随机森林的公式
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机森林的公式
随机森林的公式主要包括以下几个部分:
1. 基尼不纯度公式:Gini(U) = ∑ p(ui) * (1 - p(ui)),其中p(ui)表示随机样本属于类别i的概率。
这个公式用于度量样本集的不纯度,即样本集中各类别的分布情况。
2. 熵公式:H(U) = - ∑ p(ui) * log2 p(ui),其中p(ui)表示随机样本属于类别i的概率。
这个公式用于度量样本集的熵,即样本集中各类别的分布的混乱程度。
3. 树建立过程中的公式:基于基尼不纯度或熵公式,随机森林在构建每一棵树时,采用在每次划分中考虑k个特征的随机采样方式,并选择最优的特征进行划分,以达到减小Gini指数或增加熵值的目的。
这样可以在每一棵树中尽可能地提高分类的准确性。
4. 森林投票公式:在随机森林中,每一棵树都会对输入样本进行分类,最后通过投票的方式决定最终的分类结果。
具体来说,如果大部分树将样本分类为某一类别,那么最终的分类结果就是这一类别。
这些公式是随机森林算法的重要组成部分,它们用于度量样本集的不纯度、熵、分类准确性等指标,并指导如何建立每一棵树和如何进行最终的分类决策。