐标系中,抛物线先向右平移2个单位,再向下平移2个单位,得到抛物线. (1)求抛物线的解析式(化为一般式);(2)直接写出抛物线的对称轴与两段抛物线弧围成的阴影部分的面积.【答案】(1) ;(2)4.【解析】 (1)抛物线的顶点坐标为,把点先向右平移2个单位,再向下平移2个单位后得到的点的坐标为,抛物线的解析式为;(2)顶点坐标为,且抛物线的对称轴与两段抛物线弧围成的阴影部分的面积,抛物线的对称轴与两段抛物线弧围成的阴影部分的面积.高中必备知识点2:顶点式形如下面的二次函数的形式称为顶点式:y =a (x -h )2+k (a ≠0),其中顶点坐标是(h ,k ).典型考题【典型例题】已知二次函数21322y x x =-++. ⑴用配方法将此二次函数化为顶点式; ⑵求出它的顶点坐标和对称轴方程.【答案】(1)()21122y x =--+;(2)(1,2),直线1x = 【解析】 (1)21322y x x =-++()21232y x x =--- ()2121132y x x =--+--()212142y x x ⎡⎤=--+-⎣⎦ ()21142y x ⎡⎤=---⎣⎦()21122y x =--+(2)∵()21122y x =--+∴顶点坐标为(1,2),对称轴方程为直线1x =.【变式训练】已知二次函数的图象的顶点是(﹣1,2),且经过(1,﹣6),求这个二次函数的解析式. 【答案】二次函数的解析式为y=﹣2(x+1)2+2. 【解析】∵二次函数的图象的顶点是(﹣1,2),∴设抛物线顶点式解析式y=a (x+1)2+2,将(1,﹣6)代入得,a (1+1)2+2=﹣6, 解得a=﹣2,所以,这个二次函数的解析式为y=﹣2(x+1)2+2.【能力提升】二次函数的图象经过点(03)A -,,(23)B -,,(10)C -,. (1)求此二次函数的关系式; (2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最少..平移 个单位,使得该图象的顶点在原点.【答案】(1)322--=x x y ;(2)(1,-4);(3)5【解析】(1)设c bx ax y ++=2,把点(03)A -,,(23)B -,,(10)C -,代入得 ⎪⎩⎪⎨⎧=---=++-=03343b a c b a c ,解得⎪⎩⎪⎨⎧-=-==321c b a∴322--=x x y ;(2)∵4)1(3222--=--=x x x y∴函数的顶点坐标为(1,-4); (3)∵|1-0|+|-4-0|=5∴二次函数的图象沿坐标轴方向最少平移5个单位,使得该图象的顶点在原点.高中必备知识点3:交点式形如下面的二次函数的形式称为交点式:y =a (x -x 1) (x -x 2) (a ≠0),其中x 1,x 2是二次函数图象与x 轴交点的横坐标.典型考题【典型例题】已知在平面直角坐标系中,二次函数 y =x 2+2x +2k ﹣2 的图象与 x 轴有两个交点. (1)求 k 的取值范围;(2)当 k 取正整数时,请你写出二次函数 y =x 2+2x +2k ﹣2 的表达式,并求出此二次函数图象与 x 轴的两个交点坐标.【答案】(1)k <;(2)(﹣2,0)和(0,0).【解析】(1)∵图象与x轴有两个交点,∴方程有两个不相等的实数根,∴解得(2)∵k 为正整数,∴k=1.∴令y=0,得解得∴交点为(﹣2,0)和(0,0).【变式训练】已知二次函数的图象经过点(3,-8),对称轴是直线x=-2,此时抛物线与x轴的两交点间距离为6.(1)求抛物线与x轴两交点坐标;(2)求抛物线的解析式.【答案】(1)(-5,0),(1,0);(2)y=-x2-2x+.【解析】(1) ∵因为抛物线对称轴为直线x=-2,且图象与x轴的两个交点的距离为6,∴点A、B到直线x=-2的距离为3,∴A为(-5,0),B为(1,0);(2)设y=a(x+5)(x-1).∵点(3,-8)在抛物线上,∴-8=a(3+5)(3-1),a=-,∴y=-x2-2x+.【能力提升】已知二次函数y=x2﹣4x+3.(1)求该二次函数与x轴的交点坐标和顶点;(2)在所给坐标系中画出该二次函数的大致图象,并写出当y<0时,x的取值范围.【答案】(1)二次函数与x轴的交点坐标为(1,0)(3,0),抛物线的顶点坐标为(2,﹣1);(2)图见详解;当y<0时,1<x<3.【解析】(1)当y=0时,x2﹣4x+3=0,解得x1=1,x2=3,所以该二次函数与x轴的交点坐标为(1,0)(3,0);因为y=x2﹣4x+3=x2﹣4x+4﹣1=(x﹣2)2﹣1,所以抛物线的顶点坐标为(2,﹣1);(2)函数图象如图:由图象可知,当y<0时,1<x<3.专题验收测试题1.将抛物线y=﹣2(x+1)2﹣2向左平移2个单位,向下平移3个单位后的新抛物线解析式为()A.y=﹣2(x﹣1)2+1 B.y=﹣2(x+3)2﹣5C.y=﹣2(x﹣1)2﹣5 D.y=﹣2(x+3)2+1【答案】B【解析】解:将抛物线y=﹣2(x+1)2﹣2向左平移2个单位,向下平移3个单位后的新抛物线解析式为:y=﹣2(x+3)2﹣5.故选:B.2.二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标是()A.(1,3)B.(﹣1,3)C.(1,﹣3)D.(﹣1,﹣3)【答案】A【解析】解:二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标为(1,3).故选:A.3.若二次函数y=(k+1)x2﹣2x+k的最高点在x轴上,则k的值为()A.1 B.2 C.﹣1 D.﹣2【答案】D【解析】∵二次函数y=(k+1)x2﹣2x+k的最高点在x轴上,∴△=b2﹣4ac=0,即8﹣4k(k+1)=0,解得:k1=1,k2=﹣2,当k=1时,k+1>0,此时图象有最低点,不合题意舍去,则k的值为:﹣2.故选:D.4.已知二次函数为常数,且),()A.若,则的增大而增大;B.若,则的增大而减小;C.若,则的增大而增大;D.若,则的增大而减小;【答案】C【解析】解:∵y=ax2+(a+2)x-1对称轴直线为,x=-=-.由a<0得,->0.∴->-1.又∵a<0∴抛物线开口向下.故当x<-时,y随x增大而增大.又∵x<-1时,则一定有x<-.∴若a<0,则x<-1,y随x的增大而增大.故选:C.5.二次函数y=3(x﹣1)2+2,下列说法正确的是()A.图象的开口向下B.图象的顶点坐标是(1,2)C.当x>1时,y随x的增大而减小D.图象与y轴的交点坐标为(0,2)【答案】B【解析】解:A、因为a=3>0,所以开口向上,错误;B、顶点坐标是(1,2),正确;C、当x>1时,y随x增大而增大,错误;D、图象与y轴的交点坐标为(0,5),错误;故选:B.6.将抛物线y=x2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为()A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+4【答案】A【解析】,当向左平移2个单位长度,再向上平移3个单位长度,得.故选A.7.把抛物线y=ax2+bx+c图象先向左平移2个单位长度,再向下平移3个单位长度,所得的图象的解析式是y=x2+5x+6,则a﹣b+c的值为()A.2 B.3 C.5 D.12【答案】B【解析】y=x2+5x+6=(x+)2﹣.则其顶点坐标是(﹣,﹣),将其右左平移2个单位长度,再向上平移3个单位长度后得到(﹣).故原抛物线的解析式是:y=(x+)2+=x2+x+3.所以a=b=1,c=3.所以a﹣b+c=1﹣1+3=3.故选B.8.已知二次函数y=﹣(x﹣k+2)(x+k)+m,其中k,m为常数.下列说法正确的是()A.若k≠1,m≠0,则二次函数y的最大值小于0B.若k<1,m>0,则二次函数y的最大值大于0C.若k=1,m≠0,则二次函数y的最大值小于0D.若k>1,m<0,则二次函数y的最大值大于0【答案】B【解析】∵y=﹣(x﹣k+2)(x+k)+m=﹣(x+1)2+(k﹣1)2+m,∴当x=﹣1时,函数最大值为y=(k﹣1)2+m,则当k<1,m>0时,则二次函数y的最大值大于0.故选:B.9.关于抛物线,下列说法错误..的是().A.开口向上B.与轴只有一个交点C.对称轴是直线D.当时,的增大而增大【答案】B【解析】解:A、,抛物线开口向上,所以A选项的说法正确;B、当时,即,此方程没有实数解,所以抛物线与x轴没有交点,所以B选项的说法错误;C、抛物线的对称轴为直线,所以C选项的说法正确;D、抛物线开口向上,抛物线的对称轴为直线,则当时,y随x的增大而增大,所以D选项的说法正确.故选:B.10.将抛物线y=﹣3x2+1向左平移2个单位长度,再向下平移3个单位长度,所得到的抛物线为()A.y=﹣3(x﹣2)2+4 B.y=﹣3(x﹣2)2﹣2C.y=﹣3(x+2)2+4 D.y=﹣3(x+2)2﹣2【答案】D【解析】将抛物线y=﹣3x2+1向左平移2个单位长度所得直线解析式为:y=﹣3(x+2)2+1;再向下平移3个单位为:y=﹣3(x+2)2+1﹣3,即y=﹣3(x+2)2﹣2.故选D.11.已知抛物线经过点,则该抛物线的解析式为__________.【答案】【解析】解:将A、O两点坐标代入解析式得:,解得:,∴该抛物线的解析式为:y=.12.二次函数y=(a-1)x2-x+a2-1 的图象经过原点,则a的值为______.【答案】-1【解析】解:∵二次函数y=(a-1)x2-x+a2-1 的图象经过原点,∴a2-1=0,∴a=±1,∵a-1≠0,∴a≠1,∴a的值为-1.故答案为:-1.13.将二次函数y=x2的图象先向上平移1个单位,然后向右平移2个单位,得到新的二次函数的顶点式为______.【答案】y=(x-2)2+1【解析】解:将抛物线y=x2的图象先向上平移1个单位,然后向右平移2个单位后,得到的抛物线的表达式为y=(x-2)2+1,故答案为:y=(x-2)2+1.14.将抛物线y=2x2平移,使顶点移动到点P(﹣3,1)的位置,那么平移后所得新抛物线的表达式是_____.【答案】y=2(x+3)2+1【解析】抛物线y=2x2平移,使顶点移到点P(﹣3,1)的位置,所得新抛物线的表达式为y=2(x+3)2+1.故答案为:y=2(x+3)2+115.在平面直角坐标系xOy 中,函数y = x2的图象经过点M (x1 , y1 ) ,N (x2 , y2 ) 两点,若- 4< x1<-2,0< x2<2 ,则y1 ____ y2 . (用“ <”,“=”或“>”号连接)【答案】>【解析】解:抛物线y=x2的对称轴为y轴,而M(x1,y1)到y轴的距离比N(x2,y2)点到y轴的距离要远,所以y1>y2.故答案为:>.16.小颖从如图所示的二次函数的图象中,观察得出了下列信息:;;;;.你认为其中正确信息的个数有______.【答案】【解析】解:抛物线的对称轴位于y轴左侧,则a、b同号,即,抛物线与y轴交于正半轴,则,所以,故错误;如图所示,当时,,所以,故正确;对称轴,,则如图所示,当时,,,,故正确;如图所示,当时,,故错误;综上所述,正确的结论是:.故答案是:.17.已知二次函数y=﹣x2+bx﹣c的图象与x轴的交点坐标为(m﹣2,0)和(2m+1,0).(1)若x<0时,y随x的增大而增大,求m的取值范围;(2)若y =1时,自变量x 有唯一的值,求二次函数的解析式. 【答案】(1)31=m (2)y =﹣x 2﹣4x ﹣3和y =﹣x 2﹣16x ﹣63. 【解析】解:(1)由题意可知,二次函数图象的对称轴为x =2213122m m m -++-=,∵a =﹣1<0,∴二次函数的图象开口向下, ∵x <0时,y 随x 的增大而增大,∴312m -≥0, 解得m ≥13,(2)由题意可知,二次函数的解析式为y =﹣(x ﹣312m -)2+1, ∵二次函数的图象经过点(m ﹣2,0), ∴0=﹣(m ﹣2﹣312m -)2+1, 解得m =﹣1和m =﹣5,∴二次函数的解析式为y =﹣x 2﹣4x ﹣3和y =﹣x 2﹣16x ﹣63. 18.设二次函数y 1=ax 2+bx +a ﹣5(a ,b 为常数,a ≠0),且2a +b =3. (1)若该二次函数的图象过点(﹣1,4),求该二次函数的表达式;(2)y 1的图象始终经过一个定点,若一次函数y 2=kx +b (k 为常数,k ≠0)的图象也经过这个定点,探究实数k ,a 满足的关系式;(3)已知点P (x 0,m )和Q (1,n )都在函数y 1的图象上,若x 0<1,且m >n ,求x 0的取值范围(用含a 的代数式表示).【答案】(1)y =3x 2﹣3x ﹣2;(2)k =2a ﹣5;(3)x 0<.【解析】解:(1)∵函数y 1=ax 2+bx +a ﹣5的图象经过点(﹣1,4),且2a +b =3 ∴,∴,∴函数y 1的表达式为y =3x 2﹣3x ﹣2; (2)∵2a +b =3∴二次函数y1=ax2+bx+a﹣5=ax2+(3﹣2a)x+a﹣5,整理得,y1=[ax2+(3﹣2a)x+a﹣3]﹣2=(ax﹣a+3)(x﹣1)﹣2∴当x=1时,y1=﹣2,∴y1恒过点(1,﹣2)∴代入y2=kx+b得∴﹣2=k+3﹣2a得k=2a﹣5∴实数k,a满足的关系式:k=2a﹣5(3)∵y1=ax2+(3﹣2a)x+a﹣5∴对称轴为x=﹣,∵x0<1,且m>n∴当a>0时,对称轴x=﹣,解得,当a<0时,对称轴x=﹣,解得(不符合题意,故x0不存在)故x0的取值范围为:19.已知二次函数y=x2+bx+c的图象经过点A和点B(1)求该二次函数的解析式;(2)写出该抛物线的对称轴及顶点坐标.【答案】(1) y=x2﹣4x﹣6;(2)对称轴为x=2;顶点坐标是(2,﹣10).【解析】(1)根据题意,得,解得,∴所求的二次函数的解析式为y=x2﹣4x﹣6.(2)又∵y=x2﹣4x﹣6=(x﹣2)2﹣10,∴函数图象的对称轴为x=2;顶点坐标是(2,﹣10).20.如图,对称轴为直线x=-1的抛物线y=x2+bx+c与x轴相交于A、B两点,其中A点的坐标为(-3,0),C为抛物线与y轴的交点.(1)求抛物线的解析式;(2)若点P在抛物线上,且S△POC=2S△BOC,求点P的坐标.【答案】(1)y=x2+2x﹣3;(2)点P的坐标为(2,5)或(﹣2,﹣3)【解析】(1)∵抛物线的对称轴为x=﹣1,A点的坐标为(﹣3,0),∴点B的坐标为(1,0).将点A和点B的坐标代入抛物线的解析式得:解得:b=2,c=﹣3,∴抛物线的解析式为y=x2+2x﹣3.(2)∵将x=0代y=x2+2x﹣3入,得y=﹣3,∴点C的坐标为(0,﹣3).∴OC=3.∵点B的坐标为(1,0),∴OB=1.设点P的坐标为(a,a2+2a﹣3),则点P到OC的距离为|a|.∵S△POC=2S△BOC,∴12OC•|a|=12OC•OB,即12×3×|a|=2×12×3×1,解得a=±2.当a=2时,点P的坐标为(2,5);当a=﹣2时,点P的坐标为(﹣2,﹣3).∴点P的坐标为(2,5)或(﹣2,﹣3).21.已知抛物线y=ax2﹣3ax﹣4a(a≠0).(1)直接写出该抛物线的对称轴.(2)试说明无论a为何值,该抛物线一定经过两个定点,并求出这两个定点的坐标.【答案】(1);(2)抛物线一定经过点.【解析】解:(1)该抛物线的对称轴为x=-;(2)可化为,当,即时,,抛物线一定经过点.22.如图,已知点A(-1,0),B(3,0),C(0,)在抛物线y=ax2+bx+c 上.(1)求抛物线解析式;(2)在第一象限的抛物线上求一点P,使△PBC的面积为.【答案】(1);(2)点P的坐标为(1,2)或(2,).【解析】(1)设抛物线的解析式为y=a(x+1)(x-3),将C(0,)代入,得-3a=,解得∴抛物线的解析式为(2)过点P作PD⊥x轴于D.设点,∴S四边形ACOB=S梯形PDOC+S△PBD =(=∴S△PBC=S四边形PCOB- S△BOC=整理得,解得x=1或x=2.∴点P的坐标为(1,2)或(2,)。

九年级数学二次函数表达式常见类型专项练习附答案

九年级数学二次函数表达式常见类型专项练习附答案

求二次函数表达式的常见类型名师点金:求二次函数的表达式是解决二次函数问题的重要保证,在求解二次函数的表达式时一般选用待定系数法,但在具体题目中要根据不同条件,设出恰当的表达式,往往可以使解题过程简便.)由函数的基本形式求表达式方法1 利用一般式求二次函数表达式1.【2016·黔南州】如图,已知二次函数y =x 2+bx +c 的图象与y 轴交于点C(0,-6),与x 轴的一个交点是A(-2,0). (1)求二次函数的表达式,并写出图象的顶点D 的坐标; (2)将二次函数的图象沿x 轴向左平移52个单位长度,当y<0时,求x 的取值范围.方法2 利用顶点法求二次函数表达式2.已知二次函数y =ax 2+bx +c ,当x =1时,有最大值8,其图象的形状、开口方向与抛物线y =-2x 2相同,则这个二次函数的表达式是( )A .y =-2x 2-x +3B .y =-2x 2+4C .y =-2x 2+4x +8D .y =-2x 2+4x +63.已知某个二次函数的最大值是2,图象顶点在直线y =x +1上,并且图象经过点(3,-6).求这个二次函数的表达式.方法3 利用交点式求二次函数表达式4.已知抛物线与x 轴交于A(1,0),B(-4,0)两点,与y 轴交于点C ,且AB =BC ,求此抛物线对应的函数表达式.方法4 利用平移法求二次函数表达式5.【中考·绥化】把二次函数y =2x 2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线对应的函数表达式是______________.6.已知y =x 2+bx +c 的图象向右平移2个单位长度,再向下平移3个单位长度,得到的图象对应的函数表达式为y =x 2-2x -3.(1)b =________,c =________; (2)求原函数图象的顶点坐标;(3)求两个图象顶点之间的距离.方法5 利用对称轴法求二次函数表达式 7.如图,已知抛物线y =-x 2+bx +c 的对称轴为直线x =1,且与x 轴的一个交点为(3,0),那么它对应的函数表达式是________________.8.如图,抛物线与x 轴交于A ,B 两点,与y 轴交于C 点,点A 的坐标为(2,0),点C 的坐标为(0,3),抛物线的对称轴是直线x =-12. (1)求抛物线对应的函数表达式;(2)M 是线段AB 上的任意一点,当△MBC 为等腰三角形时,求点M 的坐标.方法6 灵活运用方法求二次函数的表达式9.已知抛物线的顶点坐标为(-2,4),且与x 轴的一个交点坐标为(1,0),求抛物线对应的函数表达式.由函数图象中的信息求表达式10.如图是某个二次函数的图象,根据图象可知,该二次函数的表达式是()A.y=x2-x-2B.y=-12x2-12x+2C.y=-12x2-12x+1D.y=-x2+x+211.【中考·南京】某企业生产并销售某种产品,假设销售量与产量相等.如图中的折线ABD,线段CD分别表示该产品每千克生产成本y1(单位:元),销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义.(2)求线段AB所表示的y1与x之间的函数表达式.(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?由表格信息求表达式12.若y=ax2+bx+c,则由表格中信息可知y与x之间的函数关系式是()x -1 0 1ax2 1ax2+bx+c 8 3A.y=x2-4x+3B.y=x2-3x+4C.y=x2-3x+3 D.y=x2-4x+813.已知二次函数y=ax2+bx+c(a≠0)的自变量x和函数值y的部分对应值如下表:x …-32-1-1212132…y …-54-2-94-2-5474…则该二次函数的表达式为______________.几何应用中求二次函数的表达式14.【2016·安顺】某校校园内有一个大正方形花坛,如图①所示,它由四个边长为3 m的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD如图②所示,DG=1 m,AE=AF=x m,在五边形EFBCG区域上种植花卉,则大正方形花坛种植花卉的面积y与x的函数图象大致是()(第14题)实际问题中求二次函数表达式15.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两墙足够长),用28 m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=x m,花园的面积为S m2.(1)求S与x之间的函数表达式;(2)若在P处有一棵树与墙CD,AD的距离分别是15 m和6 m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积的最大值.(第15题)答案1.解:(1)∵把C 点坐标(0,-6)代入二次函数的表达式得c =-6,把A 点坐标(-2,0)代入y =x 2+bx -6得b =-1, ∴二次函数的表达式为y =x 2-x -6. 即y =()x -122-254. ∴图象的顶点D 的坐标为()12,-254.(2)将二次函数的图象沿x 轴向左平移52个单位长度所得图象对应的函数表达式为y =(x +2)2-254. 令y =0,得(x +2)2-254=0, 解得x 1=12,x 2=-92.∵a>0,∴当y<0时,x 的取值范围是-92<x<12.2.D3.解:设二次函数图象的顶点坐标为(x ,2),则2=x +1,所以x =1,所以图象的顶点坐标为(1,2).所以设二次函数的表达式为y =a(x -1)2+2.将点(3,-6)的坐标代入上式,可得a =-2.所以该函数的表达式为y =-2(x -1)2+2,即y =-2x 2+4x.4.解:由A(1,0),B(-4,0)可知AB =5,OB =4. 又∵BC =AB ,∴BC =5.在Rt △BCO 中,OC =BC 2-OB 2=52-42=3, ∴C 点的坐标为(0,3)或(0,-3).设抛物线对应的函数表达式为y =a(x -1)(x +4),将点(0,3)的坐标代入得3=a(0-1)×(0+4),解得a =-34.将点(0,-3)的坐标代入得-3=a(0-1)×(0+4),解得a =34.∴该抛物线对应的函数表达式为y =-34(x -1)(x +4)或y =34(x -1)(x +4),即y =-34x 2-94x +3或y =34x 2+94x -3.点拨:若给出抛物线与x 轴的交点坐标或对称轴及抛物线与x 轴的两交点间的距离,通常可设交点式求解. 5.y =2x 2+4x 6.解:(1)2;0(2)原函数的表达式为y =x 2+2x =(x +1)2-1.∴其图象的顶点坐标为(-1,-1).(3)原函数图象的顶点为(-1,-1),新函数图象的顶点为(1,-4).由勾股定理易得两个顶点之间的距离为13. 7.y =-x 2+2x +38.解:(1)设抛物线对应的函数表达式为y =a ()x +122+k.把点(2,0),(0,3)的坐标代入,得⎩⎪⎨⎪⎧254a +k =0,14a +k =3.解得⎩⎪⎨⎪⎧a =-12,k =258.∴y =-12()x +122+258, 即y =-12x 2-12x +3.(2)由y =0,得-12()x +122+258=0, 解得x 1=2,x 2=-3,∴B(-3,0).①当CM =BM 时,∵BO =CO =3,即△BOC 是等腰三角形,∴当M 点在原点O 处时,△MBC 是等腰三角形. ∴M 点坐标为(0,0).②当BC =BM 时,在Rt △BOC 中,BO =CO =3,由勾股定理得BC =OC 2+OB 2=32,∴BM =3 2. ∴M 点坐标为(32-3,0).综上所述,点M 的坐标为(0,0)或(32-3,0).9.解:方法一:设抛物线对应的函数表达式为y =ax 2+bx +c ,由题意得⎩⎪⎨⎪⎧-b2a=-2,4ac -b 24a=4,a +b +c =0.解得⎩⎨⎧a =-49,b =-169,c =209.∴抛物线对应的函数表达式为y =-49x 2-169x +209.方法二:设抛物线对应的函数表达式为y =a(x +2)2+4,将点(1,0)的坐标代入得0=a(1+2)2+4,解得a =-49.∴抛物线对应的函数表达式为y =-49(x +2)2+4.即y =-49x 2-169x +209.方法三:∵抛物线的顶点坐标为(-2,4),与x 轴的一个交点坐标为(1,0),∴抛物线的对称轴为直线x =-2,与x 轴的另一个交点坐标为(-5,0).设抛物线对应的函数表达式为y =a(x -1)(x +5),将点(-2,4)的坐标代入得4=a(-2-1)×(-2+5), 解得a =-49.∴抛物线对应的函数表达式为y =-49(x -1)(x +5),即y =-49x 2-169x +209.点拨:本题分别运用了一般式、顶点式、交点式求二次函数表达式,求二次函数的表达式时要根据题目条件灵活选择方法,如本题中,第一种方法列式较复杂,且计算量大,第二、三种方法较简便,计算量小. 10.D11.解:(1)点D 的横坐标、纵坐标的实际意义:当产量为130 kg 时,该产品每千克生产成本与销售价相等,都为42元. (2)设线段AB 所表示的y 1与x 之间的函数表达式为y 1=k 1x +b 1. 因为y 1=k 1x +b 1的图象过点(0,60)与(90,42), 所以⎩⎨⎧b 1=60,90k 1+b 1=42.解方程组得⎩⎨⎧k 1=-0.2,b 1=60.所以所求函数表达式为y 1=-0.2x +60(0≤x ≤90).(3)设y 2与x 之间的函数表达式为y 2=k 2x +b 2.因为y 2=k 2x +b 2的图象过点(0,120)与(130,42), 所以⎩⎨⎧b 2=120,130k 2+b 2=42.解方程组得⎩⎨⎧k 2=-0.6,b 2=120.所以y 2与x 之间的函数表达式为y 2=-0.6x +120(0≤x ≤130). 设产量为x kg 时,获得的利润为W 元.当0≤x ≤90时,W =x[(-0.6x +120)-(-0.2x +60)]=-0.4(x -75)2+2 250.所以当x =75时,W 的值最大,最大值为2 250.当90<x ≤130时,W =x[(-0.6x +120)-42]=-0.6(x -65)2+2 535.当x =90时,W =-0.6×(90-65)2+2 535=2 160.由-0.6<0知,当x >65时,W 随x 的增大而减小,所以90<x ≤130时,W<2 160.因此,当该产品产量为75 kg 时,获得的利润最大,最大利润是2 250元.12.A 13. y =x 2+x -214.A 点拨:先求出△AEF 和△DEG 的面积,然后可得到五边形EFBCG 的面积,继而可得y 与x 的函数表达式.S △AEF =12AE ×AF =12x 2,S △DEG =12DG ×DE =12×1×(3-x)=3-x 2, S五边形EFBCG=S正方形ABCD-S △AEF -S △DEG =9-12x 2-3-x 2=-12x 2+12x +152, 则y =4×()-12x 2+12x +152=-2x 2+2x +30. ∵0<AE<AD ,∴0<x<3. ∴y =-2x 2+2x +30(0<x<3). 故选A .15.解:(1)∵AB =x m ,∴BC =(28-x)m . 于是易得S =AB·BC =x(28-x)=-x 2+28x. 即S =-x 2+28x(0<x <28). (2)由题意可知,⎩⎨⎧x ≥6,28-x ≥15.解得6≤x ≤13.由(1)知,S =-x 2+28x =-(x -14)2+196.易知当6≤x ≤13时,S 随x 的增大而增大,∴当x =13时,S 最大值=195,即花园面积的最大值为195 m 2.。

(完整版)二次函数表达式三种形式练习题

(完整版)二次函数表达式三种形式练习题

1.把二次函数y=x2﹣4x+5化成y=a(x﹣h)2+k(a≠0)的形式,结果正确的是()A.y=(x﹣2)2+5 B.y=(x﹣2)2+1 C.y=(x﹣2)2+9 D.y=(x﹣1)2+12.将y=(2x﹣1)•(x+2)+1化成y=a(x+m)2+n的形式为()A. B.C. D.3.与y=2(x﹣1)2+3形状相同的抛物线为()A.y=1+x2 B.y=(2x+1)2 C.y=(x﹣1)2 D.y=2x24.二次函数的图象的顶点坐标是(2,4),且过另一点(0,﹣4),则这个二次函数的解析式为()A.y=﹣2(x+2)2+4 B.y=﹣2(x﹣2)2+4 C.y=2(x+2)2﹣4 D.y=2(x﹣2)2﹣45.已知某二次函数的图象如图所示,则这个二次函数的解析式为( )A.y=﹣3(x﹣1)2+3 B.y=3(x﹣1)2+3 C.y=﹣3(x+1)2+3 D.y=3(x+1)2+36.顶点为(6,0),开口向下,开口的大小与函数y=x2的图象相同的抛物线所对应的函数是()A.y=(x+6)2 B.y=(x﹣6)2 C.y=﹣(x+6)2 D.y=﹣(x﹣6)27.已知二次函数的图象经过点(﹣1,﹣5),(0,﹣4)和(1,1),则这二次函数的表达式为()A.y=﹣6x2+3x+4 B.y=﹣2x2+3x﹣4 C.y=x2+2x﹣4 D.y=2x2+3x﹣48.若二次函数y=x2﹣2x+c图象的顶点在x轴上,则c等于()A.﹣1 B.1C.D.29.如果抛物线经过点A(2,0)和B(﹣1,0),且与y轴交于点C,若OC=2.则这条抛物线的解析式是()A.y=x2﹣x﹣2 B.y=﹣x2﹣x﹣2或y=x2+x+2 C.y=﹣x2+x+2 D.y=x2﹣x﹣2或y=﹣x2+x+210.如果抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是3,那么c的值等于()A.8 B.14 C.8或14 D.﹣8或﹣1411.二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是( )A.3.125 B.4 C.2 D.012.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值3,则实数m的值为( )A.或﹣ B.或﹣ C.2或﹣ D.或﹣13.如果一条抛物线经过平移后与抛物线y=﹣x2+2重合,且顶点坐标为(4,﹣2),则它的解析式为.14.二次函数的图象如图所示,则其解析式为.15.若函数y=(m2﹣4)x4+(m﹣2)x2的图象是顶点在原点,对称轴是y轴的抛物线,则m= .16.二次函数图象的开口向上,经过(﹣3,0)和(1,0),且顶点到x轴的距离为2,则该二次函数的解析式为.17.如图,已知抛物线y=﹣x2+bx+c的对称轴为直线x=1,且与x轴的一个交点为(3,0),那么它对应的函数解析式是.18.二次函数y=ax2+bx+c的图象经过A(﹣1,0)、B(0,﹣3)、C(4,5)三点,求出抛物线解析式.19.二次函数图象过点(﹣3,0)、(1,0),且顶点的纵坐标为4,此函数关系式为.20.如图,一个二次函数的图象经过点A,C,B三点,点A的坐标为(﹣1,0),点B的坐标为(4,0),点C 在y轴的正半轴上,且AB=OC.则这个二次函数的解析式是.21.坐标平面内向上的抛物线y=a(x+2)(x﹣8)与x轴交于A、B两点,与y轴交于C点,若∠ACB=90°,则a的值是.22.平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y=﹣x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和四边形ABCD的面积.23.已知二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是经过(﹣1,0)且平行于y轴的直线.(1)求m、n的值;(2)如图,一次函数y=kx+b的图象经过点P,与x轴相交于点A,与二次函数的图象相交于另一点B,点B在点P的右侧,PA:PB=1:5,求一次函数的表达式.24.已知抛物线的顶点坐标为M(1,﹣2),且经过点N(2,3),求此二次函数的解析式.25.二次函数y=x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(1,0),与y轴的交点坐标为(0,﹣3).(1)求出b、c的值,并写出此二次函数的解析式;(2)根据图象,直接写出函数值y为正数时,自变量x的取值范围.26.二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5).(1)求函数的关系式;(2)求函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△OA′B′的面积.27.二次函数y=﹣x2+bx+c的图象经过坐标原点,且与x轴交于A(﹣2,0).(1)求此二次函数解析式及顶点B的坐标;(2)在抛物线上有一点P,满足S△AOP=3,直接写出点P的坐标.28.如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在点B的左边),A(﹣1,0),B(3,0),与y轴交于点C(0,3)连接BC.(1)求抛物线的解析式;(2)点D与点C关于抛物线对称轴对称,连接DB、DC,直线PD交直线BC于点P,且直线PD把△BCD分成面积相等的两部分,请直接写出直线PD的解析式.29.如图,已知二次函数的图象过A、C、B三点,点A的坐标为(﹣1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC.(1)求点C的坐标;(2)求二次函数的解析式,并化成一般形式.30.已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(2,0)、C(0,2)三点.(1)求这条抛物线的解析式;(2)如图,点P是第一象限内抛物线上的一个动点,若点P使四边形ABPC的面积最大,求点P的坐标.1.B;2.C;3.D;4.B;5.A;6.D;7.D; 8.B;9.D;10.C; 11.C; 12.A;13.y=—(x—4)2-2; 14.y=-x2+2x+3; 15.—2; 16.y=x2+x-;17.y=-x2+2x+3;18.y=x2-2x-3;19.y=-x2-2x+3; 20.y=—x2+x+5;21.;。

用待定系数法求二次函数表达式的三种形式

用待定系数法求二次函数表达式的三种形式
出该函数表达式。
例题1 已知抛物线过点(1,0)(3,-2)(5,0), 求该抛物线所对应函数的表达式。
例题2 抛物线对称轴为直线x=-1,最高点的纵坐标为4, 且与x 轴两交点之间的距离是6,求次二次函x1 数的解 析式。
巩固练习
• 1.已知抛物线与x轴的两交点为(-1,0)和(3, 0),且过点(2,-3).求抛物线的解析式.
待定系数法求二次函数表达式常见 的三种形式 :
一般式 • 1.
:y=ax²+bx+c (a,b,c为常数,且a≠0)
• 2.顶点式:y=a(x+h)²+k
(a 0)顶点坐标( h, k)
• 3.交点式: y a(x x1)(x x2 )
一、一般式 y ax2 bx c(a )
已知二次函数 y ax2 bx c 图象过某三
14.已知二次函数y=x²+2(n+3)x+16的顶点在坐标 轴上,求该二次函数表达式。
15.已知抛物线y=ax²+bx+c的顶点坐标为P(2,-1), 图象与x轴交于A,B两点。若△PAB的x1 面积为6, 求该抛物线所对应函数的解析式。
•谢谢
14
பைடு நூலகம்
• 3.二次函数y=ax²+bx+c,x=6时,y=0;x=4时, y有最大值为8,求此函数的解析式。
• 4.若二次函数y=ax²+bx+c(a≠0)的最大值是 2,图象经过点(-2,4)且顶点在直线y=-2x上, 试求ab+c的值
三、交点式 y a(x x1)(x x2 )
已知二次函数图象与x轴两交点坐标分别为 (x1,0),(x2,0) 通常选用交点式,再根据其他即可解出a值,从而求

求二次函数的表达式练习题(含答案)

求二次函数的表达式练习题(含答案)

二次函数的表达式一、选择题1.函数y =21x 2+2x +1写成y =a (x -h)2+k 的形式是=21(x -1)2+2 =21(x -1)2+21 =21(x -1)2-3 =21(x +2)2-1 2.抛物线y =-2x 2-x +1的顶点在第_____象限A.一B.二C.三D.四 3.不论m 取任何实数,抛物线y =a (x +m )2+m (a ≠0)的顶点都A.在y =x 直线上B.在直线y =-x 上C.在x 轴上D.在y 轴上4.任给一些不同的实数n ,得到不同的抛物线y =2x 2+n ,如当n =0,±2时,关于这些抛物线有以下结论:①开口方向都相同;②对称轴都相同;③形状都相同;④都有最低点,其中判断正确的个数是个 个 个 个 5.二次函数y =x 2+p x +q 中,若p+q=0,则它的图象必经过下列四点中A.(-1,1)B.(1,-1)C.(-1,-1)D.(1,1)图36.下列说法错误的是A.二次函数y =-2x 2中,当x =0时,y 有最大值是0B.二次函数y =4x 2中,当x >0时,y 随x 的增大而增大C.在三条抛物线y =2x 2,y =-,y =-x 2中,y =2x 2的图象开口最大,y =-x 2的图象开口最小D.不论a 是正数还是负数,抛物线y =ax 2(a ≠0)的顶点一定是坐标原点 7.已知二次函数y =x 2+(2k +1)x +k 2-1的最小值是0,则k 的值是A.43B.-43C.45D.-458.小颖在二次函数y =2x 2+4x +5的图象上,依横坐标找到三点(-1,y 1),(21,y 2), (-321,y 3),则你认为y 1,y 2,y 3的大小关系应为>y 2>y 3 >y 3>y 1 >y 1>y 2 >y 2>y 1 二、填空题9.抛物线y =21(x +3)2的顶点坐标是______.10.将抛物线y =3x 2向上平移3个单位后,所得抛物线的顶点坐标是______.11.函数y =34x -2-3x 2有最_____值为_____.12.已知抛物线y =ax 2+bx +c 的图象顶点为(-2,3),且过(-1,5),则抛物线的表达式为______.13.二次函数y =mx 2+2x +m -4m 2的图象过原点,则此抛物线的顶点坐标是______. 三、解答题14.根据已知条件确定二次函数的表达式(1)图象的顶点为(2,3),且经过点(3,6);(2)图象经过点(1,0),(3,0)和(0,9);(3)图象经过点(1,0),(0,-3),且对称轴是直线x=2。

中考数学《二次函数的三种形式》专项练习题及答案

中考数学《二次函数的三种形式》专项练习题及答案

中考数学《二次函数的三种形式》专项练习题及答案一、单选题1.二次函数y=-2(x-1)2+3的图象的顶点坐标是()A.(1,3)B.(-1,3)C.(1,-3)D.(-1,-3)2.二次函数y=(x+1)2-1图象的顶点坐标是( )A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)3.抛物线y=(x+1)2+2的对称轴为()A.直线x=1B.直线x=-1C.直线x=2D.直线x=-24.二次函数y=3(x-2)2-1的图象的顶点坐标是()A.(2,-1)B.(-2,-1)C.(2,1)D.(-2,1)5.若b>0,则二次函数y=x2+2bx﹣1的图象的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限6.将抛物线y=2x2向右平移2个单位,再向上平移3个单位,所得抛物线的表达式为()A.y=2(x+2)2+3B.y=(2x﹣2)2+3C.y=(2x+2)2﹣3D.y=2(x﹣2)2+37.对称轴平行于y轴的抛物线的顶点为点(2,3)且抛物线经过点(3,1),那么抛物线解析式是() A.y =-2x2 + 8x +3B.y =-2x2 –8x +3C.y = -2x2 + 8x –5D.y =-2x2 –8x +28.二次函数y=x2-6x+5的图像的顶点坐标是()A.(-3,4)B.(3,-4)C.(-1,2)D.(1,-4)9.把二次函数y=x2-4x+3化成y=a(x-h)2+k的形式是()A.y=(x-2)2-1B.y=(x+2)2-1C.y=(x-2)2+7D.y=(x+2)2+710.抛物线y=(x−2)2+1的顶点坐标是()A.(−2, −1)B.(−2, 1)C.(2, −1)D.(2, 1)11.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下列函数关系式:h=-5(t-1)2+6,则小球距离地面的最大高度是A.1米B.5米C.6米D.7米12.已知二次函数的解析式为:y=-3(x+5)2﹣7,那么下列说法正确的是()A.顶点的坐标是(5,-7)B.顶点的坐标是(-7,-5)C.当x=-5时,函数有最大值y=-7D.当x=-5时,函数有最小值y=-7二、填空题13.将抛物线y=﹣﹣12x2﹣3x+1写成y=a(x+h)2+k的形式应为.14.如果二次函数y=x2+bx+c配方后为y=(x﹣2)2+1,那么c的值为15.将二次函数y=x2+4x﹣2配方成y=(x﹣h)2+k的形式,则y=.16.若y=x2﹣2x﹣3化为y=(x﹣m)2+k的形式(其中m,k为常数),则m+k=;当x=时,二次函数y=x2+2x﹣2有最小值.17.把二次函数y=(x﹣2)2+1化为y=x2+bx+c的形式,其中b、c为常数,则b+c=.18.将二次函数y=x2−4x+5化成y=a(x−ℎ)2+k的形式为.三、综合题19.如图,抛物线的顶点M在x轴上,抛物线与y轴交于点N,且OM=ON=4,矩形ABCD的顶点A、B在抛物线上,C、D在x轴上.(1)求抛物线的解析式;(2)设点A的横坐标为t(t>4),矩形ABCD的周长为l,求l与t之间函数关系式.20.如图,抛物线y=x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)若点M是抛物线在x轴下方上的动点,过点M作MN∥y轴交直线BC于点N,求线段MN 的最大值;(3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使∥PBN是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.21.如图,已知二次函数y=ax2+bx+c的图象过点A(﹣1,0)和点C(0,3),对称轴为直线x=1.(1)求该二次函数的关系式和顶点坐标;(2)结合图象,解答下列问题:①当﹣1<x<2时,求函数y的取值范围.②当y<3时,求x的取值范围.22.已知二次函数y=x2−2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?23.把下列函数化为y=a(x+m)2+k形式,并求出各函数图象的顶点坐标、对称轴、最大值或最小值:(1)y=x2﹣2x+4;(2)y=100﹣5x2.24.如图,抛物线y=ax2+bx+c(a≠0)与x轴相交于A(﹣1,0),B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)连接BC,点P为抛物线上第一象限内一动点,当∥BCP面积最大时,求点P的坐标;(3)设点D是抛物线的对称轴上的一点,在抛物线上是否存在点Q,使以点B,C,D,Q为顶点的四边形为平行四边形?若存在,求出点Q的坐标;若不存在,说明理由.参考答案1.【答案】A2.【答案】D3.【答案】B4.【答案】A5.【答案】C6.【答案】D7.【答案】C8.【答案】B9.【答案】A10.【答案】D11.【答案】C12.【答案】C13.【答案】y=﹣12(x+3)2+11214.【答案】515.【答案】(x+2)2﹣616.【答案】-4;-117.【答案】118.【答案】y=(x−2)2+119.【答案】(1)解:∵OM=ON=4∴M点坐标为(4,0),N点坐标为(0,4)设抛物线解析式为y=a(x﹣4)2把N(0,4)代入得16a=4,解得a= 1 4所以抛物线的解析式为y= 14(x﹣4)2= 14x2﹣2x+4(2)解:∵点A的横坐标为t ∴DM=t﹣4∴CD=2DM=2(t﹣4)=2t﹣8把x=t代入y= 14x2﹣2x+4得y= 14t2﹣2t+4∴AD= 14t2﹣2t+4∴l=2(AD+CD)=2(14t2﹣2t+4+2t﹣8)= 12t 2﹣8(t >4) 20.【答案】(1)解:将点B (3,0)、C (0,3)代入抛物线y=x 2+bx+c 中得: {0=9+3b +c 3=c ,解得: {b =−4c =3 ∴抛物线的解析式为y=x 2﹣4x+3.(2)解:设点M 的坐标为(m ,m 2﹣4m+3),设直线BC 的解析式为y=kx+3 把点点B (3,0)代入y=kx+3中 得:0=3k+3,解得:k=﹣1 ∴直线BC 的解析式为y=﹣x+3. ∵MN∥y 轴∴点N 的坐标为(m ,﹣m+3).∵抛物线的解析式为y=x 2﹣4x+3=(x ﹣2)2﹣1 ∴抛物线的对称轴为x=2 ∴点(1,0)在抛物线的图象上 ∴1<m <3.∵线段MN=﹣m+3﹣(m 2﹣4m+3)=﹣m 2+3m=﹣ 12 + 94∴当m= 32 时,线段MN 取最大值,最大值为 94 .(3)解:假设存在.设点P 的坐标为(2,n ). 当m= 32 时,点N 的坐标为( 32 , 32) ∴PB= √(2−3)2+(n −0)2 = √1+n 2 ,PN= √(2−32)2+(n −32)2 ,BN= √(3−32)2+(0−32)2=3√22.∥PBN 为等腰三角形分三种情况:①当PB=PN 时,即 √1+n 2 = √(2−32)2+(n −32)2解得:n= 12此时点P 的坐标为(2, 12);②当PB=BN 时,即 √1+n 2 = 3√22解得:n=± √142此时点P 的坐标为(2,﹣ √142 )或(2, √142);③当PN=BN 时,即 √(2−32)2+(n −32)2 = 3√22解得:n= 3±√172此时点P 的坐标为(2, 3−√172 )或(2, 3+√172).综上可知:在抛物线的对称轴l 上存在点P ,使∥PBN 是等腰三角形,点的坐标为(2, 12)、(2,﹣√142 )、(2, √142 )、(2, 3−√172 )或(2, 3+√172). 21.【答案】(1)解:根据题意得 {a −b +c =0c =3−b2a =1 ,解得 {a =−1b =2c =3,所以二次函数关系式为y=﹣x 2+2x+3,因为y=﹣(x ﹣1)2+4 所以抛物线的顶点坐标为(1,4);(2)解:①当x=﹣1时,y=0;x=2时,y=3;而抛物线的顶点坐标为(1,4),且开口向下 所以当﹣1<x <2时,0<y≤4;②当y=3时,﹣x 2+2x+3=3,解得x=0或2 所以当y <3时,x <0或x >2.22.【答案】(1)解:∵∥=(﹣2m )2﹣4×1×(m 2+3)=4m 2﹣4m 2﹣12=﹣12<0∴方程x 2﹣2mx+m 2+3=0没有实数解, 即不论m 为何值,该函数的图象与x 轴没有公共点; (2)解:y=x 2﹣2mx+m 2+3=(x ﹣m )2+3∴把函数y=x 2﹣2mx+m 2+3的图象沿y 轴向下平移3个单位长度后,得到的函数的图象与x 轴只有一个公共点.23.【答案】(1)解:y=x 2﹣2x+4=x 2﹣2x+1+3=(x ﹣1)2+3.顶点坐标是(1,﹣1),对称轴为x=1,最小值为﹣1 (2)解:y=100﹣5x 2.顶点坐标是(0,100),对称轴为x=0,最大值为10024.【答案】(1)解:设抛物线解析式为y=a (x+1)(x ﹣3)把C (0,3)代入得a•1•(﹣3)=3,解得a=﹣1所以抛物线解析式为y=﹣(x+1)(x ﹣3),即y=﹣x 2+2x+3 (2)解:设直线BC 的解析式为y=kx+m把B (3,0),C (0,3)代入得 {3k +m =0m =3 ,解得 {k =−1m =3所以直线BC 的解析式为y=﹣x+3 作PM∥y 轴交BC 于M ,如图1设P(x,﹣x2+2x+3),(0<x<3),则M(x,﹣x+3)∴PM=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x∴S∥PCB= 12•3•PM=﹣32x2+ 92=﹣32(x﹣32)2+ 278当x= 32时,∥BCP的面积最大,此时P点坐标为(32,154)(3)解:如图2抛物线的对称轴为直线x=1当四边形BCDQ为平行四边形,设D(1,a),则Q(4,a﹣3)把Q(4,a﹣3)代入y=﹣x2+2x+3得a﹣3=﹣16+8+3,解得a=﹣2∴Q(4,﹣5);当四边形BCQD为平行四边形时,设D(1,a),则Q(﹣2,3+a)把Q(﹣2,3+a)代入y=﹣x2+2x+3得3+a=﹣4﹣4+3,解得a=﹣8∴Q(﹣2,﹣5);当四边形BQCD为平行四边形时,设D(1,a),则Q(2,3﹣a)把Q(2,3﹣a)代入y=﹣x2+2x+3得3﹣a=﹣4+4+3,解得a=0∴Q(2,3)综上所述,满足条件的Q点坐标为(4,﹣5)或(﹣2,﹣5)或(2,3).。

二次 函数表达式的三种求法

二次 函数表达式的三种求法

二次函数表达式的三种求法(一)知识内容:顶点式2y a x h k=-+(0()a)≠若已知图像的顶点坐标。

最值。

或对称中方程及顶点坐标的某些性质时用顶点式较简单.例题1若二次函数的顶点坐标(-1,-2),且过点(1,10)求解析式习题,已知二次函数的图像的最高点坐标(6,12)且图像经过点(8,0)求解析式例题2已知函数的顶点坐标(3,-2)且函数的图像与x轴的两交点距离为4,求次函数的解析式。

例题3已知二次函数的图像的与轴的交点A(-2,0) B(3,0)两点,且函数有最大值2,求次函数的解析式。

及顶点p和三角形APB的面积。

习题;1,二次函数当x=-2时,Y有最大值3,其图像过点(0,-1)求次函数的解析式。

2,已知二次函数的图像过点(-1,5),和(2,5),并且最大值14,求次函数的解析式。

3,已知二次函数过点(-1,0),(3,0)且顶点到X 轴的距离为2,求次函数的解析式。

(二) 交点式,知识内容12()()y a x x x x =--(0≠a ) X1,X2分别是抛物线与X 轴两个交点的横坐标,已知抛物线与X 轴的两个交点的横坐标求次函数的解析式时。

用交点式。

例题1已知抛物线与X 轴的两个交点的横坐标-2和1且过点(2,8)求次函数的解析式。

例题2已知函数的顶点坐标(3,-2)且函数的图像与x 轴的两交点距离为4,求次函数的解析式。

习题1,已知函数的最小值是-3,并且图像与X 轴两交点坐标的横坐标分别是2和3,求次函数的解析式。

2,图像与x 轴交于点(2,0)(-1.0)且过点(0,-2)求次函数的解析式。

3已知抛物线与X 轴交于A (-1,0)B (1,0)并且经过点M (0,1)求次函数的解析式。

4已知抛物线经过(-2,0)(1,0)(2,8)三点,求次函数的解析式。

(三),二次函数的一般式(三)一般式:2=++(0y ax bx ca)确定图像上三个点坐标代入,得到关于,≠a,b,c的方程。

九年级上数学专题复习一:待定系数法求二次函数表达式(含答案)

九年级上数学专题复习一:待定系数法求二次函数表达式(含答案)

专题复习一 待定系数法求二次函数表达式二次函数表达式的三种形式:①一般式y=ax 2+bx+c(a ≠0);②顶点式y=a(x-m)2+k(a ≠0);③交点式(分解式)y=a(x-x 1)(x-x 2),求函数表达式时要根据已知条件合理选择表达式形式.1.一抛物线和抛物线y=-2x 2的形状、开口方向完全相同,顶点坐标是(-1,3),则该抛物线的函数表达式为(B ).A.y=-2(x-1)2+3B.y=-2(x+1)2+3C.y=-(2x+1)2+3D.y=-(2x-1)2+32.如图所示,在平面直角坐标系中,二次函数y=ax 2+bx+c 的图象顶点为点A(-2,-2),且过点B(0,2),则y 关于x 的函数表达式为(D ).A.y=x 2+2B.y=(x-2)2+2C.y=(x-2)2-2D.y=(x+2)2-2(第2题) (第3题) (第4题) (第8题)3.如图所示为抛物线的图象,根据图象可知,抛物线的函数表达式可能为(A ). A.y=-x 2+x+2 B.y=-21x 2-21x+2 C.y=-21x 2-21x+1 D.y=x 2-x-2 4.如图所示,二次函数y=x 2+bx+c 的图象过点B(0,-2).该二次函数的图象与反比例函数y=-x8的图象交于点A(m ,4),则这个二次函数的表达式为(A ).A.y=x 2-x-2B.y=x 2-x+2C.y=x 2+x-2D.y=x 2+x+2 5.抛物线y=ax 2+bx+c(a ≠0)经过(1,2)和(-1,-6)两点,则a+c= -2 .6.已知二次函数y=ax 2+bx+c 的图象与x 轴交于A(1,0),B(3,0)两点,与y 轴交于点C(0,3),则二次函数的表达式为 y=x 2-4x+3 .7.老师给出一个函数,四位同学各指出了这个函数的一个性质:①函数的图象不经过第三象限;②函数的图象经过第一象限;③当x <2时,y 随x 的增大而减小;④当x <2时,y >0. 已知这四位同学的叙述都正确,请构造出满足上述所有性质的一个函数: y=(x-2)2(不唯一) . 8.如图所示,将Rt △AOB 绕点O 逆时针旋转90°,得到△A1OB1,若点A 的坐标为(2,1),过点A ,O ,A1的抛物线的函数表达式为 y=65x 2-67x . 9.根据下列条件求二次函数的表达式.(1)二次函数y=ax 2+bx+c 与x 轴的两个交点的横坐标是-21,23,与y 轴交点的纵坐标是-5,求这个二次函数的表达式.(2)二次函数图象的顶点在x 轴上,且图象过点(2,-2),(-1,-8),求此函数的表达式.【答案】(1)设抛物线的函数表达式为y=a (x+21)(x-23).把点(0,-5)代入,得a ×21×(-23)=-5,解得a=320.∴抛物线的函数表达式为y=320(x+21)(x-23)=320x 2-320x-5.(2)设抛物线的函数表达式为y=a (x-k )2.把点(2,-2),(-1,-8)代入,得()()⎪⎩⎪⎨⎧-=---=-812222k a k a ,解得⎪⎩⎪⎨⎧=-=592k a ,或⎩⎨⎧=-=12k a .∴抛物线的函数表达式为y=-92(x-5)2或y=-2(x-1)2.(第10题)10.在平面直角坐标系中,抛物线y=2x 2+mx+n 经过点A(0,-2),B(3,4). (1)求抛物线的函数表达式及对称轴.(2)设点B 关于原点的对称点为C ,点D 是抛物线对称轴上一动点,且点D 的纵坐标为t ,记抛物线在A ,B 两点之间的部分为图象G(包含A ,B 两点).若直线CD 与图象G 有公共点,结合函数图象,求点D 纵坐标t 的取值范围.【答案】(1)把点A(0,-2),B(3,4)代入抛物线y=2x 2+mx+n ,得⎩⎨⎧=++-=43182n m n ,解得⎩⎨⎧-=-=24n m .∴抛物线的函数表达式为y=2x 2-4x-2,对称轴为直线x=1.(第10题答图)(2)如答图所示,作出抛物线在A ,B 两点之间的图象G.由题意得C(-3,-4),二次函数y=2x 2-4x-2的最小值为-4,由函数图象得出点D 纵坐标的最小值为-4.设直线BC 的表达式为y=kx+b ,将点B ,C 的坐标代入得⎩⎨⎧-=+-=+4343b k b k ,解得⎪⎩⎪⎨⎧==034b k .∴直线BC 的表达式y=34x.当x=1时,y=34,∴t 的取值范围是-4≤t ≤34.11.已知二次函数y=ax 2+bx+c(a ≠0)的图象经过点A(1,0),B(0,-3),且对称轴为直线x=2,则这条抛物线的顶点坐标为(B ).A.(2,3)B.(2,1)C.(-2,1)D.(2,-1)12.若一次函数y=x+m 2与y=2x+4的图象交于x 轴上同一点,则m 的值为(D ). A.2 B.±2 C.2 D.±213.若所求的二次函数图象与抛物线y=2x 2-4x-1有相同的顶点,且在对称轴的左侧y 随x 的增大而增大,在对称轴的右侧y 随x 的增大而减小,则所求二次函数的表达式为(D ). A.y=-x 2+2x-5 B.y=ax 2-2ax+a-3(a >0) C.y=-2x 2-4x-5 D.y=ax 2-2ax+a-3(a <0)14.如图所示,已知二次函数y=x 2+bx+c 的图象经过点(-1,0),(1,-2),该图象与x 轴的另一个交点为点C ,则AC 长为 3 .(第14题) (第16题)15.已知二次函数的图象经过原点及点(-2,-2),且图象与x 轴的另一个交点到原点的距离为4,那么该二次函数的表达式为 y=21x 2+2x 或y=-61x 2+32x . 16.如图所示,直线y=x+2与x 轴交于点A ,与y 轴交于点B ,AB ⊥BC ,且点C 在x 轴上.若抛物线y=ax 2+bx+c 以点C 为顶点,且经过点B ,则这条抛物线的函数表达式为 y=21x 2-2x+2 .(第17题)17.如图所示,Rt △AOB 的直角边OA 在x 轴上,OA=2,AB=1,将Rt △AOB 绕点O 逆时针旋转90°得到Rt △COD ,抛物线y=-65x 2+bx+c 经过B ,D 两点. (1)求二次函数的表达式.(2)连结BD ,点P 是抛物线上一点,直线OP 把△BOD 的周长分成相等的两部分,求点P 的坐标.【答案】(1)∵Rt △AOB 绕点O 逆时针旋转90°得到Rt △COD ,∴CD=AB=1,OC=OA=2.则点B(2,1),D(-1,2),代入y=-65x 2+bx+c ,得⎪⎪⎩⎪⎪⎨⎧=+--=++-26512310c b c b ,解得⎪⎪⎩⎪⎪⎨⎧==31021c b .∴二次函数的表达式为y=-65x 2+21x+310.(第17题答图) (2)如答图所示,∵OA=2,AB=1,∴B(2,1).∵直线OP 把△BOD 的周长分成相等的两部分,且OB=OD ,∴DQ=BQ ,即点Q 为BD 的中点,D(-1,2).∴点Q 坐标为(21,23).设直线OP 的表达式为y=kx ,将点Q 坐标代入,得21k=23,解得k=3.∴直线OP 的表达式为y=3x.由⎪⎩⎪⎨⎧++-==310216532x x y xy 得⎩⎨⎧==3111y x ,⎩⎨⎧-=-=12422y x .∴点P 的坐标为(1,3)或(-4,-12).(第18题)18.在平面直角坐标系中,抛物线y=ax 2+bx+2过B(-2,6),C(2,2)两点. (1)试求抛物线的函数表达式.(2)记抛物线的顶点为D ,求△BCD 的面积. (3)若直线y=-21x 向上平移b 个单位所得的直线与抛物线段BDC(包括端点B ,C)部分有两个交点,求b 的取值范围.【答案】(1)由题意⎩⎨⎧=++=+-22246224b a b a ,解得⎪⎩⎪⎨⎧-==121b a .∴抛物线的函数表达式为y=21x 2-x+2.(2)如答图所示,∵y=21x 2-x+2=21(x-1)2+23.∴顶点D 的坐标为(1,23),对称轴为直线x=1.设直线BC 的函数表达式为y=kx+b.将B (-2,6),C (2,2)代入,得⎩⎨⎧=+=+-2262b k b k ,解得⎩⎨⎧=-=41b k .∴直线BC 的函数表达式为y=-x+4,∴对称轴与BC 的交点H(1,3).∴S △BDC=S△BDH+S △DHC =21×23×3+21×23×1=3. (3)由⎪⎪⎩⎪⎪⎨⎧+-=+-=221212x x y b x y 消去y 得x 2-x+4-2b=0,当Δ=0时,直线与抛物线相切,1-4(4-2b)=0,解得b=815.当直线y=-21x+b 经过点C 时,b=3,当直线y=-21x+b 经过点B 时,b=5.∵直线y=-21x 向上平移b 个单位所得的直线与抛物线段BDC(包括端点B ,C)部分有两个交点,∴815<b ≤3.(第19题)19.【贵港】将如图所示的抛物线向右平移1个单位,再向上平移3个单位后,得到的抛物线的函数表达式为(A ).A.y=(x-1)2+1B.y=(x+1)2+1C.y=2(x-1)2+1D.y=2(x+1)2+120.【广州】已知抛物线y1=-x 2+mx+n ,直线y 2=kx+b ,y 1的对称轴与y 2交于点A(-1,5),点A 与y 1的顶点B 的距离是4. (1)求y 1的函数表达式.(2)若y 2随着x 的增大而增大,且y 1与y 2都经过x 轴上的同一点,求y 2的函数表达式. 【答案】(1)∵抛物线y1=-x 2+mx+n ,直线y 2=kx+b ,y 1的对称轴与y 2交于点A(-1,5),点A与y 1的顶点B 的距离是4.∴B(-1,1)或(-1,9).∴-()12-⨯m=-1,()()14142-⨯--⨯m n =1或9,解得m=-2,n=0或8.∴y1=-x 2-2x 或y1=-x 2-2x+8.(2)①当y1=-x 2-2x 时,抛物线与x 轴的交点是(0,0)和(-2,0).∵y 1的对称轴与y 2交于点A(-1,5),∴y 1与y 2都经过x 轴上的同一点(-2,0).把(-1,5),(-2,0)代入得⎩⎨⎧=+-=+-025b k b k ,解得⎩⎨⎧==105b k .∴y 2=5x+10.②当y1=-x 2-2x+8时,令-x 2-2x+8=0,解得x=-4或2.∵y 2随着x 的增大而增大,且过点A(-1,5),∴y 1与y 2都经过x 轴上的同一点(-4,0).把(-1,5),(-4,0)代入得⎩⎨⎧=+-=+-045b k b k ,解得⎪⎪⎩⎪⎪⎨⎧==32035b k .∴y 2=35x+320.综上可得y 2=5x+10或y 2=35x+320.21.如图所示,直线y=-21x+2与x 轴交于点B ,与y 轴交于点C ,已知二次函数的图象经过点B ,C 和点A(-1,0). (1)求B ,C 两点的坐标. (2)求该二次函数的表达式.(3)若抛物线的对称轴与x 轴的交点为点D ,则在抛物线的对称轴上是否存在点P ,使△PCD 是以CD 为腰的等腰三角形?如果存在,直接写出点P 的坐标;如果不存在,请说明理由. (4)点E 是线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,当点E 运动到什么位置时,四边形CDBF 的面积最大?求出四边形CDBF 的最大面积及此时点E 的坐标.(第21题) 图1 图2(第21题答图)【答案】(1)令x=0,可得y=2;令y=0,可得x=4,∴B,C 两点的坐标分别为B (4,0),C (0,2).(2)设二次函数的表达式为y=ax 2+bx+c ,将点A ,B ,C 的坐标代入表达式得⎪⎩⎪⎨⎧==++=+-204160c c b a c b a ,解得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=22321c b a .∴该二次函数的表达式为y=-21x 2+23x+2.(3)存在.∵y=-21x 2+23x+2=-21(x-23)2+825,∴抛物线的对称轴是直线x=23.∴OD=23.∵C (0,2),∴OC=2.在Rt △OCD 中,由勾股定理得CD=25.∵△PCD 是以CD 为腰的等腰三角形,∴CP 1=DP 2=DP 3=CD.如答图1所示,作CH ⊥对称轴直线x=23于点H ,∴HP 1=HD=2,∴DP 1=4.∴P 1(23,4),P 2(23,25),P 3(23,-25). (4)如答图2所示,过点C 作CM ⊥EF 于点M ,设E (a ,-21a+2),F (a ,-21a 2+23a+2),∴EF=-21a 2+23a+2-(-21a+2)=-21a 2+2a (0≤a ≤4).∵S 四边形CDBF =S △BCD +S △CEF +S △BEF =21BD·OC+21EF·CM+21EF·BN=25+21a (-21a 2+2a )+21(4-a )(-21a 2+2a )=-a 2+4a+25=-(a-2)2+213,∴当a=2时,四边形CDBF 的面积最大,最大面积为213,此时点E 坐标为(2,1).。

专题训练(一) 二次函数表达式的三种常见求解方法

专题训练(一)  二次函数表达式的三种常见求解方法

专题训练(一)二次函数表达式的三种常见求解方法▶方法一已知图象上任意三点,通常设一般式1.已知二次函数的图象经过A(0,0),B(-1,-11),C(1,9)三点,则这个二次函数的表达式是()A.y=-10x2+xB.y=-10x2+19xC.y=10x2+xD.y=-x2+10x2.已知抛物线y=ax2+bx+c(a≠0)经过点(1,6),(-1,0),(2,12),则该抛物线的函数表达式为.3.如图1所示,二次函数y=ax2+bx+c(a≠0)的图象经过A,B,C三点.观察图象,写出A,B,C三点的坐标,并求出二次函数的表达式.图14.已知一个二次函数的图象经过原点及点(-2,-2),且图象与x轴的另一个交点到原点的距离为4,求该二次函数的表达式.▶方法二已知顶点、对称轴、最值,通常设顶点式5.已知抛物线y=ax2+bx+c(a≠0)的顶点坐标是(-1,3),且过点(0,5),那么该抛物线的函数表达式为() A.y=-2(x-1)2+3 B.y=-2(x+1)2+3C.y=2(x-1)2+3D.y=2(x+1)2+36.某广场中心标志性建筑处有高低不同的各种喷泉,其中一个高度为1 m的喷水管喷水的最大高度为3 m,此时喷出的水距喷水管的水平距离为12m.在如图1-ZT-2所示的平面直角坐标系中,这个喷泉喷出的水所在的抛物线的函数表达式为()图2A.y=-x-122+3 B.y=3x-122+1C.y=-8x-122+3 D.y=-8x+122+37.如图3,抛物线经过点A,B,C,则此抛物线的函数表达式为.图-38.已知抛物线经过点(3,0),(2,-3),并以直线x=0为对称轴,则该抛物线的函数表达式为. 9.如图4,二次函数y=ax2+bx+c(a≠0)的图象的顶点坐标为(-2,4),且经过原点.(1)求二次函数的表达式;(2)在抛物线上存在点P,使S△AOP=8,请直接写出点P的坐标.图4▶方法三已知图象与x轴的两个交点坐标和另一个点的坐标,通常设交点式10.若抛物线y=ax2+bx+c(a≠0)与x轴的两个交点的坐标分别为(-1,0),(3,0),其形状及开口方向与抛物线y=-2x2相同,则该抛物线的函数表达式为() A.y=-2(x-1)(x-3) B.y=-2(x+1)(x+3)C.y=-2(x+1)(x-3)D.y=-2(x-1)(x+3)11.已知二次函数的图象经过点(2,-3),对称轴为直线x=1,与x轴的两交点间的距离为4,求这个二次函数的表达式.12.如图5,在平面直角坐标系xOy中,一条抛物线经过A,O,B三点,点B在x轴的正半轴上,且OA=OB=4,∠AOB=120°.求这条抛物线的函数表达式.图513.已知抛物线C1经过点A(-1,0),B(3,0),C(0,-3).(1)求抛物线C1的函数表达式;(2)将抛物线C1向左平移几个单位,可使所得的抛物线C2经过坐标原点?写出抛物线C2的函数表达式.专题一 教师详解详析1.D2.y=x 2+3x+23.解:A (-1,0),B (0,-3),C (4,5),二次函数的表达式为y=x 2-2x-3.4.解:设二次函数的表达式为y=ax 2+bx+c (a ≠0). ∵二次函数的图象经过原点,∴c=0.∵二次函数的图象与x 轴的另一个交点到原点的距离为4,∴二次函数的图象与x 轴的另一个交点坐标为(4,0)或(-4,0).当二次函数的图象与x 轴的另一个交点坐标为(-4,0)时,可得{4a -2b =-2,16a -4b =0, 解得{a =12,b =2.当二次函数的图象与x 轴的另一个交点坐标为(4,0)时,可得{4a -2b =-2,16a +4b =0, 解得{a =-16,b =23.综上所述,该二次函数的表达式为 y=12x 2+2x 或y=-16x 2+23x.5.D6.C7.y=(x-1)2-4 [解析] ∵抛物线的顶点坐标为(1,-4), ∴可设抛物线的表达式为y=a (x-1)2-4. 把A (-1,0)代入上式,得4a-4=0, 解得a=1, ∴此抛物线的表达式为y=(x-1)2-4. 8.y=35x 2-275[解析] 设抛物线的函数表达式为y=ax 2+c (a ≠0),则{9a +c =0,4a +c =-3,解得{a =35,c =-275, ∴抛物线的函数表达式为y=35x 2-275.9.解:(1)∵二次函数y=ax 2+bx+c (a ≠0)的图象的顶点坐标为(-2,4),∴二次函数的表达式可写成y=a (x+2)2+4. 又∵二次函数的图象经过原点, ∴0=a (0+2)2+4,解得a=-1, ∴y=-(x+2)2+4=-x 2-4x.故二次函数的表达式为y=-x 2-4x. (2)易求得点A 的坐标为(-4,0), ∴AO=4.设点P 到x 轴的距离为h , 则S △AOP =12×4h=8,解得h=4.①当点P 在x 轴上方时,-x 2-4x=4,解得x 1=x 2=-2,∴点P 的坐标为(-2,4).②当点P 在x 轴下方时,-x 2-4x=-4,解得x 1=-2+2√2,x 2=-2-2√2,∴点P 的坐标为(-2+2√2,-4)或(-2-2√2,-4).综上所述,点P 的坐标是(-2,4)或(-2+2√2,-4)或(-2-2√2,-4). 10.C11.解:∵二次函数的图象与x 轴的两交点间的距离为4,且以直线x=1为对称轴,∴图象与x 轴两交点的坐标分别为(-1,0),(3,0). 设二次函数的表达式为y=a (x+1)(x-3)(a ≠0). 又∵抛物线过点(2,-3),∴-3=(2+1)(2-3)a ,解得a=1,∴二次函数的表达式为y=(x+1)(x-3)=x 2-2x-3. 12.解:过点A 作AC ⊥x 轴于点C ,如图.∵∠AOB=120°, ∴∠AOC=60°, ∴∠OAC=30°. ∵OA=OB=4,∴OC=2,AC=2√3, ∴A (-2,2√3).由题意可知B (4,0).设抛物线的函数表达式为y=ax (x-4)(a ≠0). 把A (-2,2√3)代入得a×(-2)×(-2-4)=2√3,解得a=√36,∴抛物线的函数表达式为y=√36x (x-4), 即y=√36x 2-2√33x. 13.解:(1)∵抛物线C 1经过点A (-1,0),B (3,0),∴可设其函数表达式为y=a (x+1)(x-3)(a ≠0). 将C (0,-3)代入,得a=1, ∴y=(x+1)(x-3)=x 2-2x-3.(2)将抛物线C 1向左平移3个单位,可使所得的抛物线C 2经过坐标原点. ∵y=x 2-2x-3=(x-1)2-4,∴抛物线C 2的函数表达式为y=(x-1+3)2-4, 即抛物线C 2的函数表达式为y=x 2+4x.。

中考数学专项复习《二次函数的三种形式》练习题带答案

中考数学专项复习《二次函数的三种形式》练习题带答案

中考数学专项复习《二次函数的三种形式》练习题带答案一、单选题1.二次函数y=x 2﹣2x+4化为y=a (x ﹣h )2+k 的形式,下列正确的是( )A .y=(x ﹣1)2+2B .y=(x ﹣1)2+3C .y=(x ﹣2)2+2D .y=(x ﹣2)2+42.抛物线y=x 2﹣2x ﹣3的对称轴和顶点坐标分别是( ).A .x=1,(1,﹣4)B .x=1(1,4)C .x=﹣1,(﹣1,4)D .x=﹣1,(﹣1,﹣4)3.把y=4x 2﹣4x+2配方成y=a (x ﹣h )2+k 的形式是( )A .y=(2x ﹣1)2+1B .y=(2x ﹣1)2+2C .y=(x ﹣ 12)2+1D .y=4(x ﹣ 12)2+24.若把抛物线y =x 2-2x +1先向右平移2个单位,再向下平移3个单位,所得到的抛物线的函数关系式为y =ax 2+bx +c ,则b 、c 的值为( ) A .b =2,c =-2 B .b =-8,c =14 C .b =-6,c =6D .b =-8,c =185.直角坐标平面上将二次函数y=x 2-2的图象向左平移1个单位,再向上平移1个单位,则其顶点为( ) A .(0,0)B .(1,-1)C .(0,-1)D .(-1,-1)6.将二次函数y=x 2+4x ﹣8化为y=(x+m )2+n 的形式正确的是( )A .y=(x+2)2+8B .y=(x+2)2﹣8C .y=(x+2)2+12D .y=(x+2)2﹣127.若b<0,则二次函数y=x 2-bx-1的图象的顶点在( )A .第一象限B .第二象限C .第三象限D .第四象限8.通过配方法将二次函数y=ax 2+bx+c (a≠0)化成y=a (x ﹣h )2+k 的形式,此二次函数可变形为( )A .y=a (x+ b 2a )2+ 4ac−b 24aB .y=a (x ﹣ b 2a )2+ 4ac−b 24aC .y=a (x+ b 2a )2+ b 2−4ac 4aD .y=a (x ﹣ b 2a )2+ b 2−4ac 4a9.将二次函数y=x 2﹣2x+3化为y=(x ﹣h )2+k 的形式,结果为( )A .y=(x+1)2+4B .y=(x+1)2+2C .y=(x ﹣1)2+4D .y=(x ﹣1)2+210.抛物线y=﹣ 15 x 2+ 25x ﹣1,经过配方化成y=a (x ﹣h )2+k 的形式是( )A .y =15(x +1)2−45B .y =15(x −1)2+45C .y =15(x −1)2−45D .y =15(x +1)2+4511.如图,在 ΔABC 中 ∠B =90° ,tan ∠C =34,AB=6cm.动点P 从点A 开始沿边AB 向点B 以1cm/s 的速度移动,动点Q 从点B 开始沿边BC 向点C 以2cm/s 的速度移动.若P,Q 两点分别从A,B 两点同时出发,在运动过程中 ΔPBQ 的最大面积是( )A .18cm 2B .12cm 2C .9cm 2D .3cm 212.如图,在平面直角坐标系中抛物线所表示的函数解析式为y=﹣2(x ﹣h )2+k ,则下列结论正确的是( )A .h >0,k >0B .h <0,k >0C .h <0,k <0D .h >0,k <0二、填空题13.二次函数 y =−x 2+2x +3 的图象与 x 轴交于 A 、 B 两点, P 为它的顶点,则S △PAB = .14.把二次函数的表达式y=x 2﹣6x+5化为y=a (x ﹣h )2+k 的形式,那么h+k= 15.将二次函数y=x 2﹣2x+4化成y=(x ﹣h )2+k 的形式,则y= . 16.若二次函数y=x 2+bx+5配方后为y=(x ﹣2)2+k ,则b+k= .17.若将二次函数y=x 2﹣2x+3配方为y=(x ﹣h )2+k 的形式,则y= . 18.已知抛物线的表达式是y =2(x +2)2−1,那么它的顶点坐标是 ;三、综合题19.如图,抛物线的顶点M 在x 轴上,抛物线与y 轴交于点N ,且OM=ON=4,矩形ABCD 的顶点A 、B 在抛物线上,C 、D 在x 轴上.(1)求抛物线的解析式;(2)设点A的横坐标为t(t>4),矩形ABCD的周长为l,求l与t之间函数关系式.20.已知二次函数y= 2x2 -4x-6.(1)用配方法将y= 2x2 -4x-6化成y=a (x-h) 2 +k的形式;并写出对称轴和顶点坐标。

中考数学专项复习《二次函数的三种形式》练习题及答案

中考数学专项复习《二次函数的三种形式》练习题及答案

中考数学专项复习《二次函数的三种形式》练习题及答案一、单选题1.抛物线y=x2﹣2x+3的顶点坐标是()A.(1,﹣2)B.(1,2)C.(﹣1,2)D.(﹣1,﹣2)2.把二次函数y=x2-4x+3化成y=a(x-h)2+k的形式是()A.y=(x-2)2-1B.y=(x+2)2-1C.y=(x-2)2+7D.y=(x+2)2+73.把二次函数y=x2﹣2x﹣1配方成顶点式为()A.y=(x﹣1)2B.y=(x+1)2﹣2C.y=(x+1)2+1D.y=(x﹣1)2﹣24.已知二次函数y=(x−1m)(mx−4m)(其中m>0),下列说法正确的是()A.当x>2时,都有y随着x的增大而增大B.当x<3时,都有y随着x的增大而减小C.若x<n时,都有y随着x的增大而减小,则n≥2+12mD.若x<n时,都有y随着x的增大而减小,则n≤2+12m5.将二次函数y=x2﹣2x﹣3化成y=(x﹣h)2+k形式,则h+k结果为()A.-5B.5C.3D.-36.用配方法将y=x2﹣8x+12化成y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+4B.y=(x﹣4)2﹣4C.y=(x﹣8)2+4D.y=(x﹣8)2﹣47.将二次函数y=x2-4x-1化为y=(x-h)2+k的形式,结果为()A.y=(x+2)2+5B.y=(x+2)2−5C.y=(x−2)2+5D.y=(x−2)2−5 8.将二次函数y=x2﹣2x﹣3化成y=(x﹣h)2+k形式,则h+k结果为()A.﹣5B.5C.3D.﹣39.抛物线y=(x+2)2−3的对称轴是()A.直线x=2B.直线x=-2C.直线x=-3D.直线x=310.抛物线y=(x−2)2的顶点坐标是()A.(2,0)B.(-2,0)C.(0,2)D.(0,-2)11.下列二次函数中,顶点坐标是(2,-3)的函数解析式为()A.y=(x-2)2+3B.y=(x+2)2+3C.y=(x-2)2-3D.y=(x+2)2-312.通过配方法将二次函数y=ax2+bx+c(a≠0)化成y=a(x﹣h)2+k的形式,此二次函数可变形为( )A .y=a (x+ b 2a )2+ 4ac−b 24aB .y=a (x ﹣ b 2a )2+ 4ac−b 24aC .y=a (x+ b 2a )2+ b 2−4ac 4aD .y=a (x ﹣ b 2a )2+ b 2−4ac 4a二、填空题13.关于x 的一元二次方程x 2+bx+c=0的两根为x 1=1,x 2=2,那么抛物线y=x 2+bx+c 的顶点坐标为 .14.如图,正方形ABCD 的顶点A ,B 与正方形EFGH 的顶点G ,H 同在一段抛物线上,且抛物线的顶点同时落在CD 和y 轴上,正方形边AB 与EF 同时落在x 轴上,若正方形ABCD 的边长为4,则正方形EFGH 的边长为15.抛物线y=x 2-2x+5化成y=a(x-h)2+k 的形式是 .16.将二次函数y=x 2﹣2x+3写成y=a (x ﹣h )2+k 的形式为 17.将二次函数y=x 2﹣2x+4化成y=(x ﹣h )2+k 的形式,则k=18.把二次函数的表达式y=x 2﹣6x+5化为y=a (x ﹣h )2+k 的形式,那么h+k=三、综合题19.把下列函数化为y=a (x+m )2+k 形式,并求出各函数图象的顶点坐标、对称轴、最大值或最小值:(1)y=x 2﹣2x+4; (2)y=100﹣5x 2.20.已知二次函数y=x 2﹣6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x 取什么值时,y 随x 的增大而增大;x 取什么值时,y 随x 增大而减小.21.如图,抛物线的顶点M 在x 轴上,抛物线与y 轴交于点N ,且OM=ON=4,矩形ABCD 的顶点A 、B 在抛物线上,C 、D 在x 轴上.(1)求抛物线的解析式;(2)设点A的横坐标为t(t>4),矩形ABCD的周长为l,求l与t之间函数关系式.22.已知二次函数y=x2−2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?23.如图,在平面直角坐标系xOy中,抛物线y=ax2+(2a﹣ma)x﹣2am(a<0)与x轴分别交于点A、C,顶点坐标为D.(1)当a=﹣1,m=1时.①求点D的坐标;②若F为线段AD上一动点,过点F作FH⊥x轴,垂足为H,交抛物线于点P,当PH+OH的值最大时,求点F的坐标.(2)当m=23时,若另一个抛物线y=ax2﹣(6a+ma)x+6am的顶点为E.试判断直线AD是否经过点E?请说明理由.24.对于二次函数y= 12x2﹣3x+4(1)配方成y=a(x﹣h)2+k的形式.(2)求出它的图象的顶点坐标和对称轴.(3)求出函数的最大或最小值.参考答案1.【答案】B2.【答案】A3.【答案】D4.【答案】D5.【答案】D6.【答案】B7.【答案】D8.【答案】D9.【答案】B10.【答案】A11.【答案】C12.【答案】A13.【答案】( 32,- 14)14.【答案】2 √5﹣215.【答案】y=(x-1)2+416.【答案】y=(x﹣1)2+217.【答案】318.【答案】﹣119.【答案】(1)解:y=x2﹣2x+4=x2﹣2x+1+3=(x﹣1)2+3.顶点坐标是(1,﹣1),对称轴为x=1,最小值为﹣1(2)解:y=100﹣5x2.顶点坐标是(0,100),对称轴为x=0,最大值为10020.【答案】(1)解:y=x2﹣6x+8=x2﹣6x+9﹣1=(x﹣3)2﹣1(2)解:开口向上,对称轴是x=3,顶点坐标是(3,﹣1)(3)解:x>3时,y随x的增大而增大;x<3时,y随x增大而减小21.【答案】(1)解:∵OM=ON=4∴M点坐标为(4,0),N点坐标为(0,4)设抛物线解析式为y=a(x﹣4)2把N(0,4)代入得16a=4,解得a= 1 4所以抛物线的解析式为y= 14(x﹣4)2= 14x2﹣2x+4(2)解:∵点A的横坐标为t∴DM=t﹣4∴CD=2DM=2(t﹣4)=2t﹣8把x=t代入y= 14x2﹣2x+4得y= 14t2﹣2t+4∴AD= 14t2﹣2t+4∴l=2(AD+CD)=2(14t2﹣2t+4+2t﹣8)= 12t2﹣8(t>4)22.【答案】(1)解:∵⊥=(﹣2m)2﹣4×1×(m2+3)=4m2﹣4m2﹣12=﹣12<0∴方程x2﹣2mx+m2+3=0没有实数解,即不论m为何值,该函数的图象与x轴没有公共点;(2)解:y=x2﹣2mx+m2+3=(x﹣m)2+3∴把函数y=x2﹣2mx+m2+3的图象沿y轴向下平移3个单位长度后,得到的函数的图象与x轴只有一个公共点.23.【答案】(1)解:①解:当a=-1,m=1时y=−x2−x+2= −(x+12)2+94∴点D的坐标为(−12,94)②∵y=−x2−x+2当y=0时解得:x1=−2∴点A的坐标为(−2,0)设直线AD的表达式为:y=kx+b(k≠0){0=−2k+b94=−12k+b解得{k=32b=3∴直线AD的表达式为:y=32x+3∵F为线段AD上一动点设点F的横坐标为t∵FH⊥x轴,垂足为H,交抛物线于点P∴点P的横坐标也为t,点P的纵坐标为−t2−t+2∴P (t,−t2−t+2),H(t,0)∴PH+OH= −t2−t+2+0−t= −t2−2t+2= −(t+1)2+3∴当t=−1时,PH+OH有最大值当t=−1时,y=32×(−1)+3= 32∴F(−1,3 2)(2)解:∵m= 2 3∴y=ax2+(2a−ma)x−2am= ax2+(2a−23a)x−43a= a(x+23)2−169a∴D (−23,−169a)∵y=ax2−(6a+ma)x+6am= ax2−(6a+23a)x+4a= a(x−103)2−649a∴E (103,−649a)∵y=ax2+(2a−23a)x−43a当y=0时,ax2+(2a−23a)x−43a=0解得x1=−2∴A(-2,0)设直线AD的表达式为:y=mx+n{−2m+n=0−23m+n=−169a解得{m=−43an=−83a∴直线AD的表达式为y=−43ax−83a当x=103,y=−43a⋅103−83a= −649a∴点E在直线AD上∴直线AD经过点E.24.【答案】(1)解:y= 12x2﹣3x+4 = 12(x2﹣6x)+4= 12[(x﹣3)2﹣9]+4= 12(x﹣3)2﹣12(2)解:由(1)得:图象的顶点坐标为:(3,﹣1 2)对称轴为:直线x=3(3)解:∵a= 12>0∴函数的最小值为:﹣1 2。

北师大版九年级下 §2-5 用三种方式表示二次函数(1)解析法,列表法,图象法

北师大版九年级下 §2-5 用三种方式表示二次函数(1)解析法,列表法,图象法

初中数学课件
问题研究
已知矩形周长20cm,
并设它的一边长为 x
y
xcm,面积为ycm2.
y随x的而变化的规律是什么? 你能分别用函数表达式,表格 和图象表示出来吗?
初中数学课件
问题剖析
函数的三种表示方

解析法 用函数表达式表示:
y=x(10-x)=-x2+10x
x
y
初中数学课件
列表法—用表格表示:
化而变化的?
用函数表达式表示:
y xx 2即y x2 2x.
初中数学课件
做一做
列表法—用表格表示函

两个数相差2,设其中较大的一个数为
x,那么它们的积y是如何随x的变化而
变化的?
Y= x2-2x=(x-1)2-1
用表格表示:
x
… …
-2
-1
0
1
2
3
4
… …
y x 12 1. … 8 3 0 -1 0 3 8 …
例1、已知点A(-1,-1)在抛物线 y=(k2-1)x2-2(k-2)x+1上
(1)求抛物线的对称轴; (2)若点A与点B关于抛物线的对称 轴对称,问是否存在与抛物线只交于 一点B的直线?若存在,求出符合条 件的直线;若不存在,请说明理由。
初中数学课件
例2、已知抛物线y=x2-4x-12 (1)求抛物线与x轴交点A,B的坐标; (2)画出图象,若抛物线顶点为P,求 三角形PAB的面积; (3)若点Q在抛物线上,且S△QAB =2S△PAB,则Q点有几个?依次求出Q点 的坐标。
括和形象化的表达. 初中数学课件
问题探究
问题:求函数y=ax2+bx+c 的图象与坐标轴交点问题

用三种方法表示二次函数习题及答案

用三种方法表示二次函数习题及答案

用三种方法表示二次函数1. 函数的三种表示方法是、 、 . 2. 已知点2(1)m m +,在函数22y x x =+的图像上,则m =.3. 有三个点坐标(11)A -,-,(02)B -,,(11)C ,. (1)求经过此三个点的抛物线的函数表达式; (2)用列表法表示此抛物线; (3)由图像法表示此抛物线.4. 抛物线2y ax bx c =++与2y x =的形状相同,对称轴是直线2x =,且顶点在直线132y x =+上. 用函数表达式表示此抛物线.5. 11个人到书店去为单位买书,每人都买了若干本,其中买书最多的人买了100本书,证明这11人中必有两人,他们买的书相差不到10本.6. 有这样的算式1111111112612203042567290++++++++. 你能正确而又迅速地算出它的结果吗?7. 已知二次函数2y x bx c =++的图像过点(0)A c ,,且关于直线2x =对称,则这个二次函数的函数表达式可能是(只要写出一个可能的表达式).8. 完成下表:9. 两个数的和为8,这两个数的面积的最大值是 . 10. 根据表格写出y 与x 的函数关系式,并作出图像.11. 一块矩形木板长5cm ,宽4cm ,若长,宽各锯去cm x 后,剩下的木板的面积为y cm 2,则y 与x 之间的函数关系式是什么?当剩下的木板的面积为8.75cm 2时,长,宽各锯去多少?12. 已知抛物线2y ax bx c =++的顶点坐标为(41)-,,与y 轴交于点(03)C ,,O 是原点,(1)求这条抛物线的解析式;(2)设此抛物线与x 轴的交点为A ,B (A 在B 的左边),问在y 轴上是否存在点P ,使以O ,B ,P 为顶点的三角形与△AOC 相似?若存在,请求出点P 的坐标:若不存在,请说明理由.13. 有一个二次函数的图像,三位学生分别说出了它的一些特点: 甲:对称轴是直线2x =;乙:与x 轴两个交点的横坐标都是整数; 丙:与y 轴交点纵坐标也是整数,且以这三个交点为顶点的三角形的面积为3.请你写出满足上述全部特点的一个二次函数表达式:14. 已知二次函数22y ax =-的图像经过点(1,1-).求这个二次函数的表达式,并判断该函数图像与x 轴的交点的个数.15. 已知抛物线的对称轴是1x =,它与直线12y x k =+相交于点(11)A -,,与y 轴相交于点(03)B ,,求解下列问题:(1)求k 的值;(2)求抛物线的函数表达式; (3)求抛物线的顶点坐标.16. 目前国内最大跨径的钢管混凝土拱桥——永和大桥,是南京市又一标志性建筑,其拱形图形为抛物线的一部分(如图1),在正常情况下,位于水平上的桥拱跨度为350m ,拱高为85m .(的(上的桥拱跨度有多少大(结果保留整数)? 17. 一个长方形的周长是8cm ,一边长是cm x ,则这个长方形的面积y 与边长x的函数关系用图像表示为( ),则这个三角形的面积最大可达到2cm .2.图1 图222. 如图,正方形ABCD 的边长为8cm上,AP PQ ⊥,cm BP x =,cm CQ y =.求y 与x23. 试写出一个开口向上,对称轴为直线x =),3的抛物线的函数表达式.24. 已知抛物线562+-=x x y x = ,满足y <0的x 的取值范围是 ,将抛物线562+-=x x y 962+-=x x y .25. 已知123A A A 、、是抛物线212y x =上的三点,112233A B A B A B 、、分别垂直于x 轴,垂 足为123B B B 、、,直线22A B 交线段13A A 于点C .(1) 如图11-1,若123A A A 、、三点的横坐标依次为1、2、3,求线段2CA 的长; (2) 如图11-2,若将抛物线212y x =改为抛物线2112y x x =-+,123A A A 、、三点 的横坐标为连续整数,其他条件不变,求线段2CA 的长; (3) 若将抛物线212y x =改为抛物线2y ax bx c =++,123A A A 、、三点的横坐标为 连续整数,其他条件不变,请猜想线段2CA 的长(用a b c 、、表示,并直接写出答案). 答案: 1.解析式 2.34-3.(1bx ++1a b c ⎪++=⎩,得212a b c =⎧⎪=⎨⎪=-⎩,,,2211722248y x x x ⎛⎫=+-=+- ⎪⎝⎭. (2)略.(3)略.4.抛物线的形状与2y x =相同,1a =±.又抛物线对称轴是直线2x =,顶点在132y x =+上,顶点为(24),.∴所求抛物线为2(2)4y x =±-+,即248y x x =-+或24y x x =-+.x5.因买书买得最多的人买了100本,所以每人买书不多于100本.把1到100这100个数分成如下的91组:{}1210,,,,{}2311,,,,{}3412,,,,{}4513,,,,,{}9192100,,,,因共有11人,故至少有两个人买书的本数在上面的同一个数组中,这两个人所买的书相差不到10本. 6.解:7.24y x x =-或243y x x =-+等 8.0.04,0.09 9.1610.2y x =,图略11.2920y x x =-+,1.5cm 12.(1)21234yx x =-+(2)存在,点P 的坐标:(0,4),(0,4-),(0,9),(0,9-) 13.243y x x =-+,答案不唯一 14.22y x =-,与x 轴的交点有两个 15.(1)32k=-(2)2483y x x =-+(3)11(-), 16.解:(1)桥拱高度85OC =m ,即抛物线过点C (0,85),所以85b =.又由已知得:350AB =m ,即点A 、B 的坐标分别为(175-,0),(175,0).解得0.0028a ≈.所求抛物线的表达式为:20.002885y x =-+(2)所以设DE 为水位上升4m 后的桥拱跨度, 即当4y =时,有240.002885x =-+.170x =±∴.D ∴、E 两点的坐标分别为(170-,0)、(170,0).170170340ED ≈+=∴(m ),答:当水位上涨4m 时,位于水面上的桥拱跨度为340m 17.A 18.50 19.62520.(1)作图略;依次填:0,2,5,9,14,20. (2)2113(3)222m n n n n =-=-. 21.设2y ax bx c =++,则09304.a b c a b c a b c -+=⎧⎪++=⎨⎪++=⎩,,故123.a b c =-⎧⎪=⎨⎪=⎩,,223y x x ∴=-++. 22.90APQ ∠=,90APB CPQ ∴∠+∠=.又90BAP APB ∠+∠=,BAP CPQ ∴∠=∠. 又90B C ∠=∠=,∴△ABP ∽△PCQ .AB BP PC CQ ∴=,即88x x y =-,222111(8)(4)2888y x x x x x =-+=--=--+. 故当4x =时,y 有最大值2,即线段CQ 的长最大可达到2cm . 23.243y x x =-+ 24.3x =,15x <<25.解:(1)方法一:123A A A 、、三点的横坐标依次为1、2、3,设直线13A A 的解析式为y kx b =+.∴直线13A A 的解析式为322y x =-.方法二:123A A A 、、三点的横坐标依次为1、2、3,由已知可得11332113311195().22222A B A B CB A B A B ⎛⎫∴=+=+= ⎪⎝⎭∥,(2)方法一:设123A A A 、、三点的横坐标依次为11n n n -+、、 则222112233111(1)(1)11(1)(1) 1.222A B n n A B n n A B n n =---+=-+=+-++,, 设直线13A A 的解析式为y kx b =+.解得2113.22k n b n =-⎧⎪⎨=-+⎪⎩,∴直线13A A 的解析式为213(1)22y n x n =--+.方法二:设123A A A 、、三点的横坐标依次为11n n n -+、、. 则222112233111(1)(1)11(1)(1) 1.222A B n n A B n n A B n n =⨯---+=-+=+-++,,由已知可得1133211331()2A B A B CB A B A B =+∥, (3)当0a >时,2CA a =;当0a <时,2CA a =-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数表达式三种形式
一.选择题(共12小题)
1.(2015•永春县校级质检)把二次函数y=x2﹣4x+5化成y=a(x﹣h)2+k(a≠0)的形式,结果正确的是()
A.y=(x﹣2)2+5 B.y=(x﹣2)2+1 C.y=(x﹣2)2+9 D.y=(x﹣1)2+1 2.(2014•山东模拟)将y=(2x﹣1)•(x+2)+1化成y=a(x+m)2+n的形式为()A.B.
C.D.
3.(2015秋•绍兴校级期中)与y=2(x﹣1)2+3形状相同的抛物线解析式为()
A.y=1+x2B.y=(2x+1)2 C.y=(x﹣1)2D.y=2x2
4.(2015秋•龙岩校级月考)一个二次函数的图象的顶点坐标是(2,4),且过另一点(0,﹣4),则这个二次函数的解析式为()
A.y=﹣2(x+2)2+4 B.y=﹣2(x﹣2)2+4
C.y=2(x+2)2﹣4 D.y=2(x﹣2)2﹣4
5.(2015秋•禹城市校级月考)已知某二次函数的图象如图所示,则这个二次函数的解析式为()
A.y=﹣3(x﹣1)2+3 B.y=3(x﹣1)2+3
C.y=﹣3(x+1)2+3 D.y=3(x+1)2+3
6.(2014秋•岳池县期末)顶点为(6,0),开口向下,开口的大小与函数y=x2的图象相同的抛物线所对应的函数是()
A.y=(x+6)2B.y=(x﹣6)2C.y=﹣(x+6)2D.y=﹣(x﹣6)2
7.(2014秋•招远市期末)已知二次函数的图象经过点(﹣1,﹣5),(0,﹣4)和(1,1),则这二次函数的表达式为()
A.y=﹣6x2+3x+4 B.y=﹣2x2+3x﹣4 C.y=x2+2x﹣4 D.y=2x2+3x﹣4
8.(2013秋•青羊区校级期中)若二次函数y=x2﹣2x+c图象的顶点在x轴上,则c等于()A.﹣1 B.1 C.D.2
9.(2013秋•江北区期末)如果抛物线经过点A(2,0)和B(﹣1,0),且与y轴交于点C,若OC=2.则这条抛物线的解析式是()
A.y=x2﹣x﹣2 B.y=﹣x2﹣x﹣2或y=x2+x+2
C.y=﹣x2+x+2 D.y=x2﹣x﹣2或y=﹣x2+x+2
10.(2014•长沙县校级模拟)如果抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是3,那么c 的值等于()
A.8 B.14 C.8或14 D.﹣8或﹣14
11.(2015•温州模拟)二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是()
A.3.125 B.4 C.2 D.0
12.(2015•宜城市模拟)当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值3,则实数m的值为()
A.或﹣B.或﹣C.2或﹣D.或﹣
二.填空题(共9小题)
13.(2015•东光县校级二模)如果一条抛物线经过平移后与抛物线y=﹣x2+2重合,且顶点坐标为(4,﹣2),则它的解析式为.
14.(2015•河南一模)二次函数的图象如图所示,则其解析式为.
15.(2015春•石家庄校级期中)若函数y=(m2﹣4)x4+(m﹣2)x2的图象是顶点在原点,对称轴是y轴的抛物线,则m=.
16.(2015秋•丰县校级月考)已知二次函数图象的开口向上,经过(﹣3,0)和(1,0),且顶点到x轴的距离为2,则该二次函数的解析式为.
17.(2014•长春一模)如图,已知抛物线y=﹣x2+bx+c的对称轴为直线x=1,且与x轴的一个交点为(3,0),那么它对应的函数解析式是.
第17题图第20题图
18.(2015秋•武威校级月考)二次函数y=ax2+bx+c的图象经过A(﹣1,0)、B(0,﹣3)、C(4,5)三点,求出抛物线解析式.
19.(2014•南京校级二模)二次函数图象过点(﹣3,0)、(1,0),且顶点的纵坐标为4,此函数关系式为.
20.(2014•永嘉县校级模拟)如图,一个二次函数的图象经过点A,C,B三点,点A的坐标为(﹣1,0),点B的坐标为(4,0),点C在y轴的正半轴上,且AB=OC.则这个二次函数的解析式是.
21.(2014秋•化德县校级期末)坐标平面内向上的抛物线y=a(x+2)(x﹣8)与x轴交于A、B两点,与y轴交于C点,若∠ACB=90°,则a的值是.
三.解答题(共9小题)
22.(2015•)如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x 轴、y轴的正半轴,抛物线y=﹣x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、
BD、CD.
(1)求此抛物线的解析式.
(2)求此抛物线顶点D的坐标和四边形ABCD的面积.
23.(2015•)已知二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是经过(﹣1,0)且平行于y轴的直线.
(1)求m、n的值;
(2)如图,一次函数y=kx+b的图象经过点P,与x轴相交于点A,与二次函数的图象相交于另一点B,点B在点P的右侧,PA:PB=1:5,求一次函数的表达式.
24.(2015•巴中模拟)已知抛物线的顶点坐标为M(1,﹣2),且经过点N(2,3),求此二次函数的解析式.
25.(2015•瑶海区三模)已知二次函数y=x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(1,0),与y轴的交点坐标为(0,﹣3).
(1)求出b、c的值,并写出此二次函数的解析式;
(2)根据图象,直接写出函数值y为正数时,自变量x的取值范围.
26.(2015•巴中模拟)已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5).(1)求该函数的关系式;
(2)求该函数图象与坐标轴的交点坐标;
(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△OA′B′的面积.
27.(2015•齐齐哈尔模拟)如图,二次函数y=﹣x2+bx+c的图象经过坐标原点,且与x轴交于A(﹣2,0).
(1)求此二次函数解析式及顶点B的坐标;
(2)在抛物线上有一点P,满足S△AOP=3,直接写出点P的坐标.
28.(2015•齐齐哈尔模拟)如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在点B的左边),A(﹣1,0),B(3,0),与y轴交于点C(0,3)连接BC.
(1)求抛物线的解析式;
(2)点D与点C关于抛物线对称轴对称,连接DB、DC,直线PD交直线BC于点P,且直线PD把△BCD分成面积相等的两部分,请直接写出直线PD的解析式.
29.(2015•山西模拟)如图,已知二次函数的图象过A、C、B三点,点A的坐标为(﹣1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC.
(1)求点C的坐标;
(2)求二次函数的解析式,并化成一般形式.
30.(2015秋•泰安校级期中)已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(2,0)、C(0,2)三点.
(1)求这条抛物线的解析式;
(2)如图,点P是第一象限内抛物线上的一个动点,若点P使四边形ABPC的面积最大,求点P的坐标.
二次函数三种表达式练习答案:
一.选择题(共12小题)
1.B;2.C;3.D;4.B;5.A;6.D;7.D;8.B;9.D;10.C;
11.C; 12.A;
二.填空题(共9小题)
13.y=-(x-4)2-2; 14.y=-x2+2x+3;15.-2; 16.y=x2+x-; 17.y=-x2+2x+3;
18.y=x2-2x-3;19.y=-x2-2x+3; 20.y=-x2+x+5;21.;
三.解答题(共9小题)
22.;23.;24.;25.;26.;
27.;28.;29.;30.;。

相关文档
最新文档