预测卷01-2021年高考数学金榜预测卷(山东、海南专用)(原卷版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年高考数学金榜预测卷(山东、海南专用)
预测卷(一)
本卷满分150分,考试时间120分钟。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.
1.设集合|2{A x x =<或{}10}|3,1x x B x e
->=-<,则A B =( ) A .(),1-∞ B .()2,1- C .()2,1
D .(3,)+∞
2.如图,若向量OZ 对应的复数为z ,且z =1z
=( )
A .1255i +
B .1255i --
C .1255i -
D .1255
i -+ 3.“1a <”是“0x ∀>,21x a x
+≥”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件
4.算盘是中国传统的计算工具,其形长方,周为木框,内贯直柱,俗称“档”,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每珠作数一.算珠梁上部分叫上珠,梁下部分叫下珠.例如,在十位档拨上一颗上珠和一颗下珠,个位档拨上一颗上珠,则表示数字65,若在个、十、百、千位档中随机选择一档拨上一颗下珠,再随机选择两个档位各拨一颗上珠,则所拨数字小于600的概率为( )
A .38
B .524
C .34
D .724
5.21sin7022sin 10
︒
︒+=-( )
A .2
B .1-
C .1
D .12
6.已知向量,a b 满足1,2,,3a b a b π==<>=
,则a b -=( )
A .3
B .7
C
D 7.已知1F 、2F 分别是双曲线()2222:10,0x y C a b a b
-=>>的左右焦点,点P 在双曲线右支上且不与顶点
重合,过2F 作12F PF ∠的角平分线的垂线,垂足为A ,O 为坐标原点,若OA =,则该双曲线的离心率为( )
A B .3 C .2 D 8.设函数()y f x =在区间(,)a b 上的导函数为()f x ',记()f x '在区间(,)a b 上的导函数为()f x ''.若函
数()f x 在区间(,)a b 上为“凸函数”,则在区间(,)a b 上有()0f x ''<恒成立.已知2
()(2)(1)
e x kx
f x e e e +=-++在(0,3)上为“凸函数”,则实数k 的取值范围是( )
A .(,1)-∞
B .(,)e -∞
C .(1,)+∞
D .(,)e +∞
二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分.
9.某经济开发区经过五年产业结构调整和优化,经济收入比调整前翻了两番,为了更好地了解该开发区的经济收人变化情况,统计了该开发区产业结构调整前后的经济收入构成比例,得到如图所示的饼图,则下列结论中正确的是( )
A .产业结构调整后节能环保的收入与调整前的总收入一样多
B .产业结构调整后科技研发的收入增幅最大
C .产业结构调整后纺织服装收入相比调整前有所降低
D .产业结构调整后食品加工的收入超过调整前纺织服装的收入
10.函数()2cos 2sin 1f x x x x =-+,下列结论正确的是( )
A .()f x 在区间,36ππ⎡⎤
-⎢⎥⎣⎦
上单调递增 B .()f x 的图象关于点,06π⎛⎫ ⎪⎝⎭成中心对称 C .将()f x 的图象向左平移512
π个单位后与2sin 2y x =-的图象重合 D .若12,x x π-=则()()12f x f x =
11.德国数学家高斯在证明“二次互反律”的过程中,首次定义了取整函数[]x ,表示“不超过x 的最大整数”,后来我们又把函数[]x 称为“高斯函数”,关于[]x 下列说法正确的是( )
A .对任意x 、y R ∈,都有[][][]x y x y +≥+
B .函数2y x x ⎡⎤=+⎢⎥⎣⎦的值域为{
2y Z y ∈≤-或}2y ≥ C .函数[]y x x =-在区间[
)(),1k k k Z +∈上单调递增
D .[]()20201
lg 4953k k k ==∈∑Z
12.透明塑料制成的正方体密闭容器1111ABCD A B C D -的体积为8,注入体积为()08x x <<的液体.如图,将容器下底面的顶点A 置于地面上,再将容器倾斜.随着倾斜度的不同,则下列说法正确的是( )
A .液面始终与地面平行
B .4x =时,液面始终是平行四边形
C .当()0,1x ∈时,有液体的部分可呈正三棱锥
D .当液面与正方体的对角线AC 垂直时,液面面积最大值为
三、填空题:本题共4小题,每小题5分,共20分.
13.在6
⎛ ⎝
的展开式中,常数项等于____. 14.已知函数()32x f x x a =++在[]1,2上的最大值是6,则实数a 的值是___________.
15的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________. 16.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半径为0.5 cm ,则此六角螺帽毛坯的体积是____cm.
四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
17.(本小题10分)
在①ABC S =,①sin sin cos b C B B c --=;①sin 2sin B C =这三个条件中任选一个,补充在下面问题中,并做答.
问题:已知ABC 的内角,,A B C 的对边分别为,,,,13a b c A c π
==,________,角B 的平分线交AC 于点
D ,求BD 的长.
(注:如果选择多个条件分别解答,按第一个解答计分.)
18.本小题12分)
已知等比数列{}n a 的前n 项和为n S ,且122n n a S +=+,数列{}n b 满足()112,2n n b n b nb +=+=,其中*n N ∈.
(1)分别求数列{}n a 和{}n b 的通项公式;
(2)在n a 与1n a +之间插入n 个数,使这2n +个数组成一个公差为n c 的等差数列,求数列{}n n b c 的前n 项和n T .
19.本小题12分)
中国提出共建“一带一路”,旨在促进更多的经济增长和更大的互联互通,随着“一带一路”的发展,中亚面粉、波兰苹果、法国红酒走上了国人的餐桌,中国制造的汽车、电子元件、农产品丰富着海外市场.为拓展海外市场,某电子公司新开发一款电子产品,该电子产品的一个系统G 有3个电子元件组成,各个电子元件能正常工作的概率为23
,且每个电子元件能否正常工作相互独立,若系统G 中有超过一半的电子元件正常工作,则G 可以正常工作,否则就需要维修,且维修所需费用为900元.
(1)求系统需要维修的概率;
(2)该电子产品共由3个系统G 组成,设ξ为电子产品所需要维修的费用,求ξ的期望;
(3)为提高系统G 正常工作的概率,在系统内增加两个功能完全一样的其他品牌的电子元件,每个新元件正常工作的概率为p ,且新增元件后有超过一半的电子元件正常工作,则G 可以正常工作.问:p 满足什么条件时可以提高整个系统G 的正常工作概率?
20.本小题12分)
如图,三棱锥P ABC -中,侧棱PA ⊥底面,ABC C 点在以AB 为直径的圆上.
(1)若PA AC =,且E 为PC 的中点,证明:AE PB ⊥;
(2)若,PA AC BC ==求二面角C BP A --的大小.
21.本小题12分)
已知点1F 、2F 分别是椭圆C 的左、右焦点,离心率为
2,点P 是以坐标原点O 为圆心的单位圆上的一点,且120PF PF ⋅=.
(1)求椭圆C 的标准方程;
(2)设斜率为k 的直线l (不过焦点)交椭圆于M ,N 两点,若x 轴上任意一点到直线1MF 与1NF 的距离均相等,求证:直线l 恒过定点,并求出该定点的坐标.
22.(本小题12分)
已知函数()()()
2(ln ,)x f x x kx k R g x x e =-∈=-. (1)若()f x 有唯一零点,求k 的取值范围;
(2)若()()1g x f x -≥恒成立,求k 的取值范围.。