上海储能中学七年级下册数学期末试卷(篇)(Word版 含解析) (2)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海储能中学七年级下册数学期末试卷(篇)(Word 版 含解析) 一、解答题 1.问题情境:
(1)如图1,//AB CD ,128PAB ∠=︒,119PCD ∠=︒.求APC ∠度数.小颖同学的解题思路是:如图2,过点P 作//PE AB ,请你接着完成解答. 问题迁移:
(2)如图3,//AD BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,
ADP α∠=∠,PCE β∠=∠.试判断CPD ∠、α∠、β∠之间有何数量关系?(提示:过点
P 作//PF AD ),请说明理由;
(3)在(2)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你猜想CPD ∠、α∠、β∠之间的数量关系并证明.
2.已知,AB ∥CD ,点E 在CD 上,点G ,F 在AB 上,点H 在AB ,CD 之间,连接FE ,EH ,HG ,∠AGH =∠FED ,FE ⊥HE ,垂足为E . (1)如图1,求证:HG ⊥HE ;
(2)如图2,GM 平分∠HGB ,EM 平分∠HED ,GM ,EM 交于点M ,求证:∠GHE =2∠GME ;
(3)如图3,在(2)的条件下,FK 平分∠AFE 交CD 于点K ,若∠KFE :∠MGH =13:5,求∠HED 的度数.
3.综合与探究 (问题情境)
王老师组织同学们开展了探究三角之间数量关系的数学活动
(1)如图1,//EF MN ,点A 、B 分别为直线EF 、MN 上的一点,点P 为平行线间一点,请直接写出PAF ∠、PBN ∠和APB ∠之间的数量关系;
(问题迁移)
(2)如图2,射线OM 与射线ON 交于点O ,直线//m n ,直线m 分别交OM 、ON 于点A 、D ,直线n 分别交OM 、ON 于点B 、C ,点P 在射线OM 上运动, ①当点P 在A 、B (不与A 、B 重合)两点之间运动时,设ADP α∠=∠,BCP β∠=∠.则CPD ∠,α∠,β∠之间有何数量关系?请说明理由.
②若点P 不在线段AB 上运动时(点P 与点A 、B 、O 三点都不重合),请你画出满足条件的所有图形并直接写出CPD ∠,α∠,β∠之间的数量关系.
4.已知:直线AB ∥CD ,M ,N 分别在直线AB ,CD 上,H 为平面内一点,连HM ,HN . (1)如图1,延长HN 至G ,∠BMH 和∠GND 的角平分线相交于点E .求证:2∠MEN ﹣∠MHN =180°;
(2)如图2,∠BMH 和∠HND 的角平分线相交于点E . ①请直接写出∠MEN 与∠MHN 的数量关系: ;
②作MP 平分∠AMH ,NQ ∥MP 交ME 的延长线于点Q ,若∠H =140°,求∠ENQ 的度数.(可直接运用①中的结论)
5.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .
(1)如图1,求证:90A C ∠+∠=︒;
(2)如图2,过点B 作BD MA ⊥的延长线于点D ,求证:ABD C ∠=∠;
(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,且BF 平分
DBC ∠,BE 平分ABD ∠,若AFC BCF ∠=∠,3BFC DBE ∠=∠,求EBC ∠的度数.
二、解答题
6.如图1,E 点在BC 上,A D ∠=∠.180ACB BED ∠+∠=︒.
(1)求证://AB CD
(2)如图2,//,AB CD BG 平分ABE ∠,与EDF ∠的平分线交于H 点,若DEB ∠比DHB ∠大60︒,求DEB ∠的度数.
(3)保持(2)中所求的DEB ∠的度数不变,如图3,BM 平分,EBK DN ∠平分CDE ∠,作
//BP DN ,则PBM ∠的度数是否改变?若不变,请直接写出答案;若改变,请说明理由.
7.已知直线//AB CD ,M ,N 分别为直线AB ,CD 上的两点且70MND ∠=︒,P 为直线
CD 上的一个动点.类似于平面镜成像,点N 关于镜面MP 所成的镜像为点Q ,此时
,,NMP QMP NPM QPM MNP MQP ∠=∠∠=∠∠=∠.
(1)当点P 在N 右侧时:
①若镜像Q 点刚好落在直线AB 上(如图1),判断直线MN 与直线PQ 的位置关系,并说明理由;
②若镜像Q 点落在直线AB 与CD 之间(如图2),直接写出BMQ ∠与DPQ ∠之间的数量关系;
(2)若镜像PQ CD ⊥,求BMQ ∠的度数.
8.如图,两个形状,大小完全相同的含有30°、60°的三角板如图放置,PA 、PB 与直线MN 重合,且三角板PAC ,三角板PBD 均可以绕点P 逆时针旋转. (1)①如图1,∠DPC = 度.
②我们规定,如果两个三角形只要有一组边平行,我们就称这两个三角形为“孪生三角形”,如图1,三角板BPD 不动,三角板PAC 从图示位置开始每秒10°逆时针旋转一周(0°<旋转<360°),问旋转时间t 为多少时,这两个三角形是“孪生三角形”.
(2)如图3,若三角板PAC 的边PA 从PN 处开始绕点P 逆时针旋转,转速3°
/秒,同时三角板PBD 的边PB 从PM 处开始绕点P 逆时针旋转,转速2°
/秒,在两个三角板旋转过程中,(PC 转到与PM 重合时,两三角板都停止转动).设两个三角板旋转时间为t 秒,以下两个结论:①CPD
BPN
∠∠为定值;②∠BPN +∠CPD 为定值,请选择你认为对的结论加以证
明.
9.综合与探究
综合与实践课上,同学们以“一个含30角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线a ,b ,且//a b ,三角形ABC 是直角三角形,90BCA ∠=︒,
30BAC ∠=︒,60ABC ∠=︒
操作发现:
(1)如图1.148∠=︒,求2∠的度数;
(2)如图2.创新小组的同学把直线a 向上平移,并把2∠的位置改变,发现
21120∠-∠=︒,请说明理由. 实践探究:
(3)填密小组在创新小组发现的结论的基础上,将图2中的图形继续变化得到图3,AC 平分BAM ∠,此时发现1∠与2∠又存在新的数量关系,请写出1∠与2∠的数量关系并说明理由.
10.如图,已知AM ∥BN ,∠A =64°.点P 是射线AM 上一动点(与点A 不重合),BC 、BD 分别平分∠ABP 和∠PBN ,分别交射线AM 于点C ,D .
(1)①∠ABN 的度数是 ;②∵AM ∥BN ,∴∠ACB =∠ ; (2)求∠CBD 的度数;
(3)当点P 运动时,∠APB 与∠ADB 之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律; (4)当点P 运动到使∠ACB =∠ABD 时,∠ABC 的度数是 .
三、解答题
11.在△ABC 中,∠BAC =90°,点D 是BC 上一点,将△ABD 沿AD 翻折后得到△AED ,边AE 交BC 于点F .
(1)如图①,当AE ⊥BC 时,写出图中所有与∠B 相等的角: ;所有与∠C 相等的角: .
(2)若∠C -∠B =50°,∠BAD =x °(0<x ≤45) . ① 求∠B 的度数;
②是否存在这样的x 的值,使得△DEF 中有两个角相等.若存在,并求x 的值;若不存在,请说明理由. 12.解读基础:
(1)图1形似燕尾,我们称之为“燕尾形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由;
(2)图2形似8字,我们称之为“八字形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由:
应用乐园:直接运用上述两个结论解答下列各题
(3)①如图3,在ABC ∆中,BD 、CD 分别平分ABC ∠和ACB ∠,请直接写出A ∠和D ∠的关系 ;
②如图4,A B C D E F ∠+∠+∠+∠+∠+∠= .
(4)如图5,BAC ∠与BDC ∠的角平分线相交于点F ,GDC ∠与CAF ∠的角平分线相交于点E ,已知26B ∠=︒,54C ∠=︒,求F ∠和E ∠的度数.
13.(生活常识)
射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图 1,MN 是平面镜,若入射光线 AO 与水平镜面夹角为∠1,反射光线 OB 与水平镜面夹角为∠2,则∠1=∠2 .
(现象解释)
如图 2,有两块平面镜 OM ,ON ,且 OM ⊥ON ,入射光线 AB 经过两次反射,得到反射光线 CD .求证 AB ∥CD . (尝试探究)
如图 3,有两块平面镜 OM ,ON ,且∠MON =55︒ ,入射光线 AB 经过两次反射,得到反射光线 CD ,光线 AB 与 CD 相交于点 E ,求∠BEC 的大小.
(深入思考)
如图 4,有两块平面镜 OM ,ON ,且∠MON = α ,入射光线 AB 经过两次反射,得到反射光线 CD ,光线 AB 与 CD 所在的直线相交于点 E ,∠BED =β , α 与 β 之间满足的等量关系是 .(直接写出结果)
14.操作示例:如图1,在△ABC 中,AD 为BC 边上的中线,△ABD 的面积记为S 1,△ADC 的面积记为S 2.则S 1=S 2.
解决问题:在图2中,点D 、E 分别是边AB 、BC 的中点,若△BDE 的面积为2,则四边形ADEC 的面积为 . 拓展延伸:
(1)如图3,在△ABC 中,点D 在边BC 上,且BD =2CD ,△ABD 的面积记为S 1,△ADC 的面积记为S 2.则S 1与S 2之间的数量关系为 .
(2)如图4,在△ABC 中,点D 、E 分别在边AB 、AC 上,连接BE 、CD 交于点O ,且BO =2EO ,CO =DO ,若△BOC 的面积为3,则四边形ADOE 的面积为 .
15.如图,//MN GH ,点A 、B 分别在直线MN 、GH 上,点O 在直线MN 、GH 之间,若
116NAO ∠=︒,144OBH ∠=︒.
(1)AOB ∠= ︒;
(2)如图2,点C 、D 是NAO ∠、GBO ∠角平分线上的两点,且35CDB ∠=︒,求ACD ∠ 的度数;
(3)如图3,点F 是平面上的一点,连结FA 、FB ,E 是射线FA 上的一点,若MAE ∠=
n OAE ∠,HBF n OBF ∠=∠,且60AFB ∠=︒,求n 的值.
【参考答案】
一、解答题
1.(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析 【分析】
(1)过P 作PE ∥AB ,构造同旁内角,利用平行线性质,可得∠APC=
解析:(1)见解析;(2)180CPD αβ∠=∠+︒-∠,理由见解析;(3)①当P 在BA 延长线时(点P 不与点A 重合),180CPD βα∠=︒-∠-∠;②当P 在BO 之间时(点P 不与点B ,O 重合),180CPD αβ∠=∠-︒+∠.理由见解析 【分析】
(1)过P 作PE ∥AB ,构造同旁内角,利用平行线性质,可得∠APC =113°; (2)过过P 作//PF AD 交CD 于F ,,推出////AD PF BC ,根据平行线的性质得出180
BCP ,即可得出答案;
(3)画出图形(分两种情况:①点P 在BA 的延长线上,②当P 在BO 之间时(点P 不与点B ,O 重合)),根据平行线的性质即可得出答案. 【详解】
解:(1)过P 作//PE AB ,
//AB CD ,
////PE AB CD ∴,
=180APE PAB ,180CPE PCD ∠+∠=︒,
128PAB ∠=︒,119PCD ∠=︒
52APE ∴∠=︒,61CPE ∠=︒, 5261113APC ∴∠=︒+︒=︒;
(2)180CPD αβ∠=∠+︒-∠,理由如下: 如图3,过P 作//PF AD 交CD 于F ,
//AD BC ,
////AD PF BC ∴,
ADP DPF ∴∠=∠,BCP CPF ∠=∠,
180BCP PCE ∠+∠=︒,PCE β∠=∠, 180BCP β∴∠=︒-∠
又ADP α∠=∠ =
180
CPD
DPF
CPF ;
(3)①当P 在BA 延长线时(点P 不与点A 重合),180CPD βα∠=︒-∠-∠; 理由:如图4,过P 作//PF AD 交CD 于F ,
//AD BC ,
////AD PF BC ∴,
ADP DPF ∴∠=∠,BCP CPF ∠=∠,
180BCP PCE ∠+∠=︒,PCE β∠=∠, 180BCP β∴∠=︒-∠,
又ADP α∠=∠,
180CPD CPF DPF αβ∴∠=∠-∠=︒-∠-∠;
②当P 在BO 之间时(点P 不与点B ,O 重合),180CPD αβ∠=∠-︒+∠. 理由:如图5,过P 作//PF AD 交CD 于F ,
//AD BC ,
////AD PF BC ∴,
ADP DPF ∴∠=∠,BCP CPF ∠=∠, 180BCP PCE ∠+∠=︒,PCE β∠=∠,
180BCP β∴∠=︒-∠,
又ADP α∠=∠
180CPD DPF CPF αβ∴∠=∠-∠=∠+∠-︒.
【点睛】
本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.
2.(1)见解析;(2)见解析;(3)40° 【分析】
(1)根据平行线的性质和判定解答即可;
(2)过点H 作HP ∥AB ,根据平行线的性质解答即可; (3)过点H 作HP ∥AB ,根据平行线的性质解答即可.
解析:(1)见解析;(2)见解析;(3)40° 【分析】
(1)根据平行线的性质和判定解答即可;
(2)过点H 作HP ∥AB ,根据平行线的性质解答即可; (3)过点H 作HP ∥AB ,根据平行线的性质解答即可. 【详解】
证明:(1)∵AB ∥CD ,
∴∠AFE=∠FED,
∵∠AGH=∠FED,
∴∠AFE=∠AGH,
∴EF∥GH,
∴∠FEH+∠H=180°,
∵FE⊥HE,
∴∠FEH=90°,
∴∠H=180°﹣∠FEH=90°,
∴HG⊥HE;
(2)过点M作MQ∥AB,
∵AB∥CD,
∴MQ∥CD,
过点H作HP∥AB,
∵AB∥CD,
∴HP∥CD,
∵GM平分∠HGB,
∠BGH,
∴∠BGM=∠HGM=1
2
∵EM平分∠HED,
∠HED,
∴∠HEM=∠DEM=1
2
∵MQ∥AB,
∴∠BGM=∠GMQ,
∵MQ∥CD,
∴∠QME=∠MED,
∴∠GME=∠GMQ+∠QME=∠BGM+∠MED,
∵HP∥AB,
∴∠BGH=∠GHP=2∠BGM,
∵HP∥CD,
∴∠PHE=∠HED=2∠MED,
∴∠GHE=∠GHP+∠PHE=2∠BGM+2∠MED=2(∠BGM+∠MED),∴∠GHE=∠2GME;
(3)过点M作MQ∥AB,过点H作HP∥AB,
由∠KFE :∠MGH =13:5,设∠KFE =13x ,∠MGH =5x ,
由(2)可知:∠BGH =2∠MGH =10x ,
∵∠AFE +∠BFE =180°,
∴∠AFE =180°﹣10x ,
∵FK 平分∠AFE ,
∴∠AFK =∠KFE =1
2 ∠AFE , 即1(18010)132
x x ︒-=, 解得:x =5°,
∴∠BGH =10x =50°,
∵HP ∥AB ,HP ∥CD ,
∴∠BGH =∠GHP =50°,∠PHE =∠HED ,
∵∠GHE =90°,
∴∠PHE =∠GHE ﹣∠GHP =90°﹣50°=40°,
∴∠HED =40°.
【点睛】
本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理以及灵活构造平行线是解题的关键.
3.(1);(2)①,理由见解析;②图见解析,或
【分析】
(1)作PQ ∥EF ,由平行线的性质,即可得到答案;
(2)①过作交于,由平行线的性质,得到,,即可得到答案;
②根据题意,可对点P 进行分类讨论
解析:(1)360PAF PBN APB ∠+∠+∠=°;(2)①CPD αβ∠=∠+∠,理由见解析;②图见解析,CPD βα∠=∠-∠或CPD αβ∠=∠-∠
【分析】
(1)作PQ ∥EF ,由平行线的性质,即可得到答案;
(2)①过P 作//PE AD 交CD 于E ,由平行线的性质,得到DPE α∠=∠,CPE β∠=∠,即可得到答案;
②根据题意,可对点P 进行分类讨论:当点P 在BA 延长线时;当P 在BO 之间时;与①同理,利用平行线的性质,即可求出答案.
【详解】
解:(1)作PQ ∥EF ,如图:
∵//EF MN ,
∴////EF MN PQ ,
∴180PAF APQ ∠+∠=°,180PBN BPQ ∠+∠=°,
∵APB APQ BPQ ∠=∠+∠
∴360PAF PBN APB ∠+∠+∠=°;
(2)①CPD αβ∠=∠+∠;
理由如下:如图,
过P 作//PE AD 交CD 于E ,
∵//AD BC ,
∴////AD PE BC ,
∴DPE α∠=∠,CPE β∠=∠,
∴CPD DPE CPE αβ∠=∠+∠=∠+∠;
②当点P 在BA 延长线时,如备用图1:
∵PE ∥AD ∥BC ,
∴∠EPC=β,∠EPD =α,
∴CPD βα∠=∠-∠;
当P 在BO 之间时,如备用图2:
∵PE∥AD∥BC,
∴∠EPD=α,∠CPE=β,
∴CPDαβ
∠=∠-∠.
【点睛】
本题考查了平行线的性质,解题的关键是熟练掌握两直线平行同旁内角互补,两直线平行内错角相等,从而得到角的关系.
4.(1)见解析;(2)①2∠MEN+∠MHN=360°;②20°
【分析】
(1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即
解析:(1)见解析;(2)①2∠MEN+∠MHN=360°;②20°
【分析】
(1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即可得证.
(2)①过点H作GI∥AB,利用(1)中结论2∠MEN﹣∠MHN=180°,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等得出∠AMH+∠HNC=360°﹣(∠BMH+∠HND),进而用等量代换得出2∠MEN+∠MHN=360°.
②过点H作HT∥MP,由①的结论得2∠MEN+∠MHN=360°,∠H=140°,∠MEN=110°.利用平行线性质得∠ENQ+∠ENH+∠NHT=180°,由角平分线性质及邻补角可得∠ENQ+∠ENH+140°﹣1
(180°﹣∠BMH)=180°.继续使用等量代换可得∠ENQ度数.
2
【详解】
解:(1)证明:过点E作EP∥AB交MH于点Q.如答图1
∵EP∥AB且ME平分∠BMH,
∴∠MEQ=∠BME=1
2
∠BMH.
∵EP∥AB,AB∥CD,
∴EP∥CD,又NE平分∠GND,
∴∠QEN=∠DNE=1
2
∠GND.(两直线平行,内错角相等)
∴∠MEN=∠MEQ+∠QEN=1
2∠BMH+1
2
∠GND=1
2
(∠BMH+∠GND).
∴2∠MEN=∠BMH+∠GND.
∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH.
∴∠DHN=∠BMH﹣∠MHN.
∴∠GND+∠BMH﹣∠MHN=180°,
即2∠MEN﹣∠MHN=180°.
(2)①:过点H作GI∥AB.如答图2
由(1)可得∠MEN=1
2
(∠BMH+∠HND),
由图可知∠MHN=∠MHI+∠NHI,
∵GI∥AB,
∴∠AMH=∠MHI=180°﹣∠BMH,
∵GI∥AB,AB∥CD,
∴GI∥CD.
∴∠HNC=∠NHI=180°﹣∠HND.
∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND).又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN,
∴∠BMH+∠HND=360°﹣∠MHN.
即2∠MEN+∠MHN=360°.
故答案为:2∠MEN+∠MHN=360°.
②:由①的结论得2∠MEN+∠MHN=360°,
∵∠H=∠MHN=140°,
∴2∠MEN=360°﹣140°=220°.
∴∠MEN=110°.
过点H作HT∥MP.如答图2
∵MP∥NQ,
∴HT∥NQ.
∴∠ENQ+∠ENH+∠NHT=180°(两直线平行,同旁内角互补).
∵MP 平分∠AMH ,
∴∠PMH =12∠AMH =1
2(180°﹣∠BMH ).
∵∠NHT =∠MHN ﹣∠MHT =140°﹣∠PMH .
∴∠ENQ +∠ENH +140°﹣12(180°﹣∠BMH )=180°.
∵∠ENH =12∠HND .
∴∠ENQ +12∠HND +140°﹣90°+12∠BMH =180°.
∴∠ENQ +12(HND +∠BMH )=130°.
∴∠ENQ +12∠MEN =130°.
∴∠ENQ =130°﹣110°=20°.
【点睛】
本题考查了平行线的性质,角平分线的性质,邻补角,等量代换,角之间的数量关系运算,辅助线的作法,正确作出辅助线是解题的关键,本题综合性较强. 5.(1)见解析;(2)见解析;(3).
【分析】
(1)先根据平行线的性质得到,然后结合即可证明;
(2)过作,先说明,然后再说明得到,最后运用等量代换解答即可; (3)设∠DBE=a ,则∠BFC=3
解析:(1)见解析;(2)见解析;(3)︒=∠105EBC .
【分析】
(1)先根据平行线的性质得到C BDA ∠=∠,然后结合AB BC ⊥即可证明;
(2)过B 作//BH DM ,先说明ABD CBH ∠=∠,然后再说明//BH NC 得到CBH C ∠=∠,最后运用等量代换解答即可;
(3)设∠DBE =a ,则∠BFC =3a ,根据角平分线的定义可得∠ABD =∠C =2a ,
∠FBC =1
2∠DBC =a +45°,根据三角形内角和可得∠BFC +∠FBC +∠BCF =180°,可得
∠AFC =∠BCF 的度数表达式,再根据平行的性质可得∠AFC +∠NCF =180°,代入即可算出a 的度数,进而完成解答.
【详解】
(1)证明:∵//AM CN ,
∴C BDA ∠=∠,
∵AB BC ⊥于B ,
∴90B ∠=︒,
∴90A BDA ∠+∠=︒,
∴90A C ∠+∠=︒;
(2)证明:过B 作//BH DM ,
∵BD MA ⊥,
∴90ABD ABH ∠+∠=︒,
又∵AB BC ⊥,
∴90ABH CBH ∠+∠=︒,
∴ABD CBH ∠=∠,
∵//BH DM ,//AM CN
∴//BH NC ,
∴CBH C ∠=∠,
∴ABD C ∠=∠;
(3)设∠DBE =a ,则∠BFC =3a ,
∵BE 平分∠ABD ,
∴∠ABD =∠C =2a ,
又∵AB ⊥BC ,BF 平分∠DBC ,
∴∠DBC =∠ABD +∠ABC =2a +90,即:∠FBC =1
2∠DBC =a +45°
又∵∠BFC +∠FBC +∠BCF =180°,即:3a +a +45°+∠BCF =180°
∴∠BCF =135°-4a ,
∴∠AFC =∠BCF =135°-4a ,
又∵AM //CN ,
∴∠AFC +∠ NCF =180°,即:∠AFC +∠BCN +∠BCF =180°,
∴135°-4a +135°-4a +2a =180,解得a =15°,
∴∠ABE =15°,
∴∠EBC =∠ABE +∠ABC =15°+90°=105°.
【点睛】
本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性质、角平分线的性质是解答本题的关键. 二、解答题
6.(1)见解析;(2)100°;(3)不变,40°
【分析】
(1)如图1,延长交于点,根据,,可得,所以,可得,又,进而可得结论;
(2)如图2,作,,根据,可得,根据平行线的性质得角之间的关系,再 解析:(1)见解析;(2)100°;(3)不变,40°
【分析】
(1)如图1,延长DE 交AB 于点F ,根据180ACB BED ∠+∠=︒,180CED BED ∠+∠=︒,可得ACB CED ∠=∠,所以//AC DF ,可得A DFB ∠=∠,又A D ∠=∠,进而可得结论; (2)如图2,作//EM CD ,//HN CD ,根据//AB CD ,可得//////AB EM HN CD ,根据平行线的性质得角之间的关系,再根据DEB ∠比DHB ∠大60︒,列出等式即可求DEB ∠的度数;
(3)如图3,过点E 作//ES CD ,设直线DF 和直线BP 相交于点G ,根据平行线的性质和角平分线定义可求PBM ∠的度数.
【详解】
解:(1)证明:如图1,延长DE 交AB 于点F ,
180ACB BED ∠+∠=︒,180CED BED ∠+∠=︒,
ACB CED ∴∠=∠,
//AC DF ∴,
A DF
B ∴∠=∠,
A D ∠=∠,
DFB D ∴∠=∠,
//AB CD ∴;
(2)如图2,作//EM CD ,//HN CD ,
//AB CD ,
//////AB EM HN CD ∴,
1180EDF ∴∠+∠=︒,MEB ABE ∠=∠, BG 平分ABE ∠,
12
ABG ABE ∴∠=∠, //AB HN ,
2ABG ∴∠=∠,
//CF HN ,
23β∴∠+∠=∠,
∴132ABE β∠+∠=∠, DH 平分EDF ∠,
132
EDF ∴∠=∠, ∴1122
ABE EDF β∠+∠=∠,
1()2EDF ABE β∴∠=∠-∠, 2EDF ABE β∴∠-∠=∠,
设DEB α∠=∠,
1180180()1802MEB EDF ABE EDF ABE αβ∠=∠+∠=︒-∠+∠=︒-∠-∠=︒-∠,
DEB ∠比DHB ∠大60︒,
60αβ∴∠-︒=∠,
1802(60)αα∴∠=︒-∠-︒
解得100α∠=︒
DEB ∴∠的度数为100︒;
(3)PBM ∠的度数不变,理由如下:
如图3,过点E 作//ES CD ,设直线DF 和直线BP 相交于点G ,
BM 平分EBK ∠,DN 平分CDE ∠,
12
EBM MBK EBK ∴∠=∠=∠, 12
CDN EDN CDE ∠=∠=∠, //ES CD ,//AB CD ,
////ES AB CD ∴,
DES CDE ∴∠=∠,
180BES ABE EBK ∠=∠=︒-∠,
G PBK ∠=∠,
由(2)可知:100DEB ∠=︒,
180100CDE EBK ∴∠+︒-∠=︒,
80EBK CDE ∴∠-∠=︒,
//BP DN ,
CDN G ∴∠=∠,
12
PBK G CDN CDE ∴∠=∠=∠=∠, PBM MBK PBK ∴∠=∠-∠
1122
EBK CDE =∠-∠ 1()2
EBK CDE =∠-∠ 1802
=⨯︒ 40=︒.
【点睛】
本题考查了平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质. 7.(1)①,证明见解析,②,(2)或.
【分析】
(1) ①根据和镜像证出,即可判断直线与直线的位置关系,②过点Q 作QF ∥CD ,根据平行线的性质证即可;
(2)过点Q 作QF ∥CD ,根据点P 的位置不同,
解析:(1)①//MN PQ ,证明见解析,②70DPQ BMQ ∠∠+=︒,(2)160︒或20︒.
【分析】
(1) ①根据//AB CD 和镜像证出NMP QPM ∠=∠,即可判断直线MN 与直线PQ 的位置关系,②过点Q 作QF ∥CD ,根据平行线的性质证DPQ BM MQP Q ∠=∠∠+即可;
(2)过点Q 作QF ∥CD ,根据点P 的位置不同,分类讨论,依据平行线的性质求解即可.
【详解】
(1)①//MN PQ ,
证明:∵//AB CD ,
∴NPM QMP ∠=∠,
∵,NMP QMP NPM QPM ∠=∠∠=∠,
∴NMP QPM ∠=∠,
∴//MN PQ ;
②过点Q 作QF ∥CD ,
∵//AB CD ,
∴////AB CD QF ,
∴1BMQ ∠=∠,2QPD ∠=∠,
∴DPQ BM MQP Q ∠=∠∠+,
∵70MNP MQP ∠=∠=︒,
∴70DPQ BMQ ∠∠+=︒;
(2)如图,当点P 在N 右侧时,过点Q 作QF ∥CD ,
同(1)得,////AB CD QF ,
∴180NP FQP Q ∠=∠+︒,FQM BMQ ∠=∠,
∵PQ CD ⊥,
∴90NPQ ∠=︒,
∴90FQP ∠=︒,
∵70MND PQM ∠=∠=︒,
∴20FQM ∠=︒,
∴20BMQ ∠=︒,
如图,当点P 在N 左侧时,过点Q 作QF ∥CD ,同(1)得,////AB CD QF , 同理可得,90FQP ∠=︒,
∵70MND ∠=︒,
∴110MNP PQM ∠=∠=︒,
∴20FQM ∠=︒,
∵//AB QF ,
∴180BM FQM Q ∠=∠+︒,
∴160BMQ ∠=︒;
综上,BMQ ∠的度数为160︒或20︒.
【点睛】
本题考查了平行线的性质与判定,解题关键是恰当的作辅助线,熟练利用平行线的性质推导角之间的关系.
8.(1)①90;②t 为或或或或或或;(2)①正确,②错误,证明见解析.
【分析】
(1)①由平角的定义,结合已知条件可得:从而可得答案;②当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和
解析:(1)①90;②t 为3s 或6s 或9s 或18s 或21s 或24s 或27s ;(2)①正确,②错误,证明见解析.
【分析】
(1)①由平角的定义,结合已知条件可得:180,DPC CPA DPB ∠=︒-∠-∠从而可得答案;②当//BD PC 时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差求解旋转角,可得旋转时间;当//PA BD 时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当//AC DP 时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当//AC BD 时,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当//AC BP 时的旋转时间与//PA BD 相同;
(2)分两种情况讨论:当PD 在MN 上方时,当PD 在MN 下方时,①分别用含t 的代数式表示,CPD BPN ∠∠,从而可得CPD BPN
∠∠的值;②分别用含t 的代数式表示,CPD BPN ∠∠,得到BPN CPD ∠+∠是一个含t 的代数式,从而可得答案.
【详解】
解:(1)①∵∠DPC =180°﹣∠CPA ﹣∠DPB ,∠CPA =60°,∠DPB =30°,
∴∠DPC =180﹣30﹣60=90°,
故答案为90;
②如图1﹣1,当BD ∥PC 时,
∵PC∥BD,∠DBP=90°,
∴∠CPN=∠DBP=90°,
∵∠CPA=60°,
∴∠APN=30°,
∵转速为10°/秒,
∴旋转时间为3秒;
如图1﹣2,当PC∥BD时,
PC BD∠PBD=90°,
∵//,
∴∠CPB=∠DBP=90°,
∵∠CPA=60°,
∴∠APM=30°,
∵三角板PAC绕点P逆时针旋转的角度为180°+30°=210°,
∵转速为10°/秒,
∴旋转时间为21秒,
如图1﹣3,当PA∥BD时,即点D与点C重合,此时∠ACP=∠BPD=30°,则AC∥BP,
∵PA∥BD,
∴∠DBP=∠APN=90°,
∴三角板PAC绕点P逆时针旋转的角度为90°,
∵转速为10°/秒,
∴旋转时间为9秒,
如图1﹣4,当PA∥BD时,
∵∠DPB=∠ACP=30°,
∴AC∥BP,
∵PA∥BD,
∴∠DBP=∠BPA=90°,
∴三角板PAC绕点P逆时针旋转的角度为90°+180°=270°,∵转速为10°/秒,
∴旋转时间为27秒,
如图1﹣5,当AC∥DP时,
∵AC∥DP,
∴∠C=∠DPC=30°,
∴∠APN=180°﹣30°﹣30°﹣60°=60°,
∴三角板PAC绕点P逆时针旋转的角度为60°,
∵转速为10°/秒,
∴旋转时间为6秒,
AC DP时,
如图1﹣6,当//
AC DP,
//
∴∠=∠=︒,
90
DPA PAC
∠+∠=︒-︒+︒=︒,
DPN DPA
1803090240
∴三角板PAC绕点P逆时针旋转的角度为240︒,
∵转速为10°/秒,
∴旋转时间为24秒,
如图1﹣7,当AC ∥BD 时,
∵AC ∥BD ,
∴∠DBP =∠BAC =90°,
∴点A 在MN 上,
∴三角板PAC 绕点P 逆时针旋转的角度为180°,
∵转速为10°/秒,
∴旋转时间为18秒,
当//AC BP 时,如图1-3,1-4,旋转时间分别为:9s ,27s .
综上所述:当t 为3s 或6s 或9s 或18s 或21s 或24s 或27s 时,这两个三角形是“孪生三角形”;
(2)如图,当PD 在MN 上方时,
①正确,
理由如下:设运动时间为t 秒,则∠BPM =2t ,
∴∠BPN =180°﹣2t ,∠DPM =30°﹣2t ,∠APN =3t .
∴∠CPD =180°﹣∠DPM ﹣∠CPA ﹣∠APN =90°﹣t ,
21802,BPN CPD t ∴∠=∠=︒- ∴1.2
CPD BPN ∠=∠ ②∠BPN +∠CPD =180°﹣2t +90°﹣t =270°﹣3t ,可以看出∠BPN +∠CPD 随着时间在变化,不为定值,结论错误.
当PD 在MN 下方时,如图,
①正确,
理由如下:设运动时间为t 秒,则∠BPM =2t ,
∴∠BPN =180°﹣2t ,∠DPM =230,t -︒ ∠APN =3t .
∴∠CPD =360CPA APN DPB BPN ︒-∠-∠-∠-∠
()360603301802t t =︒-︒--︒-︒-
=90t ︒-
21802,BPN CPD t ∴∠=∠=︒- ∴1.2
CPD BPN ∠=∠ ②∠BPN +∠CPD =180°﹣2t +90°﹣t =270°﹣3t ,可以看出∠BPN +∠CPD 随着时间在变化,不为定值,结论错误.
综上:①正确,②错误.
【点睛】
本题考查的是角的和差倍分关系,平行线的性质与判定,角的动态定义(旋转角)的理解,掌握分类讨论的思想是解题的关键.
9.(1);(2)理由见解析;(3),理由见解析.
【分析】
(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案; (2)过点B 作BD ∥a .由平行线的性质得∠2+∠ABD =180°,∠1=∠ 解析:(1)242∠=︒;(2)理由见解析;(3)12∠=∠,理由见解析.
【分析】
(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;
(2)过点B 作BD ∥a .由平行线的性质得∠2+∠ABD =180°,∠1=∠DBC ,则∠ABD =∠ABC−∠DBC =60°−∠1,进而得出结论;
(3)过点C 作CP ∥a ,由角平分线定义得∠CAM =∠BAC =30°,∠BAM =2∠BAC =60°,由平行线的性质得∠1=∠BAM =60°,∠PCA =∠CAM =30°,∠2=∠BCP =60°,即可得出结论.
【详解】
解:(1)如图1 148∠=︒,90BCA ∠=︒,
3180142BCA ∴∠=︒-∠-∠=︒,
//a b ,
2342∴∠=∠=︒;
图1
BD a,(2)理由如下:如图2.过点B作//
图2
∴∠+∠=︒,
2180
ABD
a b,
//
b BD
∴,
//
∴∠=∠DBC,
1
ABD ABC DBC
∴∠=∠-∠=︒-∠,
601
∴∠+︒-∠=︒,
2601180
∴∠-∠=︒;
21120
(3)12
∠=∠,
图3
CP a,
理由如下:如图3,过点C作//
AC平分BAM
∠,
∴∠=∠=︒,
30
CAM BAC
∠=∠=︒,
260
BAM BAC
a b,
又//
∴,
CP b
//
BAM
∠=∠=︒,
160
PCA CAM
∴∠=∠=︒,
30
∴∠=∠-∠=︒-︒=︒,
903060 BCP BCA PCA
又//CP a ,
260BCP ∴∠=∠=︒,
12∠∠∴=.
【点睛】
本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键.
10.(1)① ②;(2);(3)不变,,理由见解析;(4)
【分析】
(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;
(2)由角平分线的
解析:(1)①116,︒ ②CBN ;(2)58︒;(3)不变,:2:1APB ADB ∠∠=,理由见解析;(4)29.︒
【分析】
(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;
(2)由角平分线的定义可以证明∠CBD =1
2∠ABN ,即可求出结果;
(3)不变,∠APB :∠ADB =2:1,证∠APB =∠PBN ,∠PBN =2∠DBN ,即可推出结论; (4)可先证明∠ABC =∠DBN ,由(1)∠ABN =116°,可推出∠CBD =58°,所以∠ABC+∠DBN =58°,则可求出∠ABC 的度数.
【详解】
解:(1)①∵AM//BN ,∠A =64°,
∴∠ABN =180°﹣∠A =116°,
故答案为:116°;
②∵AM//BN ,
∴∠ACB =∠CBN ,
故答案为:CBN ;
(2)∵AM//BN ,
∴∠ABN+∠A =180°,
∴∠ABN =180°﹣64°=116°,
∴∠ABP+∠PBN =116°,
∵BC 平分∠ABP ,BD 平分∠PBN ,
∴∠ABP =2∠CBP ,∠PBN =2∠DBP ,
∴2∠CBP+2∠DBP =116°,
∴∠CBD =∠CBP+∠DBP =58°;
(3)不变,
∠APB :∠ADB =2:1,
∵AM//BN ,
∴∠APB =∠PBN ,∠ADB =∠DBN ,
∵BD 平分∠PBN ,
∴∠PBN =2∠DBN ,
∴∠APB :∠ADB =2:1;
(4)∵AM//BN ,
∴∠ACB =∠CBN ,
当∠ACB =∠ABD 时,
则有∠CBN =∠ABD ,
∴∠ABC+∠CBD =∠CBD+∠DBN
∴∠ABC =∠DBN ,
由(1)∠ABN =116°,
∴∠CBD =58°,
∴∠ABC+∠DBN =58°,
∴∠ABC =29°,
故答案为:29°.
【点睛】
本题考查了角平分线的定义,平行线的性质等,解题关键是能熟练运用平行线的性质并能灵活运用角平分线的定义等.
三、解答题
11.(1)∠E 、∠CAF ;∠CDE 、∠BAF ; (2)①20°;②30
【分析】
(1)由翻折的性质和平行线的性质即可得与∠B 相等的角;由等角代换即可得与∠C 相等的角;
(2)①由三角形内角和定理可得,
解析:(1)∠E 、∠CAF ;∠CDE 、∠BAF ; (2)①20°;②30
【分析】
(1)由翻折的性质和平行线的性质即可得与∠B 相等的角;由等角代换即可得与∠C 相等的角;
(2)①由三角形内角和定理可得90B C ∠+∠=︒,再由50C B ∠∠︒-=根据角的和差计算即可得∠C 的度数,进而得∠B 的度数.
②根据翻折的性质和三角形外角及三角形内角和定理,用含x 的代数式表示出∠FDE 、∠DFE 的度数,分三种情况讨论求出符合题意的x 值即可.
【详解】
(1)由翻折的性质可得:∠E =∠B ,
∵∠BAC =90°,AE ⊥BC ,
∴∠DFE =90°,
∴180°-∠BAC =180°-∠DFE =90°,
即:∠B +∠C =∠E +∠FDE =90°,
∴∠C =∠FDE ,
∴AC ∥DE ,
∴∠CAF =∠E ,
∴∠CAF =∠E =∠B
故与∠B 相等的角有∠CAF 和∠E ;
∵∠BAC =90°,AE ⊥BC ,
∴∠BAF +∠CAF =90°, ∠CFA =180°-(∠CAF +∠C )=90°
∴∠BAF +∠CAF =∠CAF +∠C =90°
∴∠BAF =∠C
又AC ∥DE ,
∴∠C =∠CDE ,
∴故与∠C 相等的角有∠CDE 、∠BAF ;
(2)①∵90BAC ∠=︒
∴90B C ∠+∠=︒
又∵50C B ∠∠︒-=,
∴∠C =70°,∠B =20°;
②∵∠BAD =x °, ∠B =20°则160ADB x ∠︒︒=-,20ADF x ∠︒︒=+,
由翻折可知:∵160ADE ADB x ∠∠︒︒==-, 20E B ∠∠︒==,
∴1402FDE x ∠︒︒=-, 202DFE x ∠︒︒=+,
当∠FDE =∠DFE 时,1402202x x ︒︒︒︒-=+, 解得:30x ︒︒=;
当∠FDE =∠E 时,140220x ︒︒︒-=,解得:60x ︒︒=(因为0<x ≤45,故舍去); 当∠DFE =∠E 时,20220x ︒︒︒+=,解得:0x ︒=(因为0<x ≤45,故舍去);
综上所述,存在这样的x 的值,使得△DEF 中有两个角相等.且30x =.
【点睛】
本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识.
12.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .
【分析】
(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;
(2)根据三角形内角和定理及对顶角相等即可得出结
解析:(1)D A B C ∠=∠+∠+∠,理由详见解析;(2)A D B C ∠+∠=∠+∠,理由详见解析:(3)①1902
D A ∠=︒+∠;②360°;(4)124
E ∠=︒; =14
F ∠︒.
【分析】
(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;
(2)根据三角形内角和定理及对顶角相等即可得出结论;
(3)①根据角平分线的定义及三角形内角和定理即可得出结论;
②连结BE ,由(2)的结论及四边形内角和为360°即可得出结论;
(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论.
【详解】
(1)D A B C ∠=∠+∠+∠.理由如下:
如图1,BDE B BAD ∠=∠+∠,CDE C CAD ∠=∠+∠,
BDC B BAD C CAD B BAC C ∴∠=∠+∠+∠+∠=∠+∠+∠,D A B C ∴∠=∠+∠+∠;
(2)A D B C ∠+∠=∠+∠.理由如下:
在ADE ∆中,180AED A D ∠=︒-∠-∠,在BCE ∆中,180BEC B C ∠=︒-∠-∠,
AED BEC ∠=∠,A D B C ∴∠+∠=∠+∠;
(3)①180A ABC ACB ∠=︒-∠-∠,180D DBC DCB ∠=︒-∠-∠,BD 、CD 分别平分ABC
∠和ACB ∠,∴1122ABC ACB DBC DCB ∠+∠=∠+∠,
1111180()180(180)902222D ABC ACB A A ∴∠=︒-∠+∠=︒-︒-∠=︒+∠. 故答案为:1902D A ∠=︒+∠.
②连结BE .
∵C D CBE DEB ∠+∠=∠+∠,360A B C D E F A ABE F BEF ∴∠+∠+∠+∠+∠+∠=∠+∠+∠+∠=︒. 故答案为:360︒;
(4)由(1)知,BDC B C BAC ∠=∠+∠+∠,
26B ∠=︒,54C ∠=︒,80BDC BAC ∴∠=︒+∠,402CDF CAE ∴∠=︒+∠,4BAC CAE ∠=∠,2BDC CDF ∠=∠,1902
GDE CDF ∴∠=︒-∠,26180AGD B GDB CDF ∠=∠+∠=︒+︒-∠,3GAE CAE ∠=∠,
3336064(2)644012422
E GAE AGD GDE CAE CD
F ∴∠=︒-∠-∠-∠=︒-∠-∠=︒+⨯︒=︒; 180180(206)2262264014F AGF GAF CDF CAE CDF CAE ∠=︒-∠-∠=︒-︒-∠-∠=-︒+∠-∠=-︒+︒=︒.
【点睛】
本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.
13.【现象解释】见解析;【尝试探究】
BEC 70;【深入思考】
2.
【分析】 [现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用
∠2+∠3=90°得出∠1+∠2+∠
解析:【现象解释】见解析;【尝试探究】∠BEC = 70︒;【深入思考】β= 2α.
【分析】
[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出
∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可证得AB∥CD;
[尝试探究]根据三角形内角和定理求得∠2+∠3=125°,根据平面镜反射光线的规律得
∠1=∠2,∠3=∠4,再利用平角的定义得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根据三角形内角和定理即可得出∠BEC=180°-110°=70°;[深入思考]利用平角的定义得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性质
∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-
∠2=α,即可证得β=2α.
【详解】
[现象解释]
如图2,
∵OM⊥ON,
∴∠CON=90°,
∴∠2+∠3=90°
∵∠1=∠2,∠3=∠4,
∴∠1+∠2+∠3+∠4=180°,
∴∠DCB+∠ABC=180°,
∴AB∥CD;
【尝试探究】
如图3,
在△OBC中,∵∠COB=55°,
∴∠2+∠3=125°,
∵∠1=∠2,∠3=∠4,
∴∠1+∠2+∠3+∠4=250°,
∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,
∴∠EBC+BCE=360°-250°=110°,
∴∠BEC=180°-110°=70°;
【深入思考】
如图4,
β=2α,
理由如下:∵∠1=∠2,∠3=∠4,
∴∠ABC=180°-2∠2,∠BCD=180°-2∠3,
∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,
∵∠BOC=∠3-∠2=α,
∴β=2α.
【点睛】
本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键.
14.解决问题:6;拓展延伸:(1)S1=2S2 (2)10.5
【解析】
试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,
S△ABE=S△AEC,从而得到结论;
拓展延伸:(1)
解析:解决问题:6;拓展延伸:(1)S1=2S2(2)10.5
【解析】
试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论;
拓展延伸:(1)作△ABD的中线AE,则有BE=ED=DC,从而得到△ABE的面积=△AED的面积=△ADC的面积,由此即可得到结论;
(2)连接AO.则可得到△BOD的面积=△BOC的面积,△AOC的面积=△AOD的面积,△EOC的面积=△BOC的面积的一半,△AOB的面积=2△AOE的面积.设△AOD的面积
=a,△AOE的面积=b,则a+3=2b,a=b+1.5,求出a、b的值,即可得到结论.
试题解析:解:解决问题
连接AE.∵点D、E分别是边AB、BC的中点,∴S△ADE=S△BDE,S△ABE=S△AEC.∵S△BDE =2,
∴S △ADE =2,∴S △ABE =S △AEC =4,∴四边形ADEC 的面积=2+4=6.
拓展延伸:
解:(1)作△ABD 的中线AE ,则有BE =ED =DC ,∴△ABE 的面积=△AED 的面积=△ADC 的面积= S 2,∴S 1=2S 2.
(2)连接AO .∵CO =DO ,∴△BOD 的面积=△BOC 的面积=3,△AOC 的面积=△AOD 的面积.∵BO =2EO ,∴△EOC 的面积=△BOC 的面积的一半=1.5, △AOB 的面积=2△AOE 的面积.设△AOD 的面积=a ,△AOE 的面积=b ,则a +3=2b ,a =b +1.5,解得:a =6,b =4.5,∴四边形ADOE 的面积为=a +b =6+4.5=10.5.
15.(1)100;(2)75°;(3)n=3.
【分析】
(1)如图:过O 作OP//MN ,由MN//OP//GH 得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB
解析:(1)100;(2)75°;(3)n =3.
【分析】
(1)如图:过O 作OP //MN ,由MN //OP //GH 得∠NAO +∠POA =180°,
∠POB +∠OBH =180°,即∠NAO +∠AOB +∠OBH =360°,即可求出∠AOB ;
(2)如图:分别延长AC 、CD 交GH 于点E 、F ,先根据角平分线求得58NAC ∠=︒,再根据平行线的性质得到58CEF ∠=︒;进一步求得18DBF ∠=︒,17DFB ∠=︒,然后根据三角形外角的性质解答即可;
(3)设BF 交MN 于K ,由∠NAO =116°,得∠MAO =64°,故∠MAE =641
n n ︒⨯+,同理
∠OBH =144°,∠HBF =n ∠OBF ,得∠FBH =1441n n ︒⨯+,从而=n BKA FBH n ∠∠=⨯︒+1441,又∠FKN =∠F +∠FAK ,得
144606411
n n n n ︒︒︒⨯=+⨯++,即可求n . 【详解】
解:(1)如图:过O 作OP //MN ,
∵MN //GHl
∴MN //OP //GH ∴∠NAO +∠POA =180°,∠POB +∠OBH =180°
∴∠NAO +∠AOB +∠OBH =360°
∵∠NAO =116°,∠OBH =144°
∴∠AOB =360°-116°-144°=100°;
(2)分别延长AC 、CD 交GH 于点E 、F ,
∵AC 平分NAO ∠且116NAO ∠=︒,
∴58NAC ∠=︒,
又∵MN //GH ,
∴58CEF ∠=︒;
∵144OBH ∠=︒,36OBG ∠=︒
∵BD 平分OBG ∠,
∴18DBF ∠=︒,
又∵,CDB ∠=︒35
∴351817DFB CDB DBF ∠=∠-∠=-=︒;
∴175875ACD DFB AEF ∠=∠+∠=︒+︒=︒;
(3)设FB 交MN 于K ,
∵116NAO ∠=︒,则MAO ∠=︒64;。

相关文档
最新文档