无刷电动机和无位置传感器的电动机分解
反电动势法无位置传感器无刷直流电动机控制原理
![反电动势法无位置传感器无刷直流电动机控制原理](https://img.taocdn.com/s3/m/849ea342a200a6c30c22590102020740bf1ecd04.png)
反电动势法无位置传感器无刷直流电动机控制原理1. 引言大家好,今天咱们来聊聊一个有趣又复杂的话题,那就是无刷直流电动机的控制原理。
听起来可能有点深奥,但别担心,我会尽量把它讲得简单易懂。
你知道吗,这种电动机在生活中可是随处可见,比如咱们的电动车、风扇,还有玩具车,真是名副其实的“万金油”啊!而说到控制这些电动机,反电动势法可谓是个绝妙的选择。
好,我们不啰嗦,赶紧进入正题吧!2. 无刷直流电动机的基础知识2.1 什么是无刷直流电动机?首先,得给大家科普一下,什么是无刷直流电动机。
顾名思义,这种电动机没有传统的刷子。
传统电动机就像一位大厨,得靠刷子来翻炒食材,而无刷电动机就像一台现代化的烤箱,省心又省力。
它的工作原理是通过电磁场的变化来驱动转子运动,这样一来,就能减少摩擦,降低能耗,噪音也小,真是个“安静”的家伙!2.2 反电动势是什么?接下来,我们聊聊反电动势。
这个名字听起来很吓人,其实它就像是一位“调皮的小鬼”,在电动机工作时,会逆着电流的方向产生一种电压。
这种反电动势就像是电动机在努力工作时,给自己制造的一种保护机制。
就好比一个人努力跑步时,突然感到累了,身体会自然而然地减速,反电动势就是这种“减速”效果的体现。
3. 反电动势法的控制原理3.1 如何实现控制?那么,反电动势法到底是怎么控制电动机的呢?其实,这个过程简单得令人惊讶。
控制器会实时监测电动机的反电动势,通过这个信号,判断电动机的转速和位置。
就像一个教练在旁边观察运动员的表现,根据运动员的状态调整训练方案。
这样一来,电动机就能在没有位置传感器的情况下,精准地控制转速,真是一举两得。
3.2 优势与挑战使用反电动势法的好处可多了,首先,省去了位置传感器这个“累赘”,降低了系统的复杂性,成本也随之降低。
其次,由于没有刷子,电动机的寿命大大延长,维护起来也更方便。
不过,挑战也是有的。
比如,启动时电动机的反电动势比较小,控制器可能一时之间“抓瞎”,这时候就需要一些聪明的控制算法来帮忙。
无刷直流电机的组成及工作原理
![无刷直流电机的组成及工作原理](https://img.taocdn.com/s3/m/23fa8a55c281e53a5802fff1.png)
无刷直流电机的组成及工作原理2.1 引言直流无刷电动机一般由电子换相电路、转子位置检测电路和电动机本体三部分组成,电子换相电路一般由控制部分和驱动部分组成,而对转子位置的检测一般用位置传感器来完成。
工作时,控制器根据位置传感器测得的电机转子位置有序的触发驱动电路中的各个功率管,进行有序换流,以驱动直流电动机。
下文从无刷直流电动机的三个部分对其发展进行分析。
2.2 无刷直流电机的组成2.2.1 电动机本体无刷直流电动机在电磁结构上和有刷直流电动机基本一样,但它的电枢绕组放在定子上,转子采用的重量、简化了结构、提高了性能,使其可*性得以提高。
无刷电动机的发展与永磁材料的发展是分不开的,磁性材料的发展过程基本上经历了以下几个发展阶段:铝镍钴,铁氧体磁性材料,钕铁硼(NdFeB)。
钕铁硼有高磁能积,它的出现引起了磁性材料的一场革命。
第三代钕铁硼永磁材料的应用,进一步减少了电机的用铜量,促使无刷电机向高效率、小型化、节能的方向发展。
目前,为提高电动机的功率密度,出现了横向磁场永磁电机,其定子齿槽与电枢线圈在空间位置上相互垂直,电机中的主磁通沿电机轴向流通,这种结构提高了气隙磁密,能够提供比传统电机大得多的输出转矩。
该类型电机正处于研究开发阶段。
2.2.2 电子换相电路控制电路:无刷直流电动机通过控制驱动电路中的功率开关器件,来控制电机的转速、转向、转矩以及保护电机,包括过流、过压、过热等保护。
控制电路最初采用模拟电路,控制比较简单。
如果将电路数字化,许多硬件工作可以直接由软件完成,可以减少硬件电路,提高其可靠性,同时可以提高控制电路抗干扰的能力,因而控制电路由模拟电路发展到数字电路。
驱动电路:驱动电路输出电功率,驱动电动机的电枢绕组,并受控于控制电路。
驱动电路由大功率开关器件组成。
正是由于晶闸管的出现,直流电动机才从有刷实现到无刷的飞跃。
但由于晶闸管是只具备控制接通,而无自关断能力的半控性开关器件,其开关频率较低,不能满足无刷直流电动机性能的进一步提高。
无位置传感器无刷直流电动机正反转控制分析
![无位置传感器无刷直流电动机正反转控制分析](https://img.taocdn.com/s3/m/81274a0aa6c30c2259019e43.png)
无位置传感器无刷 直流电动机正反转控制分析
解 恩
刘 景 林 侯 宏 胜
中圈分类 号 : M31 T 6
文献标识码 : A
文 章 编 号 :10 —8 8 2 0 )30 2 —3 0 16 4 (0 6 0— 0 50
无 位 置传 感 器 无刷 直 流 电动 机 正 反 转 控 制分 析
r u d y a a y i g a d s u y n h s e a i n o t t r ma n t me ie f r e a d r t ro e o r s ls o n l n l zn n t d i g p a e r l t fs a o g e o tv o c n o o n fb u h e s DC t r o mo o
辑编 排 的合 理性 是 电机 能否 正常 运行 的关 键 。
式 中 , 为反 电势 常数 ; K 0为转 子 磁势 相 对 于 3点钟
方 向 的顺 时 针 夹 角 。
A
1 无 位 置传 感 器 位 置 信 号
文 中无 位 置 传 感 器 电机 的位 置 信 号 由反 电势
( 电势 ) 零检 测 电路 实现 , 整形后 为方 波信 号 。 相 过 经
s n o ls e s re s BLDCM . n x l i st e dfe e c s b t e DCM n e s re s B a d e p a n h if r n e e we n BL a d s n o l s LDCM . KEY ORDS:B W LDCM ; gc l y u ; o i v n e a ie r t to o to ; a n t me i ef r c; o t i n s n o Lo i a o t P st e a d n g tv o a in c n r l M g e o t o e P s i o e s r i v t
图解电动车电机拆卸换霍尔全解
![图解电动车电机拆卸换霍尔全解](https://img.taocdn.com/s3/m/e8897ec06f1aff00bed51eb3.png)
图解电动车电机拆卸换霍尔无刷电机结构示意图:1.将电机引出线的那一面螺丝全部拆下,找一块木板备用。
电机盖最好做好盖和钢圈对应的原位置记号,不然装上和原位置不对应,有的电机会扫膛的。
2.没拆螺丝那面向下,往木板上用力一敲,电机就脱离出来了。
定子有磁性,用力轻的话,会被吸回去。
3.将盖拉出,方便换霍尔。
转子线圈最好用软的东西垫着,如泡沫,布。
不要把线圈上的铜线擦破皮了。
4.用刀片将霍尔挖出并刮净槽中的胶质。
涂入少量的AB胶,装入霍尔焊接。
霍尔有字的为面,面向上,从左至右,1脚是正极,2脚是负极,3脚是信号输出。
3个正极和3个负极各自并联,分别接红线和黑线,3根信号线分别接绿、蓝、黄线。
通常三个有字的面朝上是60度角,中间那个面向下是120度角。
有些电机则相反,具体可用修车宝检测角度。
5.检测电机霍尔好坏:将电机放在两凳上,用扳手固定轴心。
接上霍尔插头,打开修车宝电源开关。
稍微转一下电机即停,然后再转再停,如此循环,可看到第三行霍尔指示灯有序亮灭。
如果一个或几个常亮或常灭,即可判断霍尔损坏。
电机霍尔角度检测:灯亮代表1,灯灭代表0。
60度电机指示灯状态:100、110、111、011、001、000;120度电机:100、110、010、011、001、101。
从指示灯的亮灭情况可看到60度电机和120度电机的区别,就是60度电机有111和000两种状态,而120度电机有010和101。
因此,如果出现三个灯同时亮、同时灭的,这个电机就有可能是60度,否则为120度。
如果霍尔接错,也可能出现指示灯错乱而无法判断角度的情况,参考这个帖子:电动车换霍尔后用修车宝测不出电机相位角度是怎么回事?/bbs/thread-327168-1-1.html常用120度角和60度角电机接线图:6.转子上的磁铁记得用酒精擦拭干净。
外转子磁铁:定子:定子上的3个霍尔元件:滚珠轴承:电动车自行车电机的基本结构及维修2016-01-29 电动车售后服务平台电动车自行车电机的基本结构一、电机的命名电动车根据其使用环境与使用频率的不同,所装配的电机形式也不同。
(完整版)无刷直流电动机无传感器控制方法
![(完整版)无刷直流电动机无传感器控制方法](https://img.taocdn.com/s3/m/ebb135aa59eef8c75ebfb38d.png)
无刷直流电动机无传感器低成本控制方法关键词:无刷直流电动机无位置传感器控制可编程逻辑器件1引言无刷直流电机的无传感器控制是近年来电机驱动领域关注的一项技术。
无位置传感器控制的关键在于获得可靠的转子位置信号,即从软、硬件两个方面间接获得可靠的转子位置信号来代替传统的位置传感器[1~3]。
采用无传感器控制技术的无刷电机具有结构简单、体积小、可靠性高和可维护性强等优点,使其在多个领域内得到了充分的利用[4]。
目前对于无传感器无刷电机的控制多采用单纯依靠DSP软件控制的方法[5],但是由于控制算法计算量大,执行速度较慢,且DSP成本较高,不利于以后向市场推广。
同时也出现了应用于无传感器BLDCM控制的一些专用的集成电路[6],但由于这些芯片可扩展性和通用性较低,而且价格昂贵,只适用于低压、小功率领域。
为了扩展无传感器BLDCM应用领域,降低其控制系统的成本,扩充控制系统的功能,增加控制系统的灵活性,本文以MCU+PLD方式组成控制系统的核心,利用PLD数字逻辑功能,分担MCU 的逻辑运算压力,使MCU和PLD的功能都得到了最大程度的发挥。
对于无位置传感器BLDCM控制系统,本文着重分析了换相控制策略和闭环调速,最后通过仿真和实验,验证了控制系统的合理性和可行性。
2系统的总体硬件设计本文中所设计系统是以8位PIC单片机和PLD构成的硬件平台,硬件结构框图如图1所示。
功率逆变电路采用三相全桥逆变结构,电机定子绕组为Y接法,电机工作模式为三相6状态方式。
在本文无传感器控制方式中采用反电动势过零位置检测方法,位置检测电路根据电机端电压获取3路位置信号,将信号送入PIC单片机进行软件移相后得到3路换相信号,由可编程逻辑器件进行逻辑解码后输出6路驱动开关管的前极信号,通过驱动芯片IR2233产生驱动信号以控制各开关管的导通与关断。
该系统采用速度单闭环方式,通过改变PWM的占空比以达到调速的目的。
本文中选用Microchip 公司的单片机PIC16F874作为控制核心,它内部有8K的FLASH 程序存储器,368字节的数据存储器(RAM),256字节的EEPROM数据存储器,14个中断源,8级深度的硬件堆栈,3个定时/计数器,两个捕捉/比较/PWM (CCP)模块,10位多通道A/D转换器等外围电路和硬件资源⑹。
无刷直流电动机的基本结构
![无刷直流电动机的基本结构](https://img.taocdn.com/s3/m/6caba3498f9951e79b89680203d8ce2f01666546.png)
图10-4 定子大小齿结构
定子铁心中放置对称的多相(三相、四相或五相)电 枢绕组,对称多相电枢绕组接成星形或封闭形(角形), 各相绕组分别与电子开关线路中的相应功率开关管相连。 当电动机经功率开关电路接上电源后,电流流入绕组,产 生磁场,该磁场与转子磁场相互作用而产生电磁转矩,电 动机带动负载旋转。电动机转动起来后,便在绕组中产生 反电动势,吸收一定的电功率并通过转子输出一定的机械 功率,从而将电能转换为机械能。要求绕组能流过一定的 电流,产生足够的磁场并得到足够的转矩。
图10-3 无刷直流电动机内转子结构型式 (a)面贴式;(b)内嵌式;(c)整体粘结式
定子是电机本体的静止部分,称为电枢,主要由导磁
定子铁心用硅钢片叠成以减少铁心损耗,同时为减少 涡流损耗,在硅钢片表面涂绝缘漆,将硅钢片冲成带有齿 槽的冲片,槽数根据绕组的相数和极数来定。常用的定子 铁心结构有两种,一种为分数槽(每极每相槽数为分数)集中 绕组结构,其类似于传统直流电机定子磁极的大齿(凸极) 结构,凸极上绕有集中绕组,有时在大齿表面开有多个小 齿以减小齿槽转矩,定子大、小齿结构如图10-4所示;另 一种与普通的同步电动机或感应电动机类似,在叠装好的 铁心槽内嵌放跨接式的集中或分布绕组,其线圈可以是整 距也可以是短距,为减少齿槽转矩和噪音,定子铁心有时 采用斜槽。
2 转子磁场相对于定子绕组位置的检测是无刷直流电动
机运行的关键,对这一位置检测的直接方法就是采用位置 传感器,将转子磁极的位置信号转换成电信号。 正余弦旋转变压器或者编码器也可用作位置传感器,但成 本较高,仅用在精密控制场合。此外,还有利用容易检测 的电量信号来间接判断转子磁极位置的方案,其中最具代 表性的是电动机定子绕组的反电动势过零检测法或者称为 端电压比较法(详见10.6节)
图文讲解无刷直流电机的工作原理
![图文讲解无刷直流电机的工作原理](https://img.taocdn.com/s3/m/3405277caf45b307e87197cf.png)
图文讲解无刷直流电机的工作原理电动无刷直流电机由电动机主体和驱动器组成导读:,是一种典型的机电一体化产品。
同三相异步电动机十分相似。
它的应用非常广泛,,机的定子绕组多做成三相对称星形接法在很多机电一体化设备上都有它的身影。
什么是无刷电机?无刷直流电机由电动机主体和驱动器组成,是一种典型的机电一体化产品。
由于无刷所以不会像变频调速下重载启动的同步电机那样在转子上另直流电动机是以自控式运行的,加启动绕组,也不会在负载突变时产生振荡和失步。
中小容量的无刷直流电动机的永磁体,稀土永磁无刷电动机的体积比材料。
因此,现在多采用高磁能级的稀土钕铁硼(Nd-Fe-B)同容量三相异步电动机缩小了一个机座号。
. . .无刷直流电动机是采用半导体开关器件来实现电子换向的,即用电子开关器件代替传无换向火花、机械噪声低等优点,广泛应用于统的接触式换向器和电刷。
它具有可靠性高、高档录音座、录像机、电子仪器及自动化办公设备中。
无刷直流电动机由永磁体转子、多极绕组定子、位置传感器等组成。
位置传感按转子(即检测转子磁极相对定子绕组的位位置的变化,沿着一定次序对定子绕组的电流进行换流按并在确定的位置处产生位置传感信号,经信号转换电路处理后去控制功率开关电路,置,定子绕组的工作电压由位置传感器输出控制的电子开。
一定的逻辑关系进行绕组电流切换)关电路提供。
位置传感器有磁敏式、光电式和电磁式三种类型。
采用磁敏式位置传感器的无刷直流电动机,其磁敏传感器件(例如霍尔元件、磁敏二极管、磁敏诂极管、磁敏电阻器或专用集成电路等)装在定子组件上,用来检测永磁体、转子旋转时产生的磁场变化。
采用光电式位置传感器的无刷直流电动机,在定子组件上按一定位置配置了光电传感器件,转子上装有遮光板,光源为发光二极管或小灯泡。
转子旋转时,由于遮光板的作用,定子上的光敏元器件将会按一定频率间歇间生脉冲信号。
(例是在定子组件上安装有电磁传感器部件采用电磁式位置传感器的无刷直流电动机,谐振电路等),当永磁体转子位置发生变化时,电磁效应将如耦合变压器、接近开关、LC 使电磁传感器产生高频调制信号(其幅值随转子位置而变化)。
无位置传感器直流无刷电机控制的研究
![无位置传感器直流无刷电机控制的研究](https://img.taocdn.com/s3/m/2e2567270066f5335b812100.png)
护程 序 ,旁路 电阻 R 7主要 用来 对 电路 电流 进行 采
作吉简介:庄乾成 (9 7 17 一) ,男,讲 师,硕士研究生 ,研究方向为智能仪器与测控技术 。 [ 8 第3 卷 91 3 第8 期 2 1— ( ) 01 8下
l
匐 化
图 2 无刷 直 流 电机 驱 动 电路 示 意 图
个 周期 转动 。
B
1 无刷直流 电动机 工作原理
无 刷 直 流 电动 机 控 制 分 为 全 桥 式 和 半 桥 式 , 而按 电机 绕 组 结 构 分星 型 和三 角形 ,全桥 星型 接 法 的 电动 机 有 转 矩 脉 动 小 ,输 出转 矩 大 特 点 , 因 此 本 设 计 采 用 三 相 全 桥 星 型 电 机 ,如 图 l所 示 ,
为 50 0 mA,具 有 电流 放 大 和过 电流 保 护 功 能 ,同
管 有 6种 触 发 状 态 ,每 次 只 有 两 只 管 子 导通 ,每
隔 1 / 期 (0 6周 6 。)电角度 换 向一 次 ,每 次换 向一
个 功 率 管 ,每 一 个 功 率 管 导 通 10 电 角度 ,所 2。
样 ,阻值 为 4 Q, 转 化为 电压 信 号后 需 经过 放大 8 其
一
无 刷 直 流 电 动机 通 过 位 置 检 测 电 路 检 测无 刷 直 流
图 1 三 相 பைடு நூலகம் 型 全桥 驱动 电路 模 型
电动 机端 电 压 ,经 微 处 理 器 运 算 后得 到 电机 转 子 的 位 置 信 号 ,再 由驱 动 电 路 按 转子 位 置 信 号 轮 流 导 通 功 率逆 变桥 的六 个 功 率 管 ,以实 现 电机 三 相 绕 组 的通 电 ,三 相 桥 式 星 型 结构 的无 刷 电机 任 意 时 刻 两 相 绕 组 导通 ,第 三 相 处 于 悬 空 状 态 ,功 率
(完整版)三相无刷直流电机系统结构及工作原理
![(完整版)三相无刷直流电机系统结构及工作原理](https://img.taocdn.com/s3/m/e600f9dca0c7aa00b52acfc789eb172ded6399c2.png)
(完整版)三相⽆刷直流电机系统结构及⼯作原理三相⽆刷直流电机系统结构及⼯作原理2.1电机的分类电机按⼯作电源种类可分为:1.直流电机:(1)有刷直流电机:①永磁直流电机:·稀⼟永磁直流电动机;·铁氧体永磁直流电动机;·铝镍钴永磁直流电动机;②电磁直流电机:·串励直流电动机;·并励直流电动机;·他励直流电动机;·复励直流电动机;(2)⽆刷直流电机:稀⼟永磁⽆刷直流电机;2.交流电机:(1)单相电动机;(2)三相电动机。
2.2⽆刷直流电机特点·电压种类多:直流供电交流⾼低电压均不受限制。
·容量范围⼤:标准品可达400Kw更⼤容量可以订制。
·低频转矩⼤:低速可以达到理论转矩输出启动转矩可以达到两倍或更⾼。
·⾼精度运转:不超过1 rpm.(不受电压变动或负载变动影响)。
·⾼效率:所有调速装置中效率最⾼⽐传统直流电机⾼出5~30%。
·调速范围:简易型/通⽤型(1:10)⾼精度型(1:100)伺服型。
·过载容量⾼:负载转矩变动在200%以内输出转速不变。
·体积弹性⼤:实际⽐异步电机尺⼨⼩可以做成各种形状。
·可设计成外转⼦电机(定⼦旋转)。
·转速弹性⼤:可以⼏⼗转到⼗万转。
·制动特性良好可以选⽤四象限运转。
·可设计成全密闭型IP-54IP-65防爆型等均可。
·允许⾼频度快速启动电机不发烫。
·通⽤型产品安装尺⼨与⼀般异步电机相同易于技术改造。
2.3⽆刷直流电机的组成直流⽆刷电动机的结构如图2.1所⽰。
它主要由电动机本体、位置传感器和电⼦开关线路三部分组成。
电动机本体在结构上与永磁同步电动机相似,但没有笼型绕组和其他起动装置。
其定⼦绕组⼀般制成多相(三相、四相、⽆相不等),转⼦由永久磁钢按⼀定极对数(2p=2,4,…)组成。
无位置传感器无刷直流电机转子位置检测
![无位置传感器无刷直流电机转子位置检测](https://img.taocdn.com/s3/m/ad28c628f8c75fbfc77db2fe.png)
无位置传感器无刷直流电机转子位置检测传统的获取无刷直流电机转子位置信息的方法是采用电子式、机电式、光电式等位置传感器直接测量,如霍尔效应器件(HED),光学编码器,旋转变压器等位置传感器。
然而,这些位置传感器有的分辨率低或运行特性不好,有的对环境条件敏感,如震动、潮湿和温度变化等都会使性能下降,使得整个传动系统的可靠性难以得到保证。
传感器还大大增加了电气连接线数目,给抗干扰设计带来一定困难。
略去无刷电动机的位置传感器而用其他方法检测转子的位置,是一项具有实际意义的工作,能进一步扩大无刷直流电动机的应用领域和生产规模。
无位置传感器无刷直流电机,顾名思义,就是省去了无刷直流电机中的转子位置传感器。
虽然,无位置传感器无刷直流电机不需要直接安装转子位置传感器,但在电机运转过程中,控制电机换相的转子位置信号还是需要的,因此,无位置传感器无刷直流电机控制技术的关键是架构一转子位置信号检测电路,通过软硬件间接获得可靠的转子位置信号。
就无刷直流电动机而言,目前国内外对无位置传感器无刷直流电动机做了不少的研究,提出了不少转子位置检测方法,按其原理分为以下几种:(1)利用反电势检测转子位置;(2)利用绕组电感检测转子位置;(3)利用瞬时电压的方程检测转子位置;(4)利用绕组端电压检测转子位置;(5)利用相电流检测转子位置;下面对几种典型无位置检测的方法进行比较1.1利用电机反电势信号控制电机的换向有三种检测电机反电势的方法:零交叉法、锁相环法和反电势积分法:a)零交叉法:当检测到未导通项绕组的反电势过零时,触发定时器,在定时时间结束时,逆变器实现下一个相序的换向。
该方法简单,价格便宜。
缺点是静止或低速时反电势信号为零或很小,难以准确检测绕组的反电势,因而无法得到有效的转子位置信号,系统低速性能比较差;另外,为消除干扰信号,需要对反电势信号进行深度滤波,这样造成与电机转速有关的信号相移,为了保证正确的换相需要对此相移进行补偿。
无刷电机结构图及里面的霍尔信号工作原理
![无刷电机结构图及里面的霍尔信号工作原理](https://img.taocdn.com/s3/m/5610b86184868762cbaed556.png)
无刷电机结构图及里面的霍尔信号工作原理霍耳的红线一般接5-12v直流电。
推荐5-7v。
霍耳的信号线传递电机里面磁钢相对于线圈的位置,根据三个霍耳的信号控制器能知道此时应该如何给电机的线圈供电(不同的霍耳信号,应该给电机线圈供相对应方向的电流),就是说霍耳状态不一样,线圈的电流方向不一样。
霍耳信号传递给控制器,控制器通过粗线(不是霍耳线)给电机线圈供电,电机旋转,磁钢与线圈(准确的说是缠在定子上的线圈,其实霍耳一般安装在定子上)发生转动,霍耳感应出新的位置信号,控制器粗线又给电机线圈重新改变电流方向供电,电机继续旋转(线圈和磁钢的位置发生变化时,线圈必须对应的改变电流方向,这样电机才能继续向一个方向运动,不然电机就会在某一个位置左右摆动,而不是连续旋转),这就是电子换相。
电动车用无刷直流电机工作原理无刷直流电机因为具有直流有刷电机的特性,同时也是频率变化的装置,所以又名直流变频,国际通用名词为bldc.无刷直流电机的运转效率,低速转矩,转速精度等都比任何控制技术的变频器还要好,所以值得业界关注.本产品已经生产超过55kw,可设计到400kw,可以解决产业界节电与高性能驱动的需求。
1无刷直流电动机简介无刷直流电动机的学名叫“无换向器电机”或“无整流子电机”,是一种新型的无级变速电机,它由一台同步电机和一组逆变桥所组成,如图1所示。
它具有直流电机那样良好的调速特性,但是由於没有换向器,因而可做成无接触式,具有结构简单,制造方便,不需要经常性维护等优点,是一种现想的变速电机。
在工作原理上有二种不同的工作方式:(1)直流无刷电机:又称“无换向器电机交一直一交系统”或“直交系统”,如图1所示。
是将三相交流电源整流后变成直流,再由逆变器转换成频率可调的交流电,但是,注意此处逆变器是工作在直流斩波方式。
(2)交流无刷电动机:它是利用交-交变频器向同步机供给交流电。
(插图1)无刷直流电动机brushlessdirectcurrentmotor,bldc,采用方波自控式永磁同步电机,以霍尔传感器取代碳刷换向器,以钕铁硼作为转子的永磁材料;产品性能超越传统直流电机的所有优点,同时又解决了直流电机碳刷滑环的缺点,数字式控制,是当今最理想的调速电机(参考下列美国能源部针对各种不同调速电机效率比较图).本产品具有高效率,高转矩,高精度的三高特点;同时具有体积小,重量轻,可作成各种体积形状,是当今最高效率的调速电机,与传统直流有刷电机比较,或与交流变频调速比较均有更好的性能;在牵引电机电瓶车ev行业,取代传统直流有刷电机时除可以达到更高效率,更高激活转矩等特性外,由于采用方波驱动,让铅酸蓄电池有时间修补电极板,可以延长蓄电池的寿命,提高约1.3倍的电池容量,综合效率约可提高一倍左右的电池容量,大大的改善了电瓶车的性能.无刷直流电动机在先进国家已大量应用于军事、信息业(it)、办公设备(oa)、家电业(ha)、diy手动工具、伺服系统、电动汽车、电瓶车、磁旋浮列车等;经过本公司十多年的研究开发,目前生产容量已经达75kw,设计容量可达315kw,可以满足产业自动化及流体机械、空调机械的节电驱动应用.无刷直流电动机具有上述的三高特性,非常适合使用在24小时连续运转的产业机械及空调冷冻主机、风机水泵、空气压缩机负载;低速高转矩及高频繁正反转不发热的特性,更适合应用于机床工作母机及牵引电机的驱动;其稳速运转精度比直流有刷电机更高,比矢量控制或直接转矩控制速度闭环的变频驱动还要高,性能价格比更好,是现代化调速驱动的最佳选择。
无刷直流电机的无位置传感器控制
![无刷直流电机的无位置传感器控制](https://img.taocdn.com/s3/m/257d5011f78a6529647d53a5.png)
无位置传感器控制技术是无刷直流电机研究的热点之一,国内外相关研究已经取得阶段性成果。
在无刷直流电机工作过程中,各相绕组轮流交替导通,绕组表现为断续通电。
在绕组不通电时,由于绕组线圈的蓄能释放,会产生感应电动势,该感应电动势的波形在绕组两端有可能被检测出来。
利用感应电动势的一些特点,可有取代转子上的位置传感器功能,来得到需要的换相信息。
由此,就出现了无位置传感器的无刷直流电动机。
尽管无位置传感器控制方式使得转子位置检测的精确度有所降低,但由于取消了位置传感器,电机的结构更加简单,安装更加方便,成本降低,可靠性进一步提高,在对体积和可靠性有要求的领域以及不适合安装位置传感器的场合,无位置传感器无刷直流电机应用广泛。
无位置传感器控制方式下的无刷直流电机具有可靠性高、抗干扰能力强等优点,同时在一定程度上克服了位置传感器安装不准确引起的换相转矩波动。
无位置传感器技术是从控制的硬件和软件两方面着手,以增加控制的复杂性换取电机结构复杂性的降低。
以采用120o电角度两两导通换相方式的三相桥式Y接无刷直流电机为例,讨论基于现代控制理论和智能算法的无刷直流电机无位置传感器控制方法。
转子位置间接检测法目前无刷直流电机中主要采用电磁式、光电式、磁敏式等多种形式的位置传感器,但位置传感器的存在限制了无刷直流电机在某些特定场合的应用,主要体现在:1、位置传感器可使电机系统的体积增大;2、位置传感器使电机与控制系统之间导线增多,使系统易受外界干扰影响;3、位置传感器在高温、高压和湿度较大等恶劣工况下运行时灵敏度变差,系统运行可靠性降低4、位置传感器对安装精度要求较高,机械安装偏差引起的换相不准确直接影响电机的运行性能。
无位置传感器控制技术越来越受到重视,并得到了迅速发展。
依据检测原理的不同,无刷直流电机无位置传感器控制方法主要包括反电势法、磁链法、电感法及人工智能法等。
反电势法反电势法(感应电动势过零点检测法)目前是技术最成熟、应用最广泛的一种位置检测方法。
永磁直流无刷电动机的结构详解
![永磁直流无刷电动机的结构详解](https://img.taocdn.com/s3/m/a11ab9ff84254b35eefd3446.png)
永磁直流无刷电动机的结构详解永磁无刷电动机可以看作是一台用电子换相装置取代机械换向的直流电动机,如图3 -16所示,永磁直流无刷电动机主要由永磁电动机本体、转子位置传感器和电子换向电路组成。
无论是结构或控制方式,永磁直流无刷电动机与传统的直流电动轿车电机都有很多相似之处:用装有永磁体的转子取代有刷直流电动机的定子磁极;用具有多相绕组的定子取代电枢;用由固态逆变器和轴位置检测器组成的电子换向器取代机械换向器和电刷。
1.电动机本体电动机本体和永磁同步电动机(PMSM)相似,转子采用永久磁铁,目前多使用稀土永磁材料,但没有笼式绕组和其他启动装置。
其定子绕组采用交流绕组形式,一般制成多相(三相、四相或五相),转子由永久磁钢按一定极对数(2P=2,4,6)组成。
设计中要求在定子绕组中获得顶宽为1 200的梯形波,因此绕组形式往往采用整距、集中或接近整距、集中的形式,以便保留磁密中的其他谐波。
有刷直流电动机是依靠机械换向器将直流电流转换为近似梯形波的交流电流供给电枢绕组,而无刷纯电动汽车直流电动机是依靠电子换向器将方波电流(由于绕组电感的作用?实际上也是梯形波)按一定的相序逐次输入到定子的各相电枢绕组中。
当无刷直流电动机定子绕组的某相通电时,该相电流产生的磁场与转子永久磁铁所产生的磁场相互作用而产生转矩,驱动转子旋转。
位置传感器将转子磁铁位置变换成电信号去控制电子开关线路,从而使定子的各相绕组按一定的次序导通,使定子的相电流随转子位置的变化而按正确的次序换相。
这样才能让定子磁场随转子的旋转不断地变化,产生与转子转速同步的旋转磁场,并使定子磁场与转子的磁场始终保持900左右的空间角,用最大转矩推动转子旋转。
由于电子升关线路的导通次序与转子转角同步,起到机械换向器的换向作用,保证了电动机在运行过程中定子与转子的磁场始终保持基本垂直,以提高运行效率。
所以无刷直流电动机就其基本结构而言,可以认为是一台由电子开关换相电路、永磁式同步电动汽车电机以及位置传。
小型无刷直流电动机无位置传感器控制的设计
![小型无刷直流电动机无位置传感器控制的设计](https://img.taocdn.com/s3/m/8700d5627e21af45b307a857.png)
j 。 oi n sn rs cn of x l l d u p。 ai i npsi — es l s otlo ai o m frf a t 。 oe r r a b o p t c l i
: h a rsl s C m t t dcdi ti p prT ed s n erbuh s o r snr ue s ae. h ei t e D o ii o nh g
:
:
Ky r : DMa ll m;c—M g e os L ;ib d u bk EFo w dB C x o p p a a o Ic i
在控制无刷直流电动机时, 采用霍尔元件检测
i ier e o ; C33 n g l t dM 305 t am h
;位置信号进行控制 , 安装位置传感器后, 电机体积增
( e igJ oogU i rt, ei 00 4 C ia B in i t n esy B in 10 4 ,hn ) j a n v i jg
摘 要: 介绍一种用于人工心脏轴 流式 血泵的无 位置传
转速达到额定值时 , 电子开关切换到反电势控制方
式, 由反电势信号经过逻辑处理后控制电机运行 , 进 入闭环控制状态 , 在电机运行 中, 当出现故障时 由保 护电路进行切除 , 保护 电机正常运行 。无刷 直流 电
积分 ; 3 0 5 MC 33 中图分类号 : M3 T 3 文献标识码 : A
: Βιβλιοθήκη i 文章编号 : 0 — 08 20 )3 02 - 3 1 4 7 1(06 0 — 02 0 0
;
A sat i <c s o mn n o。 t sd bt c: k d) l e l pii c tly e b e r A n f 。 do t g 。 r s m a
无刷电机的工作原理图解
![无刷电机的工作原理图解](https://img.taocdn.com/s3/m/e028890feef9aef8941ea76e58fafab069dc4479.png)
⽆刷电机的⼯作原理图解励磁⽆刷电机结构原理不过显然模界中的⽆刷电机与这个励磁电机并不是同⼀个东西,那么我们常⽤的⽆刷电机⾥⾯究竟有些什么技术、如何解释那些专业名词、以及各种参数和设备之间究竟有什么区别和联系呢?今天就带⼤家全⾯了解⼀下模界常⽤的⽆刷电机。
⽆刷电机的基本概念根据电机的结构和⼯作原理,我们可以将电机分为有刷电机、内转⼦⽆刷电机和外转⼦⽆刷电机。
有刷电机:我们也称为直流电机或者碳刷电机,是历史最悠久的电机类型,也是⽬前数量最多的电机类型。
电机⼯作时,线圈和换向器旋转,磁钢和碳刷不转,线圈电流⽅向的交替变化是随电机转动的换相器和电刷来完成的。
这种电机具有造价相对较低、扭⼒⾼、结构简单、易维护等优点。
不过由于结构限制,所以缺点也⽐较明显:1、机械换向产⽣的⽕花引起换向器和电刷摩擦、电磁⼲扰、噪声⼤、寿命短。
2、结构复杂、可靠性差、故障多,需要经常维护。
3、由于换向器存在,限制了转⼦惯量的进⼀步下降,影响了动态性能。
所以在模界主要应⽤于速度较慢和对震动不敏感的车模、船模上⾯,航模很少采⽤有刷电机。
⽆刷电机:这是模界中除了有刷电机以外⽤的最多的⼀种电机,⽆刷直流电机不使⽤机械的电刷装置,采⽤⽅⽆刷电机波⾃控式永磁同步电机,以霍尔传感器取代碳刷换向器,以钕铁硼作为转⼦的永磁材料,性能上相较⼀般的传统直流电机有很⼤优势。
具有⾼效率、低能耗、低噪⾳、超长寿命、⾼可靠性、可伺服控制、⽆级变频调速等优点,⾄于缺点嘛……就是⽐有刷的贵、不好维护,⼴泛应⽤于航模、⾼速车模和船模。
不过,单个的⽆刷电机不是⼀套完整的动⼒系统,⽆刷基本必须通过⽆刷控制器也就是电调的控制才能实现连续不断的运转。
普通的碳刷电机旋转的是绕组,⽽⽆刷电机不论是外转⼦结构还是内转⼦结构旋转的都是磁铁。
所以任何⼀个电机都是由定⼦和转⼦共同构成的。
⽆刷电机的定⼦是产⽣旋转磁场的部分,能够⽀撑转⼦进⾏旋转,主要由硅钢⽚、漆包线、轴承、⽀撑件构成;⽽转⼦则是黏贴钕铁硼磁铁,在定⼦旋转磁场的作⽤进⾏旋转的部件,主要由转轴、磁铁、⽀持件构成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无刷电动机前节中的永磁直流电动机用永磁体取代了定子上的励磁,但是仍然需要电刷换向器结构。
电刷换向器结构是普通直流电动机的特征和标志,它使转子上的导体在经过磁场的换向点的时候自动改变电流方向,导致定子同一磁极下导体的电流方向不变,转子的磁场始终与定子的磁场垂直,从而获得最大的也是稳定的转矩,保证了直流电动机优良的控制性能。
电刷换向器结构也是普通直流电动机的先天性的弱点,人们一直在探讨利用现代电子技术,实现既能取消电刷,又能达到直流电动机优良控制性能的方案。
这些方案中最著名的就是交流电动机的矢量控制,而无刷电动机也是在这个方向上发展所取得的成果。
这个发展的特点是转予采用恒定磁场,而将普通电动机中的电枢电路从转子转移到定子上去,这种励磁和电枢位置的互换对两者之间的相对运动没有影响,但是却避免了电刷换向器结构。
如果转子由外部直流电源励磁,那么转子还需要电刷和滑环,还只能称为无换向器电机。
如果采用永磁材料制作转子,那么就可称之为无刷电动机。
虽然感应电动机和后面将介绍的步进电动机也是无刷的,然而无刷电动机则是专指这样一些特种电动机,这些电动机的设计目的是具备与有刷直流电动机类似的性能,但是却没有电刷换向器结构所强加的限制。
无刷电动机具有基本相同的本体结构,另一个重要的共同点是运行时需要通过检测转子的位置来确定驱动电源的频率,因此无刷电动机在本质上属于自控变频同步电动机。
无刷电动机因其电枢绕组驱动电流形状的不同而分为两种类型:一种是方波永磁同步电动机,其电枢驱动电流为方波(梯形波通常被称为无刷直流电动机;另一种是正弦波永磁同步电动机,其电枢驱动电流为正弦波,常称为无刷同步电动机。
)无刷直流电动机无刷直流电动机的基本原理首先回顾一下传统的有刷直流电动机。
有刷直流电动机的转子上的电枢绕组由许多单独的线圈元件组成,一个单独的线圈元件在旋转时其输出转矩的幅度有很大的变动,实际上是按正弦规律变化的,其最大值出现在与定子磁场垂直的位置,而在换向位置时的值为零。
它们不仅连接到自己的一对换向片上,而且还与其他的线圈相连,尽管电机的转矩主要由处于最大转矩位置的线圈元件提供,但是由于处于不同位置的其他线圈元件共同作用,最终产生的转矩波动很小。
如果将这种思想移植到无刷电动机的设计中去,将许多线圈元件平均分布在定子上,然后采用电子线路模拟电刷换向器结构的功能,其结果将是不仅控制电路非常复杂,而且每一个线圈元件都需要自己的单独的驱动电路。
这一点显然难以满足。
因此为了实现无刷化,必须作出适当的折衷和妥协。
图11.6为一个二极三相无刷直流电动机的结构。
无刷电动机具有少则2组、多至5组的线圈绕组,称之为相线圈或相绕组,图11.6中的三相二极无刷直流电动机的三个相绕组A1-A2、B1-B2和C1-C2分别绕在相对的两个磁极上。
三个绕组可按三线Y接法、四线Y接法和三线△接法连接。
图11.6为目前主要应用的三线Y接法。
在理想的状态下,定子和转子的两个磁场最好是保持互相垂直,这样才能产生与有刷直流电动机相近的性能。
但是无刷电动机定子相当于只有三个线圈和三个换向片的直流电动机电枢绕组,在定子的三相绕组由直流供电的条件下,这一点显然是做不到的。
无刷直流电动机中转子磁势与定子磁势之间的夹角称为转矩角。
定子磁场换相电路的设计思想是使转矩角的平均值是90°。
以二极三相无刷直流电动机为例,在转子旋转一周的过程中,定子磁场按60°的增量步进6次,并且设计换相逻辑使转矩角在120°~60°之间变化。
就是当定子磁场进入6个位置之一的时刻,转子磁场与定子磁场的初始夹角为120°,并受定子磁场的吸引朝着夹角减小的方向旋转,当夹角达到60°的时候,定子磁场又向前移动一个位置,使夹角再次增加为120°。
在转子的一个60°旋转过程中,定子磁场保持不动。
因此在无刷电动机中,定子磁场的移动有两个特点:一是这种移动是步进的而不是连续的;二是这种步进的速度不像步进电动机取决于外部的脉冲频率,而是取决于电动机本身的转速,通过对转子位置和旋转方向的检测来实现定子绕组的换相。
所以这种电动机是自同步的,没有步进电动机和同步电动机的失步问题。
对于不同的绕组接法可采用不同的驱动电路拓扑,例如四线Y接法可采用三相半桥驱动,而三线Y和三线△接法则需要采用三相全桥驱动(图11.7)。
下面以应用最广泛的三相全桥驱动的三线Y接法的无刷直流电动机为基础进行讨论。
三相桥式驱动电路在每个时刻,只有上半桥和下半桥中各一个晶体管导通,使外部直流电源接入A1、B1和C1三个接线端中的两个,使得三个绕组中的两个串联接到电源上,而第三个绕组则没有通电。
与有刷直流电动机的换向对应的操作演变为无刷直流电动机绕组切换的“换相”,其换相一共有6个节拍,每个节拍代表三相绕组的一个状态,产生定子磁场旋转60度角。
如图所示。
这6个节拍的顺序、导通的晶体管和绕组的接入极性如表11.1所示。
前3拍的定子磁场位置如图11.8所示。
如果在正向旋转状态下各拍的顺序是1-2-3-4-5-6-1的循环,那么在反转时的顺序是6-5-4-3-2-1-6的循环。
对于三相4极的无刷电机,每个相由两个绕组组成,相邻的相空间错开60度角(而2极的是错开120度),旋转磁场的每步旋转30度,12步旋转一周,所以,磁场才转速慢了一半,如图所示。
无刷直流电动机的励磁由转子提供,而气隙磁场则是由转子磁场和定子的电枢反应共同形成。
气隙磁场的波形对电枢电流、电动势和电磁转矩的影响是不言而喻的。
以往的无刷直流电动机设计都是以正弦分布的气隙磁场为基础(图11.9(a))。
近年来随着材料的发展和设计方法的改进,新型无刷直流电动机的气隙磁场为具有足够宽度的梯形分布(图11.9(b)),这两种情况下的转矩特性是不同的。
电磁转矩可以认为是定子的电枢磁势和转子磁势相互作用所产生的,如果不考虑磁路的饱和和磁势的高次谐波,电磁转矩表示为T=KFaFr,其中K为常数,Fa为定子磁势,Fr为转子磁势。
然而在气隙磁场不是均匀磁场的情况下,Fa取决于电枢电流ia,Fr取决于转矩角,这两者都不是常数。
无刷直流电动机的电枢绕组具有电阻,在切割气隙磁场时会产生反电动势,这些和普通的直流电动机类似。
对于三相桥式驱动的三线Y接法,电枢中同时导电的两相绕组形成当时的电枢回路。
如果气隙磁场为正弦分布,则回路中的总反电动势为两相绕组中反电动势的向量和,则可得到电枢的回路方程为式中U-电枢输入电压;Ra-相绕组电阻;ia-电枢电流;Ea-反电动势的幅值。
由式(11.18)可求得电枢电流由式(11.20)可绘出正弦分布气隙磁场无刷直流电动机的转矩波形如图11.10所示,可以看到转矩随转角有一定程度的脉动。
新型无刷直流电动机通过改进设计,采用如加大极靴宽度等措施使得气隙磁场分布为梯形。
结合考虑三相桥式驱动的开关顺序,可以绘出三相Y接法的无刷直流电动机各相绕组中的反电动势EA.EB和Ec,电流iA、iB和ic,转矩TA. TB和Tc的波形(见图11.11)。
从波形图我们可以注意到以下几点:(1)反电动势取决于磁场的波形,因此为相隔120°的梯形波;(2)各绕组导通时正处于梯形波磁场的平顶部分之下,得到的转矩为120°的方波;(3)理论上合成转矩丁为当时导通的两相绕组转矩的代数和,得到的电动机转矩是几乎没有波动的恒定转矩。
然而实现标准的梯形波磁场是不可能的,梯形波顶不可能完全平直;此外,电枢电流在绕组间的换向也不是可以在瞬时完成的,电流波形应该近似于梯形波,因此转矩的波动总是有的,特别是在换相的时刻会出现转矩的明显波动。
无刷直流电动机的动态特性与普通直流电动机在本质上相同,此处不再详细推导。
基于MC33033的驱动装置无刷直流电动机和普通直流电动机的重大区别是其多相电枢绕组安装在定子上,而转子则是由永磁材料制作。
电动机的运行必须有转子位置检测器和电子开关的配合来取代电刷和换向器。
这种电动机由直流供电,其外特性具有直流电动机的性能,因此仍然归属于直流电动机。
为了无刷直流电动机的正常运行,需要采用电子技术解决转子位置检测,正确的绕组驱动信号的提供,以及调速运行时驱动电压调节等功能。
在现代电子技术的支持下,上述功能已经可以集成化为专用芯片(ASIC),这样的芯片有MC33033、MC33035等。
下面结合MC33033进一步介绍无刷直流电动机驱动装置的一些细节。
MC33033是由ON Semiconductor生产的系列高性能单片直流无刷电动机控制器中的一种,具备实现一个开环的三相或四相电动机控制系统所需的全部功能,其中有转子位置编码、温度补偿的传感器电源、频率可编程的锯齿波振荡器、可访问误差放大器、脉宽调制比较器等,还配备有适合于驱动MOSFET的三个集电极开路上桥驱动和三个高电流推挽下桥驱动。
其保护功能有欠压闭锁、电流限制和过热停机等。
其应用涉及开环速度控制、开停控制和正反转控制等。
MC33033的内部功能结构与工作原理如图11.12所示,各部分功能可概述如下。
无刷直流电动机能够运行的关键是必须首先了解转子的位置,然后根据转子的位置信息来决定驱动器中的开关切换并实现电枢绕组的换相。
因此转子位置检测是无刷直流电动机设计中不可缺少的组成部分。
执行这种功能的一般是利用光学或霍尔传感器检测转子的位置的换向编码器。
目前在无刷直流电动机中应用最多的是霍尔传感器。
以三相电动机为例,三个霍尔传感器一般安装在对应定子磁极的中心位置,这三个传感器在电动机内圆上的位置则有电气相位差为60°、120°、240°和300°的4种惯例。
芯片的三个传感器输入SA,SB和Sc能直接与集电极开路的霍尔效应开关或光电耦合器接口,内部的上拉电阻可减少外部元件数。
4种惯例所产生的信号如图11. 13所示,它们都是高低电平各占180度的TTL电平信号。
对于6步电动机来说,电角度每变化60度就必须产生一个信号的变动,因此在一个周期内,三个传感器信号的电平组成6个有效的三位代码(另有2个无效代码一般不会出现)。
MC33033有一个输入引脚60°/120°用以选择传感器的相位差。
另有一个FWR/REW(Forward/Reward)输入信号选择正反转。
在这5路信号的支持下,芯片内的解码器根据6个代码就可以确定转子的位置,并向驱动电路发出正确的换相信号。
对于采用240°和300°惯例的电动机,我们可以注意到它们的输入代码序列分别与120°和60°的序列相反,可以通过灵活地利用FWR/REW信号来解决正确的换相问题。
MC33033内部有一个锯齿波振荡器,参见图11.12,电容CT由内部基准电源通过电阻RT充电,充到一定电平时即通过一个内部的晶体管放电,从而形成锯齿波。