操作系统课程设计磁盘调度报告
操作系统课程设计磁盘调度先来先服务算法
操作系统课程设计磁盘调度先来先服务算法集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-《操作系统原理》课程设计报告书题目:磁盘调度先来先服务算法学号:学生姓名:专业:计算机科学与技术指导教师:2014年5月29目录1功能描述根据进程请求访问磁盘的先后次序进行调度,从而计算出磁头移动的总距离和平均寻道长度。
1.1功能实现思想这是一种比较简单的磁盘调度算法。
它根据进程请求访问磁盘的先后次序进行调度。
此算法的优点是公平、简单,且每个进程的请求都能依次得到处理,不会出现某一进程的请求长期得不到满足的情况。
此算法由于未对寻道进行优化,在对磁盘的访问请求比较多的情况下,此算法将降低设备服务的吞吐量,致使平均寻道时间可能较长,但各进程得到服务的响应时间的变化幅度较小。
1.2功能详述根据进程请求访问磁盘的先后次序进行调度,首先根据提示输入总的磁道数、提出磁盘I/O申请的进程数、开始磁道号和磁道序列。
通过程序调用函数输出磁盘请求序列和磁盘扫描序列,从而计算出磁头移动的总距离和平均寻道长度。
2系统设计2.1系统总体设计2.1.1数据结构描述void?FCFS(int?cidao[],int?m)输入磁道号,按先来先服务的策略输出磁盘请求序列和磁盘扫描序列,求移动的总距离和平均寻道长度,输出移动的总磁道数和平均寻道长度。
2.1.2函数功能分析由于一开始要对键盘输入的磁道数和要使用的算法进行一次有效性的判断,我使用了int?decide(char?str[]),如果输入的信息不是0~9之间的数都将被判定为不合法,合法后才能进行下一步。
判断完合法性后,要将输入的字符转化为数字,这里我用了inttrans(charstr[],inta)。
先来先服务调度算法我使用了void?FCFS(int?cidao[],int?m),该算法主要完成按原来键盘输入的次序来寻道,然后输出移动的总磁道数和平均寻道长度。
操作系统磁盘调度算法实验报告及代码
操作系统磁盘调度算法实验报告及代码一、实验目的通过实验掌握磁盘调度算法的实现过程,了解各种不同磁盘调度算法的特点和优缺点,并比较它们的性能差异。
二、实验原理磁盘调度是操作系统中的重要内容,其主要目的是提高磁盘的利用率和系统的响应速度。
常见的磁盘调度算法有:FCFS(先来先服务)、SSTF (最短寻道时间)、SCAN(扫描)、C-SCAN(循环扫描)等。
三、实验过程1.编写代码实现磁盘调度算法首先,我们需要定义一个磁盘请求队列,其中存放所有的IO请求。
然后,根据所选的磁盘调度算法,实现对磁盘请求队列的处理和IO请求的调度。
最后,展示运行结果。
以FCFS算法为例,伪代码如下所示:```diskQueue = new DiskQueue(; // 创建磁盘请求队列while (!diskQueue.isEmpty()request = diskQueue.dequeue(; // 取出队列头的IO请求//处理IO请求displayResult(; // 展示运行结果```2.运行实验并记录数据为了验证各种磁盘调度算法的性能差异,我们可以模拟不同的场景,例如,随机生成一批磁盘IO请求,并使用不同的磁盘调度算法进行处理。
记录每种算法的平均响应时间、平均等待时间等指标。
3.撰写实验报告根据实验数据和结果,撰写实验报告。
实验报告通常包括以下内容:引言、实验目的、实验原理、实验步骤、实验结果、实验分析、结论等。
四、实验结果与分析使用不同的磁盘调度算法对磁盘IO请求进行处理,得到不同的实验结果。
通过对比这些结果,我们可以看出不同算法对磁盘IO性能的影响。
例如,FCFS算法对于请求队列中的请求没有排序,可能会导致一些请求等待时间过长。
而SSTF算法通过选择离当前磁道最近的请求进行处理,能够减少平均寻道时间,提高磁盘性能。
五、实验总结通过本次实验,我们学习了操作系统中磁盘调度算法的原理和实现过程。
不同的磁盘调度算法具有不同的优缺点,我们需要根据实际情况选择合适的算法。
操作系统课程设计磁盘调度报告
题目:磁盘调度一.设计目的本课程设计是学习完《计算机操作系统》课程后,进行的一次全面的综合训练,通过课程设计,我们更好地掌握操作系统的原理及实现方法,加深对操作系统基础理论和重要算法的理解,加强了动手能力。
二.课程设计内容和要求编程序实现下述磁盘调度算法,并求出每种算法的平均寻道长度,要求设计主界面以灵活选择某算法,且以下算法都要实现:1、先来先服务算法(FCFS)2、最短寻道时间优先算法(SSTF)3、扫描算法(SCAN)4、循环扫描算法(CSCAN)三.算法及数据结构3.1算法的总体思想设备的动态分配算法与进程调度相似,也是基于一定的分配策略的。
常用的分配策略有先请求先分配、优先级高者先分配等策略。
在多道程序系统中,低效率通常是由于磁盘类旋转设备使用不当造成的。
操作系统中,对磁盘的访问要求来自多方面,常常需要排队。
这时,对众多的访问要求按一定的次序响应,会直接影响磁盘的工作效率,进而影响系统的性能。
访问磁盘的时间因子由3部分构成,它们是查找(查找磁道)时间、等待(旋转等待扇区)时间和数据传输时间,其中查找时间是决定因素。
因此,磁盘调度算法先考虑优化查找策略,需要时再优化旋转等待策略。
平均寻道长度(L)为所有磁道所需移动距离之和除以总的所需访问的磁道数(N),即:L=(M1+M2+……+Mi+……+MN)/N其中Mi为所需访问的磁道号所需移动的磁道数。
启动磁盘执行输入输出操作时,要把移动臂移动到指定的柱面,再等待指定扇区的旋转到磁头位置下,然后让指定的磁头进行读写,完成信息传送。
因此,执行一次输入输出所花的时间有:寻找时间——磁头在移动臂带动下移动到指定柱面所花的时间。
延迟时间——指定扇区旋转到磁头下所需的时间。
传送时间——由磁头进程读写完成信息传送的时间。
其中传送信息所花的时间,是在硬件设计就固定的。
而寻找时间和延迟时间是与信息在磁盘上的位置有关。
为了减少移动臂进行移动花费的时间,每个文件的信息不是按盘面上的磁道顺序存放满一个盘面后,再放到下一个盘面上。
磁盘调度实验报告实验总结
磁盘调度实验报告实验总结磁盘调度是操作系统中的一个重要概念,它是指操作系统通过合理的算法和策略来管理和调度磁盘上的数据访问请求。
磁盘调度的目的是提高磁盘的读写效率,减少磁盘访问的时间开销,从而提高系统的整体性能。
本次实验主要对比了三种常见的磁盘调度算法:先来先服务(FCFS)、最短寻道时间优先(SSTF)和电梯算法(SCAN)。
通过对比实验结果分析各种算法的性能表现和特点,并给出相应的实验总结。
实验总结如下:一、先来先服务(FCFS)算法FCFS算法是一种简单直接的磁盘调度算法,它按照请求的顺序依次进行访问。
实验结果表明,FCFS算法的平均寻道时间较高,且易产生长期等待现象。
这是因为FCFS算法无法优化磁头的移动顺序,只能按照请求的先后顺序安排磁道的访问,从而导致了较差的性能表现。
二、最短寻道时间优先(SSTF)算法SSTF算法根据当前磁头位置选择距离最近的请求进行服务。
实验结果表明,SSTF算法的平均寻道时间明显优于FCFS算法,且缓解了长期等待现象。
这是因为SSTF算法可以选择离当前磁头位置最近的请求,从而减少了寻道时间,提高了磁道的访问效率。
三、电梯算法(SCAN)算法SCAN算法也称为电梯算法,它模拟了电梯运行的原理。
SCAN算法先将磁头移动到一个极限位置,然后沿着一个方向依次访问请求,直到到达另一个极限位置,再改变方向重复上述过程。
实验结果表明,SCAN算法的平均寻道时间与SSTF 算法相当,且具有较好的均衡性。
这是因为SCAN算法可以使得磁头在磁盘上的行进路线保持平衡,避免了过多的磁道之间的跳跃,从而提高了磁道的访问效率。
综上所述,不同的磁盘调度算法具有不同的性能表现和特点。
在实际应用中,需要根据具体的场景和需求选择合适的磁盘调度算法。
一般而言,SSTF算法和SCAN算法在性能上表现较好,可以提高磁盘的读写效率,减少寻道时间开销。
而FCFS算法在实际应用中较为有限,对于长期等待和寻道时间要求较高的场景不太适用。
磁盘调度的实验报告(3篇)
第1篇一、实验目的1. 理解磁盘调度算法的基本原理和重要性。
2. 掌握几种常见的磁盘调度算法,包括先来先服务(FCFS)、最短寻道时间优先(SSTF)、扫描(SCAN)和循环扫描(C-SCAN)算法。
3. 通过模拟实验,分析不同磁盘调度算法的性能差异。
4. 优化磁盘调度策略,提高磁盘访问效率。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.83. 磁盘调度算法模拟库:PyDiskScheduling三、实验内容1. FCFS算法:模拟实现先来先服务算法,按照请求顺序访问磁盘。
2. SSTF算法:模拟实现最短寻道时间优先算法,优先访问距离当前磁头最近的请求。
3. SCAN算法:模拟实现扫描算法,磁头从0号磁道开始向0号磁道移动,访问所有请求,然后返回到0号磁道。
4. C-SCAN算法:模拟实现循环扫描算法,与SCAN算法类似,但磁头在到达末尾磁道后返回到0号磁道。
四、实验步骤1. 导入PyDiskScheduling库。
2. 创建一个磁盘调度对象,指定磁头初始位置、请求序列和调度算法。
3. 运行调度算法,获取磁头移动轨迹和访问时间。
4. 分析算法性能,包括磁头移动次数、平均访问时间和响应时间等。
五、实验结果与分析1. FCFS算法:在请求序列较短时,FCFS算法表现较好。
但随着请求序列长度增加,磁头移动次数和访问时间明显增加。
2. SSTF算法:SSTF算法在请求序列较短时表现最佳,平均访问时间和响应时间较低。
但当请求序列较长时,算法性能下降,磁头移动次数增加。
3. SCAN算法:SCAN算法在请求序列较短时性能较好,但随着请求序列长度增加,磁头移动次数和访问时间逐渐增加。
与SSTF算法相比,SCAN算法在请求序列较长时性能更稳定。
4. C-SCAN算法:C-SCAN算法在请求序列较短时表现较好,但随着请求序列长度增加,磁头移动次数和访问时间逐渐增加。
与SCAN算法相比,C-SCAN算法在请求序列较长时性能更稳定,且磁头移动次数更少。
操作系统课程设计报告磁盘调度算法
操作系统课程设计报告磁盘调度算法华南农业⼤学数学与信息学院(软件学院)《操作系统分析与设计实习》成绩单开设时间:2015学年第⼀学期⼀、需求分析(1)输⼊的形式和输⼊值的范围:在⽂本框输⼊序列长度,输⼊值为int类型输出每种算法的平均寻道长度。
(3)程序所能达到的功能:模拟实现FCFS、SSTF、SCAN、C-SCAN 算法,并计算及⽐较磁头移动道数。
(4)测试数据:包括正确的输⼊及其输出结果和含有错误的输⼊及其输出结果:⼆、概要设计1)主程序流程图:输出随机⽣成400个磁道号序列主菜单选择算法开始FCFS SSTFSCANC-SCAN 结束(2)各程序模块之间的调⽤关系磁头初始位置输⼊及合法性检查冒泡排序算法由外向内输出磁道序列由内向外输出磁道序列由当前位置向内再向外输出磁道序列由当前位置向外再向内输出磁道序列由当前位置向内再由外向内输出磁道序列由当前位置向外再由内向外输出磁道序列就近选择主函数SCANC-SCAN三、详细设计1)各操作伪码算法(1)实现磁头初始位置的输⼊并进⾏合法性检查int printstarter()//磁头初始位置输⼊{输⼊:磁头初始位置;if输⼊⼩于0或⼤于1500{输出:"输⼊数据类型有误,请重新输⼊!"<重新输⼊}Else 返回合法的磁头初始位置}(2)冒泡排序算法int *bubble//冒泡排序算法{for 从数组的第⼀个元素开始重复{依次和后续元素表较⼤⼩;If后⾯元素⼤于当前元素交换数值;}输出排序后的数组;返回数组;}(3)int out_to_in//由磁道最外向内输出磁道序列{for 从最外磁道开始{依次输出磁道号;当前磁道号与磁头初始未⾄的绝对值求和;返回绝对值之和;}(4)int in_to_out//由磁道最内向外输出磁道序列{ for 从最内磁道开始{依次输出磁道号;当前磁道号与磁头初始未⾄的绝对值求和;磁头初始位置=当前磁道号;}返回绝对值之和;}(5)int out_to_in_to_out//先由当前位置向内再向外{找到⼩于等于磁头初始位置的磁道for由该磁道开始{向内依次输出磁道号;当前磁道号与磁头初始未⾄的绝对值求和;}for由该磁道的外侧磁道开始{向外依次输出磁道号;当前磁道号与磁头初始未⾄的绝对值求和;}返回绝对值之和;}(6)int in_to_out_to_in//先由当前位置向外再向内{找到⼤于等于磁头初始位置的磁道for由该磁道开始{向外依次输出磁道号;当前磁道号与磁头初始未⾄的绝对值求和;}for由该磁道的内侧磁道开始当前磁道号与磁头初始未⾄的绝对值求和;}返回绝对值之和;}(7)int out_to_in_twice由当前磁道向内再从最外向内{找到⼩于等于磁头初始位置的磁道;for由该磁道开始{向内依次输出磁道号;当前磁道号与磁头初始未⾄的绝对值求和;}for由最外侧磁道开始{向内依次输出磁道号直到⼩于等于初始位置的磁道的外侧⼀个磁道;当前磁道号与磁头初始未⾄的绝对值求和;}返回绝对值之和;}(8)int in_to_out_twice由当前磁道向外再从最内向外{找到⼤于等于磁头初始位置的磁道for由该磁道开始{向内依次输出磁道号;当前磁道号与磁头初始未⾄的绝对值求和;}for由最内侧磁道开始{向外依次输出磁道号直到⼩于等于初始位置的磁道的内侧⼀个磁道;当前磁道号与磁头初始未⾄的绝对值求和;}返回绝对值之和;{找到⼤于磁头初始位置的磁道;while初始位置内侧差绝对值更⼩{输出内侧磁道号;绝对值差求和;初始位置更新为当前磁道号;}while 初始位置外侧绝对值差更⼩{输出外侧磁道号;绝对值差求和;初始位置更新为当前磁道号;}}If已到达最内侧未到达最外侧{if内侧绝对值差更⼩{输出最内侧磁道号;绝对差值求和;初始位置更新;while 向外侧依次输出磁道号直到到达最外侧{绝对差值求和;更新初始位置;}}else外侧绝对值差更⼩{While向外侧依次输出磁道号直到到达最外侧{绝对差值求和;更新初始位置;绝对差值求和;更新初始位置;}}if 已到达最外侧未到达最内侧{If外侧绝对值更⼩{输出最外侧磁道号;绝对差值求和;更新初始位置;while向内依次输出磁道号{绝对差值求和;更新初始位置;}}else{while 向内依次输出磁道号{绝对差值求和;更新初始位置;}输出最外侧磁道号;绝对值差求和;更新初始位置;}}if均到达最内侧和最外侧{if 外侧差绝对值更⼩{}else{输出最内侧磁道号并绝对值差求和;输出最外侧磁道号并绝对值差求和;}}求总和并返回;}(10)void FCFS算法{输出磁盘请求序列为;按照磁盘请求序列依次输出磁盘扫描序列;当前磁道号与磁头初始未⾄的绝对值求和;求平均值;输出平均寻道长度;}(11)void SSTF算法{if序列中最⼤的磁道号⼩于磁头初始位置{调⽤out_to_in直接由外向内;}if 序列中最⼩的磁道号⼤于磁头初始位置{调⽤in_to_out直接由内向外;}If 磁头初始位置为中间值{调⽤就近选择算法;}求均值;输出平均寻道时间;}输⼊:磁臂移动⽅向(1:向外,0:向内); if 序列中最⼤的磁道号⼩于磁头初始位置{调⽤out_to_in直接由外向内;}if序列中最⼩的磁道号⼤于磁头初始位置{调⽤in_to_out直接由内向外;}if 初始磁头位置为中间值{if 磁臂⽅向向内{调⽤out_to_in_to_out;}if 磁臂⽅向向外{调⽤n_to_out_to_in;}}求均值;输出平均寻道时间;}(13)Viod C-SCAN算法{请输⼊磁臂移动⽅向(1:向外,0:向内);if 序列中最⼤磁道号⼩于等于磁头初始位置{ if磁臂⽅向向内{调⽤out_to_in;}if磁臂⽅向向外{调⽤in_to_out;if 序列中最⼤磁道号⼤于等于磁头初始位置{if磁臂⽅向向内{调⽤out_to_in;}if磁臂⽅向向外{调⽤in_to_out;}}if初始磁头位置为中间值{if (磁臂⽅向向内{调⽤out_to_in_twice;}if 磁臂⽅向向外{调⽤in_to_out_twice);}}求均值;输出平均寻道时间;}(14)主函数int main(){随机⽣成200个0~499的磁道序列并输出;随机⽣成100个500~999的磁道序列并输出;随机⽣成100个1000~1500的磁道序列并输出;输出:主菜单;输⼊:⽤户选择并进⾏合法性检查switch (⽤户选择)case 2:调⽤SSTF()case 3:调⽤SCAN()case 4:调⽤C-SCAN()case 5:退出}}2)函数的调⽤关系图四、调试分析1)调试过程中遇到的问题以及对设计与实现的讨论和分析:(1)随机⽣成400个磁道号序列:使⽤rand()函数,对于:50%位于 0~499,25%分布在 500~999,25%分布在 1000~1499,采⽤如下⽅法解决:track[i] = (rand() % 500);track[i] = (rand() % 500)+500;track[i] = (rand() % 500)+1000;(2)通过对每⼀⾏的输出设置断点判断问题出现在哪⾥,把出问题的地⽅缩⼩到⼀定范围,然后解决问题,如若解决不出则上⽹查询。
操作系统磁盘调度算法实验报告
目录一、课程设计目的 (3)二、课程设计要求 (3)三、课程设计原理 (3)四、程序代码 (5)五、流程图设计 (11)六、运行结果 (14)七、调试分析 (16)八、心得体会 (16)一、课程设计目的操作系统是最重要的计算机系统软件,同时也是最活跃的学科之一,发展极为迅速。
我们在本课程的实验过程中,要了解实际操作系统的工作过程,加深对操作系统基础理论和重要算法的理解,在实践过程中加深对操作系统原理的理解。
通过设计一个磁盘调度模拟系统,以加深对先来先服务、最短寻道时间、电梯算法以及循环扫描算法等磁盘调度算法的理解。
让我们更好地掌握操作系统中磁盘调度的原理及实现方法,增强动手能力。
本实验通过对磁盘调度算法的实现,加深对算法的理解,同时通过用C++语言编写程序实现这些算法,并在windows平台上实现,也再一次提高了自己编程的能力,提高了综合运用专业课知识的能力。
二、课程设计要求本设计的具体要求如下:1.模拟一个磁盘调度算法2.要求能够模拟FCFS、最短寻道时间、电梯算法等磁盘调度算法3.输入为一组作业的磁道请求4.输出为按选择的算法执行时的磁头移动轨迹三、课程设计原理1.各个算法分析(1)先来先服务算法(FCFS)这是一种最简单的磁盘调度算法。
它根据请求访问磁盘的先后次序进行调度。
此算法的优点是公平、简单,且每个进程的请求都能依次地得到处理,不会出现某一进程的请求长期得不到满足的情况。
但是此算法由于未对寻道进行优化,致使平均寻道时间可能较长。
当有进程先后提出磁盘I/O请求时,先按他们发出请求的先后次序排队。
然后依次给予服务。
其平均寻道距离较大,故先来先服务算法仅适用于请求磁盘I/O进程数目较少的场合。
(2)最短寻道时间优先算法(SSTF)该算法选择这样的进程:其要求访问的磁道与当前磁头所在的磁道距离最近,以使每次寻道时间最短。
但这种算法不能保证平均寻道时间最短。
有可能导致某个进程出现“饥饿”现象,因为只要不断有新进程请求到达,且其所要访问的磁道与磁头当前所在的磁道的距离较近,这种新进程的I/O请求必然优先满足。
操作系统-磁盘调度算法实验报告
操作系统实验报告实验六磁盘调度算法班级:学号:姓名:一、需求分析1、实验目的:通过这次实验,加深对磁盘调度算法的理解,进一步掌握先来先服务FCFS、最短寻道时间优先SSTF、SCAN和循环SCAN算法的实现方法。
2、问题描述:设计程序模拟先来先服务FCFS、最短寻道时间优先SSTF、SCAN和循环SCAN算法的工作过程。
假设有n个磁道号所组成的磁道访问序列,给定开始磁道号m和磁头移动的方向(正向或者反向),分别利用不同的磁盘调度算法访问磁道序列,给出每一次访问的磁头移动距离,计算每种算法的平均寻道长度。
3、程序要求:1)利用先来先服务FCFS、最短寻道时间优先SSTF、SCAN 和循环SCAN算法模拟磁道访问过程。
2)模拟四种算法的磁道访问过程,给出每个磁道访问的磁头移动距离。
3)输入:磁道个数n和磁道访问序列,开始磁道号m和磁头移动方向(对SCAN和循环SCAN算法有效),算法选择1-FCFS,2-SSTF,3-SCAN,4-循环SCAN。
4)输出:每种算法的平均寻道长度。
二、概要设计1、程序中的变量及数据结构的定义a) 自定义的整型向量类型:typedef vector<int> vInt;b) 磁道的结构体:struct OrderItem{int Data; //磁道号bool IsVisited;//磁道是否已被访问};c) 磁道序列类型:typedef vector<OrderItem> Order;d) 存储待访问磁道序列:Order InitOrder;e) 存储已被访问的磁道序列:vInt TrackOrder;f) 移动距离序列:vInt MoveDistance;g) 平均寻道长度:double AverageDistance;2、主要函数说明a)获取用户输入的磁盘个数和磁盘的访问序列:void InitDate(int &num);参数num为磁道个数b)先来先服务算法:void FCFS(int disk);c)最短寻道时间优先算法:void SSTF(int disk);d)扫描算法:void SCAN(int disk);e)循环扫描算法:void CSCAN(int disk);f)void Show(int disk);3、主函数的流程三、详细设计1.FCFS算法a)说明:根据进程请求访问磁盘的先后次序进行调度。
操作系统课设报告磁盘调度算法
课程设计报告课程名称: 操作系统课程设计课题名称: 磁盘调度算法学院: 软件学院班级:学生姓名:学号:指导教师:磁盘调度算法一、系统需求分析磁盘存储器不仅容量大,存取速度快,而且可以实现随机存取,是当前存放大量程序和数据的理想设备。
所以在现代计算机中都配备了磁盘存储器,以他为主存放文件,这样对文件的读、写操作都涉及到了对磁盘存储器的访问。
磁盘I/O速度的高低和磁盘系统的可靠性,都直接影响到系统的性能。
因此改善磁盘系统的性能成为现代操作系统的重要任务之一。
磁盘性能有数据的组织、磁盘的类型和访问时间等。
可以通过选择好的磁盘调度算法,以减少磁盘的寻道时间。
为了减少对文件的访问时间,应采用一种最佳的磁盘调度算法,以使各进程对磁盘的平均访问时间最少。
由于在访问磁盘的时间中主要是寻道时间,因此,磁盘调度的目标是使磁盘的寻道时间最少。
所以本课程设计对各个算法进行模拟,进而比较分析了解。
二、实验内容和目的2.1.实验内容模拟电梯调度算法,实现对磁盘的驱动调度。
设计要求:编程序实现下述磁盘调度算法,并求出每种算法的平均寻道长度;要求设计主界面可以灵活选择某算法,且以下算法都要实现1、先来先服务算法(FCFS)2、最短寻道时间优先算法(SSTF)3、扫描算法(SCAN)4、循环扫描算法(CSCAN)2.2.实验原理模拟电梯调度算法,对磁盘调度。
磁盘是要供多个进程共享的存储设备,但一个磁盘每个时刻只能为一个进程服务。
当有进程在访问某个磁盘时,其他想访问该磁盘的进程必须等待,直到磁盘一次工作结束。
当有多个进程提出输入输出请求处于等待状态,可用电梯调度算法从若干个等待访问者中选择一个进程,让它访问磁盘。
当存取臂仅需移到一个方向最远的所请求的柱面后,如果没有访问请求了,存取臂就改变方向。
三、总体设计及分类简介3.1算法介绍磁盘调度中常用的有四种算法,功能分别如下:1.先来先服务(FCFS)算法。
即先来的请求先被响应。
FCFS策略看起来似乎是相当"公平"的,但是当请求的频率过高的时候FCFS策略的响应时间就会大大延长。
磁盘调度算法的设计实验报告
磁盘调度算法的设计实验报告一、实验背景磁盘调度算法是操作系统中的重要内容之一,它的主要作用是优化磁盘的读写效率,提高系统的性能。
本次实验旨在通过设计不同的磁盘调度算法,比较它们在不同情况下的性能表现。
二、实验环境本次实验使用了Linux操作系统和C语言编程语言。
硬件环境为Intel Core i5处理器、4GB内存和500GB硬盘。
三、实验过程1. 先来看看什么是磁盘调度算法。
磁盘调度算法是指操作系统中用于管理磁盘I/O请求队列的算法。
常见的磁盘调度算法有FCFS(先来先服务)、SSTF(最短寻道时间优先)、SCAN(扫描)、LOOK(往返扫描)等。
2. 接下来我们分别对这些算法进行设计和实现,并进行性能测试。
3. 首先是FCFS算法。
FCFS算法就是按照请求到达时间的顺序进行服务,即先来先服务。
我们通过模拟生成一组随机数作为请求队列,然后计算出每个请求需要移动的距离,并计算出平均寻道长度。
4. 然后是SSTF算法。
SSTF算法是指选择距离当前磁头位置最近的请求进行服务。
我们同样使用模拟生成一组随机数作为请求队列,然后计算出每个请求与当前磁头位置的距离,并按照距离从小到大进行排序,然后依次服务每个请求,并计算出平均寻道长度。
5. 接下来是SCAN算法。
SCAN算法是指磁头从一端开始移动,直到到达另一端,然后返回原点继续移动。
我们同样使用模拟生成一组随机数作为请求队列,并将其按照磁头当前位置的左右分成两部分,分别从左往右和从右往左进行服务,并计算出平均寻道长度。
6. 最后是LOOK算法。
LOOK算法和SCAN类似,不同之处在于当服务完最远的请求时不会返回原点,而是直接返回最近的请求。
我们同样使用模拟生成一组随机数作为请求队列,并将其按照磁头当前位置的左右分成两部分,分别从左往右和从右往左进行服务,并计算出平均寻道长度。
四、实验结果通过对以上四种磁盘调度算法进行测试,得到以下结果:1. FCFS平均寻道长度:1622. SSTF平均寻道长度:783. SCAN平均寻道长度:984. LOOK平均寻道长度:87五、实验结论从实验结果可以看出,SSTF算法的性能最优,平均寻道长度最短。
磁盘调度操作系统实验报告
实验一磁盘调度算法实现一、实验目的本课程设计的目的是通过磁盘调度算法设计一个磁盘调度模拟系统,从而使磁盘调度算法更加形象化,容易使人理解,使磁盘调度的特点更简单明了,能使使用者加深对先来先服务算法、最短寻道时间优先算法、扫描算法以及循环扫描算法等磁盘调度算法的理解;二、实验内容系统主界面可以灵活选择某种算法,算法包括:先来先服务算法FCFS、最短寻道时间优先算法SSTF、扫描算法SCAN、循环扫描算法CSCAN;先来先服务算法 FCFS这是一种比较简单的磁盘调度算法;它根据进程请求访问磁盘的先后次序进行调度;此算法的优点是公平、简单,且每个进程的请求都能依次得到处理,不会出现某一进程的请求长期得不到满足的情况;此算法由于未对寻道进行优化,在对磁盘的访问请求比较多的情况下,此算法将降低设备服务的吞吐量,致使平均寻道时间可能较长,但各进程得到服务的响应时间的变化幅度较小;最短寻道时间优先算法 SSTF该算法选择这样的进程,其要求访问的磁道与当前磁头所在的磁道距离最近,以使每次的寻道时间最短,该算法可以得到比较好的吞吐量,但却不能保证平均寻道时间最短;其缺点是对用户的服务请求的响应机会不是均等的,因而导致响应时间的变化幅度很大;在服务请求很多的情况下,对内外边缘磁道的请求将会无限期的被延迟,有些请求的响应时间将不可预期;扫描算法 SCAN扫描算法不仅考虑到欲访问的磁道与当前磁道的距离,更优先考虑的是磁头的当前移动方向;例如,当磁头正在自里向外移动时,扫描算法所选择的下一个访问对象应是其欲访问的磁道既在当前磁道之外,又是距离最近的;这样自里向外地访问,直到再无更外的磁道需要访问才将磁臂换向,自外向里移动;这时,同样也是每次选择这样的进程来调度,即其要访问的磁道,在当前磁道之内,从而避免了饥饿现象的出现;由于这种算法中磁头移动的规律颇似电梯的运行,故又称为电梯调度算法;此算法基本上克服了最短寻道时间优先算法的服务集中于中间磁道和响应时间变化比较大的缺点,而具有最短寻道时间优先算法的优点即吞吐量较大,平均响应时间较小,但由于是摆动式的扫描方法,两侧磁道被访问的频率仍低于中间磁道;循环扫描算法 CSCAN循环扫描算法是对扫描算法的改进;如果对磁道的访问请求是均匀分布的,当磁头到达磁盘的一端,并反向运动时落在磁头之后的访问请求相对较少;这是由于这些磁道刚被处理,而磁盘另一端的请求密度相当高,且这些访问请求等待的时间较长,为了解决这种情况,循环扫描算法规定磁头单向移动;例如,只自里向外移动,当磁头移到最外的被访问磁道时,磁头立即返回到最里的欲访磁道,即将最小磁道号紧接着最大磁道号构成循环,进行扫描;三、实验流程系统功能图图3-1 系统功能图算法流程图本次实验为实现磁盘调度算法,分别实现四个算法并调试;四个算法算法包括:先来先服务算法FCFS、最短寻道时间优先算法SSTF、扫描算法SCAN、循环扫描算法CSCAN;四个算法的流程图分析如下;1)先来先服务算法FCFS的流程图图3-2 先来先服务算法的流程图2)最短寻道时间优先算法SSTF的流程图图3-3 最短寻道时间优先算法的流程图3)扫描算法SCAN的流程图图3-4扫描算法的流程图4)循环扫描算法CSCAN的流程图图3-5 循环扫描算法的流程图四、源程序include<>include<>include<>include<>define maxsize 1000/判断输入数据是否有效/int decidechar str 来先服务 2.最短寻道时间优先 3.扫描调度 4.循环扫描 5.退出\n"<<endl;cout<<" -------------------------------------------------------------------------"<<endl;G:cout<<" 请选择算法: ";F:cin>>str; //对输入数据进行有效性判断a=decidestr;ifa==0{cout<<" 输入数据的类型错误,请重新输入"<<endl;goto F;//输入错误,跳转到F,重新输入}else c=transstr,a;ifc==5 break;ifc>5{cout<<" 输入的数据错误请重新输入"<<endl;goto G;}switchc{case 1: //使用FCFS算法FCFScidao,count;break;case 2: //使用SSTF算法SSTFcidao,count;break;case 3: //使用SCAN算法SCANcidao,count;break;case 4: //使用CSCAN算法CSCANcidao,count;break;}}}五、实验结果程序主界面运行程序后,将会提示用户输入磁道序列,并且以0结束;当用户输入磁道序列后,系统将会重新显示用户输入的磁道序列;程序主界面运行图如图5-1所示;图5-1 程序主界面先来先服务算法FCFS运行结果选择算法1之后,进入算法1 的操作;系统会显示磁盘的请求序列;用户需要输入当前的磁道号,系统会显示出磁盘的扫描序列和平均寻道长度;由运行结果可得出,先来先服务算法的平均寻道长度为;先来先服务算法的运行图如图5-2所示;图5-2 先来先服务算法运行结果图最短寻道时间优先算法SSTF运行结果选择算法2之后,进入算法2 的操作;系统会显示磁盘的请求序列;用户需要输入当前的磁道号,系统会显示出磁盘的扫描序列和平均寻道长度;由运行结果可得出,先来先服务算法的平均寻道长度为;最短寻道时间优先算法的运行图如图5-3所示;图5-3 最短寻道时间优先算法运行结果图扫描算法SCAN运行结果选择算法3之后,进入算法3的操作;系统会显示磁盘的请求序列;用户需要输入当前的磁道号,系统会显示出磁盘的扫描序列和平均寻道长度;由运行结果可得出,先来先服务算法的平均寻道长度为11;扫描算法的运行图如图5-4所示;图5-4 扫描算法运行结果图循环扫描算法CSCAN运行结果选择算法4之后,进入算法4的操作;系统会显示磁盘的请求序列;用户需要输入当前的磁道号,系统会显示出磁盘的扫描序列和平均寻道长度;由运行结果可得出,先来先服务算法的平均寻道长度为11;扫描算法的运行图如图5-5所示;图5-5 循环扫描算法运行结果图六、总结通过本次实验,学习了解磁盘调度四种调度算法先来先服务算法;最短寻道时间优先算法;扫描算法;循环扫描算法的工作原理以及四种调度算法之间的差异和共性,并且在当中发现了自己的不足,对以前所学过的知识理解得不够深刻,掌握得不够牢固,看到了自己的实践经验还是比较缺乏,实践能力还需要提高;。
操作系统课程设计报告-磁盘调度算法
、华南农业大学数学与信息学院(软件学院)《操作系统分析与设计实习》成绩单开设时间:2015学年第一学期评价指标:题目内容和要求完成情况优□良□中□差□对算法原理的理解程度优□良□中□差□程序设计水平优□良□中□差□程序运行效果及正确性优□良□中□差□课程设计报告结构清晰优□良□中□差□|报告中总结和分析详尽优□良□中□差□一、需求分析(1)输入的形式和输入值的范围:在文本框输入序列长度,输入值为int类型(2)^(3)输出的形式:输出每种磁盘调度算法的服务序列;输出每种算法的平均寻道长度。
(4)程序所能达到的功能:模拟实现FCFS、SSTF、SCAN、C-SCAN 算法,并计算及比较磁头移动道数。
(4)测试数据:包括正确的输入及其输出结果和含有错误的输入及其输出结果:二、概要设计1)主程序流程图:&输出随机生成400个磁道号序列主菜单选择算法开始FCFS SSTFSCANC-SCAN 结束(2)各程序模块之间的调用关系磁头初始位置输入及合法性检查冒泡排序算法由外向内输出磁道序列由内向外输出磁道序列由当前位置向内再向外输出磁道序列由当前位置向外再向内输出磁道序列由当前位置向内再由外向内输出磁道序列由当前位置向外再由内向外输出磁道序列就近选择主函数FCFSSSFTSCANC-SCAN三、详细设计1)各操作伪码算法/(1)实现磁头初始位置的输入并进行合法性检查int printstarter()//磁头初始位置输入{输入:磁头初始位置;if输入小于0或大于1500{输出:"输入数据类型有误,请重新输入!" <<endl;重新输入;}Else 返回合法的磁头初始位置}(2)冒泡排序算法int *bubble//冒泡排序算法{<for 从数组的第一个元素开始重复{依次和后续元素表较大小;If后面元素大于当前元素交换数值;}输出排序后的数组;返回数组;\}(3)int out_to_in//由磁道最外向内输出磁道序列{for 从最外磁道开始{依次输出磁道号;|当前磁道号与磁头初始未至的绝对值求和;磁头初始位置=当前磁道号;}返回绝对值之和;}(4)int in_to_out//由磁道最内向外输出磁道序列{:for 从最内磁道开始{依次输出磁道号;当前磁道号与磁头初始未至的绝对值求和;磁头初始位置=当前磁道号;}返回绝对值之和;}~(5)int out_to_in_to_out//先由当前位置向内再向外{找到小于等于磁头初始位置的磁道for由该磁道开始{)向内依次输出磁道号;当前磁道号与磁头初始未至的绝对值求和;}for由该磁道的外侧磁道开始{向外依次输出磁道号;当前磁道号与磁头初始未至的绝对值求和;}^返回绝对值之和;}(6)int in_to_out_to_in//先由当前位置向外再向内{找到大于等于磁头初始位置的磁道~for由该磁道开始{向外依次输出磁道号;当前磁道号与磁头初始未至的绝对值求和;}for由该磁道的内侧磁道开始{向内依次输出磁道号;】当前磁道号与磁头初始未至的绝对值求和;}返回绝对值之和;}(7)int out_to_in_twice由当前磁道向内再从最外向内{~找到小于等于磁头初始位置的磁道;for由该磁道开始{向内依次输出磁道号;当前磁道号与磁头初始未至的绝对值求和;}for由最外侧磁道开始{{向内依次输出磁道号直到小于等于初始位置的磁道的外侧一个磁道;当前磁道号与磁头初始未至的绝对值求和;}返回绝对值之和;},(8)int in_to_out_twice由当前磁道向外再从最内向外{找到大于等于磁头初始位置的磁道for由该磁道开始{向内依次输出磁道号;当前磁道号与磁头初始未至的绝对值求和;—}for由最内侧磁道开始{向外依次输出磁道号直到小于等于初始位置的磁道的内侧一个磁道;当前磁道号与磁头初始未至的绝对值求和;}返回绝对值之和;}@(9)int nearest_select就近选择{找到大于磁头初始位置的磁道;while初始位置内侧差绝对值更小{ 输出内侧磁道号;绝对值差求和;;初始位置更新为当前磁道号;}while 初始位置外侧绝对值差更小{输出外侧磁道号;绝对值差求和;初始位置更新为当前磁道号;}:}If已到达最内侧未到达最外侧{if内侧绝对值差更小{输出最内侧磁道号;绝对差值求和;初始位置更新;…while 向外侧依次输出磁道号直到到达最外侧 {绝对差值求和;更新初始位置;}}else外侧绝对值差更小?{While向外侧依次输出磁道号直到到达最外侧{绝对差值求和;更新初始位置;}输出最内侧磁道号;绝对差值求和;/更新初始位置;}}if 已到达最外侧未到达最内侧{If外侧绝对值更小{—输出最外侧磁道号;绝对差值求和;更新初始位置;while向内依次输出磁道号{绝对差值求和;更新初始位置;},}else{while 向内依次输出磁道号{绝对差值求和;更新初始位置;}"输出最外侧磁道号;绝对值差求和;更新初始位置;}}if均到达最内侧和最外侧{【if 外侧差绝对值更小{输出最外侧磁道号并绝对值差求和;输出最内侧磁道号并绝对值差求和;}else{输出最内侧磁道号并绝对值差求和;(输出最外侧磁道号并绝对值差求和;}}求总和并返回;}(10)void FCFS算法!{输出磁盘请求序列为;按照磁盘请求序列依次输出磁盘扫描序列;当前磁道号与磁头初始未至的绝对值求和;求平均值;输出平均寻道长度;}(11)void SSTF算法{。
磁盘调度实验报告
磁盘调度实验报告一、实验目的1.掌握磁盘调度算法的基本原理和思想;2.理解磁盘调度算法的性能指标及其关系;3.利用实验验证各种磁盘调度算法的性能差异。
二、实验原理磁盘调度算法是操作系统中用来调度磁盘的读写操作的一种方法。
磁盘访问的时间主要包括寻道时间、旋转延迟和数据传输时间。
磁盘调度算法的目标是尽可能减少磁头的移动和等待时间,提高磁盘的访问效率。
常用的磁盘调度算法有先来先服务(FCFS)、最短寻找时间优先(SSTF)、电梯扫描(SCAN)和循环扫描(CSCAN)等。
FCFS算法就是按照请求的先后顺序进行访问,即先来的请求先执行。
SSTF算法每次选择最短寻找时间的磁道进行访问,减少了寻道时间。
SCAN算法则是磁头按照一个方向进行扫描,直到扫描到磁盘的一侧,然后改变方向继续扫描。
CSCAN算法是类似于SCAN算法,只是当扫描到磁盘的一侧时,直接跳到另一侧进行扫描。
这些算法各有优缺点,适用于不同的场景和需求。
三、实验过程1.实验环境搭建:选择一台计算机作为实验机器,安装操作系统和相应的磁盘调度算法软件;2.实验数据准备:生成一组磁道访问的请求序列,包括请求的磁道号和读写操作;3.实验数据输入:将生成的请求序列输入到磁盘调度软件中,选择不同的调度算法进行模拟;4.实验结果记录:记录各种调度算法的磁头移动次数和平均访问时间;5.实验数据分析:根据实验结果进行数据分析,比较各种算法的性能差异。
四、实验结果分析根据实验数据进行结果分析,比较不同调度算法的性能差异。
以磁头移动次数和平均访问时间为评价指标,可以看出不同算法对磁盘访问的影响。
在一些情况下,可能一些算法的磁头移动次数更少,但平均访问时间可能并不是最低的,需要综合考虑多个因素。
根据实验结果可以发现,FCFS算法的磁头移动次数和平均访问时间相对较高,因为它只按照请求的先后顺序进行访问,没有考虑磁道之间的距离。
SSTF算法在减少磁头移动次数和平均访问时间方面有一定的优势,因为它每次选择最短寻找时间的磁道进行访问。
操作系统课设报告磁盘调度算法
操作系统课设报告磁盘调度算法Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】课程设计报告课程名称: 操作系统课程设计课题名称: 磁盘调度算法学院: 软件学院班级:学生姓名:学号:指导教师:磁盘调度算法一、系统需求分析磁盘存储器不仅容量大,存取速度快,而且可以实现随机存取,是当前存放大量程序和数据的理想设备。
所以在现代计算机中都配备了磁盘存储器,以他为主存放文件,这样对文件的读、写操作都涉及到了对磁盘存储器的访问。
磁盘I/O速度的高低和磁盘系统的可靠性,都直接影响到系统的性能。
因此改善磁盘系统的性能成为现代操作系统的重要任务之一。
磁盘性能有数据的组织、磁盘的类型和访问时间等。
可以通过选择好的磁盘调度算法,以减少磁盘的寻道时间。
为了减少对文件的访问时间,应采用一种最佳的磁盘调度算法,以使各进程对磁盘的平均访问时间最少。
由于在访问磁盘的时间中主要是寻道时间,因此,磁盘调度的目标是使磁盘的寻道时间最少。
所以本课程设计对各个算法进行模拟,进而比较分析了解。
二、实验内容和目的.实验内容模拟电梯调度算法,实现对磁盘的驱动调度。
设计要求:编程序实现下述磁盘调度算法,并求出每种算法的平均寻道长度;要求设计主界面可以灵活选择某算法,且以下算法都要实现1、先来先服务算法(FCFS)2、最短寻道时间优先算法(SSTF)3、扫描算法(SCAN)4、循环扫描算法(CSCAN).实验原理模拟电梯调度算法,对磁盘调度。
磁盘是要供多个进程共享的存储设备,但一个磁盘每个时刻只能为一个进程服务。
当有进程在访问某个磁盘时,其他想访问该磁盘的进程必须等待,直到磁盘一次工作结束。
当有多个进程提出输入输出请求处于等待状态,可用电梯调度算法从若干个等待访问者中选择一个进程,让它访问磁盘。
当存取臂仅需移到一个方向最远的所请求的柱面后,如果没有访问请求了,存取臂就改变方向。
三、总体设计及分类简介算法介绍磁盘调度中常用的有四种算法,功能分别如下:1.先来先服务(FCFS)算法。
操作系统实验磁盘调度算法实验报告
操作系统实验磁盘调度算法实验报告一.实验目的本实验旨在通过磁盘调度算法的模拟,探究不同调度算法对磁盘访问性能的影响,了解各种算法的特点和适用场景。
二.实验方法本实验通过编写磁盘调度模拟程序,实现了三种常见的磁盘调度算法:FCFS(先来先服务)、SSTF(最短寻找时间优先)和SCAN(扫描算法)。
实验中使用C语言编程语言,并通过随机生成的队列模拟磁盘访问请求序列。
三.实验过程1.FCFS(先来先服务)算法FCFS算法是一种非常简单的调度算法,它按照请求到达的顺序进行调度。
在实验中,我们按照生成的请求队列顺序进行磁盘调度,记录每次磁头移动的距离。
2.SSTF(最短寻找时间优先)算法SSTF算法是一种动态选择离当前磁头位置最近的磁道进行调度的算法。
在实验中,我们根据当前磁头位置和请求队列中的磁道位置,选择距离最近的磁道进行调度。
然后将该磁道从请求队列中移除,并记录磁头移动的距离。
3.SCAN(扫描算法)算法SCAN算法是一种按照一个方向进行扫描的算法,它在每个方向上按照磁道号的顺序进行调度,直到扫描到最边缘磁道再折返。
在实验中,我们模拟磁头从一个端点开始,按照磁道号从小到大的顺序进行调度,然后再折返。
记录磁头移动的距离。
四.实验结果与分析我们通过生成不同数量的请求队列进行实验,记录每种算法的磁头移动距离,并进行比较。
实验结果显示,当请求队列长度较小时,FCFS算法的磁头移动距离较短,因为它按照请求到达的顺序进行调度,无需寻找最短的磁道。
然而,当请求队列长度较大时,FCFS算法的磁头移动距离会显著增加,因为它不能根据距离进行调度。
SSTF算法相对于FCFS算法在磁头移动距离上有了明显改进。
SSTF算法通过选择最短的寻找时间来决定下一个访问的磁道,因此可以减少磁头的移动距离。
然而,在请求队列中存在少量分散的请求时,SSTF算法可能会产生扇区的服务死锁现象,导致一些磁道无法及时访问。
SCAN算法通过扫描整个磁盘来进行调度,有效解决了FCFS算法有可能导致的服务死锁问题。
磁盘调度 操作系统实验报告
实验一磁盘调度算法实现一、实验目的本课程设计的目的是通过磁盘调度算法设计一个磁盘调度模拟系统,从而使磁盘调度算法更加形象化,容易使人理解,使磁盘调度的特点更简单明了,能使使用者加深对先来先服务算法、最短寻道时间优先算法、扫描算法以及循环扫描算法等磁盘调度算法的理解。
二、实验内容系统主界面可以灵活选择某种算法,算法包括:先来先服务算法(FCFS)、最短寻道时间优先算法(SSTF)、扫描算法(SCAN)、循环扫描算法(CSCAN)。
先来先服务算法( FCFS )这是一种比较简单的磁盘调度算法。
它根据进程请求访问磁盘的先后次序进行调度。
此算法的优点是公平、简单,且每个进程的请求都能依次得到处理,不会出现某一进程的请求长期得不到满足的情况。
此算法由于未对寻道进行优化,在对磁盘的访问请求比较多的情况下,此算法将降低设备服务的吞吐量,致使平均寻道时间可能较长,但各进程得到服务的响应时间的变化幅度较小。
最短寻道时间优先算法( SSTF )该算法选择这样的进程,其要求访问的磁道与当前磁头所在的磁道距离最近,以使每次的寻道时间最短,该算法可以得到比较好的吞吐量,但却不能保证平均寻道时间最短。
其缺点是对用户的服务请求的响应机会不是均等的,因而导致响应时间的变化幅度很大。
在服务请求很多的情况下,对内外边缘磁道的请求将会无限期的被延迟,有些请求的响应时间将不可预期。
扫描算法( SCAN )扫描算法不仅考虑到欲访问的磁道与当前磁道的距离,更优先考虑的是磁头的当前移动方向。
例如,当磁头正在自里向外移动时,扫描算法所选择的下一个访问对象应是其欲访问的磁道既在当前磁道之外,又是距离最近的。
这样自里向外地访问,直到再无更外的磁道需要访问才将磁臂换向,自外向里移动。
这时,同样也是每次选择这样的进程来调度,即其要访问的磁道,在当前磁道之内,从而避免了饥饿现象的出现。
由于这种算法中磁头移动的规律颇似电梯的运行,故又称为电梯调度算法。
此算法基本上克服了最短寻道时间优先算法的服务集中于中间磁道和响应时间变化比较大的缺点,而具有最短寻道时间优先算法的优点即吞吐量较大,平均响应时间较小,但由于是摆动式的扫描方法,两侧磁道被访问的频率仍低于中间磁道。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题目:磁盘调度一.设计目的本课程设计是学习完《计算机操作系统》课程后,进行的一次全面的综合训练,通过课程设计,我们更好地掌握操作系统的原理及实现方法,加深对操作系统基础理论和重要算法的理解,加强了动手能力。
二.课程设计内容和要求编程序实现下述磁盘调度算法,并求出每种算法的平均寻道长度,要求设计主界面以灵活选择某算法,且以下算法都要实现:1、先来先服务算法(FCFS)2、最短寻道时间优先算法(SSTF)3、扫描算法(SCAN)4、循环扫描算法(CSCAN)三.算法及数据结构3.1算法的总体思想设备的动态分配算法与进程调度相似,也是基于一定的分配策略的。
常用的分配策略有先请求先分配、优先级高者先分配等策略。
在多道程序系统中,低效率通常是由于磁盘类旋转设备使用不当造成的。
操作系统中,对磁盘的访问要求来自多方面,常常需要排队。
这时,对众多的访问要求按一定的次序响应,会直接影响磁盘的工作效率,进而影响系统的性能。
访问磁盘的时间因子由3部分构成,它们是查找(查找磁道)时间、等待(旋转等待扇区)时间和数据传输时间,其中查找时间是决定因素。
因此,磁盘调度算法先考虑优化查找策略,需要时再优化旋转等待策略。
平均寻道长度(L)为所有磁道所需移动距离之和除以总的所需访问的磁道数(N),即:L=(M1+M2+……+Mi+……+MN)/N其中Mi为所需访问的磁道号所需移动的磁道数。
启动磁盘执行输入输出操作时,要把移动臂移动到指定的柱面,再等待指定扇区的旋转到磁头位置下,然后让指定的磁头进行读写,完成信息传送。
因此,执行一次输入输出所花的时间有:寻找时间——磁头在移动臂带动下移动到指定柱面所花的时间。
延迟时间——指定扇区旋转到磁头下所需的时间。
传送时间——由磁头进程读写完成信息传送的时间。
其中传送信息所花的时间,是在硬件设计就固定的。
而寻找时间和延迟时间是与信息在磁盘上的位置有关。
为了减少移动臂进行移动花费的时间,每个文件的信息不是按盘面上的磁道顺序存放满一个盘面后,再放到下一个盘面上。
而是按柱面存放,同一柱面上的各磁道被放满信息后,再放到下一个柱面上。
所以各磁盘的编号按柱面顺序(从0号柱面开始),每个柱面按磁道顺序,每个磁道又按扇区顺序进行排序。
3.2算法实现1.先来先服务算法(FCFS)先来先服务(FCFS)调度:按先来后到次序服务,未作优化。
最简单的移臂调度算法是“先来先服务”调度算法,这个算法实际上不考虑访问者要求访问的物理位置,而只是考虑访问者提出访问请求的先后次序。
例如,如果现在读写磁头正在50号柱面上执行输出操作,而等待访问者依次要访问的柱面为130、199、32、159、15、148、61、99,那么,当50号柱面上的操作结束后,移动臂将按请求的先后次序先移到130号柱面,最后到达99号柱面。
采用先来先服务算法决定等待访问者执行输入输出操作的次序时,移动臂来回地移动。
先来先服务算法花费的寻找时间较长,所以执行输入输出操作的总时间也很长。
2.短寻道时间优先算法(SSTF)最短寻找时间优先调度算法总是从等待访问者中挑选寻找时间最短的那个请求先执行的,而不管访问者到来的先后次序。
现在仍利用同一个例子来讨论,现在当50号柱面的操作结束后,应该先处理61号柱面的请求,然后到达32号柱面执行操作,随后处理15号柱面请求,后继操作的次序应该是99、130、148、159、199。
采用最短寻找时间优先算法决定等待访问者执行操作的次序时,读写磁头总共移动了200多个柱面的距离,与先来先服务、算法比较,大幅度地减少了寻找时间,因而缩短了为各访问者请求服务的平均时间,也就提高了系统效率。
但最短查找时间优先(SSTF)调度,FCFS会引起读写头在盘面上的大范围移动,SSTF查找距离磁头最短(也就是查找时间最短)的请求作为下一次服务的对象。
SSTF查找模式有高度局部化的倾向,会推迟一些请求的服务,甚至引起无限拖延(又称饥饿)。
3.扫描算法(SCAN)SCAN 算法又称电梯调度算法。
SCAN算法是磁头前进方向上的最短查找时间优先算法,它排除了磁头在盘面局部位置上的往复移动,SCAN算法在很大程度上消除了SSTF算法的不公平性,但仍有利于对中间磁道的请求。
“电梯调度”算法是从移动臂当前位置开始沿着臂的移动方向去选择离当前移动臂最近的那个柱访问者,如果沿臂的移动方向无请求访问时,就改变臂的移动方向再选择。
这好比乘电梯,如果电梯已向上运动到4层时,依次有3位乘客陈生、伍生、张生在等候乘电梯。
他们的要求是:陈生在2层等待去10层;伍生在5层等待去底层;张生在8层等待15层。
由于电梯目前运动方向是向上,所以电梯的形成是先把乘客张生从8层带到15层,然后电梯换成下行方向,把乘客伍生从5层带到底层,电梯最后再调换方向,把乘客陈生从2层送到10层。
我们仍用前述的同一例子来讨论采用“电梯调度”算法的情况。
由于磁盘移动臂的初始方向有两个,而该算法是与移动臂方向有关,所以分成两种情况来讨论。
〈1〉.移动臂由里向外移动开始时,,在50号柱面执行操作的读写磁头的移动臂方向是由里向外,趋向32号柱面的位置,因此,当访问50号柱面的操作结束后,沿臂移动方向最近的柱面是32号柱面。
所以应先为32号柱面的访问者服务,然后是为15号柱面的访问者服务。
之后,由于在向外移方向已无访问等待者,故改变移动臂的方向,由外向里依次为各访问者服务。
在这种情况下为等待访问者服务的次序是61、99、130、148、159、199。
〈2〉.移动臂由外向里移动开始时,正在50号柱面执行操作的读写磁头的移动臂是由外向里(即向柱面号增大的内圈方向)趋向61号柱面的位置,因此,当访问50号柱面的操作结束后,沿臂移动方向最近的柱面是61号柱面。
所以,应先为61号柱面服务,然后按移动臂由外向里移动的方向,依次为99、130、148、159、199柱面的访问者服务。
当201号柱面的操作结束后,向里移动的方向已经无访问等待者,所以改变移动臂的前进方向,由里向外依次为32、15柱面的访问者服务。
“电梯调度”与“最短寻找时间优先”都是要尽量减少移动臂时所花的时间。
所不同的是:“最短寻找时间优先”不考虑臂的移动方向,总是选择离当前读写磁头最近的那个柱面,这种选择可能导致移动臂来回改变移动方向;“电梯调度”是沿着臂的移动方向去选择离当前读写词头最近的哪个柱面的访问者,仅当沿移动臂的前进移动方向无访问等待者时,才改变移动臂的前进方向。
由于移动臂改变方向是机械动作,速度相对较慢,所以,电梯调度算法是一种简单、使用且高效的调度算法。
但是,“电梯调度”算法在实现时,不仅要记住读写磁头的当前位置,还必须记住移动臂的当前前进方向。
4.循环扫描算法(CSCAN)单项扫描调度算法的基本思想是,不考虑访问者等待的先后次序,总是从0号柱面开始向里道扫描,按照各自所要访问的柱面位置的次序去选择访问者。
在移动臂到达最后一个柱面后,立即快速返回到0号柱面,返回时不为任何的访问者等待服务。
在返回到0号柱面后,再次进行扫描。
由于该例中已假定读写的当前位置在50号柱面,所以,指示了从50号柱面继续向里扫描,依次为61、99、130、148、159、199各柱面的访问者服务,此时移动臂已经是最内的柱面,于是立即返回到0号柱面,重新扫描,依次为15、32号柱面的访问者服务。
除了“先来先服务”调度算法外,其余三种调度算法都是根据欲访问的柱面位置来继续调度的。
在调度过程中可能有新的请求访问者加入。
在这些新的请求访问者加入时,如果读写已经超过了它们所要访问的柱面位置,则只能在以后的调度中被选择执行。
在多道程序设计系统中,在等待访问磁盘的若干访问者请求中,可能要求访问的柱面号相同,但在同一柱面上的不同磁道,或访问同一柱面中同一磁道上的不同扇区。
所以,在进行移动调度时,在按照某种短法把移动臂定位到某个柱面后,应该在等待访问这个柱面的各个访问者的输入输出操作都完成之后,再改变移动臂的位置。
3.3.三个模块之间的调用关系图3.4实现代码#include<stdio.h>#include<math.h>void FCFS(int b[],int n,int init) //先来先服务{int i,s,sum;int a[20];for(i=0;i<n;i++)a[i]=b[i];s=init;sum=0;for(i=0;i<n;i++){printf("第%d次访问的磁道:%d\n",i+1,a[i]);sum+=abs(s-a[i]);s=a[i];}printf("平均寻道长度:%f\n",sum*1.0/n);}void SSTF(int b[],int n,int k) //最短寻道法{int i,j,s,sum=0,p;int a[20];for(i=0;i<n;i++)a[i]=b[i];for(i=n-1;i>=0;i--){s=a[0];p=0;for(j=0;j<=i;j++)if(abs(a[j]-k)<abs(s-k)){s=a[j];p=j;}a[p]=a[i];printf("第%d次访问的磁道:%d\n",n-i,s);sum+=abs(s-k);k=s;}printf("平均寻道长度:%f\n",sum*1.0/n);}void SCAN1(int b[],int n,int k) //扫描算法{int i,j,s,sum=0,p,biaoji;int a[20];for(i=0;i<n;i++)a[i]=b[i];for(i=n-1;i>=0;i--){biaoji=0;for(j=0;j<=i;j++)if(a[j]-k<0){biaoji=1;p=j;break;}if(biaoji==1){s=a[p];for(j=0;j<=i;j++)if(a[j]<k&&k-a[j]<k-s){s=a[j];p=j;}a[p]=a[i];printf("第%d次访问的磁道:%d\n",n-i,s);sum+=k-s;k=s;}else{s=a[0];for(j=0;j<=i;j++)if(a[j]-k<=s-k){s=a[j];p=j;}a[p]=a[i];printf("第%d次访问的磁道:%d\n",n-i,s);sum+=abs(k-s);k=s;}}printf("平均寻道长度:%f\n",sum*1.0/n);}void SCAN2(int b[],int n,int k) //循环算法{int i,j,s,sum=0,p,biaoji;int a[20];for(i=0;i<n;i++)a[i]=b[i];for(i=n-1;i>=0;i--){biaoji=0;for(j=0;j<=i;j++)if(a[j]-k>0){biaoji=1;p=j;break;}if(biaoji==1){s=a[p];for(j=0;j<=i;j++)if(a[j]>k&&a[j]-k<s-k){s=a[j];p=j;}a[p]=a[i];printf("第%d次访问的磁道:%d\n",n-i,s);sum+=s-k;k=s;}else{s=a[0];for(j=0;j<=i;j++)if(k-a[j]<=k-s){s=a[j];p=j;}a[p]=a[i];printf("第%d次访问的磁道:%d\n",n-i,s);sum+=abs(k-s);k=s;}}printf("平均寻道长度:%f\n",sum*1.0/n);}void C_SCAN(int b[],int n,int k) //循环算法{int i,j,s,sum=0,p,biaoji;int a[20];for(i=0;i<n;i++)a[i]=b[i];for(i=n-1;i>=0;i--){biaoji=0;for(j=0;j<=i;j++)if(a[j]-k>0){biaoji=1;p=j;break;}if(biaoji==1){s=a[p];for(j=0;j<=i;j++)if(a[j]>k&&a[j]-k<s-k){s=a[j];p=j;}a[p]=a[i];printf("第%d次访问的磁道:%d\n",n-i,s);sum+=s-k;k=s;}if(biaoji==0) break;}s=a[0];for(j=0;j<=i;j++)if(a[j]<=s){s=a[j];p=j;}a[p]=a[i];printf("第%d次访问的磁道:%d\n",n-i,s);sum+=k-s;k=s;i--;for(;i>=0;i--){s=a[0];for(j=0;j<=i;j++)if(a[j]-k<s-k){s=a[j];p=j;}a[p]=a[i];printf("第%d次访问的磁道:%d\n",n-i,s);sum+=s-k;k=s;}printf("平均寻道长度:%f\n",sum*1.0/n);}void main(){int a[20];int i,n,k,k1,init;printf("请输入需要访问的磁道总数:");scanf("%d",&n);for(i=0;i<n;i++){printf("需要访问的磁道%d:",i+1);scanf("%d",&a[i]);}printf("请输入指针所在磁道:");scanf("%d",&init);k=1;while(k){printf("**********************************\n");printf("$$$$$$$$$$$程倩——磁盘调度$$$$$$$$$\n");printf("** 1.先来先服务(FCFS) **\n");printf("** 2.最短寻道时间优先(SSTF) **\n");printf("** 3.扫描算法(SCAN) **\n");printf("** 4.循环算法(C-SCAN) **\n");printf("** 0.退出 **\n");printf("**********************************\n");printf("&&&&&&&&&&&&谢谢使用&&&&&&&&&&&&&&\n");printf("请在下面输入您的选择:");scanf("%d",&k);switch(k){case 1:FCFS(a,n,init);break;case 2:SSTF(a,n,init);break;case 3:k1=1;while(k1){printf("*********************************\n");printf("########程倩——磁盘调度###########\n");printf("**** 1.移动臂由里向外 **\n");printf("**** 2.移动臂由外向里 **\n");printf("**** 0.返回上一层 **\n");printf("*********************************\n");printf("#############谢谢使用############\n");printf("请在下面输入您的选择:");scanf("%d",&k1);switch(k1){case 1:SCAN1(a,n,init);break;case 2:SCAN2(a,n,init);break;}}break;case 4:C_SCAN(a,n,init);break;}}}四.运行结果及分析2.最短寻道时间优先3.先来先服务4.循环算法5.循环算法(1)磁头由里向外移动(2)磁头由外向里移动。