Conducting Polymer

合集下载

(完整版)史上最全——高分子材料与工程专业英语词汇大全

(完整版)史上最全——高分子材料与工程专业英语词汇大全

高分子材料与工程专业词汇大全(包含:一高分子化学二高分子反应三高分子物理四高分子加工技术和应用四大部分的全部词汇~~)一高分子化学coiling type polymer二高分子反应齐聚反应(曾用名)22 调聚反应telomerization23 自发聚合spontaneous polymerization24 预聚合prepolymerization25 后聚合post polymerization26 再聚合repolymerization27 铸塑聚合, 浇铸聚合cast polymerization28 链[式]聚合chain polymerization29 烯类聚合,乙烯基聚合vinyl polymerization30 双烯[类]聚合diene polymerization31 加[成]聚[合]addition polymerization32自由基聚合,游离基聚合(曾用名) free radical polymerization, radical polymerization33控制自由基聚合,可控自由基聚合controlled radical polymerization,CRP34 活性自由基聚合living radical polymerization35 原子转移自由基聚合atom transfer radical polymerization,ATRP36 反向原子转移自由基聚合reverse atom transfer radical polymerization,RATRP37可逆加成断裂链转移reversible addition fragmentation chaintransfer,RAFT38 氮氧[自由基]调控聚合nitroxide mediated polymerization39 稳定自由基聚合stable free radical polymerization,FRP40 自由基异构化聚合free radical isomerization polymerization41 自由基开环聚合radical ring opening polymerization42 氧化还原聚合redox polymerization43 无活性端聚合,dead end polymerization死端聚合(曾用名)44 光[致]聚合photo polymerization45 光引发聚合light initiated polymerization46 光敏聚合photosensitized polymerization47 四中心聚合four center polymerization48 电荷转移聚合charge transfer polymerization49 辐射引发聚合radiation initiated polymerization50 热聚合thermal polymerization51 电解聚合electrolytic polymerization52 等离子体聚合plasma polymerization53 易位聚合metathesis polymerization54 开环易位聚合ring opening metathesis polymerization,ROMP55 精密聚合precision polymerization56 环化聚合cyclopolymerization57 拓扑化学聚合topochemical polymerization58 平衡聚合equilibrium polymerization59 离子[型]聚合ionic polymerization60 辐射离子聚合radiation ion polymerization61 离子对聚合ion pair polymerization62正离子聚合,阳离子聚合cationic polymerization63 碳正离子聚合carbenium ion polymerization,carbocationicpolymerization64 假正离子聚合pseudo cationic polymerization65 假正离子活[性]聚合pseudo cationic living polymerization66 活性正离子聚合living cationic polymerization67负离子聚合,阴离子聚合anionic polymerization68 碳负离子聚合carbanionic polymerization69 活性负离子聚合living anionic polymerization70 负离子环化聚合anionic cyclopolymerization71 负离子电化学聚合anionic electrochemical polymerization72 负离子异构化聚合anionic isomerization polymerization73 烯丙基聚合allylic polymerization74 活[性]聚合living polymerization75 两性离子聚合zwitterion polymerization76 齐格勒-纳塔聚合Ziegler Natta polymerization77 配位聚合coordination polymerization78 配位离子聚合coordinated ionic polymerization79 配位负离子聚合coordinated anionic polymerization80 配位正离子聚合coordinated cationic polymerization81 插入聚合insertion polymerization82定向聚合,立构规整聚合stereoregular polymerization, stereospecific polymerization83 有规立构聚合tactic polymerization84 全同立构聚合isospecific polymerization85 不对称诱导聚合asymmetric induction polymerization86 不对称选择性聚合asymmetric selective polymerization87 不对称立体选择性聚合asymmetric stereoselective polymerization88 对映[体]不对称聚合enantioasymmetric polymerization89 对映[体]对称聚合enantiosymmetric polymerization90 异构化聚合isomerization polymerization91 氢转移聚合hydrogen transfer polymerization92 基团转移聚合group transfer polymerization,GTP93 消除聚合elimination polymerization94 模板聚合matrix polymerization,templatepolymerization95 插层聚合intercalation polymerization96 无催化聚合uncatalyzed polymerization97 开环聚合ring opening polymerization98 活性开环聚合living ring opening polymerization99 不死的聚合immortal polymerization100 酶聚合作用enzymatic polymerization101聚加成反应,逐步加成聚合(曾用名)polyaddition102 偶联聚合coupling polymerization103 序列聚合sequential polymerization104 闪发聚合,俗称暴聚flash polymerization105 氧化聚合oxidative polymerization106 氧化偶联聚合oxidative coupling polymerization107 逐步[增长]聚合step growth polymerization108缩聚反应condensation polymerization,polycondensation109酯交换型聚合transesterification type polymerization,ester exchange polycondensation110 自催化缩聚autocatalytic polycondensation111 均相聚合homogeneous polymerization112 非均相聚合heterogeneous polymerization113 相转化聚合phase inversion polymerization114 本体聚合bulk polymerization, mass polymerization115 固相聚合solid phase polymerization气相聚合gaseous polymerization,116gas phase polymerization117 吸附聚合adsorption polymerization118 溶液聚合solution polymerization119 沉淀聚合precipitation polymerization120 淤浆聚合slurry polymerization121 悬浮聚合suspension polymerization122 反相悬浮聚合reversed phase suspension polymerization 123 珠状聚合bead polymerization, pearl polymerization 124 分散聚合dispersion polymerization125 反相分散聚合inverse dispersion polymerization126 种子聚合seeding polymerization127 乳液聚合emulsion polymerization128 无乳化剂乳液聚合emulsifier free emulsion polymerization 129 反相乳液聚合inverse emulsion polymerization130 微乳液聚合micro emulsion polymerization131 连续聚合continuous polymerization132 半连续聚合semicontinuous polymerization133 分批聚合,间歇聚合batch polymerization134 原位聚合in situ polymerization135 均相缩聚homopolycondensation136 活化缩聚activated polycondensation137 熔融缩聚melt phase polycondensation138 固相缩聚solid phase polycondensation139 体型缩聚three dimensional polycondensation140 界面聚合interfacial polymerization141 界面缩聚interfacial polycondensation142 环加成聚合cycloaddition polymerization143 环烯聚合cycloalkene polymerization144 环硅氧烷聚合cyclosiloxane polymerization145 引发剂initiator146 引发剂活性activity of initiator147 聚合催化剂polymerization catalyst148 自由基引发剂radical initiator149 偶氮[类]引发剂azo type initiator150 2,2′偶氮二异丁腈2,2'- azobisisobutyronitrile, AIBN151 过氧化苯甲酰benzoyl peroxide, BPO152 过硫酸盐引发剂persulphate initiator153 复合引发体系complex initiation system154 氧化还原引发剂redox initiator电荷转移复合物,charge transfer complex, CTC155电荷转移络合物156 聚合加速剂,聚合促进剂polymerization accelerator157 光敏引发剂photoinitiator158 双官能引发剂bifunctional initiator,difunctional initiator 159 三官能引发剂trifunctional initiator160 大分子引发剂macroinitiator161 引发-转移剂initiator transfer agent, inifer162 引发-转移-终止剂initiator transfer agent terminator, iniferter 163 光引发转移终止剂photoiniferter164 热引发转移终止剂thermoiniferter165 正离子催化剂cationic catalyst166 正离子引发剂cationic initiator167 负离子引发剂ionioic initiator168 共引发剂coinitiator169 烷基锂引发剂alkyllithium initiator170 负离子自由基引发剂anion radical initiator171 烯醇钠引发剂alfin initiator172 齐格勒-纳塔催化剂Ziegler Natta catalyst173 过渡金属催化剂transition metal catalyst 174 双组分催化剂bicomponent catalyst175 后过渡金属催化剂late transition metal catalyst 176 金属络合物催化剂metal complex catalyst 177 [二]茂金属催化剂metallocene catalyst178 甲基铝氧烷methylaluminoxane, MAO179μ氧桥双金属烷氧化物催化剂bimetallic μ-oxo alkoxides catalyst180 双金属催化剂bimetallic catalyst 181 桥基茂金属bridged metallocene182限定几何构型茂金属催化剂constrained geometry metallocene catalyst183 均相茂金属催化剂homogeneous metallocene catalyst 184 链引发chain initiation185 热引发thermal initiation186 染料敏化光引发dye sensitized phtoinitiation187 电荷转移引发charge transfer initiation188 诱导期induction period189 引发剂效率initiator efficiency190 诱导分解induced decomposition191 再引发reinitiation192 链增长chain growth, chain propagation193 增长链端propagating chain end194 活性种reactive species195 活性中心active center196 持续自由基persistent radical197 聚合最高温度ceilling temperature of polymerization 198 链终止chain termination199 双分子终止bimolecular termination200 初级自由基终止primary radical termination201 扩散控制终止diffusion controlled termination202 歧化终止disproportionation termination203 偶合终止coupling termination204 单分子终止unimolecular termination205 自发终止spontaneous termination206 终止剂terminator207 链终止剂chain terminating agent208 假终止pseudotermination209 自发终止self termination210 自由基捕获剂radical scavenger211 旋转光闸法rotating sector method212 自由基寿命free radical lifetime213 凝胶效应gel effect214 自动加速效应autoacceleration effect215 链转移chain transfer216 链转移剂chain transfer agent217 尾咬转移backbitting transfer218 退化链转移degradation (degradative) chain transfer219 加成断裂链转移[反应]addition fragmentation chain transfer 220 链转移常数chain transfer constant①缓聚作用retardation221②延迟作用222 阻聚作用inhibition223 缓聚剂retarder224 缓聚剂,阻滞剂retarding agent225 阻聚剂inhibitor226 封端[反应]end capping227 端基terminal group228 聚合动力学polymerization kinetics229 聚合热力学polymerization thermodynamics 230 聚合热heat of polymerization231 共聚合[反应]copolymerization232 二元共聚合binary copolymerization233 三元共聚合ternary copolymerization234 竞聚率reactivity ratio235 自由基共聚合radical copolymerization236 离子共聚合ionic copolymerization237 无规共聚合random copolymerization238 理想共聚合ideal copolymerization239 交替共聚合alternating copolymerization240 恒[组]分共聚合azeotropic copolymerization241 接枝共聚合graft copolymerization242 嵌段共聚合block copolymerization243 开环共聚合ring opening copolymerization244 共聚合方程copolymerization equation245 共缩聚copolycondensation246 逐步共聚合step copolymerization247 同种增长homopropagation248 自增长self propagation249 交叉增长cross propagation250 前末端基效应penultimate effect251 交叉终止cross termination252 Q值Q value253 e值e value254 Q,e概念Q, e scheme255 序列长度分布sequence length distribution 256 侧基反应reaction of pendant group257 扩链剂,链增长剂chain extender258 交联crosslinking259 化学交联chemical crosslinking260 自交联self crosslinking261 光交联photocrosslinking262 交联度degree of crosslinking263 硫化vulcanization264 固化curing265 硫[黄]硫化sulfur vulcanization266 促进硫化accelerated sulfur vulcanization 267 过氧化物交联peroxide crosslinking268 无规交联random crosslinking269 交联密度crosslinking density270 交联指数crosslinking index271 解聚depolymerization三高分子物理23蠕虫状链worm-like chain24柔性链flexible chain25链柔性chain flexibility26刚性链rigid chain27棒状链rodlike chain28链刚性chain rigidity29聚集aggregation30聚集体aggregate31凝聚、聚集coalescence32链缠结chain entanglement33凝聚缠结cohesional entanglement34物理缠结physical entanglement35拓扑缠结topological entanglement36凝聚相condensed phase37凝聚态condensed state38凝聚过程condensing process39临界聚集浓度critical aggregation concentration 40线团-球粒转换coil-globule transition41受限链confined chain42受限态confined state43物理交联physical crosslinking44统计线团statistical coil45等效链equivalent chain46统计链段statistical segment47链段chain segment48链构象chain conformation49无规线团模型random coil model50无规行走模型random walk model51自避随机行走模型self avoiding walk model52卷曲构象coiled conformation53高斯链Gaussian chain54无扰尺寸unperturbed dimension55扰动尺寸perturbed dimension56热力学等效球thermodynamically equivalent sphere 57近程分子内相互作用short-range intramolecular interaction 58远程分子内相互作用long-range intramolecular interaction 59链间相互作用interchain interaction60链间距interchain spacing61长程有序long range order62近程有序short range order63回转半径radius of gyration64末端间矢量end-to-end vector65链末端chain end66末端距end-to-end distance67无扰末端距unperturbed end-to-end distance68均方根末端距root-mean-square end-to-end distance 69伸直长度contour length70相关长度persistence length71主链;链骨架chain backbone72支链branch chain73链支化chain branching74短支链short-chain branch75长支链long-chain branch76支化系数branching index77支化密度branching density78支化度degree of branching79交联度degree of crosslinking80网络network81网络密度network density82溶胀swelling83平衡溶胀equilibrium swelling84分子组装,分子组合molecular assembly85自组装self assembly86微凝胶microgel87凝胶点gel point88可逆[性]凝胶reversible gel89溶胶-凝胶转化sol-gel transformation90临界胶束浓度critical micelle concentration,CMC91组成非均一性constitutional heterogenity, compositionalheterogenity92摩尔质量平均molar mass average 又称“分子量平均”93数均分子量number-average molecular weight,number-average molar mass94重均分子量weight-average molecular weight,weight-average molar mass95Z均分子量Z(Zaverage)-average molecular weight,Z-molar mass96黏均分子量viscosity-average molecular weight,viscosity-average molar mass97表观摩尔质量apparent molar mass98表观分子量apparent molecular weight99聚合度degree of polymerization100动力学链长kinetic chain length101单分散性monodispersity102临界分子量critical molecular weight103分子量分布molecular weight distribution,MWD104多分散性指数polydispersity index,PID105平均聚合度average degree of polymerization106质量分布函数mass distribution function107数量分布函数number distribution function108重量分布函数weight distribution function109舒尔茨-齐姆分布Schulz-Zimm distribution110最概然分布most probable distribution 曾用名“最可几分布”111对数正态分布logarithmic normal distribution 又称“对数正则分布”112聚合物溶液polymer solution113聚合物-溶剂相互作用polymer-solvent interaction114溶剂热力学性质thermodynamic quality of solvent115均方末端距mean square end to end distance116均方旋转半径mean square radius of gyration117θ温度theta temperature118θ态theta state119θ溶剂theta solvent120良溶剂good solvent121不良溶剂poor solvent122位力系数Virial coefficient 曾用名“维里系数”123排除体积excluded volume124溶胀因子expansion factor125溶胀度degree of swelling126弗洛里-哈金斯理论Flory-Huggins theory127哈金斯公式Huggins equation128哈金斯系数Huggins coefficient129χ(相互作用)参数χ-parameter130溶度参数solubility parameter131摩擦系数frictional coefficient132流体力学等效球hydrodynamically equivalent sphere133流体力学体积hydrodynamic volume134珠-棒模型bead-rod model135球-簧链模型ball-spring [chain] model136流动双折射flow birefringence, streaming birefringence 137动态光散射dynamic light scattering138小角激光光散射low angle laser light scattering139沉降平衡sedimentation equilibrium140沉降系数sedimentation coefficient141沉降速度法sedimentation velocity method142沉降平衡法sedimentation equilibrium method143相对黏度relative viscosity144相对黏度增量relative viscosity increment145黏度比viscosity ratio146黏数viscosity number147[乌氏]稀释黏度计[Ubbelohde] dilution viscometer148毛细管黏度计capillary viscometer149落球黏度计ball viscometer150落球黏度ball viscosity151本体黏度bulk viscosity152比浓黏度reduced viscosity153比浓对数黏度inherent viscosity, logarithmic viscositynumber154特性黏数intrinsic viscosity, limiting viscosity number155黏度函数viscosity function156零切变速率黏度zero shear viscosity157端基分析analysis of end group158蒸气压渗透法vapor pressure osmometry, VPO159辐射的相干弹性散射coherent elastic scattering of radiation 160折光指数增量refractive index increment161瑞利比Rayleigh ratio162超瑞利比excess Rayleigh ratio163粒子散射函数particle scattering function164粒子散射因子particle scattering factor165齐姆图Zimm plot166散射的非对称性dissymmetry of scattering167解偏振作用depolarization168分级fractionation169沉淀分级precipitation fractionation170萃取分级extraction fractionation171色谱分级chromatographic fractionation172柱分级column fractionation173洗脱分级,淋洗分级elution fractionation174热分级thermal fractionation175凝胶色谱法gel chromatography176摩尔质量排除极限molar mass exclusion limit177溶剂梯度洗脱色谱法solvent gradient [elution] chromatography 178分子量排除极限molecular weight exclusion limit179洗脱体积elution volume180普适标定universal calibration181加宽函数spreading function182链轴chain axis183等同周期identity period184链重复距离chain repeating distance185晶体折叠周期crystalline fold period186构象重复单元conformational repeating unit 187几何等效geometrical equivalence188螺旋链helix chain189构型无序configurational disorder190链取向无序chain orientational disorder191构象无序conformational disorder192锯齿链zigzag chain193双[股]螺旋double stranded helix194[分子]链大尺度取向global chain orientation195结晶聚合物crystalline polymer196半结晶聚合物semi-crystalline polymer197高分子晶体polymer crystal198高分子微晶polymer crystallite199结晶度degree of crystallinity, crystallinity 200高分子[异质]同晶现象macromolecular isomorphism 201聚合物形态学morphology of polymer202片晶lamella, lamellar crystal203轴晶axialite204树枝[状]晶体dendrite205纤维晶fibrous crystal206串晶结构shish-kebab structure207球晶spherulite208折叠链folded chain209链折叠chain folding210折叠表面fold surface211折叠面fold plane212折叠微区fold domain213相邻再入模型adjacent re-entry model 214接线板模型switchboard model215缨状微束模型fringed-micelle model216折叠链晶体folded-chain crystal217平行链晶体parallel-chain crystal218伸展链晶体extended-chain crystal219球状链晶体globular-chain crystal220长周期long period221近程结构short-range structure222远程结构long-range structure223成核作用nucleation224分子成核作用molecular nucleation225阿夫拉米方程Avrami equation226主结晶primary crystallization227后期结晶secondary crystallization 228外延结晶,附生结晶epitaxial crystallizationepitaxial growth229外延晶体生长,附生晶体生长230织构texture231液晶态liquid crystal state232溶致性液晶lyotopic liquid crystal233热致性液晶thermotropic liquid crystal 234热致性介晶thermotropic mesomorphism 235近晶相液晶smectic liquid crystal236近晶中介相smectic mesophase237近晶相smectic phase238条带织构banded texture239环带球晶ringed spherulite240向列相nematic phase241盘状相discotic phase242解取向disorientation243分聚segregation244非晶相amorphous phase 曾用名“无定形相”245非晶区amorphous region246非晶态amorphous state247非晶取向amorphous orientation248链段运动segmental motion249亚稳态metastable state250相分离phase separation251亚稳相分离spinodal decomposition252bimodal decomposition253微相microphase254界面相boundary phase255相容性compatibility256混容性miscibility257不相容性incompatibility258不混容性immiscibility259增容作用compatiibilizationlower critical solution temperature, LCST260最低临界共溶(溶解)温度upper critical solution temperature , UCST261最高临界共溶(溶解)温度262浓度猝灭concentration quenching263激基缔合物荧光excimer fluorescence264激基复合物荧光exciplex fluorescence265激光共聚焦荧光显微镜laser confocal fluorescence microscopy266单轴取向uniaxial orientation267双轴取向biaxial orientation, biorientation268取向度degree of orientation269橡胶态rubber state270玻璃态glassy state271高弹态elastomeric state272黏流态viscous flow state273伸长elongation274高弹形变high elastic deformation275回缩性,弹性复原nerviness276拉伸比draw ratio, extension ratio277泊松比Poisson's ratio278杨氏模量Young's modulus279本体模量bulk modulus280剪切模量shear modulus281法向应力normal stress282剪切应力shear stress283剪切应变shear strain284屈服yielding285颈缩现象necking 又称“细颈现象”286屈服应力yield stress287屈服应变yield strain288脆性断裂brittle fracture289脆性开裂brittle cracking290脆-韧转变brittle ductile transition291脆化温度brittleness(brittle) temperature292延性破裂ductile fracture293冲击强度impact strength294拉伸强度tensile strength 又称“断裂强度,breaking strength”295极限拉伸强度ultimate tensile strength296抗撕强度tearing strength 又称“抗扯强度”297弯曲强度flexural strength, bending strength298弯曲模量bending modulus299弯曲应变bending strain300弯曲应力bending stress301收缩开裂shrinkage crack302剪切强度shear strength303剥离强度peeling strength304疲劳强度fatigue strength, fatigue resistance305挠曲deflection306压缩强度compressive strength307压缩永久变形compression set308压缩变形compressive deformation309压痕硬度indentation hardness310洛氏硬度Rockwell hardness311布氏硬度Brinell hardness312抗刮性scrath resistance313断裂力学fracture mechanics314力学破坏mechanical failure315应力强度因子stress intensity factor316断裂伸长elongation at break317屈服强度yield strength318断裂韧性fracture toughness319弹性形变elastic deformation320弹性滞后elastic hysteresis321弹性elasticity322弹性模量modulus of elasticity323弹性回复elastic recovery324不可回复形变irrecoverable deformation325裂缝crack 俗称“龟裂”326银纹craze327形变;变形deformation328永久变形deformation set329剩余变形residual deformation330剩余伸长residual stretch331回弹,回弹性resilience332延迟形变retarded deformation333延迟弹性retarded elasticity334可逆形变reversible deformation335应力开裂stress cracking336应力-应变曲线stress strain curve337拉伸应变stretching strain338拉伸应力弛豫tensile stress relaxation339热历史thermal history340热收缩thermoshrinking341扭辫分析torsional braid analysis,TBA342应力致白stress whitening343应变能strain energy344应变张量strain tensor345剩余应力residual stress346应变硬化strain hardening347应变软化strain softening348电流变液electrorheological fluid349假塑性pseudoplastic350拉胀性auxiticity351牛顿流体Newtonian fluid352非牛顿流体non-Newtonian fluid353宾汉姆流体Bingham fluid354冷流cold flow355牛顿剪切黏度Newtonian shear viscosity356剪切黏度shear viscosity357表观剪切黏度apparent shear viscosity358剪切变稀shear thinning359触变性thixotropy360塑性形变plastic deformation361塑性流动plastic flow362体积弛豫volume relaxation363拉伸黏度extensional viscosity364黏弹性viscoelasticity365线性黏弹性linear viscoelasticity366非线性黏弹性non-linear viscoelasticity367蠕变creep368弛豫[作用] relaxation 又称“松弛”369弛豫模量relaxation modulus370蠕变柔量creep compliance371热畸变温度heat distortion temperature372弛豫谱relaxation spectrum373推迟[时间]谱retardation [time] spectrum374弛豫时间relaxation time375推迟时间retardation time376动态力学行为dynamic mechanical behavior 377动态黏弹性dynamic viscoelasticity378热-机械曲线thermo-mechanical curve379动态转变dynamic transition380储能模量storage modulus381损耗模量loss modulus382复数模量complex modulus383复数柔量complex compliance384动态黏度dynamic viscosity385复数黏度complex viscosity386复数介电常数complex dielectric permittivity 387介电损耗因子dielectric dissipation factor388介电损耗常数dielectric loss constant389介电弛豫时间dielectric relaxation time390玻璃化转变glass transition391玻璃化转变温度glass-transition temperature392次级弛豫secondary relaxation393次级转变secondary transition394次级弛豫温度secondary relaxation temperature 395开尔文模型Kelvin model396麦克斯韦模型Maxwell model四高分子加工技术和应用。

polymer

polymer
• Low noise level 低噪音 • Unique Accessories 独一无二的附件
• Solids Clamps 固体扭转夹具
• SER-Tool 熔体拉伸工具 • UV-cell 紫外单元 • All other options available 其他可选项
6
HAAKE MARS + UTCE/PC
21
Application of HAAKE Rheometer in Polymer Characterization 哈克流变仪在聚合物表征中的应用
Above a critical concentration
lg h0
Mc h0 is proportional to M3.4
due to the entanglement of the polymer molecules Below Mc there is no entanglement, h0 is ―only‖ proportional to MW 由于聚合物的缠结,聚合物溶
h0 ~ MW3.4
h 0 ~ MW
液在临界浓度Mc之上时,零剪
切粘度与分子量的3.4次方成正 比 在临界浓度之下,零剪切粘度
只与分子量1次方成正比
14
Mc
lg MW
The Viscosity Curve…粘度曲线的意义
• Contains valuable information 包含具有重要价值的信息
Shear Stress t h0 Zero Shear Viscosity零剪切粘度
ge0
gr 0 G0
Equilibrium Deformation平衡形变
Retardation Retardation time 松弛时间 Complex Modulus 复合模量

高分子材料专业英语词汇

高分子材料专业英语词汇

poly-聚,多methyl-甲基deca-十,癸ethyl-乙基non-九,壬propyl-丙基octa-八,辛butyl-丁基hepta-七,庚hydro-氢hexa-六,己chlor-氯penta-五,戊bromo-溴tetra-四amine胺tri-三carbo-碳twi-二oxy-氧di-二-ane烷烃mono-单-ene烯烃-ol醇-yne炔烃vinyl-乙烯基cyclo-环fluor-氟aryl-芳基nitri-氮alkyl-烷基nitro-硝基ortho-邻位iodo-碘para-对位alkadiene二烯烃meta-间位thermo-热ether醚nucleo-核ketone-酮sulph-硫ester酯carboxylic acid羧酸amide酰胺acid anhydride酸酐ammonium铵Sodium Hydroxide NaOHPotassium Hydroxide KOHTriethylamine三乙胺Cis-2-butylene顺丁二烯m-diemethylbenzene间二甲苯cyclohexanol环己醇3-pentanone三戊酮Ethyl acetate乙酸乙酯flask烧瓶funnel漏斗beaker烧杯Graduated cylinder量筒condenser冷凝管separatory funnel分液漏斗test tube试管chromatograph column色谱柱stirbar搅拌子(Multiple)adaptor分水器(适配器)glove手套balance天平Basic concepts基本概念macromolecule大分子polymer聚合物monomer单体structure unit结构单元repeating unit重复单元monomer unit单体单元chain element链单元degree of polymerization聚合度homopolymer均聚物copolymer共聚物molecular weight分子量polydispersity of molecule weight分子量分布number-average molecular weight数均分子量weight-average molecular weight重均分子量Z-average molecular weight Z均分子量viscosity-average molecular weight粘均分子量linear线型的branched枝化的cross-linked交联的cis顺式trans反式stereo isomerism立体异构isotactic全同syndiotactic间同atactic无轨mechanism机理chain polymerization连锁聚合step polymerization逐步聚合addition polymerization加聚condensation polymerization缩聚free radical自由基initiation引发thermal initiator热引发剂peroxide initiator过氧化物引发剂azo initiator偶氮引发剂decomposition分解redox initiator氧化还原引发剂photoinitiator光引发剂propagation增长thermodynamics热力学entropy熵enthalpy焓steric strain空间张力polar effect极效应resonance共振chain transfer链转移hydrogen abstraction去氢反应solvent溶剂chain transfer agent链转移剂termination终止disproportionation不均匀combination结合auto-acceleration自动加速ionic polymerization离子聚合cationic polymerization阳离子聚合anionic polymerization阴离子聚合protic acids质子酸carbenium salts碳正离子盐electron donating groups 供电子基团stabilization稳定性hydride shift氢迁移organometallic initiators有机金属引发剂polar solvent极性溶剂electron withdrawing groups拉电子基团。

功能高分子导电高分子

功能高分子导电高分子

第五章 导电高分子
1.3.2 复合型导电高分子 复合型导电高分子是在本身不具备导电性的 高分子材料中掺混入大量导电物质,如炭黑、金 属粉、箔等,通过分散复合、层积复合、表面复 合等方法构成的复合材料,其中以分散复合最为 常用。
第五章 导电高分子
与结构型导电高分子不同,在复合型导电高分 子中,高分子材料本身并不具备导电性,只充当了 粘合剂的角色。导电性是通过混合在其中的导电性 的物质如炭黑、金属粉末等获得的。由于它们制备 方便,有较强的实用性,因此在结构型导电高分子 尚有许多技术问题没有解决的今天,人们对它们有 着极大的兴趣。复合型导电高分子用作导电橡胶、 导电涂料、导电粘合剂、电磁波屏蔽材料和抗静电 材料,在许多领域发挥着重要的作用。
导电高分子 (Conducting Polymers)
本章主要内容
一、前言 二、导电高聚物的定义,分类 三、导电高聚物的导电机理
四、导电高聚物的应用
一、前言
1
2 3
绝缘体
半导体 导体 超导体
< 10-10
按电学性能分类
10-10~102
>102
4

电导率 , s/cm (西门子/厘米) 通常,聚合物材料属于绝缘体范畴。
座右铭:去冒险吧
麦克迪尔米德小传 (Alan G. MacDiarmid,1929~)
1927年生于新西兰。 曾就读于新西兰大学、美国 威斯康星大学以及英国剑桥 大学。 1955年开始在宾夕法尼亚大 学任教。 1973年开始研究导电高分子 2000年获诺贝尔化学奖
发表过六百多篇学术论文 拥有二十项专利技术
2、导电高分子的发现
1970’s
1971 1862 1916 1957 1967 1968

导电高分子

导电高分子

导电高分子电磁屏蔽材料07高分子材料与工程袁凯20070810080122摘要导电高分子材料根据材料的组成可以分成复合型导电高分子材料(composite conductive polymers)和本征型导电高分子材料(intrinsic conductive polymers)两大类,后者也被称为结构导电高分子材料(structure conductive polymes)。

其中复合型导电高分子材料是由普通高分子结构材料与金属或碳等导电材料,通过分散、层合、梯度复合、表面镀层等复合方式构成。

其导电作用主要通过其中的导电材料来完成。

本征导电高分子材料也被称为结构型导电高分子材料,其高分子本身具备传输电荷的能力,这种导电聚合物如果按其结构特征和导电机理还可以进一步分成以下三类:载流子为自由电子的电子导电聚合物;载流子为能在聚合物分子间迁移的正负离子的离子导电聚合物;以氧化还原反应为电子转移机理的氧化还原型导电聚合物。

后者的导电能力是由于在可逆氧化还原反应中电子在分子间的转移产生的。

由于不同导电聚合物的导电机理不同,因此各自的结构也有较大差别。

关键词导电高分子(Conductive polymer)复合型(composite)本证结构型(structure) 电磁屏蔽(Shielding)前言近年来,随着科学技术和电子工业的高速发展,各种数字化、高频化的电子电器设备在工作时向空间辐射了大量不同波长和频率的电磁波,与此同时,电子元器件灵敏度越来越高,很容易受到外界电磁干扰而出现误动、图像障碍以及声音障碍等。

电磁辐射产生的电磁干扰不仅影响到电子产品的性能实现,而且由此而引起的电磁污染会对人类和其它生物体造成严重的危害。

为解决电磁波辐射造成的干扰与泄漏,主要采用电磁屏蔽材料进行屏蔽,实现电子电器设备与环境相调和、相共存的电磁兼容环境(Electro- Magnetic Compatibility,EMC)。

NOA65紫外胶介绍

NOA65紫外胶介绍

NOA65紫外胶或UV胶介绍----金属固装件上粘结透镜、将塑料粘结至玻璃、进行光学透镜冷加工。

粘结断面相对较厚的场合。

柔性胶,适用于低应力应用,特别针对要粘结具有不同膨胀系数的不同材质。

该紫外胶的另一个特别应用是生产聚合物分散液晶(PDLC)、液晶调光玻璃(如上图)时的必备添加剂。

Norland紫外固化光学胶NOA65是一种透明、无色、在紫外光照射下固化的液态光聚物。

因为它是单组分固化胶且是100%实体,只要粘合处能被紫外UV光照射,在粘合光学部件时,它便显现出许多突出优点。

使用NOA65无影胶省去了其它光学粘和系统中通常需要预混合、干燥或热固化等操作。

并且固化速度极快,取决于应用厚度和接受施加紫外光的能量。

固化后的胶体非常柔软,以使应力减至最低。

UV胶NOA65特别适合于粘结断面相对较厚的场合。

NOA65胶具有足够弹性以确保应力最小,特别针对要粘结具有不同膨胀系数的不同材质。

紫外胶NOA65的典型应用包括在金属框架上粘结透镜、将塑料粘结至玻璃、进行光学冷加工等。

该紫外胶的另一个特别应用是生产聚合物分散液晶(PDLC)、液晶调光玻璃时的必备添加剂。

UV胶NOA65通过紫外光固化,对波长为350nm-380nm的紫外光非常敏感。

完全固化的推荐能量为4.5焦耳/平方厘米的长波长紫外光。

由于这种固化无厌氧反应,因此与空气接触的区域只要在紫外光下足够曝光就会呈现非粘性态。

预固化期间,可以使用丙酮将多余胶体清除。

完全固化以后,可使用亚甲基氯浸泡后将其分离。

也可以使用其它一些光源来固化胶体,如阳光、水银灯和荧光黑光灯。

光敏胶NOA65典型固化时间NOA65 的典型数据更详细资料可进一步参阅/uvadh/NOA65.htm在原装容器内避光低温(5-22°C )保存,可以保存 6 个月。

如果是冷藏保存,使用前,请先把胶水恢复到室温。

使用时,应小心谨慎,请先阅读材料安全数据表,还包括其它关联产品资料,如:酒精、丙酮或亚甲基氯。

高分子专业英语

高分子专业英语

高分子专业英语词汇英汉对照关键词:英语高分子词汇英汉对照序号中文英文1 高分子 macromolecule, polymer 又称"大分子"。

2 超高分子 supra polymer3 天然高分子 natural polymer4 无机高分子 inorganic polymer5 有机高分子 organic polymer6 无机-有机高分子 inorganic organic polymer7 金属有机聚合物 organometallic polymer8 元素高分子 element polymer9 高聚物 high polymer10 聚合物 polymer11 低聚物 oligomer 曾用名"齐聚物"。

12 二聚体 dimer13 三聚体 trimer14 调聚物 telomer15 预聚物 prepolymer16 均聚物 homopolymer17 无规聚合物 random polymer18 无规卷曲聚合物 random coiling polymer19 头-头聚合物 head-to-head polymer20 头-尾聚合物 head-to-tail polymer21 尾-尾聚合物 tail-to-tail polymer22 反式有规聚合物 transtactic polymer23 顺式有规聚合物 cistactic polymer24 规整聚合物 regular polymer25 非规整聚合物 irregular polymer26 无规立构聚合物 atactic polymer27 全同立构聚合物 isotactic polymer 又称"等规聚合物"。

28 间同立构聚合物 syndiotactic polymer 又称"间规聚合物"。

29 杂同立构聚合物 heterotactic polymer 又称"异规聚合物"。

高导热塑料的研究与应用进展

高导热塑料的研究与应用进展

1. 引言传统的导热材料包括金属,陶瓷和复合材料等,但近年来随着高分子材料技术的进步,高分子材料逐渐也引进了导热应用领域。

导热塑料最高可追溯到20世纪90年代,彼时初开发的高分子材料因其优良的力学性能和耐腐蚀性能多等而被人们寄予了厚望,但很快其导热性能差[1]等缺点也大幅限制了其应用领域。

近年来,随着高分子材料工业的飞速发展,塑料的应用领域不断拓展,用性能更优良的高分子材料替代传统工业使用的材料已成为科研的方向。

例如随着电子工业的急速发展,急需在更小的体积中堆砌更多的零件、产生的更多的功能,导致电子元器件的散热问题也变得更加严重。

这就要求电子产品的包装材料具有更高的导热率,尽量的将热量传递到外界。

高导热塑料的研究与应用进展李占超王克俭*(北京化工大学机电工程学院)摘要:导热塑料泛指具有优良导热性的塑料,近年来它以其独特的优势在诸多领域的研究与应用中得到了更多的关注。

本文介绍了导热塑料的导热机理和几种导热模型。

总结介绍了导热塑料的种类,并分析了其与其他导热材料对比的优劣势。

同时归纳介绍了目前常见的导热塑料制备方法和提高热导性的几种途径,并分析展望了高导热塑料在包装领域的应用前景。

关键词:导热塑料导热原理及模型提高热导率包装应用Research and application progress of high thermal conductivity plasticsLi Zhanchao Wang Kejian*(College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology)Abstract:Thermally conductive plastics generally refer to plastics with excellent thermal conductivity. In recent years,they have received more attention in research and application in many fields due to theirunique advantages. This article introduces the thermal conductivity mechanism of thermallyconductive plastics and several thermal conductivity models. It summarizes the types of thermallyconductive plastics and analyzes their advantages and disadvantages compared with other thermallyconductive materials. At the same time,it summarizes the current common methods of preparingthermally conductive plastics and several ways to improve thermal conductivity,and analyzes andprospects the application prospects of high thermal conductivity plastics in the field of packaging.Keywords:thermally conductive plastics thermal conductivity models improve thermal conductivity packaging applications表1 不同导热材料的导热系数对比表[2]材料分类品牌及型号牌号导热系数/(W/m·K)导热塑料COOLPOLY—PC E4505 4DSM—PA46 TC155 5SABIC—PA6 PX09322 6POLYKING—PA HPA-TC305 5奇美—ABS PA757 0.25普通塑料PE 0.3PVC 0.13~0.17PS 0.08金属Al 36Fe 12Cu 320导热塑料继承了工程塑料的优点,具有加工性能好,价格低,加工容易,重量轻,散热均匀,产品设计自由度高等优点,导热性得到了提高。

锂离子电池常用词汇

锂离子电池常用词汇

Useful Vocabulary about Lithium-ion Battery锂离子电池常用词汇一.Classification of Batteries 电池的分类1.Physical battery 物理电池A.Solar battery 太阳能电池 B.Thermal cell 热电池2.Chemical battery 化学电池A. Non-rechargeable battery(Primary battery)原电池;一次电池Zinc-Air battery 锌空气电池Carbon-Zinc battery 碳锌电池Alkaline battery 碱性电池 Silver Oxide battery 氧化银电池Lithium battery 锂电池B、Rechargeable battery (secondary battery)蓄电池;可充电电池;二次电池Lithium Ion battery 锂离子电池Lithium Polymer battery 锂聚合物电池Nickel Cadmium battery 镍镉电池Nickel Metal hydride battery 镍氢电池Lead-acid battery 铅酸电池C.Fuel cell 燃料电池二.Components 组成篇Positive electrode正极 Negative electrode负极Cathode (Oxidation takes place) 阴极 Anode (Reduction takes place) 阳极 Positive terminal 正极端 Positive tab 正极极耳Negative terminal 负极端 Negative tab 负极极耳Current collector 集流体(collector electrode)Copper foil铜箔 Aluminum foil 铝箔Cathode Active Material 正极(阴极)活性物质Lithium cobalt oxide 锂钴氧 lithium manganese oxide 锂锰氧 Lithium nickel oxide 锂镍氧 Lithium iron phosphate 磷酸亚铁锂 Anode active material 负极(阳极)活性物质Conductive assistant 导电剂conducting polymer导电聚合物Graphite 石墨Natural graphite天然石墨 Artificial graphite人造石墨Modified graphite 改性石墨Mesophase-pitch-based carbon fiber(MCF)中间相沥青碳纤维Soft carbon软碳coke 焦炭 Binder黏结剂Mesophase carbon micro beads(MCMB)中间相碳微球Hard carbon硬碳 Acetylene black乙炔黑Poly-vinylidene fluoride(PVDF)聚偏二氟乙烯Poly-tetrafluoroethylene(PTFE)聚四氟乙烯Separator 隔膜;隔板Poly Propylene(PP)聚丙烯 Poly Ethylene(PE)聚乙烯Steel jacket (Steel-Can)钢壳 Aluminum jacket(Al-Can)铝壳Gasket 垫圈 Top cap 盖板 Electrolyte injection hole注液孔Non-aqueous Electrolyte非水电解液Solute 溶质Solvent 溶剂Additive 添加剂Lithium hexafluorophosphate (LiPF6)六氟磷酸锂N-methyl pyrrolidone(NMP) N-甲基吡咯烷酮/ 1-甲基-2-吡咯烷酮Ethylene carbonate(EC)乙烯碳酸酯/碳酸乙烯酯Propylene carbonate(PC)丙烯碳酸酯/碳酸丙烯酯γ-Butyrolactone(γ-BL)γ-丁内酯Dimethyl carbonate(DMC)二甲基碳酸酯/碳酸二甲酯Diethyl carbonate(DEC)二乙基碳酸酯/碳酸二乙酯Ethyl methyl carbonate(EMC)乙基甲基碳酸酯/碳酸甲乙酯Manufacture Process 制备过程篇The second workshop(二车间)slurry Mixing 混料Positive slurry mixing 正极配料Negative slurry mixing 负极配料Positive slurry coating 正极拉浆Negative slurry coating 负极拉浆Positive electrode preparing 正极制片Cutting into big pieces 裁大片Cutting into small pieces 裁小片(滚切)Weighing & grading 称重分档Pressing 压片 Al tape Jointing 焊接铝带Positive drying正极烤片 positive tape Affixing 正极贴胶带Negative electrode preparing负极制片Automatically cutting 自动分切Negative drying负极烤片Automatically cutting and pressing自动裁压片Weighing & grading 称重分档 Riveting 铆接Negative spot welding 负极点焊Rubberized fabric affixing 贴胶布The third workshop(三车间Winding 卷绕 Rubberized fabric enveloping 包胶布 Gasket installing (gasket setting) 放隔圈 Batch number marking打批号Encasing 套壳 Sinking 沉底Negative spot welding 负极点焊 Positive spot welding正极点焊Tab folding 折极耳 cover board Jointing 点盖板Cover pressing 压盖板 Cover beat 敲电池The fourth workshop(四车间) Laser welding激光焊The fifth workshop(五车间)Silica gel drip 点硅胶 Sealant smearing 涂密封剂Weighing 称重 Washing 清洗Ring 套胶圈 Drying 烘烤Electrolyte injection 注液The sixth workshop(六车间)First aging/Aging before sealing 一次陈化CC charging(constant current charging)恒流化成 Sealing 封口Ocv check( open circuit voltage check) 测电压Steel ball inserting 敲钢珠 Steel ball pressing 压钢珠Rubberized fabric tearing 撕胶纸 Washing 清洗vacuum Extracting 抽真空 Appearance check 外观检查Washer pasting 贴面垫 Capacity check 分容CV charging 恒压化成 Second aging/Aging after sealing 二次陈化四.Test 测试篇Basic Characteristics基本特性Charge 充电 Discharge 放电Current 电流 Voltage 电压Potential 电势;电位 Open circuit voltage(OCV)开路电压Constant current(CC)恒流 Constant voltage(CV)恒压Trickle charge涓流充电 Series and parallel 串并联Depth of discharge(DOD)放电深度 State of charge(SOC)荷电状态Memory effect 记忆效应 C-rate 表示电池充放电时电流大小的比率单位 Charge method 充电方式Nominal capacity 额定容量Nominal voltage 额定电压 Charge voltage 充电电压 General charge current 常规充电电流Max charge current 最大充电电流 Discharge cut-off voltage 放电截至电压Operating temperature 工作温度 Energy density 能量密度Storage temperature 储存温度 Relative humidity 相对湿度Specific energy 比能 Specific power 比功率Specific capacity 比容量 Self discharge 自放电Shape and Physical Dimensions 外形及物理参数Model 型号Prismatic 棱柱形的;方形的Cylindrical 圆柱形的Thickness 厚度 Width 宽度 Height 高度 Weight 重量Diameter 直径Electrical Characteristics 电气特性Electrical tests 电性能测试Complete charged 满充电 Voltage of shipment 出货电压Initial capacity 初始容量 Internal impedance 内阻Cycle life 循环寿命 Capacity recovery rate 容量回复率General temperature storage 常温储存High temperature storage 高温储存Safety Characteristics 安全特性 Mechanical tests 机械试验Environmental tests 环境试验Crush test 挤压测试 Impact test 冲击测试Drop test 跌落测试 Vibration test 振动测试Humidity test 潮湿试验 External short circuit test 外部短路测试 Overcharge test 过充测试Over discharge test 过放测试 Reverse Charge 反充电;Forced discharge 强制性放电Nail penetration test 针刺测试Hot oven 炉温测试(heating test热测试)Temperature cycling test 热循环测试(高低温冲击测试)Low pressure (altitude simulation) test 低压(高空模拟)试验Rupture 破裂leak 漏液Smoke 冒烟 Heat 发热 Catch fire 着火Burn 燃烧 Explode 爆炸Safety valve 安全阀 Fuse 保险丝Positive Temperature Coefficient(PTC)正温度系数Negative Temperature Coefficient(NTC)负温度系数current Interrupt Device(CID)电流切断装置 Thermal resistor热敏电阻。

高分子材料——导电聚合物简介

高分子材料——导电聚合物简介

高分子材料——导电聚合物简介摘要:导电混合物的性能、应用以及面临的挑战。

共轭导电聚合物和芳香族金属导电聚合物的简介关键词:高分子材料导电聚合物共轭导电聚合物芳香族金属导电聚合物1 导电聚合物1.1前言导电高分子又称导电聚合物(conducting polymer),是指通过掺杂等手段,使其电导率在半导体和导体范围内的聚合物。

这类聚合物通常指本征导电聚合物(intrinsic condcuting polymer),在它们的主链上含有交替的单键和双键,从而形成了大的共轭π体系,π电子的流动产生了导电的可能性。

导电聚合物导电需要两个条件。

第一个条件是它必须具有共轭的π电子体系,第二个条件是它必须经过化学或电化学掺杂,即通过氧化还原过程使聚合物链得或失电子。

自由电子是金属的载流子,而电子或空穴是半导体的载流子。

导电高聚物的载流子是什么呢?黑格等首先提出孤子(soliton)模型,来解释聚乙炔的电导及其他物理性质。

但聚吡咯、聚噻吩和聚苯胺等具有导电性质的聚合物有非简并基态,不能形成孤子,只能形成极化子(polaron)和双极化子 (bipolaron)。

尽管孤子、极化子和双极化子来自不同的简并态,但它们的物理本质都是能隙间的定域态,因此可以认为它们是导电聚合物的载流子。

导电聚合物材料可以分为共轭型和复合型两大类。

共轭型导电聚合物是指聚合物本身具有导电性或经掺杂处理后才具有导电功能的聚合物材料。

复合型导电聚合物,即导电聚合物复合材料,是指以通用聚合物为基体,通过加入各种导电性物质,采用物理化学方法复合后而得到的既具有一定导电功能又具有良好力学性能的多相复合材料,其导电作用主要通过其中的导电材料完成。

而共轭导电聚合物是依靠分子本身产生的导电载流子导电。

本文主要涉及共轭导电聚合物和芳香族金属导电聚合物。

1.2 导电聚合物的应用导电聚合物得研究始于30多年前。

2000年诺贝尔化学奖颁给了导电聚合物的三位发明者:美国物理学家黑格(A.J.Heeger)、美国化学家麦克迪尔米德(A.G.MacDiarmid)和日本化学家白川英树(H.Shirakawa)。

薄膜厚度和消光系数的透射光谱测量方法

薄膜厚度和消光系数的透射光谱测量方法

262薄膜厚度和消光系数的透射光谱测量方法项目完成单位:国家建筑材料测试中心 项目完成人:刘元新鲍亚楠 孙宏娟 王廷籍摘 要 本文提出薄膜厚度和消光系数的标准曲线测量法,论述了方法的测量原理和测量程序。

该法的膜厚的测量范围为~80nm 到2000nm ;膜厚的测量误差大约为±13nm 。

关键词 薄膜、厚度、消光自洁净玻璃的自洁净性能、低幅射玻璃的低幅射性能都与其膜层的厚度、折射率和消光系数有着密切的关系[1]。

近代微电子学装置,如成像传感器、太阳能电池、薄膜器件等都需要这些参数[2] 。

这些参数的数据是薄膜材料、薄膜器件设计的必不可少的基础性数据。

通常都是单独测量这些参数,薄膜厚度用原子力显微镜、石英震荡器、台阶仪、椭偏仪、干涉法来测量。

薄膜折射率的测量就比较麻烦,因为它是波长的函数,它可以用基于干涉、反射原理的方法测量。

从薄膜的吸收谱就可测量其消光系数。

显然,取得这些数据是很麻烦、很费时、成本也很高,特别是对于纳米级薄膜。

2000年,美国Princeton 等大学提出[2] ,从物理角度建立透射光谱模型,调整模型中的未知的参数,即薄膜厚度、折射率、消光系数,使透射光谱的理论曲线同实验曲线重合,这就同时取得薄膜的厚度、折射率、消光系数等数据。

他们用这种方法同时测量了“玻璃-薄膜” 系统的薄膜的厚度、折射率、消光系数等数据。

显然,这是取得这些数据的简便、快速、低成本的方法,是这领域的一个发展趋势。

镀膜玻璃的透射光谱既包含玻璃参数的信息,也包含薄膜参数的信息,如果能从中解析出薄膜参数的信息,也就得到了薄膜参数的测量值,这就是透过光谱法测量薄膜参数的基本思路。

本文基于这个基本思路提出测量薄膜参数的另一方法,姑且称为标准曲线法,方法的原理是基于这样的实验现象,即薄膜的吸收越强,镀膜玻璃的透过率越低;在薄膜吸收的光谱区内,薄膜越厚,镀膜玻璃的透过率也越低;这就是说,镀膜玻璃在指定波长λ处的透过率T 是薄膜厚度t 和薄膜消光系数κ的函数,),,(λκt T T =但镀膜玻璃透过率和薄膜参数有什么函数关系?这就是本文要研究的问题。

Proton-conducting polymer

Proton-conducting polymer

专利名称:Proton-conducting polymer发明人:Tadahiro Shiba,Hitoshi Iwadate申请号:US12009951申请日:20080122公开号:US20080200629A1公开日:20080821专利内容由知识产权出版社提供专利附图:摘要:A proton-conducting polymer comprises a main chain and a plurality ofbranched side chains extending radially therefrom. The branched side chains are each bonded to a proton-conducting salt at the end. In the proton-conducting polymer, the salts can be circumscribed by a virtual circle having a center on the cross-sectional centerof the main chain such that a radial direction of the virtual circle is perpendicular to a longitudinal direction of the main chain. Thus, the proton-conducting polymer has a substantially cylindrical structure, and the salts are located on the peripheral wall of the substantially cylindrical structure. Protons are transferred between the adjacent salts, so that a conduction channel is formed on the peripheral wall of the cylindrical structure.申请人:Tadahiro Shiba,Hitoshi Iwadate地址:Shiki-shi JP,Iruma-gun JP国籍:JP,JP更多信息请下载全文后查看。

PROTON-CONDUCTIVE POLYMER SOLID ELECTROLYTE

PROTON-CONDUCTIVE POLYMER SOLID ELECTROLYTE

专利名称:PROTON-CONDUCTIVE POLYMER SOLID ELECTROLYTE发明人:GUZABIE ANDORIYUU,グザビエ・アンドリユー,RORANSU KERUNUURU,ロランス・ケルヌール申请号:JP特願平5-217755申请日:19930901公开号:JP特開平6-196016A公开日:19940715专利内容由知识产权出版社提供摘要:PURPOSE: To provide a proton-conductive polymer solid electrolyte made of a specific polyether netted by a hardener, that has a high ion conductivity at room temperature and has good mechanical properties, by introducing an acid into the netted polyether. CONSTITUTION: A proton-conductive polymer solid electrode, comprising a polyether which is netted by a hardener containing two epoxy functional groups and which contains two first amine terminal functional groups, has an acid introduced into the netted polyether. The acid is selected from among inorganic acid, organic acid and polyacid that include -COOH functional group, organic acid and polyacid that include -SO3 H functional group, and their mixture. If the amount of acid in the electrolyte is too small, conductivity is insufficient. If the solubility of the acid in the polymer is limited, the weight ratio of the acid is 5-50%. The proportion of the acid becomes too much, and either the product becomes unstable or solubilization becomes very difficult.申请人:ALCATEL ALUSTHOM CO GENERAL ELECTRICITE,アルカテル・アルストム・コンパニイ・ジエネラル・デレクトリシテ地址:フランス国、75382・パリ・セデクス・08、リユ・ラ・ボエテイ、54国籍:FR代理人:川口 義雄 (外2名)更多信息请下载全文后查看。

Electronic conductivity of conducting polymers

Electronic conductivity of conducting polymers

Electronic conductivity of conductingpolymers导言聚合物材料是一类具有良好可塑性、可连续加工性和广泛应用前景的材料。

其中,导电性高的导电聚合物成为现代电子学领域的重要材料之一。

导电聚合物的导电性能决定了其在电子学设备、传感器和能源存储等领域的应用效果。

近年来,科学家们对导电聚合物的研究愈发深入,其中最为重要的一项研究内容就是导电聚合物的电子传输机制和电导率规律。

本文将从电子传输机制、电导率规律和导电聚合物的应用三个方面,深入探究导电聚合物的电子导电特性。

电子传输机制聚合物材料是一种高度结晶形态的有机材料,其分子结构中常含有许多共轭体系。

由于共轭体系的存在,聚合物分子内部会出现大量的π-π堆积现象,从而形成一些能隙特征较弱的价带和导带。

电子在导电聚合物的导电过程中,就是通过这些能隙传输到导带实现电导的。

与金属、半导体不同,导电聚合物具有非常复杂的电子能级结构,因此其电子传输机制也有着一定的特殊之处。

常见的、被广泛研究的导电聚合物材料包括了聚苯乙烯、聚噻吩、聚丙烯腈等。

在这些材料中,大部分电子传输都是通过共轭体系实现的。

然而由于共轭体系对于电子的传输存在着严格的限制,因此电子传输通常还是受到晶体结构、材料形貌和材料制备工艺等因素的影响。

电导率规律导电聚合物的电导率通常是其使用效能的一个关键指标。

在导电聚合物中,电子传输受限于材料内大量的π-π堆积现象和电阻性附加物的存在,因此其导电行为的规律性相对复杂。

一般来说,导电聚合物的电导率与以下因素密切相关:1. 聚合物的共轭度:共轭单元越多,材料的导电性越高。

在大部分情况下,共轭越强,封口内部的电子结构就越稳定,导电性就越高。

因此,聚噻吩和聚苯乙烯等极端共轭聚合物,其导电性都相对较好。

2. 材料的晶体结构:导电聚合物的晶体结构对于电子传输有着非常重要的影响。

由于共轭体系对于电子能级的限制,因此导电性与材料的晶体结构紧密相关。

ConductivePolymer-Composite:导电高分子复合材料

ConductivePolymer-Composite:导电高分子复合材料

Conductive Polymer-Composite Sensor for Gas Detection Maximiano V. Ramos, Ahmed Al-Jumaily and Venkata S. PuliDiagnostics and Control Research CentreEngineering Research Institute,Auckland University of Technology, Auckland, New Zealand*************.nz, ***************.nzAbstractConductive polymers with carbon black filler were prepared for gas sensor application utilising ultrasonic mixing. The composite sensors were exposed to different types of gases and the resulting changes in the resistivity were recorded. The effects of ultrasonic mixing and sensitivity of the composite sensor to various organic gases were examined.Keywords: gas sensor, carbon black, PMMA, ultrasonic, mixing1 IntroductionThere has been great interest in the study of conductive polymer composites for various industrial applications. Mixing conductive particles with insulating polymers can modify its electrical properties. The most common conductive filler used is carbon black (CB). The CB/polymer composites have been studied for their Positive Temperature Coefficient (PTC) effect and gas vapour sensing applications [1-9].Some electrically conductive polymer composites show PTC behavior during one temperature range followed by negative temperature coefficient (NTC) behavior during the next range. The change normally occurs at a well-defined switching temperature. The switching temperature may be defined as the temperature below which the composite exhibits PTC characteristics and above which the composite exhibits NTC characteristics. Providing that certain conditions are fulfilled, it has been demonstrated in several moderately high temperature applications that mixing polymers with some types of conductive filler such as CB can produce a composition with a temporary electrical conductivity [1]. This is attributed to the forming of a chain of filler particles (network) that are close enough for an electrical current to flow at certain temperatures and generate heat. This phenomenon is known as percolation. The point at which the network is formed is called the percolation point/limit. Studies have shown that the electrical property of the composite is a direct function of the morphology and location of the CB in the polymer [8-11].Different methods of preparing CB/polymer composites have been employed to improve properties of the material. Some used physical mixing of CB and the polymer matrix and the composite powders are cross-linked [7,8, 10]. Others used in-situ polymerization in the presence of CB [2]. They are also prepared by melt-mixing or solution mixing where CB is mixed with a polymer matrix dissolved in a solvent [3, 9]. For most of these methods, it is difficult to attain good dispersion of the CB into the polymer matrix which affects the percolation limit of the composite. This is due to the strong agglomeration tendency of the CB, limited shear force of the mixer and the high viscosity of the polymer solution.Previous investigations have shown that ultrasonic treatment results in the formation of homogeneous mixtures of both powders [11] and liquids [12]. In this paper, the effect of ultrasonic mixing of CB and polymer powders on the percolation limit of their composites is presented. The composites prepared by this method are tested for their effectiveness for organic gas sensing applications. The main purpose of this composite is two fold. First it is intended to develop an organic gas detector. Once this detector is produced, calibration will be conducted to produce a gas sensor which is capable of measuring the gas concentration in an environment.2 Experimental Procedure Carbon black (CB) powder from Denka Chemicals and poly(methyl methacrylate) (PMMA) beads from ACROS Chemicals were used to prepare the conductive polymer composites. Different ratio of CB and PMMA powders were subjected to ultrasonic mixing using a VibraCell (Sonic and Materials Inc.) ultrasonic mixer. The homogeneous powder mixture was then dissolved in acrylonitrile solution.To produce a gas-detector/sensor, a pasty composite solution of CB/PMMA was uniformly coated onto glass strips fitted with two parallel coils of copper wires serving as electrodes.The main intention of this device is to be used to detect the presence of gas as well as its concentration. To calibrate this, the electrical resistance of the composite has to be determined under various organic gases and at different concentrations.The electrical resistance was recorded using a Hewlett Packard 34401A digital multimeter in the four-wire mode. The change in the electrical resistance of the composites when exposed to organic vapours was determined. Vapours of volatile liquids were generated using a closed glass chamber. A given volume of liquid was injected into the chamber, which had a known volume. The molar vapour concentration c vapor (ppm) was calculated using the sample density d (g/L), molar mass MM (g/mol) and volume V sample (L), as well as the chamber volume V chamber and the molar volume of air (22.4 L/mol):c vapor = [(d x V sample )/MM]/[V chamber /22.4] (1)When the electrical resistance of the composite approached its equilibrium value, the composite sensor was removed from the closed vessel and the change in electrical resistance in air was recorded.3 Results and Discussion The measured resistivity of the CB/PMMA composites is shown in figure 1. This figure shows the variation of the resistivity with % CB by weight in the composites.Figure 1: Resistivity of CB/Carbon Black composite vs. % Carbon Black. It is indicated that as the % CB increases, the resistivity of the composite decreases. The percolation point is located between 2 % to 5 % CB. This value is lower than the values reported in other CB/PMMA composites which were found to display percolation of more than 10 % CB [9]. Figure 2 shows the change of resistivity of the composite sensor when exposed to acetone vapour. The dashed line defines the vapour absorption and desorption zone. This gives a typical dependence of composite resistance on time when exposed to gas vapour. The composite sensor used has 10% CB content. Composite resistance increases during organic vapour absorption and returns to the initial value when vapour desorbs completely in air.300350400450500550R e s i s t i v i t y (o h m s )Time [s]Figure 2: Typical electrical resistance response of CB/PMMA composite to acetone vapour ( 120.6 ppt).The relative electrical resistance response is defined as:(R t – R o )/R o (2)where R o is the initial resistance of the composite and R t the transient resistance upon exposure to the gas vapour.The relative electrical response of CB/PMMAcomposite sensor when exposed to acetone vapour is given in figure 3. The change of electrical resistance in the sensor was monitored when the sensing elementwas exposed to gases. It is clearly indicated that therelative resistivity increases with the time of exposureto the vapour. Repeating the same tests on other gases will produce a trend identical to figure 3. This implies that if several tests are conducted on variousgases, one can establish a trend which will be used asa scale for the sensor.Different vapours will result in different dependencies of electrical response on vapour concentration. This may then be used to quantify and distinguish different vapour species. Currently the authors are obtaining some more experimental results which we anticipate to put in the final version of the paper.The absorption and desorption kinetics of the CB/PMMA composite in acetone vapour were modelled using the transient response data shown in Figure 2. The model for the transient response is assumed to be given by a sum of exponentials such as:R t = R ∞ + Ae -αt + Be -βt + Ce -γt + (3)The transient response model for the adsorption stage is estimated by the equation:R t = 518-237.68e -0.00003304t +30.25e -0.000070t (4)This gives a reasonable agreement with the transient response data obtained from the experiments as shown in Figure 3.For the desorption stage, the response model is given by:R t =309.396+140.36e -0.00036514t +49e -0.002t (5)Again, very good agreement between the response model and the experimental data is observed for the desorption stage as shown in Figure 4. It is alsoapparent that the time response in the desorption stageis much faster than in the adsorption stage. For the slowest pole the desorption stage is faster than theadsorption stage by a factor of 10. 00.10.20.30.40.50.60.71000020000300004000050000600007000080000Figure 3: Time dependencies of relative electrical resistance response of CB/PMMA composite in acetone vapours (120.6 ppt).Figure 4: Transient resistance response model of CB/PMMA composite in acetone vapours (120.6 ppt)-(adsorption stage).Figure 4: Transient resistance response model of CB/PMMA composite in acetone vapours (120.6 ppt)- (desorption stage). 4 Conclusion The results have shown that CB/PMMA composite has potential for detecting gas vapours. The use of ultrasonic mixing to prepare the compositehas improved the homogeneity of the composite mixture and results in lower percolation rate for CB.The CB/PMMA composites should be tested withvarious types of gas vapours at different concentrationand obtain a kinetic model of the gas detection system.(R t – R o )/R o5 References[1] Al-Jumaily, A.M., Kadhum, H., “ IntelligentConductive Polymer for Combined Sensing-Heating Application”, Proceedings of theInternational Conference on the Science and Technology of Synthetic Metals, ICSM 04, Wollongong, Australia, June 28-July 2,2004. Time [s] [2] Dong, X.M., Fu, R.W., Zhang, B., Rong, M.Z.,“Electrical resistance response of carbon black filled amorphous polymer composite sensors toorganic vapors at low concentrations”, Carbon , pp 2551-2559, 42 (2004).[3] Quercia, L., Loffredo, B. Alfani, B., La Ferrara,V., Di Francia, G., “Fabrication and characterization of carbon nanoparticles forpolymer based vapour sensors”, Sensors and Actuators B, pp 22-28, 100( 2004).[4] Costa, L.C, PTCR effect in polymer composites” Journal of Materials Science Letters, pp 699-700, 22 (2003).[5] Al-Jumaily, AM and Khadum, H, “Self-Contained Intelligent Sensor-Actuator”For Temperature Control”, DSC-33218, Dynamic System and Control, Proceedings of ASME, International Mechanical Engineering Congress and Exposition, IMECE2002, November 17-22, 2002, New Orleans, Louisiana.[6] Hirano, S., Kishimoto, A., “PTCR effect incomposite conducting polymer films”, Journal ofMaterials Science Letters, pp 1133-1135, 17(1998).[7] Mather, P.J., Thomas, K.M., “Carbon black/highdensity polyethylene conducting compositematerials”, Journal of Materials Science, pp1711-1715, 32 (1997).[8] Dafu, W., Tiejun, Z., Yi, X., “Resistivity-volumeresistivity expansion characteristics of carbonblack-loaded polyethylene”, Journal of AppliedPolymer Science, pp 53-58, 77 (2000).[9] Alexander, G.M., “Anomalous temperaturedependence of the electrical conductivity ofcarbon-poly(methyl methacrylate) composites”,Materials Research Bulletin, pp 603-611, 34(1999).[10] Mallette, J.G., Marques, A., “Carbon black filledPET/PMMA blends: Electrical and morphological studies”, Polymer Engineeringand Science, pp 22722278, 40 (2000).[11] Lobova, T.,Shvetsova, G.A.; Kiparisov, S.S.;Smirnov, Yu.R.; Terenin, E.P.A.Russ, J.C., Anultrasonic method of mixing powders ofrefractory metal dichalcogenides with gallium-base low-melting-point alloys, PoroshkovayaMetallurgiya, v 16, n 11, Nov. 1977, p 42-45. [12] Halcinski, B., Kotlicka, E., Latuszek, A.,“Ultrasonic mixing of paints and emulsions”,1994 IEEE Ultrasonic Symposium Proceedings,pp 521-523, (1994).。

导电高分子材料

导电高分子材料
导电高分子不仅可以掺杂, 而且还可以脱掺杂, 并且掺杂-脱掺杂的 过程完全可逆。
•3.具有光学性能(光诱导
吸收、光致发光等非线性光学
特性)、磁学性能、电化 学性能(随氧化/还原过程,
颜色发生变化)等
02
导 电 高 分 子 聚乙炔PA Polyacetylene 顺式聚乙炔 反式聚乙炔
(铜色) (银白色)
导电高分子
Conductive Polymer or Conducting Polymer or Electroactive Polymer or Synthetic Polymer 按材料的导电性分: 绝缘体(insulator)半导体(semiconductor) 导体(conductor) 超导体(superconductor) 电导率 σ =1/ρ=1/(Ω*m)=S/m
1970年:科学家发现类金属的无机聚合物聚硫氮(SN)x具有 超导性。
01
发展历程
1975年:、与H.Shirakawa合作研究,将无机导电聚合物研制与有机导电 聚合物研制相结合。发现未掺卤素的顺式聚乙炔的导电率为10-8~10-7S/m; 未掺卤素的反式聚乙炔为10-3~10-2 S/m,而当聚乙炔曝露于碘蒸气中进行掺 杂氧化反应后,其电导率可达3000S/m。
导电性 绝缘体 绝缘体 绝缘体 半导体 绝缘体 金属态 绝缘体 绝缘体 绝缘体 绝缘体
02
导 电 高 分 子 催化剂将环辛四烯转换成了聚乙炔,导电率35000S/m,
学性能,成本较低,易于成型和大规模生产。
聚苯胺
导电高分子应用
在电极上沉积为导电薄膜。
表聚1噻聚吩苯的胺衍的生聚氧物苯化PE还胺D原O单态T是体及有对价机应格电的致低导发电廉光性器,件合制成备中工重艺要简的空单穴,传电输层导材率料高。 ,在空气和溶液中稳定,具有独特

高分子专业英语

高分子专业英语

一、英汉互译Chapter 1inertness 惰性coefficient of friction 摩擦系数isotactic polymer 等规聚合物syndiotactic polymer 间规聚合物homopolymer 均聚物copolymer 共聚物ionic bonds 离子键covalent bonds 共价键thermoplastics 热塑性体thermosets 热固性体crystalline 结晶的non-crystalline 非结晶的amorphous 无定形的elastomer 弹性体deformation 变形degrade 降解repeat unit 重复单元mole fraction 摩尔分数number average molar mas 数均分子量weight average molar mass 重均分子量degree of branching 支化度Chapter 2polycondensation 缩聚作用strain 张力stress 应力electromagnetic 电磁的radiation 辐射azo 偶氮unpaired electron 未成对电子cage effect 笼蔽效应addition polymerization 加成聚合induced decomposition 诱导分解azobisisobutyronitrile 偶氮二异丁睛redox reaction 氧化还原反应emulsion polymerization 乳液聚合break down into 分解成…. bulk polymerization 本体聚合suspension polymerization 悬浮聚合solution polymerization 溶液聚合activation energy 活化能head-to-tail addition,head-to-head addition 头尾加成,头头加成disproportionation 歧化gel effect 凝胶效应back-biting reaction 回咬反应inhibitor 阻聚剂retarder 缓聚剂self-polymerization 自聚recovery of solvent 溶剂回收dispersing medium 分散介质surface tension 表面张力surface active agent 表面活性剂potassium persulphate 过硫酸钾monodispersed 单分散性polydispersity 多分散性stereoregularity 立体规整度random 无归的alternative 交替的block copolymer 嵌段共聚物graft copolymer 接枝共聚物high-energy radiation 高能辐射living polymer 活的聚合物Chapter 3abrasion resistance 耐磨性degree of crystallinity 结晶度tensile strength 抗张强度brittle fracture 脆性断裂transparency 透明度opaque 不透明permeability 渗透性compatibility 相容性stiffness 僵硬性,劲度cloud point 雾点yield point 屈服点tanslucent 半透明的transparency 透明的opaque 不透明的refractive index 折光指数dielectric constant 介电常数dielectric loss 介电损耗flexural fatigue life 挠曲疲劳寿命restoring force 回复力Chapter 4injection press 注射机reciprocating plunger 往复式注塞mold-clamping capacity 合模力plasticizing capacity 塑化量sress cracking 应力龟裂hydraulic press 液压机reaction injection molding 反应注塑mold-release agent 脱模剂melt fracture 熔体破裂twin-screw 双螺杆extruder 挤出机single-screw 单螺杆挤出机stretch blow molding 拉伸吹塑creep resistance 抗蠕变性Chapter 5processing aid 加工助剂blowing agent 发泡剂flame retardant 阻燃剂coupling agent 偶联剂curing agent 固化剂damping peak 衰减峰antiblock agent 抗粘连剂mold release agent 脱模剂fender extension 极限伸长,断裂伸长crack propagation 延性变形ductile deformation 抗冲击性impact resistance 冲击载荷shock load 细颈现象strength-to-weight ratio 比强度ultimate tensile strength 极限抗拉强度thermal expansion coefficient 热膨胀系数reinforcing agents 增强剂abrasion resistance 耐磨牢度dispersion force 色散力isotactic polypropylene 等规聚丙烯syndiotactic polypropylene 间规聚丙烯syndiotactic polypropylene 异规聚丙烯二、翻译句子Chapter21、Step-growth polymerization is characterized by the gradual formation of polymer chains through successive reactions coupling monomers to each other to form dimers which can also react with other dimers or unreacted monomer molecules.逐步聚合的特点是通过一个接一个的反应逐步形成聚合物链,先是单体相互配对生成二聚体,二聚体也能够与其他二聚体或未反应的单体分子反应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

IntroductionAn organic polymer that possesses the electrical,electronic, magnetic,and optical properties of a metal while retaining the mechanical properties,processibility,monly associ-ated with a conventional polymer,is termed anªintrinsically conducting polymerº(ICP)more commonly known as a ªsynthetic metalº.Its properties are intrinsic to aªdopedºform of the polymer.This class of polymer is completely different fromªconducting polymersºwhich are merely a physical mixture of a nonconductive polymer with a conduct-ing material such as a metal or carbon powder distributed throughout the material.The Concept of DopingConjugated organic polymers are either electrical insula-tors or semiconductors.Those that can have their conductivity increased by several orders of magnitude from the semi-conductor regime are generally referred to asªelectronic polymersºand have become of very great scientific and technological importance since1990because of their use in light emitting diodes.[1]The emeraldine base form of polyani-line and trans-(CH)x are shown in Figure1to illustrate the increases in electrical conductivity of many orders ofmagni-Figure1.Conductivity of electronic polymers.Conductivity increases with increased doping.ªSynthetic Metalsº:A Novel Role for Organic Polymers(Nobel Lecture)**Alan G.MacDiarmid*[*]Prof.A.G.MacDiarmidDepartment of ChemistryUniversity of PennsylvaniaPhiladelphia,PA19104-6323(USA)Fax:( 1)215-898-8378E-mail:macdiarm@[**]Copyright The Nobel Foundation2001.We thank the NobelFoundation,Stockholm,for permission to print this lecture.REVIEWSREVIEWS A.G.MacDiarmidtude which can be obtained by doping.The conductivity attainable by an electronic polymer has very recently been increased an infinite number of times by the discovery of superconductivity in regioregular poly(3-hexylthiophene).[2] Although this phenomenon was present only in a very thin layer of the polymer in a Field Effect(FET)configuration at a very low temperature(ca.2K)it represents an historical quantum leapÐsuperconductivity in an organic polymer! Prior to the discovery of the novel protonic acid doping of polyaniline,during which the number of electrons associated with the polymer chain remain unchanged,[3]the doping of all conducting polymers had previously been accomplished by redox doping.This involves the partial addition(reduction)or removal(oxidation)of electrons to or from the p system of the polymer backbone.[4±6]The concept of doping is the unique,central,underlying, and unifying theme which distinguishes conducting polymers from all other types of polymers.[7]During the doping process, an organic polymer,either an insulator or semiconductor having a small conductivity,typically in the range10À10to 10À5S cmÀ1,is converted into a polymer which is in the ªmetallicºconducting regime(ca.1to104S cmÀ1).The controlled addition of known,usually small(10%)non-stoichiometric quantities of chemical species results in dramatic changes in the electronic,electrical,magnetic, optical,and structural properties of the polymer.Doping is reversible to produce the original polymer with little or no degradation of the polymer backbone.Both doping and undoping processes,involving dopant counterions which stabilize the doped state,may be carried out chemically or electrochemically.[6]Transitory doping by methods which introduce no dopant ions are also known.[8]By controllably adjusting the doping level,a conductivity anywhere between that of the non-doped(insulating or semiconducting)and that of the fully doped(highly conduct-ing)form of the polymer can be easily obtained.Conducting blends of a(doped)conducting polymer with a conventional polymer(insulator),whose conductivity can be adjusted by varying the relative proportions of each polymer,can be made.[9]This permits the optimization of the best properties of each type of polymer.Since the initial discovery in1977,that polyacetylene (CH)x,now commonly known as the prototype conducting polymer,could be p-or n-doped either chemically or electro-chemically to the metallic state,[7,10,11]the development of the field of conducting polymers has continued to accelerate at an unexpectedly rapid rate and a variety of other conducting polymers and their derivatives have been discovered.[5,6]This rapid growth rate has been stimulated by the field s funda-mental synthetic novelty and importance to a cross-discipli-nary section of investigatorsÐchemists,electrochemists, biochemists,experimental and theoretical physicists,and electronic and electrical engineersÐand to important tech-nological emerging applications of these materials.In theªdopedºstate,the backbone of a conducting polymer consists of a delocalized p system.In the undoped state,the polymer may have a conjugated backbone such as in trans-(CH)x which is retained in a modified form after doping,or it may have a nonconjugated backbone,as in polyaniline (leucoemeraldine base form),which becomes truly conjugat-ed only after p-doping,or a nonconjugated structure as in the emeraldine base form of polyaniline which becomes con-jugated only after protonic acid doping.Redox DopingAll conducting polymers(and most of their derivatives),for example,poly-(para-phenylene)(1),poly(phenylenevinyl-ene)(2),polypyrrole(3),polythiophene(4),polyfuran(5),poly(heteroaromatic vinylenes)(6;where Y NH,NR,S,O); polyaniline(7),etc.,undergo either p-and/or n-redox dopingREVIEWSSynthetic Metalsby chemical and/or electrochemical processes during which the number of electrons associated with the polymer back-bone changes.[5,6]Selected examples of the different types of doping are presented below.Chemical and Electrochemical p-Dopingp-Doping,that is,partial oxidation of the p backbone of anorganic polymer,was first discovered by treating trans -(CH)x with an oxidizing agent such as iodine,[7][Eq.(1)]trans -(CH)x 1.5xy I 2À3[CH y (I 3)y À]x (y 0.07)(1)This process was accompanied by an increase in conduc-tivity from ca.10À5S cm À1to ca.103S cm À1.If the polymer is stretch-oriented five-to six-fold before doping,conductivities parallel to the direction of stretching up to around 105S cm À1can be obtained.[5,6]Approximately 85%of the positive charge is delocalized over 15CH units (depicted in Scheme 1for simplicity over only five units)to give a positivesoliton.Scheme 1.p-Doping can also be accomplished by electrochemical anodic oxidation by immersing a trans -(CH)x film in,for example,a solution of LiClO 4dissolved in propylene carbo-nate and attaching it to the positive terminal of a DC (direct current)power source,the negative terminal being attached to an electrode also immersed in the solution,[10][Eq.(2)].trans -(CH)x (xy )(ClO 4)ÀÀ3[(CH y (ClO 4)y À]x (xy )e À(y 0.1)(2)Chemical and Electrochemical n-Dopingn-Doping,that is,partial reduction of the backbone p system of an organic polymer,was also discovered using trans -(CH)x by treating it with a reducing agent such as liquid sodium amalgam or preferably sodium naphthaline [7][Eq.(3)(Nphth naphthaline)].trans -(CH)x (xy )Na (Nphth)ÀÀ3[Na y (CH)Ày ]x Nphth (y 0.1)(3)The antibonding p system is partially populated by this process which is accompanied by an increase in conductivity of about 103S cm À1.n-Doping can also be carried out by electrochemical cathodic reduction [11]by immersing a trans -(CH)x film in,for example,a solution of LiClO,dissolved in tetrahydrofuran and attaching it to the negative terminal of a DC powersource,the positive terminal being attached to an electrode also immersed in the solution [Eq.(4)].trans -(CH)x (xy )Li (xy )e ÀÀ3[Li y (CH)Ày ]x (y 0.1)(4)In all chemical and electrochemical p-and n-doping processes discovered for (CH)x and for the analogous processes in other conducting polymers,counter ªdopantºions are introduced which stabilize the charge on the polymer backbone.In each case,spectroscopic signatures,for example,those of solitons,polarons,bipolarons,etc.,are obtained characteristic of the given charged polymer.However,the doping phenomena concept extends considerably beyond that given above to ªdopingºprocesses where no counter dopant ion is involved,that is,to doping processes in which transitory ªdopedºspecies are produced,which have similar spectro-scopic signatures to polymers containing dopant ions.This type of doping can provide information not obtainable by chemical or electrochemical doping.Examples of such types of redox doping which can be termed ªphoto-dopingºand ªcharge-injection dopingºare given below.Doping Involving no Dopant IonsPhoto-DopingWhen trans -(CH)x for example,is exposed to radiation of energy greater than its band gap,electrons are promoted across the gap and the polymer undergoes ªphoto-dopingº.Under appropriate experimental conditions,spectroscopic signatures characteristic of,for example,solitons can be observed [12](Scheme 2).The positive and negativesolitonsScheme 2.are here illustrated diagrammatically for simplicity as residingonly on one CH unit;they are actually delocalized over ca.15CH units.They disappear rapidly because of the recombi-nation of electrons and holes when irradiation is discontinued.If a potential is applied during irradiation,then the electrons and holes separate and photoconductivity is observed.Charge-Injection DopingCharge-injection doping is most conveniently carried out using a metal/insulator/semiconductor (MIS)configuration involving a metal and a conducting polymer separated by a thin layer of a high dielectric strength insulator.It was this approach,which resulted in the observance of superconduc-tivity in a polythiophene derivative,as described previously.Application of an appropriate potential across the structureREVIEWSA.G.MacDiarmidcan give rise,for example,to a surface charge layer,the ªaccumulationºlayer which has been extensively investigated for conducting polymers.[8,13]The resulting charges in the polymer,for example,(CH)x or poly(3-hexylthiophene),are present without any associated dopant ion.The spectroscopic properties of the charged species so formed can therefore be examined in the absence of dopant ing this approach,spectroscopic studies of (CH)x show the signatures character-istic of solitons and the mid-gap absorption band observed in the chemically and electrochemically doped polymer.How-ever,coulombic interaction between charge on the chain and dopant ion is a very strong interaction and one that can totally alter the energetics of the system.Non-Redox DopingThis type of doping differs from redox doping described above in that the number of electrons associated with the polymer backbone does not change during the doping process.The energy levels are rearranged during doping.The emer-aldine base form of polyaniline was the first example of the doping of an organic polymer to a highly conducting regime by a process of this type to produce an environmentally stable polysemiquinone radical cation.This was accomplished by treating emeraldine base with aqueous protonic acids (Scheme 3)and is accompanied by a nine to ten order of magnitude increase in conductivity (up to around 3S cm À1)to produce the protonated emeraldine base.[14±16]Protonic acid doping has subsequently been extended to systems such as poly(heteroaromatic vinylenes).[17]Scheme 3.The PolyanilinesThe polyanilines refer to a very important class of electronic/conducting polymers.They can be considered as being derived from a polymer,the base form of which has the generalized composition given in Scheme 4a,and which consists of alternating reduced,and oxidized,repeat units (Scheme 4a).[3,14,15]The average oxidation state can be varied continuously from y 1to give the completely reduced polymer,to y 0.5to give the ªhalf-oxidizedºpolymer,to y 0to give the completely oxidized polymer (Scheme 4b ±d).The terms ªleucoemeraldineº,ªemeraldineº,and ªperni-granilineºrefer to the different oxidation states of the polymer where y 1,0.5,and 0,respectively,either in the base form,for example,emeraldine base,or in the protonated salt form,for example,emeraldine hydrochloride.[3,14,15]In principle,the imine nitrogen atoms can be protonatedin Scheme 4.a)Generalized composition of polyanilines indicating the reduced and oxidized repeat units,b)completely reduced polymer,c)half-oxidized polymer,d)fully oxidized polymer.whole or in part to give the corresponding salts,the degree of protonation of the polymeric base depending on its oxidation state and on the pH of the aqueous plete protonation of the imine nitrogen atoms in emeraldine base by aqueous HCl,for example,results in the formation of a delocalized polysemiquinone radical cation [3,15,18]and is accompanied by an increase in conductivity of about 1010.The partly protonated emeraldine hydrochloride salt can be synthesized easily either by the chemical or electrochemical oxidative polymerization of aniline.[3,14,15]It can be deproto-nated by aqueous ammonium hydroxide to give emeraldine base powder (a semiconductor).Allowed Oxidation StatesAs can be seen from the generalized formula of polyaniline base (Scheme 4a),the polymer could,in principle ,exist in a continuum of oxidation states ranging from the completely reduced material in the leucoemeraldine oxidation state,y 1to the completely oxidized material in the pernigraniline oxidation state,y 0.However,we have shown [16]that at least in N -methyl-2-pyrrolidinone (NMP)solution in the range y 1to y 0.5(emeraldine oxidation state)only two chromophores are present,characteristic of y 1,and y 0.5species and that all intermediate oxidation states consist,at the molecular level,only of mixtures of the chromophores characteristic of these two states.Since most of the properties of polyaniline of interest are concerned with the solid state,we have carried out a series of studies in the solid state which show that the same phenom-enon is true in the y 1to y 0.5oxidation-state range and in the y 0.5to y 0oxidation-state range.Within each of these ranges all intermediate oxidation states consist,at theREVIEWSSynthetic Metalsmolecular level,only of mixtures of the chromophores characteristic of the two states defining the beginning and end of each range.[19,20]DopingPolyaniline holds a special position amongst conducting polymers in that its most highly conducting doped form can be reached by two completely different processesÐprotonic acid doping and oxidative doping.Protonic acid doping of emeraldine base units with,for example 1m aqueous HCl results in complete protonation of the imime nitrogen atoms to give the fully protonated emeraldine hydrochloride salt.[14,15]As shown in Figure 2,protonation is accompanied by a 9to 10order of magnitude increase in conductivity reaching saturation in ca.1m aqueousHCl.Figure 2.Conductivity of emeraldine base as a function of the pH of the HCl dopant solution as it undergoes protonic acid doping (*and &represent two independent series of experiments).[14,15]The same doped polymer can be obtained by chemical oxidation (p-doping)of leucoemeraldine base.[3]This actually involves the oxidation of the s /p system rather than just the p system of the polymer as is usually the case in p-type doping.Its reaction with a solution of chlorine in carbon tetrachloride proceeds to give emeraldine hydrochloride (Scheme5).Scheme 5.NanoelectronicsThe basic purpose of this research is to blend the now well-established field of electronic/conducting polymers with the new,emerging field of nanoscience,by electrostatic fabrica-tion (ªelectrospinningº)to produce ªnanoelectronicsºÐelec-tronic junctions and devices significantly smaller than the diameter of a human hair (ca.50000nm).It is commonly accepted that a nanomaterial is defined as one consisting of a substance or structure which exhibits at least one dimension of less than 100nm (0.1m m).[21]Our objectives were:1)to develop a method by which nanofibers (diameter `100nm)of organic polymers could be controllably and reproducibly fabricated such that in one given preparation,all fibers would have a diameter `100nm and 2)to reproducibly and controllably fabricate,for the first time,nanofibers of electronic polymers (in their semiconduct-ing and metallic regimes)and/or their blends in conventional organic polymers for the purpose of ascertaining their applicability in the fabrication of nanoelectronic devices.We have made substantial progress in achieving these objectives by using a relatively little known,simple,conven-ient,and inexpensive ªelectrospinningºmethod.[22±27]We have previously reported [23]fabrication of the first conducting polymer fibers (diameter %950nm to 2100nm)of polyaniline doped with rac -camphorsulfonic acid (PAn ´HCSA)as a blend in poly(ethylene oxide)(PEO).We were surprised to find that an electronic polymer,such as polyaniline,which might have been expected to be more susceptible to degradation than most conventional organic polymers,sur-vived,without observable chemical or physical change,following the 25000V electrospinning fabrication process in air at room temperature.ElectrospinningThe electrospinning technique involves a simple,rapid,inexpensive,electrostatic,nonmechanical method in which a polymer solution in a variety of different possible common solvents,including water,is placed in a hypodermic syringe or in a glass pipette,at a fixed distance (5±30cm)from a metal cathode.[24]The positive (anode)terminal of a variable high voltage transformer is attached to the metal tip of the hypodermic syringe or to a wire inserted into the polymer solution in the glass pipette,the negative terminal being attached to the metal cathode.The tip of the syringe can be placed vertically over the cathode or at any other convenient angle to it.When the voltage applied between the anode and cathode reaches a critical value,ca.14000V at a ca.20cm separation,the charge overcomes the surface tension of the deformed drop of the polymer solution on the tip of the syringe and a jet is produced.Since the polymer molecules all bear the same (positive)charge,they repel each other while traveling in air during a few milliseconds from the anode to cathode and become separated.[25]At the same time,evapo-ration of the solvent molecules occurs rapidly.Evaporation of solvent is also enhanced because the similarly charged (positive)solvent molecules repel each other.Under appro-priate conditions,dry,meters-long fibers accumulate on the surface of the cathode resulting in a nonwoven mesh of nano-to micron-diameter fibers depending on experimental param-eters (Figure 3).REVIEWSA.G.MacDiarmidFigure 3.50wt %Nanofiber blend of PAn ´HCSA fabricated from 2wt %PAn ´HCSA and 2wt %PEO from chloroform solution at 25000V (anode/cathode separation,25cm).Scale bar:100000nm.Nanofiber FabricationSince the submicron fibers (500±1600nm)obtained in our initial work [23]were not classifiable as true ªnanofibersº,our immediate objective was to break the ªnanotechnology barrierºand to consistently and reproducibly fabricate true nanofibers (diameter `100nm)of an organic polymer.This was accomplished (see Figure 4)using an 8wt %solutionofFigure 4.Electrospun fibers of polystyrene (see text).Scale bar:1000nm.The extended length of the fibers is clearly visible.polystyrene (M w 212400)in tetrahydrofuran at a potential of 20000V between the anode and cathode which were sepa-rated by 30cm.The fibers were collected as a mat on an aluminum target and were found to have diameter character-istics:average:43.1nm,maximum:55.0nm,minimum:26.9nm.Other studies involving polystyrene gave fibers whose diameters were consistently `100nm;average:30.5nm (maximum:44.8nm,minimum:16.0nm).It might also be noted that the 16nm fiber is only around 30polystyrene molecules wide.It is also of interest to note that a 16nm fiber,such as the one mentioned above,lies well within the ca.4±30nm diameter range of multiwalled carbon nanotubes.[26]Electronic Polymer FibersBy using a previously applied method for producing polyaniline fibers [27]we have prepared highly conducting sulfuric acid doped polyaniline fibers (diameters,average:139nm,maximum:275nm,minimum:96nm)by placing a ca.20wt %solution of polyaniline in 98%sulfuric acid in a glass pipette with the tip ca.3cm above the surface of a copper cathode immersed in pure water at 5000V potential differ-ence.The fibers collect in or on the surface of the water.The conductivity of a single fiber was ca.0.1S cm À1,as expected since partial fiber de-doping occurred in the water cathode.The diameter and length of the fibers appear (Figure 5)to be sensitive to the nature of the polyaniline used.No great difficulty is foreseen in producing fibers `100nmdiameter.Figure 5.100%polyaniline fiber with an average diameter of 139nm.It is relatively easy to prepare conducting blends of PAn.HCSA in a variety of different conventional polymers such as polyethylene oxide,polystyrene,polyacrylonitrile,etc.For example,ca.20wt %blends of PAn ´HCSA in polystyr-ene (M w 114200)are obtained by electrospinning a chloro-form solution;fiber diameter characteristics:average:85.8nm,maximum:100.0nm,minimum:72.0nm.These fibers are sufficiently electrically conductive that their scan-ning electron micrographs (SEMs)may be recorded without the necessity of applying a gold coating.Separate,individual nanofibers can be collected and examined if so desired.An appropriate substrateÐglass slide,silicon wafer,or loop of copper wire,etc.Ðis held between the anode and cathode at a position close to the cathode for a few seconds to collect individual fibers (see Figure6).Figure 6.Polystyrene fibers collected on a bent copper wire (magnification 33Â)and subsequently coated with a thin layer of polypyrrole by in situ deposition from aqueous solution.Scale bar:1mm.Current/voltage (I /V )curves are given in Figure 7for a single 419nm diameter fiber (Fiber 1)and for a ca.600nm diameter fiber (Fiber 2)of a blend of 50wt %PAn ´HCSA and poly(ethylene oxide)collected on a silicon wafer coated with a thin layer of SiO 2.Two gold electrodes separated by 60.3m m are deposited on the fiber after its deposition on the substrate.REVIEWS SyntheticMetalsFigure7.Current/voltage curves of50wt%PAn´HCSA/PEO blend nanofiber(see text).Nanofibers as SubstratesThe large surface to volume ratio offered by nanofibers makes them excellent,potentially useful substrates for the fabrication of coaxial nanofibers consisting of superimposed layers of different materials.Catalysts and electronically active materials can be deposited on them by chemical, electrochemical,solvent,chemical vapor,or other means,for use in nanoelectronic junctions and devices.We have found,for example,that polyacrylonitrile nano-fibers can be easily and evenly coated with a20±25nm layer of conducting polypyrrole(Figure8)by immersion in an aqueous solution of polymerizing polypyrrole.[28]Analogous-ly,we have found that electroless deposition of metals can also be performed.Polyacrylonitrile fibers,for example,can be evenly coated with gold by electroless deposition.[29]Figure8.Scanning electron micrograph of conducting polypyrrole-coated polyacrylonitrile nanofibers.Scale bar:1000nm.Carbon NanofibersAs reported polyacrylonitrile fibers may be thermally converted into carbon nanofibers with some shrinkage.[30] We have similarly converted polyacrylonitrile nanofibers into carbon nanofibers.In summary,electronic polymers have been used for the past20years to produce rectifying diodes by Schottky and p/n junctions,transistors,light-emitting devices,photovoltaic cells,rechargeable batteries,etc.[1]Now,the ability to fab-ricate nanofibers of electronic polymers which are only a few molecules thick suggests the emergence of a field of nano-electronics whereby the electronic properties of such nano-fibers can be exploited for technological purposes.Line Patterning of Conducting Polymers[30]One of the exciting challenges of the first part of this century will be the development of low-cost disposable plastic/paper electronic devices.[31±33]Conventional inorganic conductors,such as metals,and semiconductors,such as silicon,commonly require multiple etching and lithographic steps in fabricating them for use in electronic devices.The number of processing steps and chemical etching steps involved limit the minimum price and therefore their applic-ability in disposable electronics.On the other hand,conduct-ing polymers combine many advantages of plastics,for example,flexibility and processing from solution,with the additional advantage of conductivity either in the metallic or semiconducting regimes;however,the lack of simple methods to obtain inexpensive conductive polymer shapes/patterns limit many applications.We here describe a novel,simple,and cheap method to prepare patterns of conducting polymers by a process which we term,ªLine Patterningº.Line Patterning uses the difference in selected physical and/ or chemical properties between a substrate and insulating lines which have been printed on it by a conventional copying or printing process towards a fluid(or vapor)to which they are both simultaneously exposed.The substrate and printed lines react differently or at different rates with the fluid(or vapor)to which they have been exposed.This results in a non-uniform deposition on the substrate as compared to the printed lines.If the fluid contains a conducting polymer,which remains as a film after evaporation of the solvent,a pattern of conducting polymer results.A pattern is first designed on a computer and is then printed on,for example,an overhead transparency using a standard,non-modified office laser printer.The printed(insulating)lines can be easily removed,if necessary,in a few seconds by ultrasonic treatment in toluene, dissolving the printed lines and leaving a clean pattern of deposited material on the substrate whose shape was origi-nally defined by the now nonexistent printed lines.Line Patterning has the following advantages:no photolithography is involved;no printing of conducting polymer is involved;it uses only,for example,a standard office laser printer,which is not modified in any way;commercially available flexible, transparent plastic or paper substrates can be used;solutions of commercially available conducting or nonconducting polymers can be used from which the polymers may be deposited on substrates,it is inexpensive;rapid development of customized patterns(within hours)from a computer designed pattern to product is routine.We have exploited,for example,the observation that a commercial dispersion of poly-3,4-ethylenedioxythiophene (PEDOT,ªBaytron Pº,Bayer Corp.)wets commercial plastic overhead transparency,but not the lines printed on it by a standard office laser printer.A coating of PEDOT can beREVIEWSA.G.MacDiarmidapplied by a roller and after evaporation of the solvent;the printed lines can be easily and cleanly removed by sonication,leaving only the conducting polymer on the transparency.Two electrodes were prepared in this way,each containing 25lines inch À1.A drop of a standard commercial polymer dispersed liquid crystal (PDLC)display [34]mixture containing an optical adhesive and 15m m spacer spheres was placed on the center of each electrode.The second electrode was placed on top at an angle of 908to the first.This resulted in a (25Â25),that is,625pixels (square-inch matrix)À1(Figure 9).Exposure to UV light for a few minutes resulted in polymer-ization of the mixture to bind the two electrodes together and to produce a free-standing working PDLC display device.When an electrode pattern of 100lines inch À1was used a working 10000pixel square-inch À1display wasproduced.Figure 9.Fabrication of a 625pixel PDLC display (see text).We have devised a novel way of separating conducting polymer circuits from each other by making use of the height (ca.4±5m m)of the printed toner lines,made by using a standard office printer,above the substrate,for example,on an overhead transparency.This is illustrated (Figures 10and 11)by a ªpush buttonºswitch to open and close a simple electrical circuit.A combination of two patterned trans-parencies where the two adjacent conductive areas are electrically separated from each other by two ca.4±5mmFigure 10.A simple electronic circuit (ªpush buttonºswitch).Figure 11.ªPush buttonºswitch.nonconductive printed toner lines is obtained by placing the printed lines on top of each other as shown in Figures 11and 12.Depression of the areas labeled ªPRESSºcauses the upper transparency to bend.This electrically connects the conducting PEDOT surfaces.When released,the transpar-ency film returns back to its original position,thus breaking the electrical circuit.The two-dimensional conducting polymer circuits may be readily converted into three-dimensional circuits by two different methods as shown in Figure 12simply by 1)stapling two two-dimensional circuits together using a common office stapler.The metal staple joins together electrically the conducting polymer areas on two different substrates or 2)making a pinhole through the sheets,as shown,before applying the PEDOT solution.Some of the solution enters the pinhole and joins together electrically the conducting surfaces on the two differentcircuits.Figure 12.Three-dimensional connections;a)connected with staple,b)connected by a coated hole;* connection to power supply.We have recently observed a curious field effect which thin films of PEDOT exhibit when exposed to a positive gate potential in an FET configuration as shown in Figure 13.A source/drain electrode and a gate electrode are prepared by Line Patterning and are covered by a thin layer of PEDOT as described above.A drop of the optical adhesive containing spacer spheres described above is placed on thesource/drainFigure 13.Field-effect doped ªPEDOTº.a)FET-type device,b)field-effect configuration.。

相关文档
最新文档