函数值域求法十五种

合集下载

求函数值域的几种常用方法

求函数值域的几种常用方法

求函数值域的几种常用方法函数值域是指函数在定义域内所有可能的输出值的集合。

求解函数值域通常有几种常用的方法,下面将对这些方法进行详细的介绍。

1.代入法:代入法是求解函数值域最直接的方法。

通过将定义域内的值代入函数表达式,得到对应的函数值,然后将这些函数值集合起来形成函数的值域。

例如对于函数f(x)=x²+1,我们可以将定义域内的各个数值代入该函数,计算函数值,然后再将函数值组成的集合确定为函数的值域。

2.图像法:图像法是通过绘制函数的图像来求解函数的值域。

对于一些简单的函数,可以直接绘制函数的图像,然后观察图像来确定函数的值域。

通过观察函数的图像,我们可以看出函数的上界、下界以及其他特征,从而确定函数的值域。

需要注意的是,通过图像法求解函数值域只能获得大致的范围,如果需要准确求解,请使用其他方法。

3.分析法:分析法是通过对函数表达式进行分析,找出函数的特点来求解函数的值域。

例如对于多项式函数,可以通过对其导数进行分析,找出导数的零点,以及函数在这些零点附近的变化情况,进而确定函数的最值和值域。

另外,还可以通过计算函数的极限来确定函数的值域,例如对于有界闭区间上的连续函数,它的值域就是该函数在这个区间内取得的最大值和最小值之间的闭区间。

4.反函数法:反函数法是通过求解函数的反函数来求解函数的值域。

如果函数存在反函数,并且已知反函数的定义域,则函数的值域就等于反函数的定义域。

可以通过求解函数的反函数来确定函数值域的范围。

5.值域的性质法:对于一些特殊的函数,可以利用其性质来求解函数的值域。

例如三角函数和指数函数等,我们可以利用其周期性、奇偶性和单调性等特点来确定函数的值域。

通过分析这些函数的性质,结合函数的定义域,可以直接得出函数的值域。

需要注意的是,对于复杂的函数,可能需要结合多种方法来求解函数的值域。

有时候还需要利用一些数学工具和理论来辅助求解,如极值定理、介值定理等。

最终获得函数的值域需要结合具体情况,并根据函数的定义域和性质来确定。

函数值域求法大全

函数值域求法大全

函数值域求法大全函数的值域是由定义域和对应法则共同确定。

确定函数的值域是研究函数不可缺少的重要一环。

本文介绍了十一种函数值域求法。

首先是直接观察法,对于一些简单的函数,可以通过观察得到其值域。

例如,对于函数y=1/x,由于x不等于0,因此函数的值域为(-∞,0)U(0,+∞)。

再比如,对于函数y=3-x,由于x的取值范围为(-∞,+∞),因此函数的值域为(-∞,3]。

其次是配方法,这是求二次函数值域最基本的方法之一。

例如,对于函数y=x^2-2x+5,将其配方得到y=(x-1)^2+4,由此可得出函数的值域为[4.+∞)。

还有判别式法,例如对于函数y=(1+x+x^2)/(1+x^2),可以将其化为关于x的一元二次方程,然后根据判别式的值来确定函数的值域。

除此之外,还有其他的函数值域求法,如利用导数、利用反函数、利用奇偶性等方法。

这些方法各有特点,应根据具体情况选择合适的方法来求解。

总之,确定函数的值域是研究函数的重要一环,掌握好函数值域的求法可以帮助我们简化运算过程,事半功倍。

换元法是一种数学方法,可以通过简单的换元将一个函数变为简单函数。

其中,函数解析式含有根式或三角函数公式模型是其题型特征之一。

换元法不仅在求函数的值域中发挥作用,也是数学方法中几种最主要方法之一。

例如,对于函数 $y=x+x^{-1}$,我们可以令 $x-1=t$,则$x=t+1$。

代入原函数,得到$y=t^2+t+1=(t+1)^2+\frac{1}{4}$。

由于 $t\geq 0$,根据二次函数的性质,当 $t=0$ 时,$y$ 取得最小值 $1$,当 $t$ 趋近于正无穷时,$y$ 也趋近于正无穷。

因此,函数的值域为 $[1,+\infty)$。

又如,对于函数 $y=x^2+2x+1-(x+1)^2$,我们可以将 $1-(x+1)^2$ 化简为 $\frac{1}{2}-\left(x+\frac{1}{2}\right)^2$,然后令 $x+1=\cos\beta$,则 $y=\sin\beta+\cos\beta+1$。

函数值域求法十一种

函数值域求法十一种

函数值域求法十一种函数值域求法十一种1.直接观察法对于一些简单的函数,可以通过观察得到其值域。

例如,求函数 $y=\frac{1}{x}$ 的值域。

解:由于 $x\neq 0$,显然函数的值域是:$(-\infty,0)\cup(0,+\infty)$。

2.配方法配方法是求二次函数值域最基本的方法之一。

例如,求函数 $y=x^2+2x+3$ 在 $x\in[-1,2]$ 时的值域。

解:将函数配方得:$y=(x+1)^2+2$。

由二次函数的性质可知:当 $x=-1$ 时,$y_{\max}=2$,当 $x=1$ 时,$y_{\min}=4$。

故函数的值域是:$[2,4]$。

3.判别式法例如,求函数 $y=\frac{1+x+x^2}{1+x^2}$ 在 $x\in[-1,2]$ 时的值域。

解:将函数化为关于 $x$ 的一元二次方程 $(y-1)x^2+(y-1)x+(1-y)=0$。

1)当 $y\neq 1$ 时,$\Delta=(-1)^2-4(y-1)(1-y)\geq 0$,解得:$y\in[\frac{1}{2},2]$。

2)当 $y=1$ 时,$x=\pm 1$,故函数的值域是:$[\frac{1}{2},2]$。

4.反函数法例如,求函数 $y=3x+4$ 的值域。

解:由原函数式可得其反函数为:$x=\frac{y-4}{3}$,其定义域为 $\mathbb{R}$,故函数的值域也为 $\mathbb{R}$。

注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。

函数的值域为:XXX11(x1)2 2令x1t,(t0)则XXX11t2 2化简得XXX11t2函数的值域为(0,1]。

例13.求函数y sinx cosx的值域。

解:由三角函数的性质可知。

1sinx1,1cosx 1故2sinx cosx 2由于sinx cosx的周期为2,所以只需考虑[0,2)的值域即可。

函数值域的十五种求法

函数值域的十五种求法

1. 直接观察法对于一些比较简单的函数,通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域例1. 求函数的值域。

解:∵∴显然函数的值域是:2. 配方法配方法是求二次函数值域最基本的方法之一。

例2. 求函数的值域。

解:将函数配方得:∵由二次函数的性质可知:当x=1时,,当x=-1时,故函数的值域是:[4,8]3. 判别式法例3. 求函数的值域。

解:两边平方整理得:(1)∵∴解得:但此时的函数的定义域由,得由,仅保证关于x的方程:在实数集R有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由求出的范围可能比y的实际范围大,故不能确定此函数的值域为。

可以采取如下方法进一步确定原函数的值域。

∵∴∴代入方程(1)解得:即当时,原函数的值域为:注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。

4. 反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。

例4. 求函数值域。

解:由原函数式可得:则其反函数为:,其定义域为:故所求函数的值域为:5. 函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。

例5. 求函数的值域。

解:由原函数式可得:,可化为:即∵∴即解得:故函数的值域为6. 函数单调性法例6. 求函数的值域。

解:令则在[2,10]上都是增函数所以在[2,10]上是增函数当x=2时,当x=10时,故所求函数的值域为:例7. 求函数的值域。

解:原函数可化为:令,显然在上为无上界的增函数所以,在上也为无上界的增函数所以当x=1时,有最小值,原函数有最大值显然y>0,故原函数的值域为7. 换元法通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作例8. 求函数的值域。

求函数值域的几种常见方法详解

求函数值域的几种常见方法详解

求函数值域的几种常见方法详解函数的值域是指函数在定义域内所有可能的输出值的集合。

求函数值域的方法有几种常见的途径,包括图像法、公式法、定义域分析法和求导数法等。

下面详细介绍这几种方法:1.图像法:通过绘制函数的图像,我们可以直观地看出函数的值域。

通过观察图像的上下界限以及函数的单调性,我们可以大致确定函数的值域。

这种方法适用于简单的函数,特别是连续的函数。

但对于复杂的函数,这种方法可能不太可行。

2.公式法:有些函数可以通过一些数学公式来表示,例如多项式函数、指数函数、对数函数等。

通过观察这些公式的特点,我们可以得到函数的值域。

例如,指数函数的值域是(0,+∞),对数函数的值域是(-∞,+∞)等。

通过数学推导和分析,我们可以得到更复杂函数的值域。

3.定义域分析法:通过分析函数的定义域和性质,我们可以推断出函数的值域。

例如,当函数的定义域为有界闭区间时,值域也是有界闭区间。

当函数的定义域是无界,但函数是有界的,值域也是有界的。

当函数具有对称性或周期性时,我们可以根据这些性质来推断函数的值域。

4.求导数法:对于可导的函数,我们可以通过求导数来研究函数的单调性。

通过研究导数的正负情况以及极值点,我们可以确定函数的值域。

当导数为正时,函数递增,值域是无穷大。

当导数为负时,函数递减,值域是无穷小。

当导数的正负变化时,函数具有极值点,这些点可能是函数值域的边界。

在求函数值域时,我们还可以结合使用以上多种方法,以得到更准确和完整的结果。

同时,需要注意的是,有些函数的值域是无法用简单的数学方法来确定的,这时我们可以利用数值计算和逼近方法来估算函数的值域。

总之,求函数值域是函数分析中的一个重要步骤,可以帮助我们了解函数的性质和行为。

通过应用图像法、公式法、定义域分析法和求导数法等方法,我们可以推断和确定函数的值域。

不同的函数可能适用不同的方法,因此需要根据具体情况综合应用多种方法来进行分析。

函数求值域15种方法

函数求值域15种方法

函数求值域15种方法在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。

研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。

确定函数的值域是研究函数不可缺少的重要一环。

对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。

本文就函数值域求法归纳如下,供参考。

基本知识1.定义:因变量y的取值范围叫做函数的值域(或函数值的集合)。

2.函数值域常见的求解思路:⑴划归为几类常见函数,利用这些函数的图象和性质求解。

⑵反解函数,将自变量x用函数y的代数式形式表示出来,利用定义域建立函数y的不等式,解不等式即可获解。

⑶可以从方程的角度理解函数的值域,从方程的角度讲,函数的值域即为使关于x的方程y=f(x)在定义域内有解的y得取值范围。

特别地,若函数可看成关于x的一元二次方程,则可通过一元二次方程在函数定义域内有解的条件,利用判别式求出函数的值域。

⑷可以用函数的单调性求值域。

⑸其他。

1. 直接观察法对于一些比较简单的函数,通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域例1. 求函数的值域。

解:∵∴显然函数的值域是:2. 配方法配方法是求二次函数值域最基本的方法之一。

例2. 求函数的值域。

解:将函数配方得:∵由二次函数的性质可知:当x=1时,,当x=-1时,故函数的值域是:[4,8]3. 判别式法例3. 求函数的值域。

解:两边平方整理得:(1)∵∴解得:但此时的函数的定义域由,得由,仅保证关于x的方程:在实数集R有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由求出的范围可能比y的实际范围大,故不能确定此函数的值域为。

可以采取如下方法进一步确定原函数的值域。

∵∴∴代入方程(1)解得:即当时,原函数的值域为:注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。

高中数学函数值域的求法(9种)

高中数学函数值域的求法(9种)

函数值域的求法求函数的值域时,要明确两点:一是函数值域的概念,二是函数的定义域和对应关系。

常用的方法有:观察法、换元法、配方法、判别式法、数形结合法、分离常数法、反表示法、中间变量值域法等。

(1)观察法:有的函数结构并不复杂,可以通过对解析式的简单变形和观察,利用熟知的函数的值域求出函数的值域。

如函数211xy +=的值域{}10|≤<y y 。

(2)换元法:运用换元,将已知的函数转化为值域容易确定的另一函数,从而求得原函数的值域。

例如:形如d cx b ax y +±+=(d c b a ,,,均为常数,0≠ac )的函数常用此法。

(3)配方法:若函数是二次函数的形式,即可化为()02≠++=a c bx ax y 型的函数,则可通过配方后再结合二次函数的性质求值域,但要注意给定区间上二次函数最值得求法。

如求函数32+-=x x y 的值域,因为()2212≥+-=x y ,所以所求函数的值域为[)∞+,2。

(4)判别式法:求形如fex dx c bx ax y ++++=22(f e d c b a ,,,,,不同时为0)的值域,常利用去分母的形式,把函数转化为关于x 的一元二次方程,通过方程有实根,判别式0≥∆,求出y 的取值范围,即得到函数的值域。

(5)数形结合法:有些函数的图像比较容易画出,可以通过函数的图像得出函数的值域;或者分段函数也常用画出函数图像的方法判断出函数的值域。

例如:12--+=x x y 。

(6)分离常数法:形如()0≠++=a b ax d cx y 的函数,经常采用分离常数法,将bax d cx ++变形为()b ax a bc d a c b ax a bcd b ax ac +-+=+-++,再结合x 的取值范围确定b ax a bcd +-的取值范围,从而确定函数的值域。

如求函数112+-=x x y 的值域时,因为132+-=x y ,且013≠+x ,所以2≠y ,所以函数的值域为{}2,|≠∈y R y y 且。

函数值域求法十五种

函数值域求法十五种

函数值域求法十五种解:将函数配方得:∵由二次函数的性质可知:当x=1时,,当x=-1时,故函数的值域是:[4,8]3. 判别式法例3. 求函数的值域。

解:两边平方整理得:(1)∵∴解得:但此时的函数的定义域由,得由,仅保证关于x的方程:在实数集R有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由求出的范围可能比y的实际范围大,故不能确定此函数的值域为。

可以采取如下方法进一步确定原函数的值域。

∵∴∴代入方程(1)解得:即当时,原函数的值域为:注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。

4. 反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。

例4. 求函数值域。

解:由原函数式可得:则其反函数为:,其定义域为:故所求函数的值域为:5. 函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。

例5. 求函数的值域。

解:由原函数式可得:,可化为:即∵∴即解得:故函数的值域为6. 函数单调性法例6. 求函数的值域。

解:令则在[2,10]上都是增函数所以在[2,10]上是增函数当x=2时,当x=10时,故所求函数的值域为:例7. 求函数的值域。

解:原函数可化为:令,显然在上为无上界的增函数所以,在上也为无上界的增函数所以当x=1时,有最小值,原函数有最大值显然y>0,故原函数的值域为7. 换元法通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作例8. 求函数的值域。

解:因即故可令∴∵∴∴故所求函数的值域为例9. 求函数的值域。

解:原函数可变形为:可令,则有∴当时,当时,而此时有意义。

故所求函数的值域为例10. 求函数,的值域。

解:令,则由且可得:∴当时,,当时,故所求函数的值域为。

函数求值域15种方法

函数求值域15种方法

函数求值域15种方法方法一:对于已知函数,可以通过求函数的表达式来确定函数的值域。

例如对于f(x)=x^2+1需要求值域,可以将其表示为y=x^2+1,然后观察x和y的关系,可以得到y的值域为[1,+∞)。

方法二:对于一些简单的函数,可以使用数学知识来确定其值域。

例如对于 f(x) = sin(x),由于正弦函数的值域为[-1, 1],因此 f(x) 的值域也是[-1, 1]。

方法三:对于复合函数,可以通过将内部函数的值域代入外部函数中来确定整个函数的值域。

例如对于f(x)=√(x^2+1),内部函数g(x)=x^2+1的值域为[1,+∞),将值域代入外部函数,可以得到f(x)的值域也是[1,+∞)。

方法四:对于分段函数,可以分别求解不同区间上函数的值域,然后将这些值域合并得到整个函数的值域。

例如对于f(x)={x,x<0;x^2,x≥0},可以分别求解x<0和x≥0的情况,得到f(x)的值域为(-∞,0]∪[0,+∞)。

方法五:利用函数的奇偶性来确定函数的值域。

如果函数是奇函数,即f(-x)=-f(x),那么函数的值域关于原点对称;如果函数是偶函数,即f(-x)=f(x),那么函数的值域关于y轴对称。

根据函数的奇偶性可以推断出函数的值域。

方法六:利用函数的周期性来确定函数的值域。

如果函数有周期T,那么函数的值域在一个周期内是相同的。

可以通过观察函数的图像或者函数的性质来确定函数的周期,并进一步确定函数的值域。

方法七:利用函数的极限来确定函数的值域。

可以求函数在正无穷和负无穷的极限,根据极限的性质来确定函数的值域。

如果函数在正无穷的极限是一个确定的值,那么函数的值域是有界的;如果函数在正无穷的极限趋近于正无穷,那么函数的值域是无界的。

方法八:利用函数的导数来确定函数的值域。

可以求函数的导数,然后分析导函数的正负性和极值点,从而确定函数的值域。

如果导函数在一些区间内始终大于零,那么函数在该区间上是单调递增的,可以确定函数的值域;如果导函数在一些区间内始终小于零,那么函数在该区间上是单调递减的,可以确定函数的值域。

求函数值域的十三种方法

求函数值域的十三种方法

求函数值域的十三种方法求函数值域是数学中常见的问题,通过求函数值域可以了解函数的取值范围,对于解决实际问题和理论分析都有重要意义。

下面将介绍求函数值域的十三种方法。

一、观察法观察法是最直观的方法,通过观察函数的定义域和性质,可以初步确定函数的值域。

例如,对于一个关于实数的二次函数,如果其开口向上,则可以判断其值域为大于等于最低点的y坐标的实数集合。

二、代数法代数法是通过运用代数运算的方法求函数值域。

例如,对于一个有理函数,可以通过求其对应的分式函数的极限来确定函数的值域。

三、图像法图像法是通过绘制函数的图像来求函数值域。

通过观察图像的变化趋势,可以确定函数的值域。

例如,对于一个周期函数,可以通过绘制其一个周期内的图像,然后根据图像的波动范围确定函数的值域。

四、导数法导数法是通过求函数的导数来求函数值域。

通过分析导数的增减性和极值点,可以确定函数的值域。

例如,对于一个单调递增函数,其值域为整个定义域;对于一个有界函数,其值域为一个闭区间。

五、反函数法反函数法是通过求函数的反函数来求函数值域。

通过求反函数的定义域,可以得到函数的值域。

例如,对于一个严格单调增函数,其反函数的定义域即为函数的值域。

六、极限法极限法是通过求函数的极限来求函数值域。

通过分析函数的极限可以确定函数的趋势和边界,从而确定函数的值域。

例如,对于一个无界函数,可以通过求其极限来确定函数的值域。

七、积分法积分法是通过求函数的积分来求函数值域。

通过分析函数的积分可以确定函数的曲线下面积,从而确定函数的值域。

例如,对于一个连续非负函数,可以通过求其积分来确定函数的值域。

八、级数法级数法是通过求函数级数的和来求函数值域。

通过分析级数的收敛性和和的性质,可以确定函数的值域。

例如,对于一个幂级数函数,可以通过求级数的收敛域来确定函数的值域。

九、微分方程法微分方程法是通过求函数满足的微分方程来求函数值域。

通过求微分方程的解析解或数值解,可以确定函数的值域。

求函数值域的四种方法

求函数值域的四种方法

求函数值域的四种方法一、观察法。

1.1 这种方法就像是我们用眼睛去打量一个人,直观又简单。

对于一些简单的函数,我们可以直接通过观察函数的性质来确定值域。

比如说一次函数y = 2x + 1,x 可以取任意实数,那随着x的变化,y也会相应地在实数范围内变化,所以这个一次函数的值域就是全体实数。

这就好比我们看一个一目了然的事情,不用费太多周折。

1.2 再看函数y = x²,因为任何实数的平方都大于等于0,所以这个函数的值域就是[0,+∞)。

这就像我们知道太阳总是从东边升起一样确定,一眼就能看出来这个函数值的范围。

二、配方法。

2.1 配方法就像是给函数做个“美容整形”。

拿二次函数y = x² 2x + 3来说,我们可以把它配方成y = (x 1)²+ 2。

因为(x 1)²大于等于0,所以y就大于等于2。

这就好比我们把一个有点杂乱的东西整理得井井有条,然后就能清楚地看到它的价值范围了。

2.2 还有函数y = -x²+ 4x 1,配方后得到y = -(x 2)²+ 3。

由于-(x 2)²小于等于0,所以这个函数的值域就是(-∞,3]。

这就像我们把一个原本模糊不清的东西,通过自己的巧手整理,让它的界限清晰起来。

2.3 配方法就像是一个神奇的魔法,能把复杂的二次函数变得简单易懂,让我们轻松地找出值域这个“宝藏”。

三、换元法。

3.1 换元法有点像“偷梁换柱”。

例如函数y = 2x + √(x 1),我们可以设t = √(x 1)(t≥0),那么x = t²+ 1。

这样原函数就变成了y = 2(t²+ 1)+ t = 2t²+ t + 2。

这就把原来带根号的复杂函数转化成了一个二次函数,然后我们就可以用配方法或者观察法来求值域了。

这就像我们在一个迷宫里,找到了一条新的通道,一下子豁然开朗。

3.2 再比如函数y = x + √(1 x²),我们设x = sinθ(-π/2≤θ≤π/2),那么原函数就变成了y = sinθ+ cosθ。

高中数学求函数值域的解题方法总结(16种)

高中数学求函数值域的解题方法总结(16种)
构造几何图形,由几何的性质,直观明了、方便简捷。这是数形结合思想的体现。
练习:求函数 y = x2 + 9 + (5 − x)2 + 4 的值域。(答案:{y|y≥ 5 2 })
九、比例法:
对于一类含条件的函数的值域的求法,可将条件转化为比例式,代入目标函 数,进而求出原函数的值域。
例:已知 x,y∈R,且 3x-4y-5=0,求函数 z = x2 + y2 的值域。
例:求函数 y = x - 3 + 2x +1 的值域。 点拨:通过换元将原函数转化为某个变量的二次函数,利用二次函数的最值, 确定原函数的值域。
解:设 t = 2x +1 (t≥0),则
x = t2 -1 。 2
于是 y = t2 -1 - 3 + t = (t +1)2 − 4 ≥ 1 − 4 = − 7 .
( )( ) 例:已知 2x2 - x - 3 3x2 + x +1 ≤ 0 ,且满足 x + y = 1,求函数 z = xy + 3x 的值域。
点拨:根据已知条件求出自变量 x 的取值范围,将目标函数消元、配方,可 求出函数的值域。
解:3x2 + x +1 0 ,上述分式不等式与不等式 2x2 - x - 3 ≤ 0 同解,解之得
3 3 3
3
点评:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区 间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值 域。
练习:求函数 y = 3 + 4 - x 的值域。(答案:{y|y≥3})
七、换元法:
以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形 式,进而求出值域。

高一数学三角函数值域的求法

高一数学三角函数值域的求法

故值域为 [
3 3 ,0) (0, ] 6 6
发散思维
2.求函数 y
sin x sin x 3
2
的值域.
分析一: 将分子化为常数,使变量集中到分母中,
从而只考虑分母的取值范围,化繁为简.
分析二: 令 t sin x , 则 t 1,1,去分母,变为一
元二次方程根的分布问题,化新为旧.
2
反表示法 数形结合法
反表示法 数形结合法
分离系数法
数形结合法
有界性法 判别式法
根的分布
单调性法
课后思考
2 2 1.求函数 y a sin x 6a cos x 2a (a R)
作业
sin x cos x 的值域. 2.求函数 y 3 2 sin x 2 cos x
的最值.
课外练习1、2、3、4、 《数学之友》 P 70
; https:/// 苗疆小说网 ; 2019.1 ;
就在刚刚,它爆炸给予叶甫根尼很大震撼,他知道两个女孩冲的太靠前,心里忧心忡忡.那番,他有看到它两个熟悉的身影,女孩子们还在战斗,顿时一颗悬着的心放下. 叶甫根尼知道队伍的冲锋已经刹不住闸,再者敌人的重炮再次装填有几十秒的间隔,那几十秒只怕就是部队的最后机会.他高呼 着口号,率领后续部队,以身先士卒的姿态奋勇冲锋. 战士们的士气被再次鼓舞,加上狙击手的掩护,冲锋继续. ------------ 第一百零七章 攻占教堂 战士们前赴后继的冲锋,他们势如破竹,已经全然不顾地上横七竖八的碎尸,还有燃烧的火焰. 李桃和娜塔莎趴在伞兵坑里,她们的小心脏还 在急速的跳着,以至于娜塔莎亲自瞄准的时候,狙击镜中的准星都晃动的厉害. 因为双手在下意识的都懂,娜塔莎硬着头皮的射击,弹着点都在敌人掩体的沙袋上. 一发不中,二发不中,到

函数值域

函数值域

3 cos θ , 2 + x = 3 sin θ , θ ∈ [0, ] 2 2 则 y = 2 3 cos θ + 3 3 sin θ = 39 sin(θ + arctan ) 3 π 2 2 π 2 由 θ ∈ [0, ] ⇒ θ + arctan ∈ [arctan , + arctan ] ⇒ y max = 39 2 3 3 2 3 y min = 39 ⋅ 2 13 = 2 3 ⇒ 值域为[ 2 3 , 39 ] ax + b 及可化为其形式的函数 cx + d
→ → → → → → → →
|| α | − | β ||≤| α + β |≤| α | + | β | (前者 α , 异向取等,后者同向取等) β
例 16.求函数 y = 2 1 − x + 3 2 + x 的值域 解二: x ∈ [−2,1] ,令 α = ( 2,3), β = ( 1 − x , 2 + x ) 则 y = α ⋅ β ≤| α | ⋅ | β |= 13 1 − x + 2 + x = 当且仅当 α , β 同向时,即 即 y max =
③ 二 次 函 数 f (x) = ax 2 + bx + c(a ≠ 0) 的 定 义 域 为 R , 当 a>0 时 , 值 域 为
2 2 { y | y ≥ ( 4ac − b ) } };当 a<0 时,值域为{ y | y ≤ ( 4ac − b ) } 4a 4a
新新新 新新 源源 源源源源源 源 新新 源源 :/ w w j.x tk g o m x c 源源 源源 /源源 源源 .源源 / h t p y c w 特特特特特 特特 特特 特特 特特 王王王王 新新 王王 .王王 新新 x k t 2 6 o m w c @1 c 新新新 源 源 新新 源 源 源 源 源 新新 源 源源 :/ w w j.x tk g o m x c 源源 源源 /源源 源源 .源源 / h t p y c w 特特特特特 特特 特特 特特 特特 王王王王 新新 x k t 2 . o m w c @1 6 c 王王 王王 新新

函数值域的几种常见求法

函数值域的几种常见求法
,,≤9,
.’.函数的值域为f1,9】.
‰一l,故函数的值域为【一l,+
∞).
m)=4_分一3.2l+5的值域.
利用基本不等式
这种方法需注意一正、二定、 解:令t--2",‘.‘膏E【0,2】,‘= 2-E[1,4],则 贝茗)4‘
・2_。+5=2-~・2:。+5 触)f}-3.2l+5:产1-3.知
例4求函数产皇掣的值
茹。+I
换元法
通过引入—个或多个新变量或
解:产学可化为
(y-5)算2_缸+(y-5)=o 当y-5---O,即y=5时,方程在 当产5≠0,即y≠5时,‘.。互E
利用函数单调性 例l求函数y=2x-3+v石T
的值域. 解:函数的定义域为【l,+∞), 显然函数在其定义域上是单调递增 的,当髫=l时,函数有最小值
x+l
≈+l+—!l-+5
0r+l
};当I=l,Zip 2l_1,也即茹=o时,
户=1.那么铲妒可以看作圆(耳一 1)2妒=l上的点与原点的距离.由
图形可知,(x-1)2=l的点与原
点的距离的最大值为2,最小值为 0,故矿+,的最大值为2.最小值 为0. 责任编辑罗峰
当x+l>0,即菩>一1时√≮算)≥一
万方数据
函数值域的几种常见求法
作者: 作者单位: 刊名: 英文刊名: 年,卷(期): 杜娟 江苏丁沟中学 师道·教研 TEACHER DOCTRINES 2010(11)
本文链接:/Periodical_sd-jy201011019.aspx
代数式代替原来的变量或代数式或 超越式,即换元,我们常常可以化 高次为低次、化分式为整式、化无 理式为有理式、化超越式为代数式 等,这样我们就能将比较复杂的函 数转化成易于求值域的函数. 例3已知髫E【o,2】,求函数

高一求求函数值域的7类题型和15种方法讲义

高一求求函数值域的7类题型和15种方法讲义

高一求求函数值域的7类题型和15种方法讲义题型一:一次函数()0y ax b a =+≠的值域(最值)1、一次函数:()0y ax b a =+≠当其定义域为R ,其值域为R ;2、一次函数()0y ax b a =+≠在区间[],m n 上的最值,只需分别求出()(),f m f n ,并比较它们的大小即可。

若区间的形式为(],n -∞或[),m +∞等时,需结合函数图像来确定函数的值域。

题型二:二次函数)0()(2≠++=a c bx ax x f 的值域(最值)1))00>< 2(1(2 例1例21、反比例函数)0(≠=k x ky 的定义域为{}0x x ≠,值域为{}0y y ≠ 2、形如:cx dy ax b+=+的值域:(1)若定义域为b x R x a ⎧⎫∈≠-⎨⎬⎩⎭时,其值域为c y R y a ⎧⎫∈≠⎨⎬⎩⎭(2)若[],x m n ∈时,我们把原函数变形为d byx ay c-=-,然后利用[],x m n ∈(即x 的有界性),便可求出函数的值域。

例3:函数23321x x y -=-的值域为[)1,3,3⎛⎤-∞+∞ ⎥⎝⎦;若[]1,2x ∈时,其值域为11,511⎡⎤-⎢⎥⎣⎦。

例4:当(]3,1x ∈--时,函数1321x y x -=+的值域34,2⎡⎫--⎪⎢⎣⎭。

练习:已知()312x f x x -+=-,且[)3,2x ∈-,则()f x 的值域为6,5⎛⎤-∞- ⎥⎝⎦。

题型四:二次分式函数22dx ex cy ax bx c++=++的值域一般情况下,都可以用判别式法求其值域。

但要注意以下三个问题:①检验二次项系数为零时,该值时的例6:y 例7:y 例8:y 例9: 当y =当y ≠时,上述方程要在区间(1,-+∞02112y y ≥⎧⎪-⎨->-⎪⎩解得:综合①②得:原函数的值域为:10,8⎡⎤⎢⎥⎣⎦例10题型六:分段函数的值域:一般分别求出每一分段上函数的值域,然后将各个分段上的值域进行合并即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数值域求法十五种在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。

研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。

确定函数的值域是研究函数不可缺少的重要一环。

对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。

本文就函数值域求法归纳如下,供参考。

基本知识1.定义:因变量y的取值范围叫做函数的值域(或函数值的集合)。

2.函数值域常见的求解思路:⑴划归为几类常见函数,利用这些函数的图象和性质求解。

⑵反解函数,将自变量x用函数y的代数式形式表示出来,利用定义域建立函数y的不等式,解不等式即可获解。

⑶可以从方程的角度理解函数的值域,从方程的角度讲,函数的值域即为使关于x的方程y=f(x)在定义域内有解的y得取值范围。

特别地,若函数可看成关于x的一元二次方程,则可通过一元二次方程在函数定义域内有解的条件,利用判别式求出函数的值域。

⑷可以用函数的单调性求值域。

⑸其他。

1. 直接观察法对于一些比较简单的函数,通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域例1. 求函数的值域。

解:∵∴显然函数的值域是:2. 配方法配方法是求二次函数值域最基本的方法之一。

例2. 求函数的值域。

解:将函数配方得:∵由二次函数的性质可知:当x=1时,,当x=-1时,故函数的值域是:[4,8]3. 判别式法例3. 求函数的值域。

解:两边平方整理得:(1)∵∴解得:但此时的函数的定义域由,得由,仅保证关于x的方程:在实数集R有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由求出的范围可能比y的实际范围大,故不能确定此函数的值域为。

可以采取如下方法进一步确定原函数的值域。

∵∴∴代入方程(1)解得:即当时,原函数的值域为:注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。

4. 反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。

例4. 求函数值域。

解:由原函数式可得:则其反函数为:,其定义域为:故所求函数的值域为:5. 函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。

例5. 求函数的值域。

解:由原函数式可得:,可化为:即∵∴即解得:故函数的值域为6. 函数单调性法例6. 求函数的值域。

解:令则在[2,10]上都是增函数所以在[2,10]上是增函数当x=2时,当x=10时,故所求函数的值域为:例7. 求函数的值域。

解:原函数可化为:令,显然在上为无上界的增函数所以,在上也为无上界的增函数所以当x=1时,有最小值,原函数有最大值显然y>0,故原函数的值域为7. 换元法通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作例8. 求函数的值域。

解:因即故可令∴∵∴∴故所求函数的值域为例9. 求函数的值域。

解:原函数可变形为:可令,则有∴当时,当时,而此时有意义。

故所求函数的值域为例10. 求函数,的值域。

解:令,则由且可得:∴当时,,当时,故所求函数的值域为。

例11. 求函数的值域。

解:由,可得故可令∵∴当时,当时,故所求函数的值域为:8. 数形结合法其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。

[要学习网,只做中学生最喜欢、最实用的学习论坛,地址手机版地址]例12. 求函数的值域。

解:原函数可化简得:y=|x-2|+|x+8|上式可以看成数轴上点P(x)到定点A(2),B(-8)间的距离之和。

由上图可知,当点P在线段AB上时,y=|x-2|+|x+8|=|AB|=10当点P在线段AB的延长线或反向延长线上时,y=|x-2|+|x+8|>|AB|=10故所求函数的值域为:例13. 求函数的值域。

解:原函数可变形为:上式可看成x轴上的点P(x,0)到两定点A(3,2),B(-2,-1)的距离之和,由图可知当点P为线段与x轴的交点时,,故所求函数的值域为例14. 求函数的值域。

解:将函数变形为:上式可看成定点A(3,2)到点P(x,0)的距离与定点B(-2,1)到点P(x,0)的距离之差。

即:y=|AP|-|BP|由图可知:(1)当点P在x轴上且不是直线AB与x轴的交点时,如点P',则构成△ABP',根据三角形两边之差小于第三边,有即:(2)当点P恰好为直线AB与x轴的交点时,有综上所述,可知函数的值域为:注:由例13,14可知,求两距离之和时,要将函数式变形,使A、B两点在x轴的两侧,而求两距离之差时,则要使A,B两点在x轴的同侧。

如:例13的A,B两点坐标分别为:(3,2),(-2,-1),在x轴的同侧;例14的A,B 两点坐标分别为(3,2),(2,-1),在x轴的同侧。

9. 不等式法利用基本不等式,求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时需要用到拆项、添项和两边平方等技巧。

例15. 求函数的值域。

解:原函数变形为:当且仅当tanx=cotx即当时,等号成立故原函数的值域为:例16. 求函数y=2sinxsin2x的值域。

解:y=4sinxsinxcosx当且仅当,即当时,等号成立。

由可得:故原函数的值域为:10. 映射法原理:因为在定义域上x与y是一一对应的。

故两个变量中,若知道一个变量范围,就可以求另一个变量范围。

例17. 求函数的值域。

解:∵定义域为由得故或解得故函数的值域为11.最值法对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域。

[要学习网,只做中学生最喜欢、最实用的学习论坛,地址手机版地址]例18.已知,且满足x+y=1,求函数z=xy+3x的值域。

点拨:根据已知条件求出自变量x的取值范围,将目标函数消元、配方,可求出函数的值域。

解:∵,上述分式不等式与不等式同解,解之得-1≤x≤3/2,又x+y=1,将y=1-x代入z=xy+3x中,得(-1≤x≤3/2),∴且x∈[-1,3/2],函数z在区间[-1,3/2]上连续,故只需比较边界的大小。

当x=-1时,z=-5;当x=3/2时,z=15/4。

∴函数z的值域为{z∣-5≤z≤15/4}。

点评:本题是将函数的值域问题转化为函数的最值。

对开区间,若存在最值,也可通过求出最值而获得函数的值域。

12.构造法根据函数的结构特征,赋予几何图形,数形结合。

例19.求函数的值域。

点拨:将原函数变形,构造平面图形,由几何知识,确定出函数的值域。

解:原函数变形为作一个长为4、宽为3的矩形ABCD,再切割成12个单位正方形。

设HK=x,则EK=2-x,KF=2+x,,。

由三角形三边关系知,AK+KC≥AC=5。

当A、K、C三点共线时取等号。

∴原函数的知域为{y|y≥5}。

点评:对于形如函数(a,b,c均为正数),均可通过构造几何图形,由几何的性质,直观明了、方便简捷。

这是数形结合思想的体现。

13.比例法对于一类含条件的函数的值域的求法,可将条件转化为比例式,代入目标函数,进而求出原函数的值域。

例20.已知x,y∈R,且3x-4y-5=0,求函数的值域。

点拨:将条件方程3x-4y-5=0转化为比例式,设置参数,代入原函数。

解:由3x-4y-5=0变形得,(x3)/4=(y-1)/3=k(k为参数)∴x=3+4k,y=1+3k,∴。

当k=-3/5时,x=3/5,y=-4/5时,。

函数的值域为{z|z≥1}.点评:本题是多元函数关系,一般含有约束条件,将条件转化为比例式,通过设参数,可将原函数转化为单函数的形式,这种解题方法体现诸多思想方法,具有一定的创新意识。

14.利用多项式的除法例21.求函数y=(3x+2)/(x+1)的值域。

点拨:将原分式函数,利用长除法转化为一个整式与一个分式之和。

解:y=(3x+2)/(x+1)=3-1/(x+1)。

∵1/(x+1)≠0,故y≠3。

∴函数y的值域为y≠3的一切实数。

点评:对于形如y=(ax+b)/(cx+d)的形式的函数均可利用这种方法。

15. 多种方法综合运用例22. 求函数的值域。

解:令,则(1)当t>0时,,当且仅当t=1,即x=-1时取等号,所以(2)当t=0时,y=0。

综上所述,函数的值域为:注:先换元,后用不等式法例23. 求函数的值域。

解:令,则∴∴当时,当时,此时都存在,故函数的值域为注:此题先用换元法,后用配方法,然后再运用的有界性。

总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。

相关文档
最新文档