2-2离散型随机变量的概率分布
2.2离散型随机变量及其概率分布
![2.2离散型随机变量及其概率分布](https://img.taocdn.com/s3/m/029664146bd97f192279e9aa.png)
8
5
k
24
小结
离 散 型 随 机 变 量 的 分 布
二项分布 泊松分布
两点分布
两点分布
n1
二项分布
n 10, p 0.1, np
泊松分布
25
二项分布与 (0 1) 分布、泊松分布之间的 关系 .
二项分布是 (0 1) 分 布 的 推 广 , 对 于n 次 独 立重复伯努利试验 ,每 次 试 验 成 功 的 概 率 为 p, 设 , 1, 若 第 i 次 试 验 成 功 Xi ( i 1,2, , n) . 0, 若 第 i 次 试 验 失 败 它们都服从 (0 1) 分 布 并 且 相 互 独 立 , 那末 X X1 X 2 X n 服 从 二 项 分 布 , 参 数 为( n, p).
定义2 如果随机变量 X 只有两个可能取 值,其概率分布为
P{ X x1 } P , P{ X x2 } q 1 p(0 p 1, p q 1)
则称X服从 x1 , x2 处参数为p的两点分布. 特别,若X服从
x1 1, x 0 处参数为p的两点分布,即
p
k 1
5
k
1
1 a . 15
5
关于分布律的说明:
若已知一个离散型随机变量X的概率分布 X P x1 p1 x2 p2 ... ... xn ... pn ...
则可以求X所生成的任何事件的概率,特别地:
P{a X b} P{ { X xi }} pi
a xi b a xi b
26
以 n, p ( np ) 为参数的二项分布 ,当 n 时趋 于以 为参数的泊松分布 ,即
2-2离散型随机变量及其分布律
![2-2离散型随机变量及其分布律](https://img.taocdn.com/s3/m/88cb3282fc4ffe473268ab3b.png)
松定理(第二章)和中心极限定理(第五章),利用这些定理
可以近似计算出它们的值.
3.泊松分布
定义 2.5 如果随机变量 X 的分布律为
P{X k} k e , k 0,1, 2,L , 0 ,
k!
就称 X 服从参数为 的泊松分布,记为 X ~ P() .
【注 1】 P{X
k
k}
e
0 , k 0,1, 2,L
一般地,在随机试验 E 中,如果样本空间 只包含两个
样本点
{1,2},且
X
0, 1,
若 =1 , 若 =2 ,
则 X ~ B(1, p) ,其中 p P{X 1} P({2}) .
在现实生活中,0 1两点分布有着广泛的应用.例如某产品 合格与不合格;某课程的考试及格与不及格;某事件 A 发生与 不发生等许多现象都能够刻划成 0 1两点分布.
§2 离散型随机变量及其分布律
一、离散型随机变量及其分布律的概念 定义 2.1 若随机变量 X 的取值为有限个或可列无限多个,就 称 X 为离散型随机变量.
定义 2.2 设 X 为离散型随机变量,其所有可能的取值为 x1, x2 ,L , xi ,L ,且
P{X xi} pi , i 1, 2,L .
的概率为 0.6 ,求该射手在 4 次射击中,命中目标次数 X 的
分布律,并问 X 取何值时的概率最大. 解 将每次射击看成一次随机试验,所需考查的试验结果只
有击中目标和没有击中目标,因此整个射击过程为 4 重的贝
努里试验.故由题意知, X ~ B(4, 0.6) ,即
P{X k} C4k 0.6k 0.44k , k 0,1, 2,3, 4 .
P{X
10}
2-2离散型随机变量的概率分布
![2-2离散型随机变量的概率分布](https://img.taocdn.com/s3/m/a788da93d4bbfd0a79563c1ec5da50e2524dd1cf.png)
(3) 二项概率公式 若 X 表示 n 重伯努利试验中事件 A 发生的次数, 则 X 所有可能取的值为
0, 1, 2, , n.
当 X k (0 k n) 时, 即 A 在 n 次试验中发生了 k 次.
AAA AAA ,
泊松资料
泊松分布的图形
泊松分布随机数演示
上面我们提到
二项分布 np ( n )泊松分布
单击图形播放/暂停 ESC键退出
合理配备维修工人问题
例5 为了保证设备正常工作, 需配备适量的维修 工人 (工人配备多了就浪费 , 配备少了又要影响生 产),现有同类型设备300台,各台工作是相互独立的, 发生故障的概率都是0.01.在通常情况下一台设备 的故障可由一个人来处理(我们也只考虑这种情况 ) ,问至少需配备多少工人 ,才能保证设备发生故障 但不能及时维修的概率小于0.01?
把检查一只元件是否为一级品看成是一次试 验, 检查20只元件相当于做20 重伯努利试验.
解 以 X 记 20 只元件中一级品的只数, 则 X ~ b(20, 0.2), 因此所求概率为
P{ X k} 20(0.2)k (0.8)20k , k 0,1,,20. k
P{ X 0} 0.012 P{ X 4} 0.218 P{ X 8} 0.022 P{ X 1} 0.058 P{ X 5} 0.175 P{ X 9} 0.007 P{ X 2} 0.137 P{ X 6} 0.109 P{ X 10} 0.002 P{ X 3} 0.205 P{ X 7} 0.055
一、离散型随机变量的分布律
定义 设离散型随机变量X 所有可能取的值为 xk (k 1,2,), X 取各个可能值的概率, 即事件 { X xk } 的概率, 为
离散型随机变量的分布
![离散型随机变量的分布](https://img.taocdn.com/s3/m/193fb4ecdc3383c4bb4cf7ec4afe04a1b071b0f1.png)
离散型随机变量的分布离散型随机变量在概率论中扮演着重要的角色。
它们描述了一系列可能的取值以及各个取值的概率分布。
本文将介绍离散型随机变量的概念、分布以及如何计算相关的概率。
一、离散型随机变量的定义离散型随机变量是指在有限或可数的取值范围内取值的随机变量。
其取值集合可以是离散的整数或者某种离散的事物。
例如,掷骰子的点数、抛硬币的结果等都属于离散型随机变量。
二、离散型随机变量的分布离散型随机变量的分布通过概率质量函数(Probability Mass Function,简称PMF)来描述。
概率质量函数是一个函数,它计算每个可能取值的概率。
以掷一颗均匀骰子为例,假设随机变量X表示掷骰子的点数。
由于骰子的点数是1到6之间的整数,我们可以定义X的取值集合为S={1, 2, 3, 4, 5, 6}。
对于每个可能的点数,我们可以计算出其概率。
X的概率质量函数可以写成如下形式:P(X=1) = 1/6P(X=2) = 1/6P(X=3) = 1/6P(X=4) = 1/6P(X=5) = 1/6P(X=6) = 1/6其中,P(X=x)表示随机变量X取值为x的概率。
三、计算离散型随机变量的概率在已知离散型随机变量的概率质量函数的情况下,我们可以计算出各种事件的概率。
以随机变量X为例,假设我们想计算X小于等于3的概率。
我们可以使用概率质量函数中相关取值的概率相加来计算:P(X<=3) = P(X=1) + P(X=2) + P(X=3) = 1/6 + 1/6 + 1/6 = 1/2同样地,我们可以计算出其他事件的概率。
四、常见的离散型随机变量分布除了均匀分布之外,还有一些常见的离散型随机变量分布,包括二项分布、泊松分布、几何分布等。
1. 二项分布二项分布描述了在n次独立重复试验中成功的次数的概率分布。
每次试验都有两个可能的结果,成功和失败。
例如,抛硬币n次,成功可以定义为正面朝上的次数。
二项分布的概率质量函数可以写为:P(X=k) = C(n, k) * p^k * (1-p)^(n-k)其中,C(n, k)表示组合数,p表示每次试验成功的概率,k表示成功的次数。
2.2离散型随机变量的概率分布(分布律)
![2.2离散型随机变量的概率分布(分布律)](https://img.taocdn.com/s3/m/b33ef5ecaa00b52acec7ca18.png)
一、离散型随机变量的分布律
二、常见离散型随机变量的概率分布 三、小结
2019/2/22
概率统计
北邮概率统计课件
第二节
离散型随机变量的概率分布(分布律)
一.离散型随机变量的分布律
引例
如图中所示,从中任取 3 个球 取到的白球数 X 是一个随机变量 X可能取的值是0,1,2
取每个值的概率为: 2 1 1 2 C C C C 6 3 C3 1 3 2 3 2 3 P{ X 2} P{ X 0} 3 P{ X 1} 3 3 C5 10 C5 10 C5 10
k C 在哪 k 次发生,所以它应有 n 种不同的发生方式.
而且它们是相互独立的,故在 n 次试验中A发生 k 次的概率 ( 依概率的加法定理) 为:
P{X k } C p (1 p)
k n k
n k
(k 0,1, 2
n)
概率 Pn (k ) 就等于二项式 注 ▲ 显然它满足: [ px (1 p)]n 的展开式中 x k 的系数,这也是二项分布的名称的 P{ X k } 0, 由来. n
记为: 列表:
X ~b(n, p)
X
P (k )
概率统计
0
1
2
n
P(n)
P(0) P(1) P(2)
注 ▲ 特别当n=1时,二项分布即为 ( 0-1 ) 分布 ▲ 二项分布 X~b(n,p) 的图形特点: 对于固定n 及 p,当 k 增加时 ,概率P(X=k) 先是随之增加直至达 到最大值,随后单调 减少.
k 4 k
P { X k } C p (1 p )
k 4
,
k 0,1, 2, 3,4
2-2离散型随机变量及其分布律
![2-2离散型随机变量及其分布律](https://img.taocdn.com/s3/m/71cccca7846a561252d380eb6294dd88d1d23d68.png)
4、二项分布的泊松近似 (泊松定理)
当试验次数n很大时,计算二项分布很麻烦,必须寻求近似方法
P ( X 5 )
5 k 0
Ck 5000
(
1 1000
)k
(
999 1000
)5000k
离散型随机变量X b(n, p). 又设np ( 0), 则有
Cnk
pk (1
p )nk
n
k e
k!
即当n 很大且p 很小时,可用泊松分布近似计算二项分布.
P(X=0)=P(A1)=1/2,
P(X 1) P(A1A2 ) P(A1)P(A2 ) 1 4 P(X 2) P(A1 A2A3 ) P(A1)P(A2)P(A3) 1 8 P(X 3) P(A1 A2 A3A4 ) P(A1)P(A2 )P(A3 )P(A4 ) 1 16 P(X 4) P(A1A2 A3 A4 ) P(A1)P(A2)P(A3)P(A4) 1 16
例3 (P30,例2) 设射手每次击中目标的概率p=0.75, 且各次射击 相互独立。现共射击4次,以X表示击中目标的次数。(1)写出X的 分布律;(2)求恰击中3次的概率;(3)求至少击中2次的概率。
解 : 定义 A {击中目标}, 伯努利试验.
X的可能取值有:0,1,2,3,4. 显然, X b(2,0.75)
解 : 记 X表示200人中患此病的人数.
显然, X b(200, 0.01)
np 200* 0.01 2
P ( X 4 ) 1 P( X 3)
3
1
Ck 200
(0.01)k
(0.99)2004
k
k0
1 3 2k e2 k0 k !
=1-0.8571=0.1429 (查泊松分布表: P247)
2.2 离散型随机变量的概率分布
![2.2 离散型随机变量的概率分布](https://img.taocdn.com/s3/m/5b4c542de2bd960590c677a5.png)
P(X=2)=C (0.05) (0.95) = 0.007125
2 3 2
注:若将本例中的"有放回"改为"无放 将本例中的"有放回"改为" 那么各次试验条件就不同了, 回",那么各次试验条件就不同了,不是贝 努里概型,此时,只能用古典概型求解. 努里概型,此时,只能用古典概型求解
C C P(X=2)= ≈ 0.001 P { X = 0} P { X = 1}
= 1 C 0.01 × 0.99 C 0.01 × 0.99
0 20 0 20 1 20 1
19
≈ 0.0169 重贝努利概型, (2)这是 )这是n=80重贝努利概型,参数为 重贝努利概型 参数为p=0.01,需维 , 修的机床数X~B(80, 0.01),故不能及时维修的概率为 修的机床数 故不能及时维修的概率为
eλ = ∑
k=0
λk
k!
某射手连续向一目标射击, 例4. 某射手连续向一目标射击,直到命中为 已知他每发命中的概率是p, 止 , 已知他每发命中的概率是 , 求所需射击 发数X 的概率函数. 发数 的概率函数 显然, 可能取的值是1,2,… , 解: 显然,X 可能取的值是 为计算 P(X =k ), k = 1,2, …, , , 设 Ak = {第k发命中 ,k =1, 2, …, 发命中}, 第 发命中 , 于是 P(X=1)=P(A1)=p,
P(X=k)=C (0.8) (0.2) , k = 0,1,2,3 把观察一个灯泡的使用
时数看作一次试验, 时数看作一次试验 P(X ≤ =P(X=0)+P(X=1) 1)
k 3 k
3k
"使用到 使用到1000小时已坏" 小时已坏" 使用到 小时已坏 视为事件A,每次试验, 视为事件 )3+3(0.8)(0.2)2 ,每次试验 =(0.2 A发生的概率为 发生的概率为0.8 发生的概率为
离散型随机变量及其分布列知识点
![离散型随机变量及其分布列知识点](https://img.taocdn.com/s3/m/a62e972e6ad97f192279168884868762caaebb0c.png)
离散型随机变量及其分布列知识点离散型随机变量及其分布列知识点离散型随机变量是指在有限个或无限个取值中,只能取其中一个数值的随机变量。
离散型随机变量可以用分布列来描述其概率分布特征。
离散型随机变量的概率分布列概率分布列是描述离散型随机变量的概率分布的表格,通常用符号P 表示。
其一般形式如下:P(X=x1)=p1P(X=x2)=p2P(X=x3)=p3…P(X=xn)=pn其中,Xi表示随机变量X的取值,pi表示随机变量X取值为Xi的概率。
离散型随机变量的特点1. 离散型随机变量只取有限或无限个取值中的一个,变化不连续。
2. 取值之间具有间隔或间距。
3. 每个取值对应一个概率,概率分布可用概率分布列来体现。
4. 概率之和为1。
离散型随机变量的常见分布1. 0-1分布0-1分布是指当进行一次伯努利试验时,事件发生的概率为p,不发生的概率为1-p的离散型随机变量的分布。
其分布列为:P(X=0)=1-pP(X=1)=p2. 二项分布二项分布是进行n次伯努利试验中,事件发生的概率为p,不发生的概率为1-p时,恰好出现k次事件发生的离散型随机变量的分布。
其分布列为:P(X=k)=C(n,k)p^k(1-p)^(n-k)其中,C(n,k)为从n中选出k个的组合数。
3. 泊松分布泊松分布是指在某个时间段内,某一事件发生的次数符合泊松定理的离散型随机变量的分布。
其分布列为:P(X=k)=λ^ke^(-λ)/k!其中,λ为这段时间内事件的平均发生次数。
总结离散型随机变量及其分布列是概率论中的重要基础概念之一,具有广泛的应用。
掌握离散型随机变量及其分布列的知识点对于深入理解概率论及其实际应用有重要意义。
2-2离散型随机变量及其分布律
![2-2离散型随机变量及其分布律](https://img.taocdn.com/s3/m/77a80deb551810a6f52486a2.png)
P(X=2)=C (0.05) (0.95) = 0.007125
思考:本例中的“有放回”改为”无放回” 思考: 本例中的“有放回”改为”无放回”? 不是伯努利试验。 各次试验条件不同,此试验就不是伯努利试验 此时, 各次试验条件不同,此试验就不是伯努利试验。此时, 1 2 只能用古典概型求解. 古典概型求解 只能用古典概型求解. C C
3. 泊松分布
定义 若一个随机变量 X 的概率分布为 λke−λ P{ X = k} = , k = 0,1,2,⋯, k! 则称 X 服从参数为 λ 的泊松分布, 泊松分布, 记为 X ~ P (λ ) 或 X ~ π (λ ). 易见, 易见,1) P { X = k } ≥ 0; ( k −λ ∞ ∞ ∞ λk λe −λ (2)∑P{X = k} = ∑ =e ∑ k! k=0 k ! k=0 k=0
泊松分布是常见的一种分布: 泊松分布是常见的一种分布: 地震 火山爆发 特大洪水
商场接待的顾客数 电话呼唤次数 交通事故次数
4. 二项分布的泊松近似
很大时, 对二项分布 b( n, p ), 当试验次数 n 很大时, 计 算其概率很麻烦. 例如, 算其概率很麻烦 例如,b(5000, 0.001), 要计算
.
二、几种常见分布
1. 两点分布 只可能取x 设随机变量 X 只可能取 1与x2两个值 , 它的 分布律为 x x
X pi
p 1− p
1
2
0< p<1
则称 X 服从x1 , x2处参数为 的两点分布。 处参数为p的两点分布。
说明: 只可能取0与 两个值 说明:若随机变量 X 只可能取 与1两个值 , 它的 分布律为 0 1
则随机变量 X的分布律为 X 的分布律为
概率论§2.1 随机变量-§2.2离散型随机变量
![概率论§2.1 随机变量-§2.2离散型随机变量](https://img.taocdn.com/s3/m/8248b45cbe23482fb4da4c93.png)
0, w = (b1 , b2 ), (b1 , b3 ), (b2 , b3 ) 1, w = (a1 , b1 ), (a1 , b2 ), (a1 , b3 ) X = X (w ) = (a2 , b1 ), (a2 , b2 ), (a2 , b3 ) 2, w = (a1 , a2 )
18
分布函数的性质
(1) F(x)是x的不减函数 ,即
x1 x2 , F ( x1 ) F ( x2 )
(2)
F ( ) = lim F ( x ) = 0
x
F ( ) = lim F ( x ) = 1
x
理解:当x→+时,{X≤x}愈来愈趋于必然事件. (3)右连续性: 对任意实数 x0 ,
P ( X x ) = 1 P ( X x ) = 1 F ( x );
21
例1 设F1 ( x )与F2 ( x )分别为随机变量X 1与X 2
的分布函数,为了使 ( x ) = aF1 ( x ) bF2 ( x ) F
是某一随机变量的分布函数,则下列各组值 中应取(A)
3 2 ( A) a = , b = 5 5
连续型随机变量
如:“电视机的使用寿命”,实际中常遇到 的 24 “测量误差”等。
§2.2 离散型随机变量及其分布
定义 如果随机变量X 只取有限个或可列无限 多个不同可能值,则称X 为离散型随机变量. 例如, 抛一枚硬币,X 可取0,1有限个值。 可知X为一个离散型随机变量。 例如,电话交换台一天内接到的电话个数
F ( x0 0) = lim F ( x ) = F ( x0 )
x x0
19
如果一个函数满足上述三条性质,则一 定是某个随机变量 X 的分布函数。也就是说, 性质(1)-(3)是判别一个函数是否是某个随机 变量的分布函数的充分必要条件。
2-2离散型随机变量及其分布律
![2-2离散型随机变量及其分布律](https://img.taocdn.com/s3/m/87d7c1d089eb172dec63b711.png)
即P
X
0
1
2 0.30
3 0.20
4 0.09
5 0.03
6
7
8 0.00
9 0.00
10 0.00
0.11 0.27
0.01 0.00
P ( X 1) P ( X 0) P ( X 1)
1 0.2 0.89 =0.38. 0.810 +C10
第二章 一维随机变量及其分布
第二节 离散型随机变量及其分布律
一、离散型随机变量的分布律
对于离散型随机变量,我们所关心的问题: (1)随机变量所有可能的取值有哪些? (2)取每个可能值的概率是多少? 定义 设x1,x2,…为离散型随机变量X的可能取值, p1,p2,…为 X 取 x1,x2,… 的概率,即 P(X=xi ) = pi (i=1,2,…) (1)
(0 p 1) ,则在n重伯努利试验中事件A出现k次 的概率为
C pq
k n
k
n k
其中p q 1
k 0,1,, n.
k k n k pq 若随机变量 X 的分布律为 PX k Cn
其中 k 0,1,, n; 0 p 1; q 1 p. 即 X p
k e xk e x,易知 1. 利用级数 k 0 k ! k 0 k!
历史上,泊松分布是作为二项分布的 近似,于1837年由法国数学家泊松引入的 . 近数十年来,泊松分布日益显示其重要性 , 成为概率论中最重要的几个分布之一 . 在 实际中,许多随机现象服从或近似服从泊 松分布. 二十世纪初罗瑟福和盖克两位科学家在 观察与分析放射性物质放出的 粒子个数 的情况时,他们做了2608 次观察(每次时 间为7.5 秒)发现放射性物质在 规定的一段时间内, 其放射的粒 子数X 服从泊松分布.
离散型随机变量的概率分布
![离散型随机变量的概率分布](https://img.taocdn.com/s3/m/6303ecd483d049649b665866.png)
n次试验中A发生的总次数,则
X的可能值为 0,1,2,…,n, 且
P(X
k)
C
k n
pk (1
p)nk , k
0,1,2,...,
n
称 X ~ B(n, p) 二项分布
n重
A发生的概率
证明:指定的k次(如前k次)让A发生,其余
的(n-k)为 A发生
而事件A在n次试验中发生k次的方式为:C
k n
P(X
§2 离散型随机变量的概率分布
主要内容
一、离散型随机变量的定义及其分布律 二、常用分布 三、常用分布之间的联系
一、离散型随机变量的定义及其分布
1. 定义 如果随机变量X所有可能值是有限个或无限可 列个,则称X为离散型随机变量。 2. 概率分布
要掌握一个离散型随机变量的分布,必须
且只需知道以下两点
(1) X所有可能的取值: x1, x2, , xk ,
例 2 某一城市每天发生火灾的次数X服从参数为 0.8的泊松分布. 求:该城市一天内发生3次以上火灾 的概率.
解: P( X 3) 0.8k e
k3 k!
查表
0.0474
上页 下页 返回
三. 常用分布的联系 1. 0-1分布和B(n,p)
X ~ B(n, p)中,当n 1时,X ~ 0 1分布,且X分解为
2
b 3 2b 1
1
2 3
b 1 2
练习1: 设随机变量X的分布律为:
P( X k) a , k 1,2, ,10. 10
试求常数a. (a 1)
练习2: 设随机变量X的分布律为:
P( X k) a k , k 0,1,2,...., 0为常数。
《概率论》第2章2离散型随机变量-24页文档资料
![《概率论》第2章2离散型随机变量-24页文档资料](https://img.taocdn.com/s3/m/20e1fbc7e53a580217fcfe46.png)
第二章 随机变量及其分布
§2 离散型随机变量及其分布律 11/23
则
P{X1}P(A1) p
P{X2}P(A1A2)P(A2| A1)P(A1) p(1 p)
P{X3}P(A1A2A3) P (A 3|A 1A 2)P (A 2|A 1 )P (A 1 ) p(1 p)2
P{X 4} P (A 1 A 2A 3A 4) P (A 1 A (12 A 3 pA )4 3)
故 X的分布律为
P{X 0} 1 8
P{X
1}
3 8
P{X 2} 3 8
所有样本点 遍历一次
全部和为1
P{X 3} 1 8
分布律有什么特点
第二章 随机变量及其分布
§2 离散型随机变量及其分布律 3/23
pk0, k1,2,
pk 1
k 1
pk P{X xk}
k1
k1
P
U{X
k 1
xk }
P(S) 1
第二章 随机变量及其分布
§2 离散型随机变量及其分布律 8/23
只产生两个结果 A , 的A 试验 伯努利试验产生什么样的随机变量
将伯努利试验独立重复进行 n 次的试验
某战士用步枪对目标进行射击,记
Байду номын сангаас
A { 击中目标 } ,A { 没击中目标 } 每射击一次就是一个伯努利试验 ,如果对目标进行 n 次射
第二章 随机变量及其分布
§2 离散型随机变量及其分布律 6/23
如果 r.v 的X 分布律为
P{X c}1
则称 r.v 服X 从 单点,分其布中 为常数c
概率与数理统计 第二章-2-离散型随机变量及其分布律
![概率与数理统计 第二章-2-离散型随机变量及其分布律](https://img.taocdn.com/s3/m/179c290bbe23482fb4da4c93.png)
(0–1)分布的分布律也可以写成:
P{X k} pk (1 p)1k , k 0,1,0 p 1.
两点分布的模型为:
(1)Ω= {1, 2}, 只有两个基本事件。
P({1}) = p , P({2}) = 1-p =q.
令
X
()
1, 0,
1, 2,
(2) W A A ,有两个结果。
1
2
P 0.04 0.32 0.64
PX 0 0.2 0.2 0.04
PX 1 0.80.2 0.20.8 0.32
PX 2 0.8 0.8 0.64
(2) ∵是并联电路 ∴ P{线路接通} =P{只要一个继电器接通} =P{X≥1} =P{X=1}+P{X=2}=0.32+0.64=0.96
所以,X 的概率分布为
P{X k } C4k p k (1 p )4k ,
k 0, 1, 2, 3, 4 .
(1) 伯努利试验 若随机试验E只有两个可能的结果: 事件A发生与事件A不发生,则称这样的 试验为伯努利(Bermourlli)试验。记
P(A) p, P(A) 1 p q (0 p 1),
P{X=1}:o o o Co41 p1(1 p)41
P{X=2}:o o oo oo oo C42opo2(1oop)42
P{X=3}:ooo oo o o oo oooC43 p3(1 p)43 P{X=4}:oooo C44 p4(1 p )44 p4
其中“×”表示未中,“○”表示命中。
P(A) p, P(A) 1 p ;
③ 各次试验相互独立。
我们关心的问题是:
n次的独立伯努利试验中,事件A发生的次数 及A发生k次的概率。
2.2离散型随机变量及其概率分布
![2.2离散型随机变量及其概率分布](https://img.taocdn.com/s3/m/5f580233376baf1ffc4fada5.png)
a P X k , k 1,2,, N , N
试确定常数a.
解 由离散型随机变量分布列的性质(2)规范性,
a a P{ X k} N N N 1 k 1 k 1
N
N
a 1
旧书(56页1题)
1. 判断下面各数列是否为随机变量的分布列,并说明理由.
易于验证:
1) P{ X k}
k
k!
e 0, k 0,1,2,, 非负性
2)
P{ X k}
k 0 k 0
k
k!
e
k
规范性
e
k!
k 0
e e
1
例6:某商店根据过去的销售记录,总结出某种商品每 月的销售量可以用参数为 5 的泊松分布来描述,求: (1)下个月该商店销售2件此种商品的概率是多少?
的概率为:
记为
k n k n k
X ~ B(n, p).源自P X k C p (1 p)
(k 0,1 n)
练习:某射手每次射击时命中10环的概率为 p, 现 进行 4 次独立射击,求 恰有 k 次命中10环的概率。
解:用X 表示 4 次射击后, 命中10环的次数, 则
X 的概率分布为
参数为 np 1 的泊松分布近似计算,得
1 解 因为 500 个错字随机分布在 500 页书上,所以错字出现在每一页的概率都是 . 500 1 ), 设 X 表示在给定的某一页上出现错字的个数,则 X ~ B(500 , 500
1, X ( ) 0,
X
反面, 正面.
1
2.2离散型随机变量及其分布律
![2.2离散型随机变量及其分布律](https://img.taocdn.com/s3/m/be19ca44f01dc281e53af0d3.png)
P 1 p
p
称X服从(01)分布或两点分布 记为 X~ B(1, p)
13
2.二项分布
在n重贝努里试验中,设每次试验事 件A发生的概率为p
令X是n次试验中事件A发生的次数
则 X为一离散型随机变量
P ( X k ) C p (1 p)
k n k n k
2.2 离散型随机变
量及其分布律
一、离散型随机变量 二、常见离散型分布
1
一天内接到的电话个数(可以一一罗列) 从某一学校随机选一学生,测量他的身高 (不可以一一罗列)
定义1: 如果随机变量X只能取有限个 或可列无限多个不同可能值,则称X 为 离散型随机变量
2
一、离散型随机变量
定义:设离散型随机变量X所有可能取 的值为x1, x2,…, xi ,…, X取可能值xi的概 率pi ,即P(X=xi)=pi (i=1,2,…),则称该式为 离散型随机变量X的分布律或概率分布 分布律也常用下列形式表示: X x1 x2 … xi … 性质: (1) pi≥0, i=1,2,… (2)
k n k e k n k
k!
( np)
21
泊松定理表明,泊松分布是二项分布的极限分布,
当n很大,p很小时,二项分布就可近似地 看成是参数=np的泊松分布
22
例.用步枪向某一目标射击,每次击中目标
的概率为0.001,今射击6000次,试求至少有 两弹击中目标的概率.(泊松定理)
24
4.几何分布: X ~ G(p)
PX k q
k 1
p
k 1, 2,
(其中p 0, q 0, p q 1)
2.2 离散型随机变量的概率分布
![2.2 离散型随机变量的概率分布](https://img.taocdn.com/s3/m/6d9d171de418964bcf84b9d528ea81c758f52e9e.png)
xk S
xk S
概率统计(ZYH)
离散型随机变量的概率分布完全由 分布律 反映:
概率统计(ZYH)
例1 袋中有2个白球和3个黑球,每次从袋中任 取1个球,直至取得白球为止,若每次取出的黑球 不再放回去,求取球次数X 的分布律.
解 因为每次取出的黑球不再放回去,所以X 的所有可能取值是1, 2, 3, 4.故由古典概型易知
例6 已知每枚地对空导弹击中来犯敌机的概率为 96﹪,问至少需要发射多少枚导弹才能保证有99.9﹪ 的把握击中敌机?
解 将导弹的每次发射看成一次 试验, 设共发射n次, 击中的次数为X, 则X~B(n,0.96). 故击中敌机的概率为
P{X 1} 1 P{X 0} 1 0.960(1 0.96)n 1 0.04n 因此,要保证有99.9﹪的把握击中敌机, n就应满足
概率统计(ZYH)
2) 二项分布
伯努利资料
将试验E重复进行n次, 若各次试验的结果互不 影响, 即每次试验结果出现的概率都不依赖于其它 各次试验的结果, 则称这n次试验是相互独立的.
设试验E只有两个可能结果:事件A或者发生, 或者不发生. 将试验E重复独立地进行n次,则称这 一串重复独立试验为n重伯努利(Bernoulli)试验. 简称伯努利试验.
k0
故称该分布为二项分布. 记为 X ~ B(n, p).
用矩阵表示即得分布矩阵:
0 1 k n
X ~ qn
Cn1 pqn1
C
k n
pkqnk
pn
特别地: 二项分布 n 1 0-1分布
应用与背景: n重伯努利试验的概率分布就是二项分布
概率统计(ZYH)
二项分布的图形
概率统计(ZYH)
常用离散型随机变量的概率分布
![常用离散型随机变量的概率分布](https://img.taocdn.com/s3/m/233c8fdc18e8b8f67c1cfad6195f312b3169eba0.png)
常用离散型随机变量的概率分布一、离散型随机变量的概念及特点离散型随机变量是指在一定条件下,其取值只能是有限个或者可数个的随机变量。
与连续型随机变量相对应,离散型随机变量的取值只能是整数或者某些特定的值。
因此,它们具有以下几个特点:1. 取值有限或可数2. 每个取值的概率都不为03. 不连续4. 概率分布可以用概率质量函数来描述二、常用离散型随机变量的概率分布及其性质1. 伯努利分布伯努利分布是一种最简单的二项分布,它只涉及到一个试验和两种结果。
伯努利分布表示为:X~B(1,p),其中p表示事件发生的概率,1-p表示事件不发生的概率。
性质:(1)期望:E(X)=p(2)方差:Var(X)=p(1-p)2. 二项分布二项分布是多次独立重复进行相同试验中成功次数的概率分布。
二项分布表示为:X~B(n,p),其中n表示试验次数,p表示每次试验成功的概率。
性质:(1)期望:E(X)=np(2)方差:Var(X)=np(1-p)3. 泊松分布泊松分布是描述单位时间内某事件发生次数的概率分布。
泊松分布表示为:X~P(λ),其中λ表示单位时间内事件发生的平均次数。
性质:(1)期望:E(X)=λ(2)方差:Var(X)=λ4. 几何分布几何分布是描述在一系列独立重复试验中,第一次成功所需的试验次数的概率分布。
几何分布表示为:X~G(p),其中p表示每次试验成功的概率。
性质:(1)期望:E(X)=1/p(2)方差:Var(X)=(1-p)/p^25. 超几何分布超几何分布是描述从有限个物品中抽取不放回地抽取n个物品,其中有m个特定类型的物品的概率分布。
超几何分布表示为:X~H(N,M,n),其中N表示总共有多少个物品,M表示特定类型的物品有多少个,n表示抽取多少个物品。
性质:(1)期望:E(X)=nM/N(2)方差:Var(X)=nM/N*(N-M)/(N-1)三、离散型随机变量的应用离散型随机变量在实际生活中有广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X
1, 0,
取得不合格品, 取得合格品.
X0
1
pk
190 200
10 200
则随机变量 X 服从(0 —1)分布.
说明
两点分布是最简单的一种分布,任何一个只有 两种可能结果的随机现象, 比如新生婴儿是男还是 女、明天是否下雨、种籽是否发芽等, 都属于两点 分布.
2.等可能分布
如果随机变量 X 的分布律为
于以 为参数的泊松分布,即
P{ X k} n pk (1 p)nk (np)k enp ,
k
k!
(k 0,1,2,,n).
1, 若第 i 次试验成功 Xi 0, 若第 i 次试验失败,
(i 1,2,,n)
它们都服从 (0 1) 分布并且相互独立, 那末
X X1 X2 Xn 服从二项分布,参数为 (n, p).
以 n, p (np ) 为参数的二项分布,当 n 时趋
k次
nk 次
AAA A A AAA
k1 次
nk1 次
得
A
在
n
次试验中发生
k
次的方式共有
n k
种,
且两两互不相容.
因此 A在 n 次试验中发生 k 次的概率为
n pk (1 p)nk 记 q 1 p k
n pkqnk k
因此 P{X 2} 1 P{X 0} P{X 1} 1 (0.98)400 400(0.02)(0.98)399 0.9972.
4. 泊松分布
设随机变量所有可能取的值为0, 1, 2,,而取各个 值的概率为
P{ X k} ke , k 0,1,2,,
解
设 p 为每组信号灯禁止汽车通过的概率, 则有
X0
1
2
3
4
pk p (1 p) p (1 p)2 p (1 p)3 p (1 p)4
将 p 1 代入得 2
X0
1
pk 0.5 0.25
2
0.125
3
4
0.0625 0.0625
二、常见离散型随机变量的概率分布
1.两点分布
设随机变量 X 只可能取0与1两个值 , 它的分 布律为
得 X 的分布律为
X0
1
k
n
pk
qn
n pqn1 1
n pkqnk k
pn
称这样的分布为二项分布.记为 X ~ b(n, p).
二项分布 n 1 两点分布
二项分布的图形
二项分布随机数演示
例如 在相同条件下相互独立地进行 5 次射击,每 次射击时击中目标的概率为 0.6 ,则击中目标的次 数 X 服从 b (5,0.6) 的二项分布.
三、小结
离 散
两点分布
型 随 机 变
均匀分布 二项分布
量 的 分 布
泊松分布 几何分布
两点分布
n1
二项分布
n 10, p 0.1
泊松分布
2. 二项分布与 (0 1) 分布、泊松分布之间的关系.
二项分布是 (0 1) 分布的推广, 对于 n 次独
立重复伯努里试验,每次试验成功的概率为p, 设
(2) n 重伯努利试验
伯努利资料
设试验 E 只有两个可能结果: A 及 A,则称 E 为伯努利试验. 设 P( A) p (0 p 1),此时P( A) 1 p.
将 E 独立地重复地进行n 次,则称这一串重 复的独立试验为n 重伯努利试验.
实例1 抛一枚硬币观察得到正面或反面. 若将硬 币抛 n 次,就是n重伯努利试验.
第二节 离散型随机变量 的概率分布
一、离散型随机变量的分布律 二、常见离散型随机变量的概率分布 三、小结
一、离散型随机变量的分布律
定义 设离散型随机变量X 所有可能取的值为 xk (k 1,2,), X 取各个可能值的概率, 即事件 { X xk } 的概率, 为
P{ X xk } pk , k 1, 2,. 称此为离散型随机变量X 的分布律.
X
a1
a2 an
pk
1 11 nn n
其中(ai a j ), (i j) ,则称 X 服从等可能分布.
实例 抛掷骰子并记出现的点数为随机变量 X,
则有 X 1 2
pk
1 6
1 6
均匀分布随机数演示
34 11
66
56 11 66
3.二项分布
(1) 重复独立试验 将试验 E 重复进行 n 次, 若各次试验的结果互 不影响 , 即每次试验结果出现的概率都不依赖于其 它各次试验的结果, 则称这 n 次试验是相互独立的, 或称为 n 次重复独立试验.
解 设需配备 N 人. 记同一时刻发生故障的设备 台数为 X , 那么, X ~ b(300,0.01). 所需解决的问题
是确定最小的 N , 使得
P{X N } 0.99. 由泊松定理得
P{X N }
N
3k e3 ,
k0 k!
故有
N 3k e3 0.99,
k0 k!
则称 X 服从几何分布. 几何分布随机数演示
实例 设某批产品的次品率为 p,对该批产品做有 放回的抽样检查 , 直到第一次抽到一只次品为止 ( 在此之前抽到的全是正品 ), 那么所抽到的产品 数 X 是一个随机变量 , 求X 的分布律.
解 X 所取的可能值是 1, 2, 3,.
设 Ai 表示“抽到的第 i 个产品是正品”, P{ X k} P( A1A2 Ak1 Ak )
实例2 抛一颗骰子n次,观察是否 “出现 1 点”, 就是 n重伯努利试验.
(3) 二项概率公式 若 X 表示 n 重伯努利试验中事件 A 发生的次数, 则 X 所有可能取的值为
0, 1, 2, , n.
当 X k (0 k n) 时, 即 A 在 n 次试验中发生了 k 次.
AAA AAA ,
说明
(1) pk 0, k 1,2,;
(2) pk 1. k 1
离散型随机变量的分布律也可表示为 X ~ x1 x2 xn p1 p2 pn
X
x1 x2 xn
pk
p1 p2 pn
例1 设一汽车在开往目的地的道路上需经过四 组信号灯,每组信号灯以1 2的概率允许或禁止汽 车通过.以 X 表示汽车首次停下时,它已通过的信 号灯的组数(设各组信号灯的工作是相互独立的), 求 X 的分布律.
X
0
1
pk 1 p
p
则称 X 服从 (0—1) 分布或两点分布.
实例1 “抛硬币”试验,观察正、反两面情
况.
X
X (e)
0,
1,
当e 当e
正面, 反面.
随机变量 X 服从 (0—1) 分布.
其分布律为
X0 1
1
1
pk
2
2
实例2 200件产品中,有190件合格品,10件不合格 品,现从中随机抽取一件,那末,若规定
P( A1) P( A2 ) P( Ak1) P( Ak )
(1 p)(1 p) (1 p) p qk1 p.
( k 1)
所以 X 服从几何分布.
(k 1,2,)
说明 几何分布可作为描述某个试验 “首次成功” 的概率模型.
k!
其中 0是常数.则称 X 服从参数为 的泊松分 布,记为 X ~ π( ).
泊松资料
泊松分布的图形
泊松分布随机数演示
上面我们提到
二项分布 np ( n )泊松分布
单击图形播放/暂停 ESC键退出
合理配备维修工人问题
例5 为了保证设备正常工作, 需配备适量的维修 工人 (工人配备多了就浪费 , 配备少了又要影响生 产),现有同类型设备300台,各台工作是相互独立的, 发生故障的概率都是0.01.在通常情况下一台设备 的故障可由一个人来处理(我们也只考虑这种情况 ) ,问至少需配备多少工人 ,才能保证设备发生故障 但不能及时维修的概率小于0.01?
分析 这是不放回抽样.但由于这批元件的总数很 大, 且抽查元件的数量相对于元件的总数来说又很 小,因而此抽样可近似当作放回抽样来处理.
把检查一只元件是否为一级品看成是一次试 验, 检查20只元件相当于做20 重伯努利试验.
解 以 X 记 20 只元件中一级品的只数, 则 X ~ b(20, 0.2), 因此所求概率为
即 1 N 3k e3 3k e3 0.01,
k0 k!
kN 1 k!
查表可求得满足此式最小的N是8. 故至少需配备8
个工人,才能保证设备发生故障但不能及时维修的 概率小于0.01.
5. 几何分布
若随机变量 X 的分布律为
X
1
2
k
,
p
q
1,
pk p qp qk1 p
P{ X k} 20(0.2)k (0.8)20k , k 0,1,,20. k
P{ X 0} 0.012 P{ X 4} 0.218 P{ X 8} 0.022 P{ X 1} 0.058 P{ X 5} 0.175 P{ X 9} 0.007 P{ X 2} 0.137 P{ X 6} 0.109 P{ X 10} 0.002 P{ X 3} 0.205 P{ X 7} 0.055
P{ X k} 0.001, 当 k 11时
图示概率分布