汨罗市第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汨罗市第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 过点(2,﹣2)且与双曲线﹣y 2
=1有公共渐近线的双曲线方程是( )
A .
﹣
=1
B .﹣=1
C .﹣=1
D .﹣=1
2. 函数()log 1x
a f x a x =-有两个不同的零点,则实数的取值范围是( )
A .()1,10
B .()1,+∞
C .()0,1
D .()10,+∞
3. 数列1,,,,,,,,,,…的前100项的和等于( )
A .
B .
C .
D .
4. 下列命题中错误的是( )
A .圆柱的轴截面是过母线的截面中面积最大的一个
B .圆锥的轴截面是所在过顶点的截面中面积最大的一个
C .圆台的所有平行于底面的截面都是圆面
D .圆锥所有的轴截面是全等的等腰三角形
则几何体的体积为( )
34
意在考查学生空间想象能力和计算能2
1
时,则输入的值为( )
A .2
B .1-
C .1-或2
D .1-或10 7. 已知双曲线
(a >0,b >0)的右焦点F ,直线
x=
与其渐近线交于A ,B 两点,且△ABF 为钝角三角形,则双曲线离心率的取值范围是( )
A
.
B
.
C
.
D
.
8. 已知m ,n 为不同的直线,α,β为不同的平面,则下列说法正确的是( ) A .m ⊂α,n ∥m ⇒n ∥α
B .m ⊂α,n ⊥m ⇒n ⊥α
C .m ⊂α,n ⊂β,m ∥n ⇒α∥β
D .n ⊂β,n ⊥α⇒α⊥β
9. 如图在圆O 中,AB ,CD 是圆O 互相垂直的两条直径,现分别以OA ,OB ,OC ,OD 为直径作四个 圆,在圆O 内随机取一点,则此点取自阴影部分的概率是( )
A .
π
1
B .
π21 C .π121- D .π
2141- 【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度.
10.若函数(
)()22f x x πϕϕ⎛
⎫=+< ⎪⎝
⎭的图象关于直线12x π=对称,且当
1217212
3x x π
π⎛⎫∈-- ⎪⎝⎭,,,12x x ≠时,()()12f x f x =,则()12f x x +等于( )
A
B
D
11.在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( )
D
A
B
C
O
A .
B .
C .
D .
12.某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,如图是描述汽车价值变化的算法流程图,则当n=4吋,最后输出的S 的值为( )
A .9.6
B .7.68
C .6.144
D .4.9152
二、填空题
13.函数
的单调递增区间是 .
14.已知集合{}|03,A x x x R =<∈≤,{}|12,B x x x R =-∈≤≤,则A ∪B = ▲ . 15.已知
=1﹣bi ,其中a ,b 是实数,i 是虚数单位,则|a ﹣bi|= .
16.观察下列等式 1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49 …
照此规律,第n 个等式为 .
17.在平面直角坐标系中,(1,1)=-a ,(1,2)=b ,记{}
(,)|M O M λμλμΩ==+a b ,其中O 为坐标原点,
给出结论如下:
①若(1,4)(,)λμ-∈Ω,则1λμ==;
②对平面任意一点M ,都存在,λμ使得(,)M λμ∈Ω; ③若1λ=,则(,)λμΩ表示一条直线; ④{}(1,)
(,2)(1,5)μλΩΩ=;
⑤若0λ≥,0μ≥,且2λμ+=,则(,)λμΩ表示的一条线段且长度为 其中所有正确结论的序号是 .
18.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 不是直角三角形,则下列命题正确的是 (写出所有正确命题的编号)
①tanA •tanB •tanC=tanA+tanB+tanC
②tanA+tanB+tanC 的最小值为3
③tanA ,tanB ,tanC 中存在两个数互为倒数 ④若tanA :tanB :tanC=1:2:3,则A=45°
⑤当tanB ﹣1=
时,则sin 2
C ≥sinA •sinB .
三、解答题
19.(本小题满分12分)为了普及法律知识,达到“法在心中”的目的,某市法制办组织了普法 知识竞赛.5名职工的成绩,成绩如下表:
(1 掌握更稳定;
(2)用简单随机抽样法从乙单位5名职工中抽取2名,他们的成绩组成一个样本,求抽取的2名职工的 分数差至少是4的概率.
20.在平面直角坐标系xOy 中,点B 与点A (﹣1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率
之积等于﹣.
(Ⅰ)求动点P 的轨迹方程;
(Ⅱ)设直线AP 和BP 分别与直线x=3交于点M ,N ,问:是否存在点P 使得△PAB 与△PMN 的面积相等?若存在,求出点P 的坐标;若不存在,说明理由.
21.(本小题满分12分)1111]
已知函数()()1
ln 0f x a x a a x
=+≠∈R ,.
(1)若1a =,求函数()f x 的极值和单调区间;
(2)若在区间(0]e ,上至少存在一点0x ,使得()00f x <成立,求实数的取值范围.
22.(本题满分12分)为了了解某地区心肺疾病是否与性别有关,在某医院随机地对入院的50人进行了问 卷调查,得到了如下的22⨯
(1(2)在上述抽取的6人中选2人,求恰有一名女性的概率.
(3)为了研究心肺疾病是否与性别有关,请计算出统计量2
K ,判断心肺疾病与性别是否有关?
(参考公式:)
)()()(()(2
d b c a d c b a bc ad n K ++++-=,其中d c b a n +++=)
23.【常州市2018届高三上武进区高中数学期中】已知函数()()2
21ln f x ax a x x =+--,R a ∈.
⑴若曲线()y f x =在点()()
1,1f 处的切线经过点()2,11,求实数a 的值; ⑵若函数()f x 在区间()2,3上单调,求实数a 的取值范围; ⑶设()1
sin 8
g x x =,若对()10,x ∀∈+∞,[]20,πx ∃∈,使得()()122f x g x +≥成立,求整数a 的最小值.
24.(本小题满分12分)
如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的中点. (1)证明://PB 平面AEC ;
(2)设1AP =,AD =P ABD -的体积4
V =
,求A 到平面PBC 的距离.
111]
汨罗市第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题
1. 【答案】A
【解析】
解:设所求双曲线方程为﹣y 2
=λ,
把(2,﹣2
)代入方程
﹣y 2
=λ,
解得λ=﹣2
.由此可求得所求双曲线的方程为.
故选A .
【点评】本题考查双曲线的渐近线方程,解题时要注意公式的灵活运用.
2. 【答案】B 【解析】
试题分析:函数()f x 有两个零点等价于1x
y a ⎛⎫
= ⎪⎝⎭
与log a y x =的图象有两个交点,当01a <<时同一坐标
系中做出两函数图象如图(2),由图知有一个交点,符合题意;当1a >时同一坐标系中做出两函数图象如图
(1),由图知有两个交点,不符合题意,故选B.
x
(1) (2)
考点:1、指数函数与对数函数的图象;2、函数的零点与函数交点之间的关系.
【方法点睛】本题主要考查指数函数与对数函数的图象、函数的零点与函数交点之间的关系.属于难题.判断方程()y f x =零点个数的常用方法:①直接法:可利用判别式的正负直接判定一元二次方程根的个数;②转化法:函数()y f x =零点个数就是方程()0f x =根的个数,结合函数的图象与性质(如单调性、奇偶性、周期性、对称性) 可确定函数的零点个数;③数形结合法:一是转化为两个函数()(),y g x y h x ==的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为(),y a y g x ==的交点个数的图象的交点个数问题.本题的解答就利用了方法③. 3. 【答案】A
【解析】解:
=1×
故选A.
4.【答案】B
【解析】解:对于A,设圆柱的底面半径为r,高为h,设圆柱的过母线的截面四边形在圆柱底面的边长为a,则截面面积S=ah≤2rh.
∴当a=2r时截面面积最大,即轴截面面积最大,故A正确.
对于B,设圆锥SO的底面半径为r,高为h,过圆锥定点的截面在底面的边长为AB=a,则O到AB的距离为
,
∴截面三角形SAB的高为,∴截面面积
S==≤=.
故截面的最大面积为.故B错误.
对于C,由圆台的结构特征可知平行于底面的截面截圆台,所得几何体仍是圆台,故截面为圆面,故C正确.
对于D,由于圆锥的所有母线长都相等,轴截面的底面边长为圆锥底面的直径,故圆锥所有的轴截面是全等的等腰三角形,故D正确.
故选:B.
【点评】本题考查了旋转体的结构特征,属于中档题.
5.【答案】D
【解析】
6. 【答案】D 【解析】
试题分析:程序是分段函数⎩⎨⎧=x y x lg 2 0
0>≤x x ,当0≤x 时,212=x
,解得1-=x ,当0>x 时,21lg =x ,
解得10=x ,所以输入的是1-或10,故选D.
考点:1.分段函数;2.程序框图.11111] 7. 【答案】D
【解析】解:∵函数f (x )=(x ﹣3)e x
, ∴f ′(x )=e x +(x ﹣3)e x =(x ﹣2)e x
,
令f ′(x )>0, 即(x ﹣2)e x
>0,
∴x ﹣2>0, 解得x >2, ∴函数f (x )的单调递增区间是(2,+∞).
故选:D .
【点评】本题考查了利用导数判断函数的单调性以及求函数的单调区间的应用问题,是基础题目.
8. 【答案】D
【解析】解:在A 选项中,可能有n ⊂α,故A 错误; 在B 选项中,可能有n ⊂α,故B 错误; 在C 选项中,两平面有可能相交,故C 错误;
在D 选项中,由平面与平面垂直的判定定理得D 正确. 故选:D .
【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.
9. 【答案】C
【解析】设圆O 的半径为2,根据图形的对称性,可以选择在扇形OAC 中研究问题,过两个半圆的交点分别向OA ,OC 作垂线,则此时构成一个以1为边长的正方形,则这个正方形内的阴影部分面积为
12
-π
,扇形OAC 的面积为π,所求概率为π
π
π
12112
-=
-=P . 10.【答案】C 【
解
析
】
考
点:函数的图象与性质.
【方法点晴】本题主要考查函数的图象与性质,涉及数形结合思想、函数与方程思想、转化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型.首先利用数形结合思想和转化化归思想可得
()2122k k π
π
ϕπ⨯
+=
+∈Z ,解得3π
ϕ=
,从而(
)23f x x π⎛
⎫=+ ⎪⎝
⎭,再次利用数形结合思想和转化化归思想
可得()()()()1122x f x x f x ,,,关于直线11
12x π=-对称,可得12116
x x π
+=-,从而 (
)121133f x x ππ⎛⎫
+=-+= ⎪⎝⎭
.
11.【答案】C
【解析】解:正方体8个顶点中任选3个顶点连成三角形,所得的三角形是等腰直角三角形只能在各个面上,在每一个面上能组成等腰直角三角形的有四个, 所以共有4×6=24个,
而在8个点中选3个点的有C 83
=56,
所以所求概率为
=
故选:C
【点评】本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.
12.【答案】C
【解析】解:由题意可知,设汽车x 年后的价值为S ,则S=15(1﹣20%)x
, 结合程序框图易得当n=4时,S=15(1﹣20%)4
=6.144.
故选:C .
二、填空题
13.【答案】 [2,3) .
【解析】解:令t=﹣3+4x ﹣x 2
>0,求得1<x <3,则y=
,
本题即求函数t 在(1,3)上的减区间.
利用二次函数的性质可得函数t 在(1,3)上的减区间为[2,3), 故答案为:[2,3).
14.【答案】1-1,3] 【解析】
试题分析:A ∪B ={}{}|03,|12,x x x R x x x R <∈-∈≤≤≤=1-1,3]
考点:集合运算 【方法点睛】
1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.
2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.
3.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.
15.【答案】 .
【解析】解:∵=1﹣bi ,∴a=(1+i )(1﹣bi )=1+b+(1﹣b )i ,
∴
,解得b=1,a=2.
∴|a ﹣bi|=|2﹣i|=.
故答案为:
.
【点评】本题考查了复数的运算法则、模的计算公式,考查了计算能力,属于基础题.
16.【答案】 n+(n+1)+(n+2)+…+(3n ﹣2)=(2n ﹣1)2 .
【解析】解:观察下列等式 1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49 …
等号右边是12,32,52,72…第n 个应该是(2n ﹣1)2 左边的式子的项数与右边的底数一致, 每一行都是从这一个行数的数字开始相加的,
照此规律,第n 个等式为n+(n+1)+(n+2)+…+(3n ﹣2)=(2n ﹣1)2, 故答案为:n+(n+1)+(n+2)+…+(3n ﹣2)=(2n ﹣1)2
【点评】本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题.
17.【答案】②③④
【解析】解析:本题考查平面向量基本定理、坐标运算以及综合应用知识解决问题的能力.
由(1,4)λμ+=-a b 得1
24λμλμ-+=-⎧⎨+=⎩
,∴21λμ=⎧⎨=⎩,①错误;
a 与
b 不共线,由平面向量基本定理可得,②正确;
记OA =a ,由OM μ=+a b 得AM μ=b ,∴点M 在过A 点与b 平行的直线上,③正确; 由2μλ+=+a b a b 得,(1)(2)λμ-+-=0a b ,∵a 与b 不共线,∴1
2
λμ=⎧⎨=⎩,∴2(1,5)μλ+=+=a b a b ,
∴④正确;
设(,)M x y ,则有2x y λμλμ=-+⎧⎨=+⎩,∴2133
1133x y x y λμ⎧=-+⎪⎪⎨⎪=+⎪⎩
,∴200x y x y -≤⎧⎨+≥⎩且260x y -+=,∴(,)λμΩ表示的一
条线段且线段的两个端点分别为(2,4)、(2,2)-
,其长度为
18.【答案】 ①④⑤
【解析】解:由题意知:A
≠
,B
≠
,C
≠
,且A+B+C=π
∴tan (A+B )=tan (π﹣C )=﹣tanC ,
又∵tan (A+B )=,
∴tanA+tanB=tan (A+B )(1﹣tanAtanB )=﹣tanC (1﹣tanAtanB )=﹣tanC+tanAtanBtanC , 即tanA+tanB+tanC=tanAtanBtanC ,故①正确;
当A=
,B=C=
时,tanA+tanB+tanC=
<3
,故②错误;
若tanA ,tanB ,tanC 中存在两个数互为倒数,则对应的两个内角互余,则第三个内角为直角,这与已知矛盾,故③错误;
由①,若tanA :tanB :tanC=1:2:3,则6tan 3
A=6tanA ,则tanA=1,故A=45°,故④正确;
当tanB ﹣1=
时, tanA •tanB=tanA+tanB+tanC ,即tanC=,C=60°,
此时sin 2
C=
,
sinA •sinB=sinA •sin (120°﹣A )=sinA •(cosA+sinA )=sinAcosA+
sin 2A=
sin2A+﹣
cos2A=
sin (2A ﹣30°)
≤
,
则sin 2
C ≥sinA •sinB .故⑤正确;
故答案为:①④⑤
【点评】本题以命题的真假判断为载体,考查了和角的正切公式,反证法,诱导公式等知识点,难度中档.
三、解答题
19.【答案】(1)90=甲x ,90=乙x ,5242
=甲s ,82=乙s ,甲单位对法律知识的掌握更稳定;(2)2
1. 【解析】
试题分析:(1)先求出甲乙两个单位职工的考试成绩的平均数,以及他们的方差,则方差小的更稳定;(2)从乙单位抽取两名职工的成绩,所有基本事件用列举法得到共10种情况,抽取的两名职工的分数差至少是的事件用列举法求得共有种,由古典概型公式得出概率.
试题解析:解:(1)90939191888751=++++=)
(甲x ,9093929189855
1=++++=)(乙x 524
])9093()9091()9091()9088()9087[(51222222
=-+-+-+-+-=
甲s 8])9093()9092()9091()9089()9085[(51222222
=-+-+-+-+-=乙s
∵85
24
<,∴甲单位的成绩比乙单位稳定,即甲单位对法律知识的掌握更稳定. (6分)
考
点:1.平均数与方差公式;2.古典概型. 20.【答案】
【解析】解:(Ⅰ)因为点B 与A (﹣1,1)关于原点O 对称,所以点B 得坐标为(1,﹣1). 设点P 的坐标为(x ,y )
化简得x 2+3y 2
=4(x ≠±1).
故动点P 轨迹方程为x 2+3y 2
=4(x ≠±1)
(Ⅱ)解:若存在点P 使得△PAB 与△PMN 的面积相等,设点P 的坐标为(x 0,y 0)
则
.
因为sin ∠APB=sin ∠MPN ,
所以
所以
=
即(3﹣x 0)2=|x 02
﹣1|,解得
因为x 02+3y 02
=4,所以
故存在点P 使得△PAB 与△PMN 的面积相等,此时点P 的坐标为
.
【点评】本题主要考查了轨迹方程、三角形中的几何计算等知识,属于中档题.
21.【答案】(1)极小值为,单调递增区间为()1+∞,,单调递减区间为()01,;(2)
()1a e e ⎛
⎫∈-∞-+∞ ⎪⎝
⎭,,.
【解析】
试题分析:(1)由1a =⇒()22111
'x f x x x x
-=-
+=.令()'0f x =⇒1x =.再利用导数工具可得:极小值和
单调区间;(2)求导并令()'0f x =⇒1x a =
,再将命题转化为()f x 在区间(0]e ,上的最小值小于.当10x a
=<,即0a <时,()'0f x <恒成立,即()f x 在区间(0]e ,上单调递减,再利用导数工具对的取值进行分类讨论.111]
①
若1
e a
≤
,则()'0f x ≤对(0]x e ∈,
成立,所以()f x 在区间(0]e ,上单调递减, 则()f x 在区间(0]e ,上的最小值为()11
ln 0f e a e a e e
=+=+>,
显然,()f x 在区间(0]e ,的最小值小于0不成立. ②若10e <<,即1
a >时,则有
所以()f x 在区间(0]e ,上的最小值为ln f a a a a ⎛⎫
=+ ⎪⎝⎭
,
由()11ln 1ln 0f a a a a a a ⎛⎫
=+=-< ⎪⎝⎭
,得1ln 0a -<,解得a e >,即()a e ∈+∞,,
综上,由①②可知,()1a e e ⎛
⎫∈-∞-+∞ ⎪⎝
⎭,,符合题意.……………………………………12分
考点:1、函数的极值;2、函数的单调性;3、函数与不等式.
【方法点晴】本题考查导数与函数单调性的关系、不等式的证明与恒成立问题,以及逻辑思维能力、等价转化能力、运算求解能力、分类讨论的思想与转化思想. 利用导数处理不等式问题.在解答题中主要体现为不等式的证明与不等式的恒成立问题.常规的解决方法是首先等价转化不等式,然后构造新函数,利用导数研究新函数的单调性和最值来解决,当然要注意分类讨论思想的应用. 22.【答案】
【解析】【命题意图】本题综合考查统计中的相关分析、概率中的古典概型,突出了统计和概率知识的交汇,对归纳、分析推理的能力有一定要求,属于中等难度.
23.【答案】⑴2a =⑵11,,64
⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝
⎦⎣
⎭
⑶2 【解析】试题分析:(1)根据题意,对函数f x ()求导,由导数的几何意义分析可得曲线y f x =()
在点11f (,())处的切线方程,代入点
211(,),计算可得答案; (2)由函数的导数与函数单调性的关系,分函数在(23,)上单调增与单调减两种情况讨论,综合即可得答案;
(3)由题意得,2min max f x g x +≥()(),
分析可得必有()()215
218
f x ax a x lnx +--≥= ,对f x ()求导,对a 分类讨论即可得答案. 试题解析:
⑵
()()()
211'ax x f x x
-+=
,
∴若函数()f x 在区间()2,3上单调递增,则210y ax =-≥在()2,3恒成立,
410{ 610
a a -≥∴-≥,得14a ≥;
若函数()f x 在区间()2,3上单调递减,则210y ax =-≤在()2,3恒成立,
410{ 610
a a -≤∴-≤,得1
6a ≤,
综上,实数a 的取值范围为11,,64
⎛⎤
⎡⎫-∞⋃+∞ ⎪⎥⎢⎝
⎦
⎣⎭
;
⑶由题意得,()()min max 2f x g x +≥,
()max 1
28g x g π⎛⎫== ⎪⎝⎭,
()min 158f x ∴≥,即()()215
21ln 8
f x ax a x x =+--≥,
由()()()()()2
22112111'221ax a x ax x f x ax a x x x
+---+=+--==, 当0a ≤时,()10f <,则不合题意;
当0a >时,由()'0f x =,得1
2x a
=或1x =-(舍去), 当1
02x a
<<时,()'0f x <,()f x 单调递减, 当1
2x a
>
时,()'0f x >,()f x 单调递增. ()min 115
28
f x f a ⎛⎫∴=≥ ⎪⎝⎭,即117ln 428a a --≥,
整理得,()117ln 2228a a -
⋅≥, 设()1ln 2h x x x =-,()211
02h x x x
∴=+>',()h x ∴单调递增,
a Z ∈,2a ∴为偶数,
又()172ln248h =-<,()17
4ln488
h =->,
24a ∴≥,故整数a 的最小值为2。
24.【答案】(1)证明见解析;(2)13
. 【解析】
试
题解析:(1)设BD 和AC 交于点O ,连接EO ,因为ABCD 为矩形,所以O 为BD 的中点,又E 为PD 的中点,所以//EO PB ,EO ⊂且平面AEC ,PB ⊄平面AEC ,所以//PB 平面AEC .
(2)136V PA AB AD AB =
=,由V =,可得32AB =,作A H P B ⊥交PB 于H .由题设知BC ⊥平
面PAB ,所以BC AH ⊥,故AH ⊥平面PBC ,又313
PA AB AH PB ==
,所以A 到平面PBC 的距离为
.1 考点:1、棱锥的体积公式;2、直线与平面平行的判定定理.。