襄汾县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
襄汾县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 如图所示为某几何体的正视图和侧视图,则该几何体体积的所有可能取值的集合是( )
A .
{
, } B .
{
,
, } C .
{V|≤V
≤} D .{V|0<V
≤}
2. 如果点P (sin θcos θ,2cos θ)位于第二象限,那么角θ所在象限是( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
3. 已知函数f (x )=3cos (2x ﹣),则下列结论正确的是( )
A .导函数为
B .函数f (x )的图象关于直线对称
C .函数f (x )在区间(﹣
,
)上是增函数
D .函数f (x )的图象可由函数y=3co s2x 的图象向右平移个单位长度得到
4. 已知
22(0)()|log |(0)
x x f x x x ⎧≤=⎨
>⎩,则方程[()]2f f x =的根的个数是( )
A .3个
B .4个
C .5个
D .6个
5. 方程(x 2﹣4)2+(y 2﹣4)2=0表示的图形是( )
A .两个点
B .四个点
C .两条直线
D .四条直线
6. 某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为( )
A.83
B .4
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
C.163
D .203
7. 在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2﹣b 2
=
bc ,
sinC=2
sinB ,
则A=( )
A .30°
B .60°
C .120°
8. 已知点M (a ,b ,c )是空间直角坐标系O ﹣xyz 中的一点,则与点M
关于z 轴对称的点的坐标是( )
A .(a ,﹣b ,﹣c )
B .(﹣a ,b ,﹣c )
C .(﹣a ,﹣b ,c )
D .(﹣a ,﹣b ,﹣c ) 9. 数列中,若
,,则这个数列的第10项( ) A .19
B .21
C .
D .
10.设n S 为数列{}n a 的前n 项的和,且*3
(1)()2
n n S a n =-∈N ,则n a =( ) A .3(32)n
n - B .32n + C .3n
D .132n -⋅
11.设函数f (x )在x 0处可导,则
A .f ′(x 0)
B .f ′(﹣x 0)
C .﹣f ′(x 0)
D .﹣f (﹣x 12.已知等差数列的公差且
(A .
B .
C .
二、填空题
13.已知点F 是抛物线y 2
=4x 的焦点,
M ,N 则△MNF
的重心到准线距离为 .
14.如图是根据部分城市某年6月份的平均气温(单位:℃的范围是.已知样本中平均气温不大于22.5℃的城市个数为11℃的城市个数为 .
n=1,x=0
15.已知向量、满足,则|+|= .
16.已知线性回归方程=9,则b= .
17.三角形ABC 中,2,60AB BC C ==∠=,则三角形ABC 的面积为 . 18.执行如图所示的程序框图,输出的所有值之和是 .
【命题意图】本题考查程序框图的功能识别,突出对逻辑推理能力的考查,难度中等.
三、解答题
19.2014年“五一”期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速(km/t )分成六段:[60,65),[65,70),[70,75),[75,80),[80,85),[85,90)后得到如图所示的频率分布直方图.
(Ⅰ)求这40辆小型车辆车速的众数及平均车速(可用中值代替各组数据平均值);
(Ⅱ)若从车速在[60,70)的车辆中任抽取2辆,求车速在[65,70)的车辆至少有一辆的概率.
20.【南师附中2017届高三模拟二】已知函数()()3
23
131,02
f x x a x ax a =+
--+>. (1)试讨论()()0f x x ≥的单调性;
(2)证明:对于正数a ,存在正数p ,使得当[]
0,x p ∈时,有()11f x -≤≤; (3)设(1)中的p 的最大值为()g a ,求()g a 得最大值.
21.已知函数f (x )=Asin (ωx+φ)(x ∈R ,A >0,ω>0,0<φ<)图象如图,P 是图象的最高点,Q 为
图象与x 轴的交点,O 为原点.且|OQ|=2,|OP|=,|PQ|=
.
(Ⅰ)求函数y=f (x )的解析式;
(Ⅱ)将函数y=f (x )图象向右平移1个单位后得到函数y=g (x )的图象,当x ∈[0,2]时,求函数h (x )=f (x )•g (x )的最大值.
22.在极坐标系中,圆C 的极坐标方程为:ρ2=4ρ(cos θ+sin θ)﹣6.若以极点O 为原点,极轴所在直线为x 轴建立平面直角坐标系. (Ⅰ)求圆C 的参数方程;
(Ⅱ)在直角坐标系中,点P (x ,y )是圆C 上动点,试求x+y 的最大值,并求出此时点P 的直角坐标.
23.如图1,∠ACB=45°,BC=3,过动点A 作AD ⊥BC ,垂足D 在线段BC 上且异于点B ,连
接AB ,沿AD 将△ABD 折起,使∠BDC=90°(如图2所示),
(1)当BD 的长为多少时,三棱锥A ﹣BCD 的体积最大;
(2)当三棱锥A ﹣BCD 的体积最大时,设点E ,M 分别为棱BC ,AC 的中点,试在棱CD 上确定一点N ,使得EN ⊥BM ,并求EN 与平面BMN 所成角的大小。
24.(本小题满分12分)
设函数()()2741201x x f x a a a --=->≠且.
(1)当a =
()0f x <的解集; (2)当[]01x ∈,
时,()0f x <恒成立,求实数的取值范围.
襄汾县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题
1. 【答案】D
【解析】解:根据几何体的正视图和侧视图,得;
当该几何体的俯视图是边长为1的正方形时,它是高为2的四棱锥,其体积最大,为×12
×2=;
当该几何体的俯视图为一线段时,它的底面积为0,此时不表示几何体;
所以,该几何体体积的所有可能取值集合是{V|0<V ≤}. 故选:D .
【点评】本题考查了空间几何体的三视图的应用问题,解题的关键是根据三视图得出几何体的结构特征是什么,是基础题目.
2. 【答案】D
【解析】解:∵P (sin θcos θ,2cos θ)位于第二象限,
∴sin θcos θ<0,cos θ>0,
∴sin θ<0, ∴θ是第四象限角. 故选:D .
【点评】本题考查了象限角的三角函数符号,属于基础题.
3. 【答案】B
【解析】解:对于A ,函数f ′(x )=﹣3sin (2x ﹣)•2=﹣6sin (2x ﹣),A 错误;
对于B ,当x=
时,f (
)=3cos (2×
﹣
)=﹣3取得最小值,
所以函数f (x )的图象关于直线对称,B 正确;
对于C ,当x ∈(﹣
,
)时,2x ﹣
∈(﹣
,
),
函数f (x )=3cos (2x ﹣)不是单调函数,C 错误;
对于D ,函数y=3co s2x 的图象向右平移个单位长度,
得到函数y=3co s2(x ﹣
)=3co s (2x ﹣
)的图象,
这不是函数f (x )的图象,D 错误. 故选:B .
【点评】本题考查了余弦函数的图象与性质的应用问题,是基础题目.
4. 【答案】C
【解析】由[()]2f f x =,设f (A )=2,则f (x )=A,则2log 2x =,则A=4或A=
1
4
,作出f (x )的图像,由
数型结合,当A=1
4
时3个根,A=4时有两个交点,所以[()]2f f x 的根的个数是5个。
5. 【答案】B
【解析】解:方程(x 2﹣4)2+(y 2﹣4)2
=0 则x 2﹣4=0并且y 2
﹣4=0,
即,
解得:
,
,
,
,
得到4个点. 故选:B .
【点评】本题考查二元二次方程表示圆的条件,方程的应用,考查计算能力.
6. 【答案】
【解析】选D.根据三视图可知,该几何体是一个棱长为2的正方体挖去一个以正方体的中心为顶点,上底面
为底面的正四棱锥后剩下的几何体如图,其体积V =23-13×2×2×1=20
3,故选D.
7. 【答案】A
【解析】解:∵sinC=2
sinB ,∴c=2
b ,
∵a 2﹣b 2
=
bc ,∴cosA=
==
∵A 是三角形的内角 ∴A=30° 故选A .
【点评】本题考查正弦、余弦定理的运用,解题的关键是边角互化,属于中档题.
8. 【答案】C
【解析】解:∵在空间直角坐标系中,
点(x ,y ,z )关于z 轴的对称点的坐标为:(﹣x ,﹣y ,z ), ∴点M (a ,b ,c )关于z 轴的对称点的坐标为: (﹣a ,﹣b ,c ). 故选:C .
【点评】本小题主要考查空间直角坐标系、空间直角坐标系中点的坐标特征等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想,属于基础题.
9. 【答案】C
【解析】
因为
,所以
,所以数列构成以为首项,2为公差的等差数
列,通项公式为,所以
,所以
,故选C
答案:C
10.【答案】C
【解析】1111223(1)2
3(1)2
a S a a a a ⎧
==-⎪⎪⎨⎪+=-⎪⎩,12
39a a =⎧⎨=⎩,
经代入选项检验,只有C 符合. 11.【答案】C
【解析】
解: =
﹣
=﹣f ′(x 0),
故选C .
12.【答案】A
【解析】 由已知,
,
成等比数列,所以
,即
所以,故选A
答案:A
二、填空题
13.【答案】
.
【解析】解:∵F 是抛物线y 2
=4x 的焦点,
∴F (1,0),准线方程x=﹣1, 设M (x 1,y 1),N (x 2,y 2), ∴|MF|+|NF|=x 1+1+x 2+1=6, 解得x 1+x 2=4,
∴△MNF
的重心的横坐标为, ∴△MNF
的重心到准线距离为.
故答案为:.
【点评】本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.
14.【答案】 9 .
【解析】解:平均气温低于22.5℃的频率,即最左边两个矩形面积之和为0.10×1+0.12×1=0.22, 所以总城市数为11÷0.22=50,
平均气温不低于25.5℃的频率即为最右面矩形面积为0.18×1=0.18, 所以平均气温不低于25.5℃的城市个数为50×0.18=9. 故答案为:9
15.【答案】 5 .
【解析】解:∵ =(1,0)+(2,4)=(3,4).
∴
=
=5.
故答案为:5.
【点评】本题考查了向量的运算法则和模的计算公式,属于基础题.
16.【答案】 4 .
【解析】解:将代入线性回归方程可得9=1+2b ,∴b=4
故答案为:4
【点评】本题考查线性回归方程,考查计算能力,属于基础题.
17.【答案】【解析】
试题分析:因为ABC ∆中,2,60AB BC C ===︒2
sin A
=
,1sin 2A =,又
BC AB <,即A C <,所以30C =︒,∴90B =︒,AB BC ⊥,1
2
ABC
S AB BC ∆=⨯⨯= 考点:正弦定理,三角形的面积.
【名师点睛】本题主要考查正弦定理的应用,三角形的面积公式.在解三角形有关问题时,正弦定理、余弦定理是两个主要依据,一般来说,当条件中同时出现ab 及2
b 、2
a 时,往往用余弦定理,而题设中如果边和正
弦、余弦交叉出现时,往往运用正弦定理将边化为正弦,再结合和、差、倍角的正弦公式进行解答.解三角形时.三角形面积公式往往根据不同情况选用不同形式1sin 2ab C ,12ah ,1()2a b c r ++,4abc R
等等. 18.【答案】54
【解析】根据程序框图可知循环体共运行了9次,输出的x 是1,3,5,7,9,11,13,15, 17中不是3的倍数的数,所以所有输出值的和54171311751=+++++.
三、解答题
19.【答案】
【解析】解:(1)众数的估计值为最高的矩形的中点,即众数的估计值等于77.5… 这40辆小型车辆的平均车速为:
(km/t )
… (2)从图中可知,车速在[60,65)的车辆数为:m 1=0.01×5×40=2(辆) 车速在[65,70)的车辆数为:m 2=0.02×5×40=4(辆)
设车速在[60,65)的车辆设为a ,b ,车速在[65,70)的车辆设为c ,d ,e ,f ,则所有基本事件有:(a ,b ),(a ,c ),(a ,d ),(a ,e ),(a ,f ),(b ,c ),(b ,d ),(b ,e ),(b ,f )(c ,d ),(c ,e ),(c ,f ),(d ,e ),(d ,f )(e ,f )共15种
其中车速在[65,70)的车辆至少有一辆的事件有:(a ,c ),(a ,d ),(a ,e ),(a ,f ),(b ,c ),(b ,d ),(b ,e ),(b ,f ),(c ,d ),(c ,e ),(c ,f ),(d ,e ),(d ,f ),(e ,f ),共14种
所以,车速在[65,70)的车辆至少有一辆的概率为
.…
【点评】本题考查频率分布直方图的应用,古典概型概率公式的应用,基本知识的考查.
20.【答案】(1)证明过程如解析;(2)对于正数a ,存在正数p ,使得当[]
0,x p ∈时,有()11f x -≤≤;
(3)()g a 【解析】【试题分析】(1)先对函数()()3
23
131,02
f x x a x ax a =+
--+>进行求导,再对导函数的值的 符号进行分析,进而做出判断;(2)先求出函数值
()01,f =()3213122f a a a =--+=
()()2
11212
a a -+-,进而分()1f a ≥-和()1f a <-两种情形进行 分析讨论,推断出存在()0,p a ∈使得()10f p +=,从而证得当[]
0,x p ∈时,有()11f x -≤≤成立;(3) 借助(2)的结论()f x :在[
)0,+∞上有最小值为()f a ,然后分011a a ≤,两种情形探求()g a 的解析表达式和最大值。
证明:(1)由于()()2
3313f x x a x a =+--'()()31x x a =+-,且0a >,
故()f x 在[]0,a 上单调递减,在[
),a +∞上单调递增.
(3)由(2)知()f x 在[
)0,+∞上的最小值为()f a . 当01a <≤时,()1f a ≥-,则()g a 是方程()1f p =满足p a >的实根,
即()2
23160p a p a +--=满足p a >的实根,
所以()()314
a g a -+=
.
又()g a 在(]
0,1上单调递增,故()()max 1g a g == 当1a >时,()1f a <-,由于()()()9
01,11112
f f a ==--<-, 故][0,0,1p ⎡⎤⊂⎣⎦.此时,()1
g a ≤.
综上所述,()g a 21.【答案】
【解析】解:(Ⅰ)由余弦定理得cos ∠POQ==
,…
∴sin ∠POQ=,得P 点坐标为(,1),∴A=1, =4(2﹣),∴ω=
. …
由f ()=sin (
+φ)=1 可得 φ=
,∴y=f (x ) 的解析式为 f (x )=sin (
x+
).…
(Ⅱ)根据函数y=Asin (ωx+∅)的图象变换规律求得 g (x )=sin x ,…
h (x )=f (x )g (x )=sin (x+
) sin
x=
+
sin
xcos
x
=
+
sin
=sin (﹣)+.…
当x ∈[0,2]时,∈[﹣
,
],
∴当,
即x=1时,h max(x)=.…
【点评】本题主要考查由函数y=Asin(ωx+∅)的部分图象求函数的解析式,函数y=Asin(ωx+∅)的图象变换规律,正弦函数的定义域和值域,属于中档题.
22.【答案】
【解析】(本小题满分10分)选修4﹣4:坐标系与参数方程
解:(Ⅰ)因为ρ2=4ρ(cosθ+sinθ)﹣6,
所以x2+y2=4x+4y﹣6,
所以x2+y2﹣4x﹣4y+6=0,
即(x﹣2)2+(y﹣2)2=2为圆C的普通方程.…
所以所求的圆C的参数方程为(θ为参数).…
(Ⅱ)由(Ⅰ)可得,…
当时,即点P的直角坐标为(3,3)时,…x+y取到最大值为6.…
23.【答案】(1)1
(2)60°
【解析】(1)设BD=x,则CD=3﹣x
∵∠ACB=45°,AD⊥BC,∴AD=CD=3﹣x
∵折起前AD⊥BC,∴折起后AD⊥BD,AD⊥CD,BD∩DC=D
∴AD⊥平面BCD
∴V A﹣BCD=×AD×S△BCD=×(3﹣x)××x(3﹣x)=(x3﹣6x2+9x)
设f(x)=(x3﹣6x2+9x) x∈(0,3),
∵f′(x)=(x﹣1)(x﹣3),∴f(x)在(0,1)上为增函数,在(1,3)上为减函数
∴当x=1时,函数f(x)取最大值
∴当BD=1时,三棱锥A﹣BCD的体积最大;
(2)以D为原点,建立如图直角坐标系D﹣xyz,
24.【答案】(1)158⎛
⎫-∞ ⎪⎝⎭,;(2)()11128a ⎫∈⎪⎪⎝⎭,,
. 【解析】
试题分析:(1)由于12
2a -==⇒()1
4127222x x ---<⇒()127412x x -<--⇒158
x <⇒原不等式的解集为158⎛⎫-∞ ⎪
⎝
⎭,;(2)由()()2741
44227lg241lg lg lg 0128x x a a x x a x a --<⇒-<-⇒+<.设()44lg lg 128a g x x a =+,
原命题转化为()()10
12800g a g <⎧⎪<<⎨<⎪⎩
⇒又0a >且1a ≠⇒()11128a ⎫∈⎪⎪⎝⎭,,
.
考
点:1、函数与不等式;2、对数与指数运算.
【方法点晴】本题考查函数与不等式、对数与指数运算,涉及函数与不等式思想、数形结合思想和转化化高新,以及逻辑思维能力、等价转化能力、运算求解能力与能力,综合性较强,属于较难题型. 第一小题利用函数与
不等式思想和转化化归思想将原不等式转化为()127412x x -<--,解得15
8
x <;第二小题利用数学结合思想
和转化思想,将原命题转化为()()10
12800g a g <⎧⎪<<⎨<⎪⎩ ,进而求得:()111284a ⎛⎫∈ ⎪ ⎪⎝⎭,,.。