第8章zemax分析菜单
ZEMAX光学设计软件操作说明详解
ZEMAX光学设计软件操作说明详解Zemax是一种光学设计软件,它提供了丰富的功能和工具,用于设计和优化光学系统。
以下是对Zemax光学设计软件的操作说明的详细解释。
工具栏是软件的快速访问工具。
其中包含了一些最常用的工具按钮,例如放大、缩小、旋转和平移视图等。
您可以通过单击这些按钮来快速执行相应的操作。
设置和属性面板是对光学系统进行设置和属性调整的地方。
您可以在设置面板中设置光源的参数,例如光强和颜色。
在属性面板中,您可以对每个光学元件的属性进行调整,例如位置、形状和材料属性等。
三维视图是用于可视化整个光学系统的地方。
您可以在这里查看光线的传播路径、光束的参数和各个光学元件的位置。
通过旋转、缩放和平移操作,您可以查看整个系统的不同视角。
在操作Zemax时,您需要先创建或导入光学设计文件。
然后,按照以下步骤进行操作:2.双击光学元件或在属性面板中进行设置,例如位置、孔径、曲率和折射率等。
3.在设置面板中选择光源类型和参数,并将其添加到光学系统中。
4.在光学系统中添加或删除光学元件,例如透镜、镜面和光学器件等。
5.使用光线追迹工具来模拟光线在光学系统中的传播,并分析光线的参数,例如入射角、焦点位置和光强分布等。
6.使用优化工具来调整光学元件的参数,以优化光学系统的性能,例如最小化像差、最大化光束质量和最优化焦点位置等。
7.最后,可以通过三维视图和结果分析面板来查看和评估整个光学系统的性能和效果。
需要注意的是,Zemax是一种强大的光学设计软件,操作较为复杂。
在使用之前,建议您先阅读官方提供的操作手册和教程,熟悉软件的功能和操作方法。
此外,良好的光学基础知识也是操作Zemax的前提。
以上是对Zemax光学设计软件操作说明的详细解释。
希望能帮助您理解和使用这一软件。
光学设计软件zemax中文教程
注:此版本ZEMAX中文说明由光学在线网友elf提供!目录第1章引第2章用户界面第3章约定和定义第4章教程教程1:单透镜教程2:双透镜教程3:牛顿望远镜教程4:带有非球面矫正器的施密特—卡塞格林系统教程5:多重结构配置的激光束扩大器教程6:折叠反射镜面和坐标断点教程7:消色差单透镜第5章文件菜单 (7)第6章编辑菜单 (14)第7章系统菜单 (31)第8章分析菜单 (44)§8.1 导言 (44)§8.2 外形图 (44)§8.3 特性曲线 (51)§8.4 点列图 (54)§8.5 调制传递函数MTF (58)§8.5.1 调制传递函数 (58)§8.5.2 离焦的MTF (60)§8.5.3 MTF曲面 (60)§8.5.4 MTF和视场的关系 (61)§8.5.5 几何传递函数 (62)§8.5.6 离焦的MTF (63)§8.6 点扩散函数(PSF) (64)§8.6.1 FFT点扩散函数 (64)§8.6.2 惠更斯点扩散函数 (67)§8.6.3 用FFT计算PSF横截面 (69)§8.7 波前 (70)§8.7.1 波前图 (70)§8.7.2 干涉图 (71)§8.8 均方根 (72)§8.8.1 作为视场函数的均方根 (72)§8.8.2 作为波长函数的RMS (73)§8.8.3 作为离焦量函数的均方根 (74)§8.9 包围圆能量 (75)§8.9.1 衍射法 (75)§8.9.2 几何法 (76)§8.9.3 线性/边缘响应 (77)§8.10 照度 (78)§8.10.1 相对照度 (78)§8.10.2 渐晕图 (79)§8.10.3 XY方向照度分布 (80)§8.10.4 二维面照度 (82)§8.11 像分析 (82)§8.11.1 几何像分析 (82)§8.11.2 衍射像分析 (87)§8.12 其他 (91)§8.12.1 场曲和畸变 (91)§8.12.2 网格畸变 (94)§8.12.3 光线痕迹图 (96)§8.12.4 万用图表 (97)§8.12.5 纵向像差 (98)§8.12.6 横向色差 (99)§8.12.7 Y-Y bar图 (99)§8.12.8 焦点色位移 (100)§8.12.9 色散图 (100)§§§§8.13 计算 (103)§8.13.1 光线追迹 (103)§8.13.2 塞得系数 (104)第九章工具菜单 (108)§9.1 优化 (108)§9.2 全局优化 (108)§9.3 锤形优化 (108)§9.4 消除所有变量 (108)§9.5 评价函数列表 (109)§9.6 公差 (109)§9.7 公差列表 (109)§9.8 公差汇总表 (109)§9.9 套样板 (109)§9.10 样板列表 (111)§9.11 玻璃库 (112)§9.12 镜头库 (112)§9.13 编辑镀膜文件 (114)§9.14 给所有的面添加膜层参数 (115)§9.15 镀膜列表 (115)§9.16 变换半口径为环形口径 (115)§9.17 变换半口径为浮动口径 (116)§9.18 将零件反向排列 (116)§9.19 镜头缩放 (116)§9.20 生成焦距 (117)§9.21 快速调焦 (117)§9.22 添另折叠反射镜 (117)§9.23 幻像发生器 (118)§9.24 系统复杂性测试 (120)§9.25 输出IGES文件 (120)第十章报告菜单 (124)§10.1 介绍 (124)§10.2 表面数据 (124)§10.3 系统数据 (125)§10.4 规格数据 (125)§10.5 Report Graphics 4/6 (126)第十一章宏指令菜单 (127)§11.1 编辑运行ZPL宏指令 (127)§11.2 更新宏指令列表 (127)§11.3 宏指令名 (127)第十二章扩展命令菜单 (128)§12.1 扩展命令 (128)§12.2 更新扩展命令列表 (128)§12.3 扩展命令名 (128)第十三章表面类型 (130)§13.1 简介 (130)§13.2 参数数据 (130)§13.3 特别数据 (131)§13.4 表面类型概要 (131)§13.4.1 用户自定义表面 (131)§13.4.2 内含表面 (132)§13.5 标准面 (136)§13.6 偶次非球面 (136)§13.7 奇次非球面 (137)§13.8 近轴表面 (138)§13.9 近轴X-Y表面 (138)§13.10 环形表面 (139)§13.11 双圆锥表面 (139)§13.12 环形光栅面 (140)§13.13 立方样条表面 (141)§13.14 Ⅰ型全息表面 (142)§13.15 Ⅱ型全息表面 (143)§13.16 坐标断点表面 (143)§13.17 多项式表面 (145)§13.18 菲涅耳表面 (145)§13.19 ABCD矩阵 (146)§13.20 另类面 (146)§13.21 衍射光栅表面 (147)§13.22 共轭面 (148)§13.23 倾斜表面 (149)§13.24 不规则表面 (149)§13.25 梯度折射率1表面 (150)§13.26 梯度折射率2表面 (152)§13.27 梯度折射率3表面 (152)§13.28 梯度折射率4表面 (153)§13.29 梯度折射率5表面 (154)§13.30 梯度折射率6表面 (155)§13.31 梯度折射率7表面 (156)§13.32 梯度折射率表面Gradium TM (157)§13.33 梯度折射率9表面 (160)§13.34 梯度折射率10表面 (161)§13.35泽尼克边缘矢高表面 (162)第十五章非序列元件 (162)第十七章优化 (228)第十八章全局优化 (290)第十九章公差规定 (298)第二十章多重结构 (338)第二十一章玻璃目录的使用 (345)第二十二章热分析 (363)第二十三章偏振分析 (373)第二十四章ZEMAX程序设计语言 (390)第二十五章ZEMAX扩展 (478)第五章文件菜单新建(New)目的:清除当前的镜头数据。
ZEMAX操作步骤
ZEMAX操作步骤1.打开ZEMAX软件:双击ZEMAX桌面图标或从开始菜单中找到ZEMAX 图标并单击打开。
2. 创建新的工程文件:点击“File”菜单,选择“New”,然后选择工程文件类型,如“Sequential”或“Non-Sequential”等。
3. 设置工作环境:在“Settings”菜单中可以设置工作环境,如单位制和光线追迹方式等。
点击“Units”可以设置长度和角度单位,点击“Ray Aiming”可以设置光线追迹参数。
4. 在“System Explorer”中创建光学系统:点击“Object”菜单,选择“New System”,在弹出的对话框中输入系统名称。
然后,在“System Explorer”中可以看到创建的光学系统。
5.在系统中添加光学元件:双击光学系统名称,在弹出的对话框中可以选择添加光学元件,如透镜、镜面等。
选择元件后可以在对话框中设置元件的属性,如曲率、厚度和物质等。
6. 设置光源:点击“Source”菜单,选择合适的光源类型,如点光源、平行光源等。
在弹出的对话框中可以设置光源的参数,如波长、功率等。
7. 设定探测器:点击“Analysis”菜单,选择“New Detector”,在弹出的对话框中可以设置探测器的位置和尺寸。
探测器用于测量系统中的光强分布和光束参数。
8. 进行光学仿真:点击“Run”按钮,ZEMAX将按照设定的参数进行光线追迹和光学分析。
在仿真结束后,可以查看系统中的光学效果和性能参数,如光强、光斑直径和MTF曲线等。
9. 优化光学系统:通过修改系统中光学元件的参数,可以优化系统的性能指标。
点击“Tools”菜单,选择“System Explorer”打开系统的属性对话框,在对话框中可以调整元件的参数。
10. 分析结果并导出数据:通过点击“Analysis”菜单中的各种分析功能,可以查看系统的性能曲线和参数。
可以选择将分析结果保存为图像或数据文件,如TXT或EXCEL格式。
zemax中文使用说明
目录第1 章简介 6 第2 章用户界面 10 第3 章约定和定义 19 第4 章文件菜单 (30)第5 章习作 37 教程1:单透镜 38 教程2:双透镜 39 教程3:牛顿望远镜 40 教程4:带有非球面矫正器的施密特—卡塞格林系统 42 教程5:多重结构配置的激光束扩大器 44 教程6:折叠反射镜面和坐标断点 46 教程7:消色差单透镜第6 章编辑菜单 (48)第7 章系统菜单 (58)第8 章分析菜单 (67)§8.1 导言 (67)§8.2 外形图 (67)§8.3 特性曲线 (73)§8.4 点列图 (75)§8.5 调制传递函数MTF (77)§8.5.1 调制传递函数 (77)§8.5.2 离焦的MTF (79)§8.5.3 MTF 曲面 (79)§8.5.4 MTF 和视场的关系 (80)§8.5.5 几何传递函数 (80)§8.5.6 离焦的几何MTF (81)§8.6 点扩散函数(PSF) (81)§8.6.1 FFT 点扩散函数 (81)§8.6.2 惠更斯点扩散函数 (84)§8.6.3 用FFT 计算PSF 横截面 (85)§8.7 波前 (85)§8.7.1 波前图 (85)§8.7.2 干涉图 (85)§8.8 均方根 (86)§8.8.1 作为视场函数的均方根 (86)§8.8.2 作为波长函数的RMS (88)§8.8.3 作为离焦量函数的均方根 (89)§8.9 包围圆能量 (90)§8.9.1 衍射法 (90)§8.9.2 几何法 (91)§8.9.3 线性/边缘响应 (92)§8.10 照度 (92)§8.10.1 相对照度 (92)§8.10.2 渐晕图 (93)§8.10.3 XY 方向照度分布 (93)§8.10.4 二维面照度 (94)§8.11 像分析 (94)§8.11.1 几何像分析 (94)§8.11.2 衍射像分析 (98)§8.12 其他 (101)§8.12.1 场曲和畸变 (101)§8.12.2 网格畸变 (102)§8.12.3 光线痕迹图 (103)§8.12.4 万用图表 (104)§8.12.5 纵向像差 (105)§8.12.6 横向色差 (106)§8.12.7 Y-Y bar 图 (106)§8.12.8 焦点色位移 (106)§8.12.9 色散图 (107)§8.12.10 波长和内透过率的关系 (107)§8.12.11 玻璃图 (107)§8.12.10 系统总结图 (108)§8.13 计算 (108)§8.13.1 光线追迹 (108)§8.13.2 塞得系数 (109)第九章工具菜单 (111)§9.1 优化 (111)§9.2 全局优化 (111)§9.3 锤形优化 (111)§9.4 消除所有变量 (111)§9.5 评价函数列表 (111)§9.6 公差 (111)§9.7 公差列表 (111)§9.8 公差汇总表 (112)§9.9 套样板 (112)§9.10 样板列表 (113)§9.11 玻璃库 (113)§9.12 镜头库 (113)§9.13 编辑镀膜文件 (115)§9.14 给所有的面添加膜层参数............................. .115 §9.15 镀膜列表.......................................... .115 §9.16 变换半口径为环形口径.............................. ..115 §9.17 变换半口径为浮动口径.............................. ..116 §9.18 将零件反向排列.................................... .116 §9.19 镜头缩放....................................... (116)§9.20 生成焦距.......................................... .116 §9.21 快速调焦......................................... .. (116)§9.22 添另折叠反射镜................................... ..116 §9.23 幻像发生器......................................... .117 §9.24 系统复杂性测试.................................... ..118 §9.25 输出IGES 文件................................ . (118)第十章报告菜单 (121)§10.1 介绍 (121)§10.2 表面数据........................................... .121 §10.3 系统数据 (121)§10.4 规格数据............................................. .122 §10.5 Report Graphics 4/6 ................................... .122 第十一章宏指令菜单 (123)§11.1 编辑运行ZPL 宏指令 (123)§11.2 更新宏指令列表 (123)§11.3 宏指令名 (123)第十二章扩展命令菜单 (124)§12.1 扩展命令 (124)§12.2 更新扩展命令列表................................ (124)§12.3 扩展命令名.................................... ..124 第十三章表面类型.. (125)§13.1 简介 (125)§13.2 参数数据....................................... ..125 §13.3 特别数据....................................... .125 §13.4 表面类型概要...................................... .126§13.4.1 用户自定义表面................................. .126 §13.4.2 内含表面....................................... .126 §13.5 标准面............................................. .128 §13.6 偶次非球面 (128)§13.7 奇次非球面....................................... .129 §13.8 近轴表面........................................... .129 §13.9 近轴X-Y 表面.. (129)§13.10 环形表面.......................................... ..130 §13.11 双圆锥表面...................................... ..130 §13.12 环形光栅面.. (131)§13.13 立方样条表面 (131)§13.14 Ⅰ型全息表面...................................... .132 §13.15 Ⅱ型全息表面..................................... .132 §13.16 坐标断点表面.................................... (133)§13.17 多项式表面........................................ ..134 §13.18 菲涅耳表面...................................... (134)§13.19 ABCD 矩阵....................................... .135 §13.20 另类面....................................... (135)§13.21 衍射光栅表面................................ ....... ..135 §13.22 共轭面............................................. .136 §13.23 倾斜表面.......................................... .137 §13.24 不规则表面......................................... .138 §13.25 梯度折射率1 表面.............................. . (138)§13.26 梯度折射率2 表面................................... .. .139 §13.27 梯度折射率3 表面.................................... (139)§13.28 梯度折射率4 表面.................................... . .140 §13.29 梯度折射率5 表面................................. .140 §13.30 梯度折射率6 表面............................... .142 §13.31 梯度折射率7 表面............................... .. .142 §13.32 梯度折射率表面Gradium TM......................... (143)§13.33 梯度折射率9 表面.................................... .145 §13.34 梯度折射率10 表面.. (146)§13.35 泽尼克边缘矢高表面............................ (147)第十五章非序列元件 (149)第十七章优化 (191)第十八章全局优化..................................................................无第十九章公差规定 (236)第二十章多重结构 (264)第二十一章玻璃目录的使用 (270)第二十二章热分析 (282)第二十三章偏振分析 (283)第二十四章 ZEMAX 程序设计语言…………………………………(未打印)295 第二十五章 ZEMAX 扩展……………………………………………(未打印)349第一章简介关于本手册的说明ZEMAX有三种不同的版本:ZEMAX-SE(标准版);ZEMAX-XE(扩展版);ZEMAX-EE(工程版)。
zemax基本介绍和操作剖析
对话框(Dialogs)
固定大小,在过程中跳出来的视 窗(鼠标拖曳不能改变大小) 用于定义或更新视场(Fields)、 波长(Wavelengths)、孔径 (Apertures)、面型(Surface types)等。
重庆大学 - 光学CAD
多视窗同时显示
重庆大学 - 光学CAD
重庆大学 - 光学CAD
重庆大学 - 光学CAD
菜单栏
工具(Tools)
也是ZEMAX中的非常重要的菜单之一,分成七块:第一块用来进行光学镜头的局 部优化(Optimization)、全局优化(Global / Search /Hammer Optimization)等;第二块分析镜头的公差,计算传递函数的点列图,波差等变 化量表。第三块是材料选择,有察勘玻璃库或向库中新增添或删除玻璃条目,寻找 简单的透镜数据并插入到透镜数据编辑器中。第四块是镀膜模型。第五块是系统中 镜头的孔径的定义,可以与渐晕系数配合共同使用。第六块主要用来整体设计(1)按 焦距或放大率缩放当前系统;(2)在当前系统中加入或删除折转发射镜。第七块以后 讨论。
报告(Report)
形成镜头设计结果的报告,可以作为每一个光学面的形成报告(Surface data); 也能为镜头系统形成高斯参数或光学特性参数的报告(System data);还可以给出 设计结果的详细数据报告(Prescription data)。
重庆大学 - 光学CAD
菜单栏
宏编程(Macros)
重庆大学 - 光学CAD
Non-sequential
以object为对象建模 不限制光线和相交的顺序 光线与同一面或物可多次相交 光线会分裂 镜面反射和漫反射 可以是全反射 在object外的光线也进行追迹 object的位置由全局坐标确定 所有空间是等价的 ZEMAX 基本介绍和操作
ZEMAX光学设计软件操作说明详解_光学设计
ZEMAX光学设计软件操作说明详解_光学设计.txt9母爱是一滴甘露,亲吻干涸的泥土,它用细雨的温情,用钻石的坚毅,期待着闪着碎光的泥土的肥沃;母爱不是人生中的一个凝固点,而是一条流动的河,这条河造就了我们生命中美丽的情感之景。
ZEMAX光学设计软件操作说明详解介绍这一章对本手册的习惯用法和术语进行说明。
ZEMAX使用的大部分习惯用法和术语与光学行业都是一致的,但是还是有一些重要的不同点。
活动结构活动结构是指当前在镜头数据编辑器中显示的结构。
详见“多重结构”这一章。
角放大率像空间近轴主光线与物空间近轴主光线角度之比,角度的测量是以近轴入瞳和出瞳的位置为基准。
切迹切迹指系统入瞳处照明的均匀性。
默认情况下,入瞳处是照明均匀的。
然而,有时入瞳需要不均匀的照明。
为此,ZEMAX支持入瞳切迹,也就是入瞳振幅的变化。
有三种类型的切迹:均匀分布,高斯型分布和切线分布。
对每一种分布(均匀分布除外),切迹因素取决于入瞳处的振幅变化率。
在“系统菜单”这一章中有关于切迹类型和因子的讨论。
ZEMAX也支持用户定义切迹类型。
这可以用于任意表面。
表面的切迹不同于入瞳切迹,因为表面不需要放置在入瞳处。
对于表面切迹的更多信息,请参看“表面类型”这一章的“用户定义表面”这节。
后焦距ZEMAX对后焦距的定义是沿着Z轴的方向从最后一个玻璃面计算到与无限远物体共轭的近轴像面的距离。
如果没有玻璃面,后焦距就是从第一面到无限远物体共轭的近轴像面的距离。
基面基面(又称叫基点)指一些特殊的共轭位置,这些位置对应的物像平面具有特定的放大率。
基面包括主面,对应的物像面垂轴放大率为+1;负主面,垂轴放大率为-1;节平面,对应于角放大率为+1;负节平面,角放大率为-1;焦平面,象空间焦平面放大率为0,物空间焦平面放大率为无穷大。
除焦平面外,所有的基面都对应一对共轭面。
比如,像空间主面与物空间主面相共轭,等等。
如果透镜系统物空间和像空间介质的折射率相同,那么节面与主面重合。
zemax操作详解
ZEMAX光学设计软件操作说明详解找到一些资料希望对大家有用!【ZEMAX光学设计软件操作说明详解】介绍这一章对本手册的习惯用法和术语进行说明。
ZEMAX使用的大部分习惯用法和术语与光学行业都是一致的,但是还是有一些重要的不同点。
活动结构活动结构是指当前在镜头数据编辑器中显示的结构。
详见“多重结构”这一章。
角放大率像空间近轴主光线与物空间近轴主光线角度之比,角度的测量是以近轴入瞳和出瞳的位置为基准。
切迹切迹指系统入瞳处照明的均匀性。
默认情况下,入瞳处是照明均匀的。
然而,有时入瞳需要不均匀的照明。
为此,ZEMAX支持入瞳切迹,也就是入瞳振幅的变化。
有三种类型的切迹:均匀分布,高斯型分布和切线分布。
对每一种分布(均匀分布除外),切迹因素取决于入瞳处的振幅变化率。
在“系统菜单”这一章中有关于切迹类型和因子的讨论。
ZEMAX也支持用户定义切迹类型。
这可以用于任意表面。
表面的切迹不同于入瞳切迹,因为表面不需要放置在入瞳处。
对于表面切迹的更多信息,请参看“表面类型”这一章的“用户定义表面”这节。
后焦距ZEMAX对后焦距的定义是沿着Z轴的方向从最后一个玻璃面计算到与无限远物体共轭的近轴像面的距离。
如果没有玻璃面,后焦距就是从第一面到无限远物体共轭的近轴像面的距离。
基面基面(又称叫基点)指一些特殊的共轭位置,这些位置对应的物像平面具有特定的放大率。
基面包括主面,对应的物像面垂轴放大率为+1;负主面,垂轴放大率为-1;节平面,对应于角放大率为+1;负节平面,角放大率为-1;焦平面,象空间焦平面放大率为0,物空间焦平面放大率为无穷大。
除焦平面外,所有的基面都对应一对共轭面。
比如,像空间主面与物空间主面相共轭,等等。
如果透镜系统物空间和像空间介质的折射率相同,那么节面与主面重合。
ZEMAX列出了从象平面到不同象方位置的距离,同时也列出了从第一面到不同物方平面的距离。
主光线如果没有渐晕,也没有像差,主光线指以一定视场角入射的一束光线中,通过入瞳中央射到象平面的那一条。
zemax中文教程
第一章引言关于本说明书ZEMAX有三种不同的版本:ZEMAX-SE(标准版本),ZEMAX-XE(扩展版本)和ZEMAX –EE(工程版本)。
本手册包括了所有三个版本的使用说明,当然,如文中所述,某些特征只对其中一个或两个版本是适用的。
如果它的性能可以用在ZEMAX-XE和ZEMAX –EE中,但不能用于ZEMAX-SE,本手册中会在描述该特性时,给出如下的标识:如果一种功能能用在ZEMAX-EE,但不能用在ZEMAX-XE或ZEMAX –SE中,则会在手册中描述该特性的地方,给出如下的标识:请注意XE比SE更为高级。
那就是说SE能完成的XE一定能完成,除此之外还有扩展功能。
EE也比XE要高级。
这本手册概括了ZEMAX在Micoroft Windows和Windows NT操作系统中运行的三个版本。
ZEMAX能做什么?ZEMAX是一个用来模拟、分析和辅助设计光学系统的程序。
ZEMAX的界面设计得比较容易被使用,稍加练习就能很快地进行交互设计。
大部分ZEMAX的功能都用选择弹出或下拉式菜单来实现。
键盘快捷键可以用来引导或略过菜单,直接运行。
本手册提供了ZEMAX中的有关约定的解释,使用步骤的说明以及功能的描述。
ZEMAX不能做什么?ZEMAX程序或ZEMAX文件都不能教你如何去进行镜头或光学系统的设计。
虽然,ZEMAX 程序在进行光学系统的设计和分析的时候,可以帮助你做许多事情,但是设计者仍然是你。
ZEMAX文件并不是关于光学设计、术语以及方法的教程。
ZEMAX的用户可以获得技术上的支持,包括在使用过程中的帮助,但不包括基本的光学设计原理的指导。
如果,你在光学设计方面只有很少甚至根本就没有经验,你就需要去熟读有关这方面的许多好书。
下表列出了一些(但并非全部)可以帮你学习的书。
最主要的,ZEMAX并不能完全代替工程实践。
在一个设计完成之前,必须要一个有资格的工程师对本软件所得的计算结果进行检查,以判断结果是否合理。
ZEMAX操作教程
ZEMAX操作教程ZEMAX是一个可以用来设计光学系统、模拟光线传播和优化光学元件的软件。
本篇文章将向大家介绍一些关于ZEMAX的基本操作方法和一些常用功能。
希望通过这篇文章,读者可以对ZEMAX有一个初步的了解,并能够在实际使用中应用相关技巧。
在开始设计光学系统之前,我们首先需要创建一个新的光学系统。
点击菜单栏中的"File",选择"New",然后选择"System"。
在弹出的对话框中,输入光学系统的名称和初始物方参数。
点击"OK"后,一个新的光学系统将被创建。
接下来,我们需要添加光学元件。
点击菜单栏中的"Insert",可以选择向光学系统中添加各种不同类型的元件,例如透镜、反射镜、衍射光栅等。
选择相应的元件后,将其拖动到视窗中的适当位置即可。
对于一些元件,还可以通过点击右键来修改其属性和参数。
添加完所有的光学元件后,我们需要设置光源和探测器。
点击菜单栏中的"Insert",选择"Source"和"Detector",然后将它们分别拖动到光学系统的适当位置。
通过右键点击光源和探测器,我们可以设置它们的参数,例如波长、功率、位置等。
设置完光源和探测器后,我们可以进行光线追迹仿真。
点击菜单栏中的"Analyze",选择"Sequential Mode"。
在弹出的对话框中,选择适当的仿真参数,例如光线追迹的方式、光线数目等。
点击"OK"后,ZEMAX将自动进行光线追迹仿真,并在视窗中显示光线的传播路径和光强分布。
进行光线追迹仿真后,我们可以对光学系统进行优化。
点击菜单栏中的"Tools",选择"Optimization"。
在弹出的对话框中,选择适当的优化方法和目标函数。
ZEMAX操作教程
简介 这一章将要教你如何使用 ZEMAX,这一章的每一节将会让你接触一个不同的设计问题。第 一个设计例子是非常简单的, 如果你是一个有经验的镜片设计师, 你也许觉得它并不值得你去费 心,但是,如果你花费一点点时间去接触它,你可以学到如何运行 ZEMAX,然后你可以继续你 自己特别感兴趣的设计。 前几个例子中, 提供了一些关于镜片设计理论的教程内容, 用来帮助那些对专用术语不是很 了解的人。但在总体上来说,这本手册,以及其中的这些特例,目的都不是要将一个新手培养成 为一个专家。如果你跟不上这些例子,或者你不能理解程序演示时与计算有关的数学知识,可以 参考任何一本“简介”这一章中所列出的好书。在开始课程之前,你必须先通过正当手段安装 ZEMAX。
ZEMAX操作说明
ZEMAX操作说明1.界面介绍-菜单栏:包含了各种操作和设置选项。
-工具栏:提供了常用的工具按钮,方便用户进行一些快捷操作。
-设置窗口:用于设置系统参数和优化选项。
2.新建和打开文件在ZEMAX中,用户可以使用菜单栏中的“文件”选项来新建和打开文件。
选择“新建文件”可以创建一个新的ZEMAX文件,选择“打开文件”可以从计算机中打开已有的ZEMAX文件。
3.绘制模型4.设置系统参数5.添加并设置光学元件6.进行光束追迹和分析在ZEMAX中,用户可以使用“分析”菜单中的“光束追迹”选项来进行光束的追踪和分析。
通过选择适当的追踪模式和设置参数,用户可以模拟光束在光学系统中的传播路径,并分析光束的特性,如光强、入射角和相位等。
7.进行系统优化ZEMAX提供了强大的系统优化功能,使用户可以通过改变系统的参数和元件来优化系统的性能。
用户可以使用“分析”菜单中的“最优化”选项来设置和运行系统优化。
通过选择适当的优化算法和定义优化目标,用户可以找到最佳的系统参数组合。
8.生成和导出结果在ZEMAX中,用户可以使用“分析”菜单中的“生成图表”选项来生成各种图表和图像。
用户可以选择适当的数据和图表类型,如波前图、MTF曲线和瑞利判据图等。
生成的图表和图像可以导出为常见的图像格式,如BMP、JPEG和PNG等。
9.保存和导出文件在ZEMAX中,用户可以使用菜单栏中的“文件”选项来保存和导出文件。
选择“保存文件”可以保存当前的ZEMAX文件,选择“导出文件”可以将当前的ZEMAX文件导出为其他格式,如TXT、CAD和STEP等。
10.学习和使用资源总结:ZEMAX是一种功能强大的光学系统设计和分析软件,它提供了许多操作和功能,使用户能够设计和优化光学系统。
通过了解和掌握ZEMAX的主要操作和使用方法,用户可以更好地使用ZEMAX来满足光学系统设计和分析的需求。
ZEMAX中文使用说明书pdf
ZEMAX的优化算法同样适用于偏振光系统 ,可以对系统进行优化以提高偏振性能。
32
激光束传播模拟技术
激光束建模
ZEMAX支持激光束的建模和分析,用户可以定义激光束 的波长、功率、光束质量等参数。
01
激光束追迹
通过激光束追迹功能,可以模拟激光束 在光学系统中的传播过程,并分析光束 形状、功率分布等特性。
合理选择优化算法
根据问题的特点选择合适的优化算法,如梯度 下降法、遗传算法等。
设置合适的优化参数
如迭代次数、收敛精度等,以保证优化效果的 同时减少计算时间。
2024/1/26
利用并行计算功能
ZEMAX支持并行计算,可充分利用计算机资源,加快优化速度。
17
03 光学系统设计基 础
2024/1/26
18
仿真分析
对优化后的光学系统进行仿真分析,评估其性能 是否满足要求。
加工与装配
根据设计结果,进行光学元件的加工和装配,完成光学 系统的制作。
21
04 ZEMAX在光学系 统设计中的应用
2024/1/26
22
建模与仿真方法
2024/1/26
几何光学建模
利用ZEMAX的几何光学建模功能,可以方便地构建复杂的光学系统模型。用户可以通过输入光学元件的参数,如曲 率半径、厚度、折射率等,来定义元件的光学属性。
实例二
某显微镜系统的性能评价。利用调制传递函数(MTF)对 该显微镜系统进行性能评价,发现其在高频部分的响应较 差,表明系统的分辨率不足。为了提高显微镜的分辨率, 可以对光学系统进行优化或者采用更高性能的探测器。
实例三
某摄影镜头的性能评价。通过对摄影镜头的点列图和光斑 图进行分析,发现其在某些焦距下存在较大的像散问题, 导致成像清晰度不佳。为了改善这一问题,可以对镜头结 构进行优化或者采用更先进的制造技术来提高镜头的成像 质量。
zemax中文教程全
4
对话框。单击鼠标右键也会弹出 solve 对话框。 图形窗口操作 图形窗口有一下菜单条: 刷新:这一功能根据现有设置重新计算在窗口中要显示的数据; 设置:激活控制这一窗口的对话框; 打印:打印窗口内容; 窗口:窗口菜单下有这些子菜单: 注释:详见“使用注释功能” ,注释下面的菜单有: 划线:在图形窗口中画一条直线; 文本:在图形窗口中创建并标注文字; 方框:在图形窗口中绘制方框; 编辑:允许对注释功能进行扩展编辑; 复制剪切板: 将窗口内容拷贝到 Windows 的剪切板。 下面的 部分有详细的解释: 输出:将显示的图形以 Windows Metafile,BMP 或者 JPG 的 格式输出。JPG 格式还支持高、中、低三种图像质量。中等图像质 量能够在保证图形质量的情况下,大大减小文件的尺寸。 锁定:如果“锁定”被选中,窗口会变为“静态”窗口,数 据不能被改变。被锁定窗口的内容可以被打印、可以拷贝到剪切板, 也可以存为一个文件。这一功能可以用于对不同镜头文件进行比较。 一旦窗口被锁定,就不能被刷新。因此,随后打开的任何新的镜头文 件可以与被锁定的窗口的数据进行对比分析。 如果窗口被锁定了, 就
6
这一选项,就可以替代窗口中的“结构”菜单,这一项呈灰色。 重叠:提供所有打开图形窗口的名单。其中任意一个都可以 选择用来与当前显示的图形进行重叠。 重叠功能有助于对两个相似的 图形或者结构进行比较,用以发现细小的变化。 文本:在新窗口中显示文本数据。不是所有的图形窗口都支 持这一功能。 缩放: 控制图形中小区域内图形的缩放。 详见后面 “使用 PAN 和缩放”部分。缩放菜单下的子菜单有: 放大:以当前中心位置为中心进行两倍放大; 缩小:以两倍缩小; 上一次:恢复前一次的缩放设置; 不缩放:恢复图形的完整视图。 在使用图形窗口时,有两种鼠标的快捷方式: 在图形窗口任意位置双击鼠标可以使内容更新。这与选择菜 单上的刷新是一样的。 在图形窗口任意位置按下鼠标右键,会弹出设置对话框。 使用注释功能 与几种方式来对图形窗口进行注释,比如常用的划线、方框和文 字。 选择注释的最简单的方法是从图形窗口的菜单栏上选择, 然后再 选“画线” , “方框”或者“文字” 。要画一条直线,选中“画线”这 一项, 然后在直线起始端按下鼠标左键, 并拖动十字线到直线的末端, 再释放鼠标键。画一个方框的步骤也大致如此。
zemax指导书
光学课程设计ZEMAX上机指导例子一望远物镜的设计第一节课,讲解zemax的基本操作界面以及各个菜单的功能。
设计zemax 最基本的例子,并进行初级的像差分析和优化。
1.首先打开zemax,进入主界面可以看到,最上方即是各个菜单栏,每一个栏目下又有许多选项,对应着不同的功能,这在后续讲解中将会结合例子解释。
菜单下面的一个个按键为常用的一些选项的快捷键;中间的窗口是镜头数据编辑器(lens design editor,LDE),是我们进行透镜设计的主要场所。
2.点击菜单中的文件,确认zemax处于序列模式下工作。
Zemax 中有两种模式:序列与非序列。
两种模式均可进行设计,但侧重点有所不同,我们学习的目的是借助于像差分析对所设计的透镜进行优化,这是序列模式的功能,因此设计的第一步即是确认所选的模式为序列模式。
3.在例子一中我们要设计一个F/4,焦距为100mm 的透镜。
F 数的定义为焦距与光阑的比值,所以此透镜的口径即为25mm 。
点击系统,选择通用数据:在弹出的窗口中选择口径(aperture ),在口径类型处选择入瞳直径,数值输入25mm 。
4.点击系统,选择光波长勾选三个波长并如图中输入,或者直接在下方列表中选择可见光所代表的F, d ,C 三个波长;选择2号波长作为主波长。
5.下一步,我们要在LDE 中输入我们设计的透镜的参数。
LDE 初始有三个面:物面(OBJ )、光阑面(STO )、像面(IMA )。
我们设计的单透镜,除了物面像面之外,应该有两个面,所以在LDE 中要插入一个面:点选到LDE的第1行(LDE中物面定义为第0行),在点击编辑中的后插入。
LDE中每一行代表一个面,主要参数有半径、厚度、玻璃材质、半口径等。
物面(第0面)的半径默认设置为无穷(Infinity),厚度也同样为无穷,即光源到第一个面的距离无穷远,所以光源为平行光。
第1、2面共同构成我们所要设置的透镜,根据设计要求,在两个面的半径处分别输入100mm、-100mm。
zemax操作详解
ZEMAX光学设计软件操作说明详解找到一些资料希望对大家有用!【ZEMAX光学设计软件操作说明详解】介绍这一章对本手册的习惯用法和术语进行说明。
ZEMAX使用的大部分习惯用法和术语与光学行业都是一致的,但是还是有一些重要的不同点。
活动结构活动结构是指当前在镜头数据编辑器中显示的结构。
详见“多重结构”这一章。
角放大率像空间近轴主光线与物空间近轴主光线角度之比,角度的测量是以近轴入瞳和出瞳的位置为基准。
切迹切迹指系统入瞳处照明的均匀性。
默认情况下,入瞳处是照明均匀的。
然而,有时入瞳需要不均匀的照明。
为此,ZEMAX支持入瞳切迹,也就是入瞳振幅的变化。
有三种类型的切迹:均匀分布,高斯型分布和切线分布。
对每一种分布(均匀分布除外),切迹因素取决于入瞳处的振幅变化率。
在“系统菜单”这一章中有关于切迹类型和因子的讨论。
ZEMAX也支持用户定义切迹类型。
这可以用于任意表面。
表面的切迹不同于入瞳切迹,因为表面不需要放置在入瞳处。
对于表面切迹的更多信息,请参看“表面类型”这一章的“用户定义表面”这节。
后焦距ZEMAX对后焦距的定义是沿着Z轴的方向从最后一个玻璃面计算到与无限远物体共轭的近轴像面的距离。
如果没有玻璃面,后焦距就是从第一面到无限远物体共轭的近轴像面的距离。
基面基面(又称叫基点)指一些特殊的共轭位置,这些位置对应的物像平面具有特定的放大率。
基面包括主面,对应的物像面垂轴放大率为+1;负主面,垂轴放大率为-1;节平面,对应于角放大率为+1;负节平面,角放大率为-1;焦平面,象空间焦平面放大率为0,物空间焦平面放大率为无穷大。
除焦平面外,所有的基面都对应一对共轭面。
比如,像空间主面与物空间主面相共轭,等等。
如果透镜系统物空间和像空间介质的折射率相同,那么节面与主面重合。
ZEMAX列出了从象平面到不同象方位置的距离,同时也列出了从第一面到不同物方平面的距离。
主光线如果没有渐晕,也没有像差,主光线指以一定视场角入射的一束光线中,通过入瞳中央射到象平面的那一条。
【精品】zemax基本介绍和操作
地址栏设置
几何像差曲线
• 光线特性曲线(Ray Fan)
子午和弧矢垂轴像差,它全面反映了细光束和宽光束的成像质量。横 坐标是光瞳的归一化坐标,纵坐标是各个孔径角的光线与像面交点的 高度和主光线与像面交点高度的差值。
点列图
• 图中的几个图分别表示给定的几个视场上不同光线与像面交点的分布 情况。使用点列图,一要注意下方表格中的数值。 • 点列图的均方根半径值越小,成像质量越好。
Angle(Deg):角度,直接设定物方 光束主光线与光轴的角度,多用于 无限共轭平行光条件下(物处于无 限远处);在zemax视场(fields) 设置中,角度一般在y-fields中设 置具体角度值,同时x-fields设置 为0,其也对应子午面中的夹角, 同理在x-fields中设置具体角度值, 同时y-fields设置为0,其对应弧矢 面。 Object Height:物高,设定被成像物 体的尺寸大小,此时系统必须为有 限共轭才可用(物距非无限远)。 大多有限远物体成像系统常用这种 视场类型。 Para. Image Height: 使用近轴光 束定义系统成像的像面大小,当设 计的系统有固定的像面尺寸时使用 此类型
重庆大学 - 光学CAD
物面(OBJ) 入瞳(STO) 透镜组(Radius、Thickness、Glass) 像面(IMA)
孔径设置(EPD)
System-General-Aperture
Entrance Pupil Diameter(入瞳直径):可用来 直接确定进入系统的光束直径的大小,适用于大 多数无限共轭系统。如果将孔径类型设置为: Entrance Pupil Diameter,那么无论如何改变光 阑的位置,都不影响进入系统的光束,并且透镜 的半径(Semi-Diameter)应设置为“自动”,由 设置的入瞳直径自动调整。 Image Space F#(像空间F数):用于直接确定像 空间的F数值,当系统焦距已知的情况下,可同 入瞳直径相互转换。 Object Space NA(物空间数值孔径):常用于有限 共轭系统,如:显微系统、投影系统等,通过直 接定义物点发光角度约束进入系统的光束大小。 Float By Stop Size(随光阑尺寸漂移):用于系统中 孔径光阑固定的情况,如有的系统光阑大小为定 值,可使用这种类型来计算入瞳的大小。
光学设计软件zemax中文教程
注:此版本ZEMAX中文说明由光学在线网友elf提供!目录第1章引第2章用户界面第3章约定和定义第4章教程教程1:单透镜教程2:双透镜教程3:牛顿望远镜教程4:带有非球面矫正器的施密特—卡塞格林系统教程5:多重结构配置的激光束扩大器教程6:折叠反射镜面和坐标断点教程7:消色差单透镜第5章文件菜单 (7)第6章编辑菜单 (14)第7章系统菜单 (31)第8章分析菜单 (44)§8.1 导言 (44)§8.2 外形图 (44)§8.3 特性曲线 (51)§8.4 点列图 (54)§8.5 调制传递函数MTF (58)§8.5.1 调制传递函数 (58)§8.5.2 离焦的MTF (60)§8.5.3 MTF曲面 (60)§8.5.4 MTF和视场的关系 (61)§8.5.5 几何传递函数 (62)§8.5.6 离焦的MTF (63)§8.6 点扩散函数(PSF) (64)§8.6.1 FFT点扩散函数 (64)§8.6.2 惠更斯点扩散函数 (67)§8.6.3 用FFT计算PSF横截面 (69)§8.7 波前 (70)§8.7.1 波前图 (70)§8.7.2 干涉图 (71)§8.8 均方根 (72)§8.8.1 作为视场函数的均方根 (72)§8.8.2 作为波长函数的RMS (73)§8.8.3 作为离焦量函数的均方根 (74)§8.9 包围圆能量 (75)§8.9.1 衍射法 (75)§8.9.2 几何法 (76)§8.9.3 线性/边缘响应 (77)§8.10 照度 (78)§8.10.1 相对照度 (78)§8.10.2 渐晕图 (79)§8.10.3 XY方向照度分布 (80)§8.10.4 二维面照度 (82)§8.11 像分析 (82)§8.11.1 几何像分析 (82)§8.11.2 衍射像分析 (87)§8.12 其他 (91)§8.12.1 场曲和畸变 (91)§8.12.2 网格畸变 (94)§8.12.3 光线痕迹图 (96)§8.12.4 万用图表 (97)§8.12.5 纵向像差 (98)§8.12.6 横向色差 (99)§8.12.7 Y-Y bar图 (99)§8.12.8 焦点色位移 (100)§8.12.9 色散图 (100)§波长和内透过率的关系 (101)§玻璃图 (101)§系统总结图 (101)§8.13 计算 (103)§8.13.1 光线追迹 (103)§8.13.2 塞得系数 (104)第九章工具菜单 (108)§9.1 优化 (108)§9.2 全局优化 (108)§9.3 锤形优化 (108)§9.4 消除所有变量 (108)§9.5 评价函数列表 (109)§9.6 公差 (109)§9.7 公差列表 (109)§9.8 公差汇总表 (109)§9.9 套样板 (109)§9.10 样板列表 (111)§9.11 玻璃库 (112)§9.12 镜头库 (112)§9.13 编辑镀膜文件 (114)§9.14 给所有的面添加膜层参数 (115)§9.15 镀膜列表 (115)§9.16 变换半口径为环形口径 (115)§9.17 变换半口径为浮动口径 (116)§9.18 将零件反向排列 (116)§9.19 镜头缩放 (116)§9.20 生成焦距 (117)§9.21 快速调焦 (117)§9.22 添另折叠反射镜 (117)§9.23 幻像发生器 (118)§9.24 系统复杂性测试 (120)§9.25 输出IGES文件 (120)第十章报告菜单 (124)§10.1 介绍 (124)§10.2 表面数据 (124)§10.3 系统数据 (125)§10.4 规格数据 (125)§10.5 Report Graphics 4/6 (126)第十一章宏指令菜单 (127)§11.1 编辑运行ZPL宏指令 (127)§11.2 更新宏指令列表 (127)§11.3 宏指令名 (127)第十二章扩展命令菜单 (128)§12.1 扩展命令 (128)§12.2 更新扩展命令列表 (128)§12.3 扩展命令名 (128)第十三章表面类型 (130)§13.1 简介 (130)§13.2 参数数据 (130)§13.3 特别数据 (131)§13.4 表面类型概要 (131)§13.4.1 用户自定义表面 (131)§13.4.2 内含表面 (132)§13.5 标准面 (136)§13.6 偶次非球面 (136)§13.7 奇次非球面 (137)§13.8 近轴表面 (138)§13.9 近轴X-Y表面 (138)§13.10 环形表面 (139)§13.11 双圆锥表面 (139)§13.12 环形光栅面 (140)§13.13 立方样条表面 (141)§13.14 Ⅰ型全息表面 (142)§13.15 Ⅱ型全息表面 (143)§13.16 坐标断点表面 (143)§13.17 多项式表面 (145)§13.18 菲涅耳表面 (145)§13.19 ABCD矩阵 (146)§13.20 另类面 (146)§13.21 衍射光栅表面 (147)§13.22 共轭面 (148)§13.23 倾斜表面 (149)§13.24 不规则表面 (149)§13.25 梯度折射率1表面 (150)§13.26 梯度折射率2表面 (152)§13.27 梯度折射率3表面 (152)§13.28 梯度折射率4表面 (153)§13.29 梯度折射率5表面 (154)§13.30 梯度折射率6表面 (155)§13.31 梯度折射率7表面 (156)§13.32 梯度折射率表面Gradium TM (157)§13.33 梯度折射率9表面 (160)§13.34 梯度折射率10表面 (161)§13.35泽尼克边缘矢高表面 (162)第十五章非序列元件 (162)第十七章优化 (228)第十八章全局优化 (290)第十九章公差规定 (298)第二十章多重结构 (338)第二十一章玻璃目录的使用 (345)第二十二章热分析 (363)第二十三章偏振分析 (373)第二十四章ZEMAX程序设计语言 (390)第二十五章ZEMAX扩展 (478)第五章文件菜单新建(New)目的:清除当前的镜头数据。
Zemax软件设计教程
归一化的物、入瞳坐标。通过入瞳某一坐标【PX,PY】的光线在像面上有 唯一的位置【EX、EY】,以PX、PY为横坐标,EX、EY为纵坐标,分别建 立坐标系,把通过入瞳的光线都在坐标系里描点就得到了光线扇面图
文件菜单(File)
Editors
ZEMAX中的editors本质上是为满足透镜设计程序而专门设计的电子数据表: • Lens Data Editor
输入基本的镜头数据,包括表面编号、注释、表面类型、表面曲率半径、 厚度、玻璃、口径半径、二次常数、热膨胀系数和膜层数据 • Merit Function Editor
Editors
9. 选择面型(Selecting Surface Type) 10. 各面通光口径的确定(Specifying Surface Aperture) 11. 设置和撤销求解(Setting and Removing Solves) 12. LDE窗口的菜单选项(Menu Options)
表面数据的符号规则
表面数据的符号规则:曲面左凸为正,右凸为负;高度向上为正,向 下为负;角度从光线向光轴,顺时针锐角为正,逆时针为负;厚度向 右为正,向左为负
+y
+z
单个透镜的例子
目的:练习如何建立初始结构、设定视场和工作波长。 题目:
建立一个单透镜,入瞳直径为40mm,二个面的曲率半径分别为50mm,60mm,中心厚度为4mm
Optical system design
Smith,Warren
Modern Lens DesignLaikin来自Lens Design
使用ZEMAX的三种方式
Completely sequential: *应用于传统的镜头设计和大多数的成像系统 *应用这种模式时不能进行散射和鬼象分析
ZEMAX用户界面简要说明
②在
中的Glass Catalogs(玻璃库)选项卡中可以更 改当前使用的玻璃库。 ③在 中用于设置波长、权重因子和主波长。要使 用列表中的项目。可点击“Select”按钮。过改变 Primary选相中的标号可以改变主光线。
④在
Hale Waihona Puke 中视场数据也有不同的描述,可以用Angle(角度)、 Object Height(物高)、Paraxial Height(近轴像高)、Real Image Height(实际像高)这几种方式描述,具体情况根据 系统特点选择。 设计视场的选择 一般小视场光学系统(2ω<80°) 0、0.707、1.0 中等视场光学系统(80°<2ω<140°) 0、0.5、0.707、0.866、1.0 大视场光学系统(2ω>140°) 0、0.3、0.5、0.7、0.85、1.0
(3)输入面数据。
面数据主要有曲率半径、厚度、孔径、玻璃等种类。 ①曲率半径。在键入曲率半径时,首先是光阑面,其默认 值为第1面。当设置其他面为光阑时,具体操作是:右键单 击表面类型(Surface Type),将出现一个对话框,有左键 点击“Make Surface Stop”即可确定光阑面。 ②厚度(Thickness):按面与面间隔键入。 ③孔径半径(Semi-Diameter):可不设置。在ZEMAX中, 各镜表面的通光孔之半径数值将自动生成。 ④玻璃(Glass):在Glass输入栏中,单击激活后键入所 选用玻璃。
一、实验目的:
了解光学设计软件ZEMAX的特点、ZEMAX的用户界
面和ZEMAX的相关功能和操作要点。
二、光学设计软件ZEMAX的特点
ZEMAX软件可模拟并建立如反射、折射、衍射、分光、
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选择XY Fan、X Fan、Y Fan、Ring或List来表示应该被追迹的光线分布方案。List选项表示被追迹的光线是用户自定义在列表文件中。文件必须被命名为RAYLIST.TXT并被放置在ZEMAX根目录下。文件的格式是每根光线用两个数字表示的ASCII码,其中一个代表px,另一个代表py。用归一化的光瞳坐标定义在每一个被选择的视场和波长所追迹的光线。若选择List则忽略设置的光线数目。
立体模型(Solid Model)
目的:
绘制以隐藏线代表镜头的立体图。
设置:
本选项和3D外形图中所得到的选项相类似,但“Hide Lens Edges”和“Hide X Bars”控件不再有,几个新的控件描述如下:
项目
说明
DXF File
在这个文本方格中输入使用DXF格式的文件名。只有当“Export As DXF File”按钮按下时这个选项才使用。在输出时,文件被存储在缺省目录下
目的:
画出表示镜头的网格图。
设置:
本设置与在立体模型中的设置是相同的,包括对DXF文件的支持。
说明:
除了被隐藏的线不消去外,网格模型与立体模型几乎是相同的。用网格图表示时,会使屏幕由于线多而变得混乱。可以用“Hide Lens Faces”使显示变得清晰。本显示的优点是速度,它的生成比立体模型快得多。
若选取,则不画镜头表面,只画镜头边缘。许多复杂的系统如果画各面会使图形看起来很乱,因而本功能很有用。
Hide Lens Edges
若选取,则不画镜头外侧的口径。对于给出3D外形的2D”横截面外表很有用。
Hide X Bar
若选取,则不画镜头的X部分。当“Hide Lens Edges”选取,而“Hide Lens Faces”未选取时是有用的。
第八章分析菜单
§1导言(Introduction)
这一章将详细介绍ZEMAX种的所有分析功能。分析镜头数据的曲线和文本通常包括像差、MTF、点列图、以及其他的计算结果。程序修改镜头数据和处理其它数据(如玻璃数据库)的特性将在工具菜单“Tools Menu”一章中讲述。
选择了一个菜单选项立刻执行一个需要的计算。一旦曲线和文本窗口被显示,可以用选择设置菜单选项来修改缺省设置。一旦你已经作了适当的改变,敲击“OK”,程序将重新计算和显示当前窗口种的数据。如果你要在曲线和文本数据显示前改变设置,在File:Environment:Graphics中使用“Show Options First”选项框。
Export As DXF File
若按下此按钮,则产生一个与当前显示的图解窗口有相同数据的DXF格式文件。文件名在“DXF文件”选项中给定。产生的DXF文件是一个能与输入到CAD程序中的文件相匹配的2维模型系统。
Color Rays By
选择“Field”用每个视场来区分,选择“wave”用每个波长来区分
光线数目确定了每一个被定义的视场中画出的子午光线数目。除非变迹已被确定,否则光线沿着光瞳均匀分布。这个参数可以设置为0
Scale Facபைடு நூலகம்or
若比例因子设置为零,那么“Fill Frame”将被选取,“Fill Frame”将缩放各面来充满画页。若输入数值,则图形将按实际尺寸乘以比例因子画出。例如,比例因子为1。0将打印(不是在屏幕上)出镜头的实际尺寸。比例因子为0。5将按尺寸的一半画图。
Scale Factor
若比例因子设置为零,那么“Fill Frame”将被选取,“Fill Frame”将缩放各面来充满画页。若输入数值,则图形将按实际尺寸乘以比例因子画出。例如,比例因子为1.0将打印(不是在屏幕上)出镜头的实际尺寸。比例因子为0.5将按尺寸的一半画图。
Hide Lens Faces
若光线未能射入到一个面,那么在发生该错误的面光线不画出。如够光线发生全反射,那么在发生全反射的面入射的光线画出,出射的光线不画出。光线失败将使用本章后面所讲的光线追迹计算来详细判断。
3D外形图(3D Layout)
目的:
绘制镜头系统的三维外形图。运算绘制镜头的网格表示。
设置:
项目
说明
First Surface
Radial Segs
表达镜头形状用的分割数。该数目越大则运行时间越长。
Angular Segs
表达镜头形状用的角度分割数。该数目越大则运行时间越长。
说明:
立体模型算法将镜头描述为一个多面体的集合。观察不到的线和面被消去,显示镜头的立体外形。本运算比其它外形图慢,但能产生最佳视觉效果。显示镜头元件的面的数目可以用径向或角向分割数段选项来修改。
Upper Pupil Limit
画出光线通过的最大光瞳坐标
Lower Pupil Limit
画出光线通过的最小光瞳坐标
Marginal and Chief Only
只画出边缘光线和主光线
Square Edges
若选中则画出平面和边缘,否则用半口径值画镜头的边缘
DXF File
在这个文本地址中输入使用DXF格式的文件名。只有当以后把“Export As DXF File”按钮按下时,这个选项才使用。在输出时,文件被存储在缺省目录下
画元件图(Element Drawing)
目的:
本功能能自动创建供光学车间生产使用的表面,单透镜或双胶合透镜的图纸。
设置:
项目
说明
Surface
被绘制的元件的第一个面
Show As
选择“Surface”,“Singlet”或“Doublet””
Note File Name
ASCII码文件的文件名,该文件包含被添加在元件绘图注释部分的注释。注释项总是从第2相开始,因为第1项注释是保留作为规定单位用的
在设置窗口中的“OK”,“Cancel”,“Save”,“Load”,“Reset”和“Help”的功能参见用户界面一章。
每个分析窗口都有一个“Updata”菜单项。更新功能会强迫ZEMAX重新计算和重新显示当前窗口中的数据。当镜头数据改变和当前显示的曲线不能用时,这个功能是很有用的。在窗口双击会执行与选择更新选项相同的功能。敲击鼠标右键与敲击“Setting”相等。
Suppress Frame
隐藏屏幕下端的绘图框,这可以为外形图留出更多的空间。此时,比例尺、地址或其它数据不显示
Delete Vignetted
若选取,被任意面拦住的光线不画出
Zoom Position
选择“All”同时画出所有的结构,或选择画出一个结构,或选择”Current”显示当前活动的结构。
Suppress Frame
隐藏屏幕下端的绘图框,这可以为外形图留出更多的空间。比例尺,地址,或其它数据都不显示
Delete Vignetted
若选取,被任意面拦住的光线不画出
说明:
若使用坐标转折,星形挡光,挡光偏心,X-转角,全息或其它能破坏镜头的旋转对称的组件,本功能不能使用。而是用3D外形。
“Export As DXF File”按钮将产生一个2D DXF文件,并将它存储起来。它的文件名用“DXF文件”处输入的文件名确定。DXF文件是由弧和线组成,弧用来显示镜头面的曲率。如果是只使用球面(或平面)的透镜,那么弧可以完全的表示镜头。但是,弧只能近似的表示非球面。如果面是非球面,那么弧只有在顶点,最高点和最低点是正确的。ZEMAX在这三个地方用适合的弧表示确切的面。参见工具菜单中“Export IGES File”关于数据的IGES输出。
当画所有的变焦位置时,在每个变焦位置x,y,z的方向独立的加上偏离量。若需要,偏离量可以都为0。若所有的偏离量都为0,那么所有的变焦位置是重叠的;否则,各变焦位置之间用确定的数值相互分隔,以便区别。注意,所有的偏离量都是相对于参考面的位置定义的。参考面在系统中的Advaced对话框中定义。若所有的偏离量都是0,多重变焦位置在参考面处是重叠的。
按left,right,up,down,Page Up,Page Down键会使显示的图形转动以产生不同的透视效果。
若某一面上发生光线溢出,则该面的光线不画出,如果光线发生全反射,那么在发生全反射的面射入的光线画出,射出的光线不画。光线溢出与否将使用本章后面所讲的光线追迹计算来详细判断。
网格图(Wireframe)
Export As DXF File
若按下此按钮,则产生一个包含当前显示的图解窗口相同信息的DXF格式文件。文件名在“DXF文件”选项中给定。所产生的面向3D的镜头系统模型DXF文件能输入到可以读取DXF文件的CAD程序中去
Draw Section
选择”All”则每个镜头元件都完全画出。3/4,1/2,1/4选项则分别画出元件的3/4,1/2,和1/4,产生镜头内部的截面透视。
还有许多信息参见用户界面一章。
§2外形图(Layout)
二维外形图(2D Layout)
目的:
通过镜头YZ截面的外形曲线。
设置:
项目
说明
First surface
绘图的第一个面
Last surface
绘图的最后一个面
Wavelength
显示的任意或所有波长
Field
显示的任意或所有视场
Number of Rays
Edit Note File
点击此按钮产生NOTEPAD.EXE编辑器,它可用来修改被选择的注释文件
Rad n Tol
半径(第1,2或3面)的公差栏中的值
Pow/Irr n
各面(第1,2或3面)的光焦度不规则公差栏中的值
Clear Ap n
在第几个面上的镜片的全口径。缺省值是半口径的两倍
Thick n Tol
“Export As DXF File”按钮将产生一个3D DXF文件并将它存储在“DXF文件”处输入文件名的文件中。DXF文件是由3D方向上的小面组成。这些小面用来显示镜片面的弯曲形状。然而这些面是表面轮廓被切割细分后的近似,所以它几乎是平的。但小面的边角都和实际光学面重合,而面内的任意点并不能与光学表面的轮廓线相一致。ZEMAX在每个小面的边角处用精确的光学面的矢高来来定义面形状。