调控下颌骨发育的转录因子家族的研究进展
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
调控下颌骨发育的转录因子家族的研究进展
脊椎动物的下颌骨发育涉及一系列信号分子和转录因子,颅神经嵴细胞(CNCC)的迁移、定位和调控是下颌骨发育的关键。
转录因子家族在颅面组织发育中有着重要的作用,其表达在某种程度上决定了CNCC的特异性。
此文就DLX基因家族、MSX基因家族、OTX基因家族、GSC基因家族、PITX基因家族、PAX基因家族、PRX基因家族、BARX基因家族和HAND基因家族以及其他调控下颌骨发育转录因子家族的研究进展作一综述。
标签:下颌骨;发育;调控;转录因子
Research progress on transcription factor families regulating mandibular developmentChen Yanze1, Shi Ce1, Sun Hongchen1, Lin Chongtao2.(1. Dept. of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun 130021, China;
2. Dept. of Periodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China)
[Abstract]The development of vertebrate mandible involves a series of signaling molecules and transcription factors. The migration, orientation and regulation of the cranial neural crest cell(CNCC)are the key to mandibular development. The transcription factor families play an essential role in the development of mandible and their ex-pression partly determines the specificity of CNCC. In this review, researches on DLX, MSX, OTX, GSC, PITX, PAX, PRX, BARX, HAND and other transcription factor families involved in regulation of mandibular development were reviewed.
[Key words]mandible;development;regulation;transcription factor族调控软骨细胞、成骨细胞和破骨细胞等成骨细胞系的增殖和分化[1],可以靶向识别内皮素1信号,参与口唇区发育等多种生命活动。
小鼠中含有7个Dlx基因,即Dlx-1~7,其中Dlx-4和Dlx-7是一个基因的同功型,这些基因成对集中转录[2]。
胚胎学研究证实,小鼠在胚胎期第10~10.5天即决定了颅面结构的发育和表型,这对小鼠BA-1始基的分化和发育非常重要[3]。
胚胎期第10~10.5天正是Dlx基因家族在BA-1中模式表达调控的阶段,因此,Dlx基因家族是调控BA-1发育的主要候选基因[4]。
目前,有关BA-1发育的研究多集中于Dlx基因家族。
在颅面发育中,DLX基因家族成员在外胚层和间充质均有表达,其编码子分布在下颌骨始基的不同区域。
DLX-1和2基因调控上颌骨发育,DLX-5和6基因决定下颌骨的最终成形。
钝化DLX-1和2基因导致上颌骨缺陷,DLX-5和6基因缺陷导致下颌骨发生同源异型转化,形似上颌骨。
DLX-1、2、5和6基因在BA-1的各个区域内调控下游基因的差异性表达[5]。
!!!!!2010, 58(7):669-678.
[18] Kamnasaran D, Morin F, Gekas J. Prenatal diagnosis and molecular genetic studies on a new case of agnathia-otocephaly[J]. Fetal Pediatr Pathol, 2010, 29(4):207-211.
[19]K觟ntges G, Lumsden A. Rhombencephalic neural crest segmentation is preserved throughout craniofacial ontogeny[J]. Development, 1996, 122(10):3229-3242.
[20]Izzi L, Narimatsu M, Attisano L. Sumoylation differentially regulates Goosecoid-mediated transcriptional repression[J]. Exp Cell Res, 2008, 314(7):1585-1594.
[21]Renaud S, Auffray JC, de la Porte S. Epigenetic effects on the mouse mandible:Common features and discrepancies in remodeling due to muscular dystrophy and response to food consistency[J]. BMC Evol Biol, 2010, 10:28.
[22] Yoshida K, Saiga H. Left-right asymmetric expression of Pitx is regulated by the asymmetric Nodal signaling through an intronic enhancer in Ciona intestinalis [J]. Dev Genes Evol, 2008, 218(7):353-360.
[23]Szeto DP, Rodriguez-Esteban C, Ryan AK, et al. Role of the Bicoid-related homeodomain factor Pitx1 in specifying hindlimb morphogenesis and pituitary development[J]. Genes Dev, 1999, 13(4):484-494.
[24]Mitsiadis TA, Drouin J. Deletion of the Pitx1 genomic locus affects mandibular tooth morphogenesis and expression of the Barx1 and Tbx1 genes[J]. Dev Biol, 2008, 313(2):887-896.
[25]Pasterkamp RJ, Smidt MP, Burbach JPH. Development and Engineering of Dopamine Neurons[M]. New York:Springer, 2009:47-57.
[26]Yu X, He F, Zhang T, et al. Cerberus functions as a BMP agonist to synergistically induce nodal expression during left-right axis determination in the chick embryo[J]. Dev Dyn, 2008, 237(12):3613-3623.
[27]Lin CR, Kioussi C, O’Connell S, et al. Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis[J]. Nature, 1999, 401(6750):279-282.
[28]Lu MF, Pressman C, Dyer R, et al. Function of Rieger syndrome gene in left-right asymmetry and craniofacial development[J]. Nature, 1999, 401(6750):276-278.
[29]Ferran JL, S仳nchez-Arrones L, Sandoval JE, et al. A model of early molecular regionalization in the chicken embryonic pretectum[J]. J Comp Neurol, 2007, 505(4):379-403.
[30]Lang D, Powell SK, Plummer RS, et al. PAX genes:Roles in development, pathophysiology, and cancer[J]. Biochem Pharmacol, 2007, 73(1):1-14.
[31]Balic A, Adams D, Mina M. Prx1 and Prx2 cooperatively regulate the morphogenesis of the medial region of the mandibular process[J]. Dev Dyn, 2009, 238(10):2599-2613.
[32]Doufexi AE, Mina M. Signaling pathways regulating the expression of Prx1 and Prx2 in the chick mandibular mesenchyme[J]. Dev Dyn, 2008, 237(11):3115-3127.
[33]Jones FS, Kioussi C, Copertino DW, et al. Barx2, a new homeobox gene of the Bar class, is expressed in neural and craniofacial structures during development[J]. Proc Natl Acad Sci U S A, 1997, 94(6):2632-2637.
[34]Hjalt TA, Murray JC. The human BARX2 gene:Genomic structure, chromosomal localization, and single nucleotide polymorphisms[J]. Genomics, 1999, 62(3):456-459.
[35]Funato N, Chapman SL, McKee MD, et al. Hand2 controls osteoblast differentiation in the branchial arch by inhibiting DNA binding of Runx2[J]. Development, 2009, 136(4):615-625.
[36]Barbosa AC, Funato N, Chapman S, et al. Hand transcription factors cooperatively regulate development of the distal midline mesenchyme[J]. Dev Biol, 2007, 310(1):154-168.
[37]Thomas T, Kurihara H, Yamagishi H, et al. A signaling cascade involving endothelin-1, dHAND and msx1 regulates development of neural-crest-derived branchial arch mesenchyme[J]. Development, 1998, 125(16):3005-3014.
[38]Mina M. Regulation of mandibular growth and morphogenesis[J]. Crit Rev Oral Biol Med, 2001, 12(4):276-300.。