旅游线路的优化设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年第八届苏北数学建模联赛
承诺书
我们仔细阅读了第八届苏北数学建模联赛的竞赛规则。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与本队以外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们愿意承担由此引起的一切后果。
我们的参赛报名号为:
参赛组别(研究生或本科或专科):本科
参赛队员(签名) :
队员1:
队员2:
队员3:
获奖证书邮寄地址:
编号专用页
参赛队伍的参赛号码:(请各个参赛队提前填写好):竞赛统一编号(由竞赛组委会送至评委团前编号):
竞赛评阅编号(由竞赛评委团评阅前进行编号):
题目旅游线路的优化设计
摘要
本文主要研究最佳旅游路线的设计问题。在满足相关约束条件的情况下,花最少的钱游览尽可能多的景点是我们追求的目标。基于对此的研究,建立数学模型,设计出最佳的旅游路线。
第一问放松时间约束,要求游客游遍所有的景点,该问题也就成了典型的货郎担(TSP)问题。使用lingo编程得到最佳旅游路线为:徐州—常州—舟山—黄山—庐山—武汉黄鹤楼—龙门石窟—秦兵马俑—祁县乔家大院—八达岭长城—青岛崂山—徐州。
第二问给定时间约束,要求设计合适的旅游路线。我们建立了一个最优规划模型,在给定游览景点个数的情况下以总费用不限,时间最少为目标。再引入0—1变量表示是否游览某个景点,从而推出交通费用和景点花费的函数表达式,给出相应的约束条件,使用lingo编程对模型求解。推荐方案:徐州—恐龙园—舟山—黄山—庐山—黄鹤楼—秦兵马俑—龙门石窟—乔家大院—八达岭长城—青岛崂山—徐州。
第三问放松时间约束,要求游客在总费用低于2000元的约束下游览最多的景点。在第一问的基础上建立模型,并增加总费用低于2000元的约束。使用lingo编程得到最佳旅行路线为:徐州—常州—武汉—洛阳—西安—祁县—北京—青岛—徐州。
第四问给定时间约束,放松对总费用的约束。我们在第二问的基础上建立一个最优化模型,以时间最少为目标。再引入0—1变量表示是否游览某个景点,从而推出交通费用和景点花费的函数表达式,给出相应的约束条件,使用lingo编程对模型求解。推荐方案:徐州-常州-九江-武汉-洛阳-西安-祁县-北京-徐州。
第五问给定时间、总费用小于2000的双重约束。我们在第三问、第四问的基础上建立模型,以在规定时间内,规定总费用内,以游览最多景点为目标。使用lingo编程对模型求解。推荐方案:徐州-常州-舟山-黄山-九江-武汉-洛阳-西安-徐州
关键词:最佳路线TCP问题景点个数最小费用
目录
1 问题重述 (1)
2 问题分析 (1)
2.1 问题背景的理解 (1)
2.2 问题一和问题二的分析 (1)
2.3 问题三和问题四的分析 (2)
2.4 问题五的分析 (2)
3 模型假设 (2)
4 符号说明 (2)
5 模型建立及求解 (2)
5.1 问题一模型的建立及求解 (2)
5.2 问题二模型的建立和求解 (4)
5.3 问题三模型的建立及求解 (5)
5.4 问题四模型的建立及求解 (6)
5.5 问题五模型的建立及求解 (8)
6 模型的评价改进及推广 (9)
6.1.模型的评价 (9)
6.2.模型的改进与推广: (9)
7 参考文献 (9)
8 附录 (9)
8.1 各旅游景点可能的住宿地及到达方式(起点为火车站或住宿地) (9)
8.2 本模型计算时用到的部分lingo代码 (10)
1 问题重述
随着人们的生活不断提高,旅游已成为提高人们生活质量的重要活动。江苏徐州有一位旅游爱好者打算现在的今年的五月一日早上8点之后出发,到全国一些著名景点旅游,最后回到徐州。由于跟团旅游会受到若干限制,他(她)打算自己作为背包客出游。他预选了十个省市旅游景点,如表1所示。
假设:
(A) 城际交通出行可以乘火车(含高铁)、长途汽车或飞机(不允许包车或包机),并且车票或机票可预订到。
(B) 市内交通出行可乘公交车(含专线大巴、小巴)、地铁或出租车。
(C) 旅游费用以网上公布为准,具体包括交通费、住宿费、景点门票(第一门票)。晚上20:00至次日早晨7:00之间,如果在某地停留超过6小时,必须住宿,住宿费用不超过200元/天。吃饭等其它费用60元/天。
(D) 假设景点的开放时间为8:00至18:00。
问题:
根据以上要求,针对如下的几种情况,为该旅游爱好者设计详细的行程表,该行程表应包括具体的交通信息(车次、航班号、起止时间、票价等)、宾馆地点和名称,门票费用,在景点的停留时间等信息。
(1) 如果时间不限,游客将十个景点全游览完,至少需要多少旅游费用?请建立相关数学模型并设计旅游行程表。
(2) 如果旅游费用不限,游客将十个景点全游览完,至少需要多少时间?请建立相关数学模型并设计旅游行程表。
(3) 如果这位游客准备2000元旅游费用,想尽可能多游览景点,请建立相关数学模型并设计旅游行程表。
(4) 如果这位游客只有5天的时间,想尽可能多游览景点,请建立相关数学模型并设计旅游行程表。
(5) 如果这位游客只有5天的时间和2000元的旅游费用,想尽可能多游览景点,请建立相关数学模型并设计旅游行程表。
2 问题分析
2.1 问题背景的理解
根据对题目的理解我们可以知道,旅游的总费用包括交通费用和在景点游览时的费用及可能的住宿费用,在确定了要游览的景点的个数后,所以我们的目标就是在满足所有约束条件的情况下,求出成本的最小值。
2.2 问题一和问题二的分析
问题一要求我们为该旅游爱好者设计合适的旅游路线,使他在无限制的时间内花最少的钱游览所有十个景点,并返回出发地徐州。在这里我们的做法是满足相应的约束条件,计算出在这种情况下的最小花费。