高一下册物理 机械能守恒定律单元复习练习(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、第八章机械能守恒定律易错题培优(难)
1.一足够长的水平传送带上放置质量为m=2kg小物块(物块与传送带之间动摩擦因数为
0.2
μ=),现让传送带从静止开始以恒定的加速度a=4m/s2开始运动,当其速度达到
v=12m/s后,立即以相同大小的加速度做匀减速运动,经过一段时间后,传送带和小物块均静止不动。
下列说法正确的是()
A.小物块0
到4s内做匀加速直线运动,后做匀减速直线运动直至静止
B.小物块0到3s内做匀加速直线运动,之后做匀减速直线运动直至静止
C.物块在传送带上留下划痕长度为12m
D.整个过程中小物块和传送带间因摩擦产生的热量为80J
【答案】ACD
【解析】
【分析】
【详解】
物块和传送带的运动过程如图所示。
AB.由于物块的加速度
a1=µg=2m/s2
小于传送带的加速度a2=4 m/s2,所以前面阶段两者相对滑动,时间1
2
v
t
a
==3s,此时物块的速度v1=6 m/s,传送带的速度v2=12 m/s
物块的位移
x1=
1
2
a1t12=9m
传送带的位移
x2=
1
2
a2t12=18m
两者相对位移为
121
x x x
∆=-=9m
此后传送带减速,但物块仍加速,B错误;
当物块与传送带共速时,由匀变速直线运动规律得
12- a2t2=6+ a1t2
解得t 2
=1s
因此物块匀加速所用的时间为
t 1+ t 2=4s
两者相对位移为2x ∆= 3m ,所以A 正确。
C .物块开始减速的速度为
v 3=6+ a 1t 2=8 m/s
物块减速至静止所用时间为
3
31
v t a =
=4s 传送带减速至静止所用时间为
3
42
v t a =
=2s 该过程物块的位移为
x 3=
1
2
a 1t 32=16m 传送带的位移为
x 2=
1
2
a 2t 42=8m 两者相对位移为
3x ∆=8m
回滑不会增加划痕长度,所以划痕长为
12x x x ∆=∆+∆=9m+3m=12m
C 正确;
D .全程相对路程为
L =123x x x ∆+∆+∆=9m+3m+8m=20m
Q =µmgL =80J
D 正确; 故选ACD 。
2.某实验研究小组为探究物体冲上粗糙斜面能达到的最大位移x 与斜面倾角θ的关系,使某一物体每次以不变的初速率v 0沿足够长的斜面向上运动,如图甲所示,调节斜面与水平面的夹角θ,实验测得x 与θ的关系如图乙所示,取g =10m/s 2。
则由图可知( )
A .物体的初速率v 0=3m/s
B .物体与斜面间的动摩擦因数µ=0.8
C .图乙中x min =0.36m
D .取初始位置所在水平面为重力势能参考平面,当θ=37°,物体上滑过程中动能与重力势能相等时,物体上滑的位移为0.1875m 【答案】AC 【解析】 【分析】 【详解】 A .当2
π
θ=
时,物体做竖直上抛运动,不受摩擦力作用,根据
202v gh =
可得
03m/s v =
A 正确;
B .当0θ=时,物体沿水平面做减速运动,根据动能定理
2
012
mv mgx μ= 代入数据解得
=0.75μ
B 错误;
C .根据动能定理
2
01cos sin 2
mv mgx mgx μθθ=+ 整理得
9
20(0.75cos sin )
x θθ=
+
因此位移最小值
min 0.36m x =
=
C 正确;
D .动能与重力势能相等的位置
o 2
o o 01sin 37(sin 37cos37)2
mgx mv mgx mgx μ=
-+ 整理得
0.25m x =
D 错误。
故选AC 。
3.在一水平向右匀速传输的传送带的左端A 点,每隔T 的时间,轻放上一个相同的工件,已知工件与传送带间动摩擦因素为,工件质量均为m ,经测量,发现后面那些已经和传送带达到相同速度的工件之间的距离为x ,下列判断正确的有
A .传送带的速度为
x T
B .传送带的速度为22gx μ
C .每个工件与传送带间因摩擦而产生的热量为
1
2
mgx μ D .在一段较长的时间内,传送带因为传送工件而将多消耗的能量为2
3mtx T
【答案】AD 【解析】 【分析】 【详解】
A .工件在传送带上先做匀加速直线运动,然后做匀速直线运动,每个工件滑上传送带后运动的规律相同,可知x =vT ,解得传送带的速度v =
x
T
.故A 正确; B .设每个工件匀加速运动的位移为x ,根据牛顿第二定律得,工件的加速度为μg ,则传送带的速度2v gx μ=s 与x 的关系.故B 错误; C .工件与传送带相对滑动的路程为
22
2
22v v x x v g g gT μμμ∆=-=
则摩擦产生的热量为
Q =μmg △x =2
2
2mx T
故C 错误;
D .根据能量守恒得,传送带因传送一个工件多消耗的能量
22212mx E mv mg x T
μ=+∆=
在时间t 内,传送工件的个数f
W E η
=
则多消耗的能量
23mtx E nE T
'==
故D 正确。
故选AD 。
4.如图所示,固定在竖直平面内的圆管形轨道的外轨光滑,内轨粗糙。
一小球从轨道的最低点以初速度v 0向右运动,球的直径略小于圆管的直径,球运动的轨道半径为R ,空气阻力不计,重力加速度大小为g ,下列说法一定正确的是 ( )
A .若05v gR <
B .若02v gR <,小球不可能到达圆周最高点
C .若02v gR <,小球运动过程中机械能守恒
D .若05v gR > 【答案】BC 【解析】 【分析】 【详解】
AD. 小球如果不挤压内轨,则小球到达最高点速度最小时,小球的重力提供向心力,由牛顿第二定律,在最高点,有
2
v mg m R
=
由于小球不挤压内轨,则小球在整个运动过程中不受摩擦力作用,只有重力做功,机械能守恒,从最低点到最高点过程中,由机械能守恒定律,有
22
011222
mv mv mg R =+⋅ 解得
05v gR =若小球速度05v gR <是最终在圆心下方做往复运动,故A 错误;若小球速度05v gR >轨,小球运动过程中机械能守恒,故D 错误;
B. 如果轨道内轨光滑,小球在运动过程中不受摩擦力,小球在运动过程中机械能守恒,如果小球运动到最高点时速度为0,由机械能守恒定律,有
2
0122
mv mg R =⋅ 解得
02v gR =
现在内轨粗糙,如果小球速度02v gR <,小球在到达最高点前一定受到摩擦力作用,即小球在到达最高点前速度已为零,小球不可能到达圆周最高点,故B 正确;
C.若小球上升到与圆心等高处时速度为零,此时小球只与外轨作用,不受摩擦力,只有重力做功,由机械能守恒定律,有
2
012
mv mgR = 解得
02v gR =
若02v gR <,小球只与外轨作用,不受摩擦力作用,小球运动过程中机械能守恒,故C 正确。
故选BC 。
5.如图所示,质量为0.1kg 的小滑块(视为质点)从足够长的固定斜面OM 下端以20m/s 的初速度沿斜面向上运动,小滑块向上滑行到最高点所用的时间为3s ,小滑块与斜面间的动摩擦因数为
3
,取重力加速度大小g =10m/s 2,下列说法正确的是( )
A .斜面的倾角为60°
B .小滑块上滑过程损失的机械能为5J
C .小滑块上滑的最大高度为10m
D .若只减小斜面的倾角,则小滑块上滑的最大高度可能比原来高 【答案】AB 【解析】 【分析】 【详解】
A .物体上滑的加速度为
203
v a t =
= 由牛顿第二定律
sin cos mg mg ma θμθ+=
解得
=60θ
选项A 正确;
B .小滑块上滑过程损失的机械能为
03120cos 6013J=5J 2322
v E mg t μ∆=⋅
=⨯⨯⨯⨯ 选项B 正确;
C .小滑块上滑的最大高度为
0203sin 60sin 603m=15m 22v h l t ==
=⨯⨯ 选项C 错误; D .根据动能定理
2
01cos sin 2
h mgh mg mv μθθ+⋅
= 解得
20
2(1)
tan v h g μ
θ
=
+
则若只减小斜面的倾角θ,则小滑块上滑的最大高度减小,选项D 错误。
故选AB 。
6.如图,将一质量为2m 的重物悬挂在轻绳一端,轻绳的另一端系一质量为m 的环,环套在竖直固定的光滑直杆上,光滑的轻小定滑轮与直杆的距离为d ,杆上的A 点与定滑轮等高,杆上的B 点在A 点正下方距离A 为d 处.现将环从A 点由静止释放,不计一切摩擦阻力,下列说法中正确的是()
A .环到达
B 处时,重物上升的高度2
d B .环能下降的最大距离为
43
d C .环到达B 处时,环与重物的速度大小之比为
22
D .环从A 到B 减少的机械能等于重物增加的机械能 【答案】BD 【解析】 【分析】 【详解】
根据几何关系有,环从A 下滑至B 点时,重物上升的高度h=2d−d ,故A 错误;环下滑到最大高度为h 时环和重物的速度均为0,此时重物上升的最大高度为22 h d d +-,根据机械能守恒有222(?)mgh mg h d d =+-,解得:h=
43
d
d ,故B 正确.对B 的速度沿绳子方向和垂直于绳子方向分解,在沿绳子方向上的分速度等于重物的速度,有:vcos45°=v
重物,所以
2v v 重物
=,故C 错误;环下滑过程中无摩擦力对系统做功,故系统机械能守恒,即满足环减小的机械能等于重物增加的机械能,故D 正确;故选BD .
7.如图所示,一个半径和质量不计的定滑轮O 固定在天花板上,物块B 和A 通过轻弹簧栓接在一起,竖直放置在水平地面上保持静止后,再用不可伸长的轻绳绕过滑轮连接物块A 和C ,物块C 穿在竖直固定细杆上,OA 竖直,OC 间距3m l =且水平,此时A 、C 间轻绳恰好拉直而无张力作用。
已知物块A 、B 、C 质量均为2kg 。
不计一切摩擦,g 取10m/s 2.现将物块C 由静止释放,下滑h =4m 时物块B 刚好被提起,下列说法正确的是( )
A .弹簧劲度系数为20N/m
B .此过程中A 、
C 组成的系统机械能总和一直不变 C .此时物块C 的速度大小为10
8
m/s 41 D .此时物块A 的速度大小为10
8m/s 41
【答案】AD 【解析】 【分析】 【详解】
A .初态时,弹簧的压缩量
1mg
x k
=
根据勾股定理可知,C 下降h =4m 时,A 物体上升了2m ,根据题意可知
2kx mg =
122x x +=
整理可得
121m x x ==,20N/m k =
A 正确;
B .物体
C 开始下降时,弹簧处于压缩状态,弹力对物体A 做正功,系统机械能增加,后来弹簧处于伸长状态,弹力对物体A 做负功,系统的机械能减小,B 错误;
CD .由于弹簧的伸长量与压缩量相等,整个过程弹簧对A 物体做功等于零,因此A 、C 组成的系统,初态的机械能与末态的机械能相等
22
A C 1211()22
mgh mv mv mg x x =
+++ 设绳子与竖直方向夹角为θ ,由于A 、C 沿着绳的速度相等
C A cos v v θ=
且
4
cos 5
h l θ=
=
整理得
C 1010
m/s 41
v =,A 108m/s 41v =
C 错误,
D 正确。
故选AD 。
8.2016年6月18日神舟九号完成最后一次变轨,在与天宫一号对接之前神舟九号共完成了4次变轨。
神舟九号某次变轨的示意图如图所示。
在A 点从椭圆轨道Ⅱ进入圆形轨道Ⅰ,B 为轨道Ⅱ上的一点,关于飞船的运动,下列说法中正确的有( )
A .在轨道Ⅱ上经过A 的速度小于经过
B 的速度
B .在轨道Ⅱ上经过A 的动能小于在轨道Ⅰ上经过A 的动能
C .在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期
D .在轨道Ⅱ上经过A 的加速度小于在轨道Ⅰ上经过A 的加速度 【答案】ABC
【解析】 【分析】 【详解】
A .在轨道Ⅱ上从A 到
B 万有引力做正功,即合外力做正功,物体的动能增加,所以A 的速度小于经过B 的速度,故A 项正确;
B .由于从轨道Ⅱ到轨道Ⅰ神舟九号要点火加速做离心运动,所以在轨道Ⅱ上经过A 的动能小于在轨道Ⅰ上经过A 的动能,故B 正确;
C .根据开普勒第三定律3
2a k T
=,由图可知轨道Ⅱ的半长轴比轨道Ⅰ的半径更小,所以在
轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期,故C 正确;
D .根据
2
GmM
ma r =,由于神舟九号在轨道Ⅱ和轨道Ⅰ上离地球的距离相同即r 相同,所以在轨道Ⅱ上经过A 的加速度等于在轨道Ⅰ上经过A 的加速度,故D 错误。
故选ABC 。
9.戽斗是古代最常见的提水器具,两人相对而立,用手牵拉绳子,从低处戽水上岸,假设戽斗装水后重20kg ,左右两根轻绳长均为2m ,最初绳子竖直下垂,戽水时两人均沿水平方向朝相反的方向做直线运动,戽斗以加速度21m /s 匀加速度直线上升,己知重力加速度
210m /s g =,(绳子可以看成轻质细绳)则戽斗上升1m 时( )
A .两绳的拉力大小均为200N
B 2m /s
C .两人对戽斗做的功均为110J
D .绳子拉力的总功率为2202W 【答案】CD 【解析】 【分析】 【详解】
A .此时戽斗已经向上移动了1m ,对戽斗进行受力分析如下
沿戽斗运动方向根据牛顿第二定律有
2cos T ABD mg ma ∠-=
其中1cos 2
ABD ∠=
带入数据解得
220N T =
故A 错误;
B .上升1m 的过程根据速度位移公式可得
202v ax -=戽
如下图,戽斗与人在沿绳方向的分速度相等
cos cos ABD v v BAD ∠=人戽
联立并带入数据解得
2m/s v =戽
2
m/s 3
v =
人 故B 错误;
C .戽斗上升过程根据动能定理有
2
122
W mgh mv -=戽人
带入数据解得每人对戽斗做的功W 人为110J ,故C 正确; D .上升1m 后的瞬时功率为
222c 2s 0W o P Fv T ABD v ===∠⨯戽
故D 正确。
故选CD 。
10.如图所示,长度相同的三根轻杆构成一个正三角形支架,在A 处固定质量为2m 的小球,B 处固定质量为m 的小球,支架悬挂在O 点,可绕过O 点并与支架所在平面相垂直的固定轴转动,开始时OB 与地面相垂直。
放手后开始运动,在不计任何阻力的情况下,下列说法正确的是( )
A .A 处小球到达最低点时速度为0
B .A 处小球机械能的减少量等于B 处小球机械能的增加量
C .B 处小球向左摆动所能达到的最高位置应高于A 处小球开始运动时的高度
D .当支架从左向右回摆时,A 处小球能回到起始高度 【答案】BCD 【解析】 【分析】 【详解】
BD .因A 处小球质量大,位置高,所以三角支架处于不稳定状态,释放后支架就会向左摆动,摆动过程中只有小球受到的重力做功,故系统的机械能守恒,A 处小球机械能的减少量等于B 处小球机械能的增加量,当支架从左向右回摆时,A 处小球能回到起始高度,选项B 、D 正确;
A .设支架边长是L ,则A 处小球到最低点时小球下落的高度为1
2
L ,B 处小球上升的高度也是
12L ,但A 处小球的质量比B 处小球的大,故有1
2
mgL 的重力势能转化为小球的动能,因而此时A 处小球的速度不为0,选项A 错误;
C .当A 处小球到达最低点时有向左运动的速度,还要继续向左摆,B 处小球仍要继续上升,因此B 处小球能达到的最高位置比A 处小球的最高位置还要高,选项C 正确。
故选BC
D 。
11.如图所示,ABCD 是一个盆式容器,盆内侧壁与盆底BC 的连接处都是一段与BC 相切的圆弧,BC 为水平的,其距离0.50m d =,盆边缘的高度为0.30m h =.在A 处放一个质量为m 的小物块并让其从静止出发下滑.已知盆内侧壁是光滑的,而盆底BC 面与小物块间的动摩擦因数为0.10μ=.小物块在盆内来回滑动,最后停下来,则停的地点到B 的距离为( ).
A .0.50m
B .0.25m
C .0.10m
D .0
【答案】D 【解析】 【分析】
小物块滑动过程中,重力做功和摩擦阻力做功,全过程应用动能定理可进行求解。
【详解】
由小物块从A 点出发到最后停下来,设小物块在BC 面上运动的总路程为S ,整个过程用动能定理有:
0mgh mgs μ-=
所以小物块在BC 面上运动的总路程为
0.3
m 3m 0.1
h
s μ
=
=
= 而d =0.5 m ,刚好3个来回,所以最终停在B 点,即距离B 点为0 m 。
故选D 。
【点睛】
本题对全过程应用动能定理,关键要抓住滑动摩擦力做功与总路程的关系。
12.一物体沿光滑水平面运动时,其速度v 随位移x 变化的关系如图所示,则物体
A .相同时间内速度变化量相同
B .相同时间内速度变化量越来越小
C .相同位移内所受外力做功相同
D .相同位移内所受外力的冲量相同 【答案】D 【解析】 【分析】
本题考查速度位移图像的理解,速度和位移成正比,分析相关物理量的变化。
【详解】
由图得速度和位移成正比,物体不是做匀变速直线运动。
AB .随着位移增大,物体速度均匀增大,所以相同时间内物体位移越来越大,速度变化量越来越大,AB 错误;
CD .相同位移速度变化量相同,对同一物体,动量变化量相同,但动能变化量不同,所以所受外力的冲量相同,做功不同,C 错误,D 正确; 故选D 。
13.如图所示,光滑竖直杆固定,杆上套一质量为m 的环,环与轻弹簧一端相连,弹簧的另一端固定在O 点,O 点与B 点在同一水平线上,BC >AB ,AC =h ,环从A 处由静止释放运动到B 点时弹簧仍处于伸长状态,整个运动过程中弹簧始终处于弹性限度内,重力加速度为g ,环从A 处开始运动时的加速度大小为2g ,则在环向下运动的过程中( )
A .环在
B 处的加速度大小为0 B .环在
C 2gh C .环从B 到C 先加速后减速
D .环的动能和弹簧弹性势能的和先增大后减小 【答案】C 【解析】 【分析】 【详解】
A .环在
B 处时,水平方向受到弹簧的拉力和杆的支持力,二力平衡。
竖直方向受到重力,所以环在B 处的加速度大小为g ,故A 错误;
B .因为B
C >AB ,则环从A 到C 弹簧的弹性势能增加,根据环和弹簧组成的系统机械能守恒得
2
P 12
C mgh mv E =
+∆ P 0E ∆>,则2C v gh
故B 错误;
C .环从A 处开始运动时的加速度大小为2g ,根据牛顿第二定律得
=mg F ma +竖
得环从A 处时弹簧拉力的竖直向下的分量
=F mg 竖
设杆上A 点关于B 点的对称性为D 点(D 点在B 、C 之间),则环在D 点时,根据牛顿第二定律得
+
mg F ma
=
竖
得
a=0
所以环从B到D做加速运动,环从D到C做减速运动,在D点时速度最大,故C正确;D.因环和弹簧的系统机械能守恒,则系统的动能、弹性势能和重力势能之和不变,而重力势能在环向下运动的过程中一直减小,则环的动能和弹簧弹性势能的和一直增大,故D 错误。
故选C。
14.如图所示,一质量为M的人站在台秤上,一根长为R的悬线一端系一个质量为m的小球,手拿悬线另一端,小球绕悬线另一端点在竖直平面内做圆周运动,且小球恰好能通过圆轨道最高点,则下列说法正确的是()
A.小球运动到最高点时,小球的速度为零
B.当小球运动到最高点时,台秤的示数最小,且为Mg
C.小球在a、b、c三个位置时,台秤的示数相同
D.小球从最高点运动到最低点的过程中台秤的示数增大,人处于超重状态
【答案】C
【解析】
【分析】
【详解】
A.小球恰好能通过圆轨道最高点,由
2
v
=
mg m
R
得
=
v gR
A项错误;
B.小球运动到最高点时,细线中拉力为零,台秤的示数为Mg,但不是最小,当小球处于如图所示状态时,
设其速度为v 1,由牛顿第二定律有
2
1cos v T mg m R
θ+=
由最高点到该位置,由机械能守恒定律
22111
(1cos )22
mv mgR mv θ+-= 解得悬线拉力为
T =3mg (1-cosθ)
其分力为
T y =T cosθ=3mgcosθ-3mgcos 2θ
当cosθ=0.5,即θ=60°时,台秤的最小示数为
F min =Mg -T y =Mg -0.75mg
故B 错误;
C .小球在a 、b 、c 三个位置,竖直方向的加速度均为g ,小球均处于完全失重状态,台秤的示数相同,故C 正确;
D .人没有运动,不会有超重失重状态,故D 错误。
故选C 。
15.一个小球从光滑固定的圆弧槽的A 点由静止释放后,经最低点B 运动到C 点的过程中,小球的动能E k 随时间t 的变化图像可能是( )
A .
B .
C .
D .
【答案】B 【解析】 【分析】
【详解】
动能k E 与时间t 的图像上的任意一点的斜率表示重力做功的瞬时功率,即
k E W
P t t
∆==∆∆ A 点与C 点处小球速度均为零,B 点处小球速度方向与重力方向垂直,所以A 、B 、C 三点处的重力做功功率为零,则小球由A 点运动到B 点的过程中力做功功率(k E -t 的斜率)是先增大再减小至零,小球由B 点运动到C 点的过程中,重力做功功率(k E -t 的斜率)也是先增大再减小至零,故B 正确,A 、C 、D 错误; 故选B 。
【点睛】
关键知道动能k E 与时间t 的图像上的任意一点的斜率表示重力做功的瞬时功率。