二次函数动点问题典型例题

合集下载

二次函数动点问题

二次函数动点问题

5.如图,等腰直角三角形ABC以2m/s的速度沿直线L向 正方形移动,直到AB与CD重合。设xs时,三角形与正 方形重叠部分的面积为ym² 。 (1)写出y与x的函数关系式; (2)当x=2,3.5时,y分别是多少?
(3)当重叠部分的面积是正方形的面积的一半时, 三角形移动了多长时间?
动面问题
6.如图(1)等腰直角三角形ABC以2m/s的速度沿矩形 DEFG的GF边向右移动,直到BC与GF重合。已知 BC=GF=12m,EF=6m,设xs时,三角形与矩形重叠部分的 面积为ym² (1)参考图②,图③写出y与x之间的关系式; (2)当x1=2.5,x2=5时,y分别是多少? 7 (3)当重叠部分的面积为矩形面积的 时,三角形 18 移动了多长时间?
图(1)
图(2)
图(3)
P
B
Q
C
3.在梯形ABCD,AD∥BC,AB=BC=10cm,CD=6cm ∠c=90°,点P从A点出发沿线段AB以每秒Icm/s的速 度向终B点运动;动点Q同时从B点出发沿线段BC以每 秒2cm/s的速度向终点C运动.设运动的时间为t秒 (0<t<5). (1)求AD的长. (2)t为何值时,△PBQ为直角三角形. (3)设△PBQ的面积为y,求y与t之间的函数关系式 (4)是否存在某一时刻t,使△PБайду номын сангаасQ面积等于梯形形 ABCD面积的2/5?若存在, 求出此时的t值;若不存在, 说明理由;
A
P BP=12-2t,BQ=4t △PBQ的面积: S=1/2(12-2t) •4t B 即S=- 4t² +24t=- 4(t-3)² +36
Q
C
2.已知:如图,△ABC是边长3cm的等边三角形, 动点P、Q同时从A、B两点出发,分别沿AB、 BC方向匀速移动,它们的速度都是1cm/s,当点 P到达点B时,P、Q两点停止运动.设点P的运动 时间为t(s), (1)当t为何值时,△PBQ是直角三角形? (2)设四边形APQC的面积为y(cm2),求y与t 的关系式; (3)是否存在某一时刻t,使四边形APQC的面积 是△ABC面积的三分之二?若存在求出t的值,若 不存在说明理由 A

二次函数动点专项练习30题(有答案)

二次函数动点专项练习30题(有答案)

二次函数动点专项练习30题(有答案)1.在平面直角坐标系xOy中,二次函数y=﹣x2+x+2的图象与x轴交于点A,B(点B在点A的左侧),与y 轴交于点C.过动点H(0,m)作平行于x轴的直线l,直线l与二次函数y=﹣x2+x+2的图象相交于点D,E.(1)写出点A,点B的坐标;(2)若m>0,以DE为直径作⊙Q,当⊙Q与x轴相切时,求m的值;(3)直线l上是否存在一点F,使得△ACF是等腰直角三角形?若存在,求m的值;若不存在,请说明理由.2.如图,已知抛物线y=﹣+bx+c图象经过A(﹣1,0),B(4,0)两点.(1)求抛物线的解析式;(2)若C(m,m﹣1)是抛物线上位于第一象限内的点,D是线段AB上的一个动点(不与A、B重合),过点D 分别作DE∥BC交AC于E,DF∥AC交BC于F.①求证:四边形DECF是矩形;②连接EF,线段EF的长是否存在最小值?若存在,求出EF的最小值;若不存在,请说明理由.3.如图,抛物线y=(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.4.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由;(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出∠BDA的度数.5.如图,已知二次函数图象的顶点坐标为M(2,0),直线y=x+2与该二次函数的图象交于A、B两点,其中点A 在y轴上,P为线段AB上一动点(除A,B两端点外),过P作x轴的垂线与二次函数的图象交于点Q设线段PQ 的长为l,点P的横坐标为x.(1)求二次函数的解析式;(2)求l与x之间的函数关系式,并求出l的取值范围;(3)线段AB上是否存在一点P,使四边形PQMA为梯形?若存在,求出点P的坐标;若不存在,请说明理由.6.如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2 与x轴交于点C,直线y=﹣2x+7经过抛物线上一点B(5,m),且与直线x=2交于点E.(1)求m的值及该抛物线的函数关系式;(2)若点D是x轴上一动点,当△DCB∽△ECB时,求点D的坐标;(3)若P(x,y)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PC?若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.7.矩形OABC在平面直角坐标系中的位置如图所示,其中OA=5,AB=2,抛物线y=﹣x 2+3x的图象与BC交于D、E两点.(1)求DE的长_________;(2)M是BC上的动点,若OM⊥AM,求点M的坐标;(3)在抛物线上是否存在点Q,使以D、O、Q、M为顶点的四边形是平行四边形?若存在,求出点Q的坐标;若不存在,请说明理由.8.如图,已知抛物线与x轴交于A(﹣4,0)和B(1,0)两点,与y轴交于C(0,﹣2)点.(1)求此抛物线的解析式;(2)设G是线段BC上的动点,作GH∥AC交AB于H,连接CH,当△BGH的面积是△CGH面积的3倍时,求H点的坐标;(3)若M为抛物线上A、C两点间的一个动点,过M作y轴的平行线,交AC于N,当M点运动到什么位置时,线段MN的值最大,并求此时M点的坐标.9.如图,抛物线y=ax 2+bx+3(a≠0)的图象经过A(3,0),B(4,1)两点,且与y轴交于点C.(1)直接写出点C的坐标;(2)试求抛物线y=ax2+bx+3(a≠0)的函数关系式;(3)连接AC,点E为线段AC上的动点(不与A、C重合),经过A、E、O三点的圆交直线AB于点F.当△OEF 的面积取得最小值时,请求出点E的坐标.10.抛物线y=a(x+6)2﹣3与x轴相交于A,B两点,与y轴相交于C,D为抛物线的顶点,直线DE⊥x轴,垂足为E,AE2=3DE.(1)求这个抛物线的解析式;(2)P为直线DE上的一动点,以PC为斜边构造直角三角形,使直角顶点落在x轴上.若在x轴上的直角顶点只有一个时,求点P的坐标;(3)M为抛物线上的一动点,过M作直线MN⊥DM,交直线DE于N,当M点在抛物线的第二象限的部分上运动时,是否存在使点E三等分线段DN的情况?若存在,请求出所有符合条件的M的坐标;若不存在,请说明理由.11.如图,已知抛物线y=ax 2+bx+c经过点A(2,3),B(6,1),C(0,﹣2).(1)求此抛物线的解析式,并用配方法把解析式化为顶点式;(2)点P是抛物线对称轴上的动点,当AP⊥CP时,求点P的坐标;(3)设直线BC与x轴交于点D,点H是抛物线与x轴的一个交点,点E(t,n)是抛物线上的动点,四边形OEDC 的面积为S.当S取何值时,满足条件的点E只有一个?当S取何值时,满足条件的点E有两个?12.如图,抛物线的对称轴是直线x=1,它与x轴交于A、B两点,与y轴交于C点,点A、C的坐标分别是(﹣1,0)、(0,3)(1)求此抛物线对应的函数解析式;(2)若点P是抛物线上位于x轴上方的一个动点,求△ABP面积的最大值;(3)若过点A(﹣1,0)的直线AD与抛物线的对称轴和x轴围成的三角形的面积为6,求此直线的解析式.13.已知抛物线y=ax 2+bx+c的对称轴为直线x=2,且与x轴交于A、B两点,与y轴交于点C,其中A(1,0),C(0,﹣3).(1)求抛物线的解析式;(2)若点P在抛物线上运动(点P异于点A).①如图1.当△PBC面积与△ABC面积相等时.求点P的坐标;②如图2.当∠PCB=∠BCA时,求直线CP的解析式.14.如图,平面直角坐标系xOy中,点A的坐标为(﹣2,2),点B的坐标为(6,6),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点E.(1)求点E的坐标;(2)求抛物线的函数解析式;(3)点F为线段OB上的一个动点(不与点O、B重合),直线EF与抛物线交于M、N两点(点N在y轴右侧),连接ON、BN,当点F在线段OB上运动时,求△BON面积的最大值,并求出此时点N的坐标;(4)连接AN,当△BON面积最大时,在坐标平面内求使得△BOP与△OAN相似(点B、O、P分别与点O、A、N对应)的点P的坐标.15.如图,抛物线y=ax2+bx+(a≠0)经过A(﹣3,0)、C(5,0)两点,点B为抛物线的顶点,抛物线的对称轴与x轴交于点D.(1)求此抛物线的解析式;(2)动点P从点B出发,沿线段BD向终点D作匀速运动,速度为每秒1个单位长度,运动时间为ts,过点P作PM⊥BD交BC于点M,过点M作MN∥BD,交抛物线于点N.①当t为何值时,线段MN最长;②在点P运动的过程中,是否有某一时刻,使得以O、P、M、C为顶点的四边形为等腰梯形?若存在,求出此刻的t值;若不存在,请说明理由.参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是.16.如图,抛物线y=ax2+2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A(﹣4,0)和B.(1)求该抛物线的解析式;(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CEQ的面积最大时,求点Q 的坐标;(3)平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(﹣2,0).问是否有直线l,使△ODF是等腰三角形?若存在,请求出点F的坐标;若不存在,请说明理由.17.在平面直角坐标系xOy中,抛物线y=ax2++c与x轴交于点(﹣1,0)和点B,与y轴交于点C(0,4).(1)求抛物线的解析式;(2)若P是抛物线上一点,且△ABP的面积是,求P点的坐标;(3)若D是线段BC上的一个动点,过点D作DE⊥BC,交OC于E点.设CD的长为t,四边形DEOB的周长为l,求l与t之间的函数关系式,并写出t的取值范围.18.(2011?宝安区三模)如图,在直角坐标系中,点A(2,0),点B(0,4),AB的垂直平分线交AB于C,交x 轴于D,(1)求点C、D的坐标;(2)求过点B、C、D的抛物线的解析式;(3)点P为CD间的抛物线上一点,求当点P在何处时,以P,C,D,B为顶点的四边形的面积最大?19.(2010?菏泽)如图所示,抛物线y=ax2+bx+c经过原点O,与x轴交于另一点N,直线y=kx+4与两坐标轴分别交于A、D两点,与抛物线交于B(1,m)、C(2,2)两点.(1)求直线与抛物线的解析式;(2)若抛物线在x轴上方的部分有一动点P(x,y),设∠PON=α,求当△PON的面积最大时tanα的值;(3)若动点P保持(2)中的运动路线,问是否存在点P,使得△POA的面积等于△PON面积的?若存在,请求出点P的坐标;若不存在,请说明理由.20.已知抛物线y=ax 2+bx+c的顶点为A(3,﹣3),与x轴的一个交点为B(1,0).(1)求抛物线的解析式.(2)P是y轴上一个动点,求使P到A、B两点的距离之和最小的点P0的坐标.(3)设抛物线与x轴的另一个交点为C.在抛物线上是否存在点M,使得△MBC的面积等于以点A、P0、B、C 为顶点的四边形面积的三分之一?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.21.如图,已知抛物线y=+bx+c与y轴相交于C,与x轴相交于A、B,点A的坐标为(2,0),点C的坐标为(0,﹣1).(1)求抛物线的解析式;(2)点E是线段AC上一动点,过点E作DE⊥x轴于点D,连接DC,当△DCE的面积最大时,求点D的坐标;(3)在直线BC上是否存在一点P,使△ACP为等腰三角形?若存在,求点P的坐标;若不存在,说明理由.22.如图,已知抛物线y=ax 2+bx+c(a≠0)的顶点坐标为Q(2,﹣1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,求点P的坐标;(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.23.如图,在直角坐标系xOy中,正方形OCBA的顶点A,C分别在y轴,x轴上,点B坐标为(6,6),抛物线y=ax2+bx+c经过点A,B两点,且3a﹣b=﹣1.(1)求a,b,c的值;(2)如果动点E,F同时分别从点A,点B出发,分别沿A→B,B→C运动,速度都是每秒1个单位长度,当点E 到达终点B时,点E,F随之停止运动,设运动时间为t秒,△EBF的面积为S.①试求出S与t之间的函数关系式,并求出S的最大值;②当S取得最大值时,在抛物线上是否存在点R,使得以E,B,R,F为顶点的四边形是平行四边形?如果存在,求出点R的坐标;如果不存在,请说明理由.24.如图,抛物线经过A(4,0),B(1,0),C(0,﹣2)三点.(1)求出抛物线的解析式;(2)P是(1)中抛物线AB段上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△ACO相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.25.在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.26.如图1,在平面直角坐标系xOy中,已知A、B两点的坐标分别为(4,0)、(0,2),将△OAB绕点O逆时针旋转90°后得到△OCD,抛物线y=ax2﹣2ax+4经过点A.(1)求抛物线的函数表达式,并判断点D是否在该抛物线上;(2)如图2,若点P是抛物线对称轴上的一个动点,求使|PC﹣PD|的值最大时点P的坐标;(3)设抛物线上是否存在点E,使△CDE是以CD为直角边的直角三角形?若存在,请求出所有点E的坐标;若不存在,请说明理由.27.已知抛物线y=x2+bx+1的顶点在x轴上,且与y轴交于A点.直线y=kx+m经过A、B两点,点B的坐标为(3,4).(1)求抛物线的解析式,并判断点B是否在抛物线上;(2)如果点B在抛物线上,P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长h,点P的横坐标为x,当x为何值时,h取得最大值,求出这时的h值.28.如图,已知直线y=x+1与y轴交于点A,与x轴交于点D,抛物线y=x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).(1)求该抛物线的解析式;(2)动点P在x轴上移动,当△PAE是直角三角形时,求点P的坐标P;(3)在抛物线的对称轴上找一点M,使|AM﹣MC|的值最大,求出点M的坐标.29.阅读材料:如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:S△ABC=ah,即三角形面积等于水平宽与铅垂高乘积的一半.解答下列问题:如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求抛物线和直线AB的解析式;(2)点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB;(3)是否存在抛物线上一点P,使S△PAB=S△CAB?若存在,求出P点的坐标;若不存在,请说明理由.30.如图,抛物线与x轴交于A(x1,0),B(x2,0)两点,且x1>x2,与y轴交于点C(0,4),其中x1,x2是方程x2﹣2x﹣8=0的两个根.(1)求这条抛物线的解析式;(2)点P是线段AB上的动点,过点P作PE∥AC,交BC于点E,连接CP,当△CPE的面积最大时,求点P的坐标;(3)探究:若点Q是抛物线对称轴上的点,是否存在这样的点Q,使△QBC成为等腰三角形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.二次函数动点30题参考答案:1.解:(1)当y=0时,有,解得:x1=4,x2=﹣1,∴A、B两点的坐标分别为(4,0)和(﹣1,0).(2)∵⊙Q与x轴相切,且与交于D、E两点,∴圆心Q位于直线与抛物线对称轴的交点处,∵抛物线的对称轴为,⊙Q的半径为H点的纵坐标m(m>0),∴D、E两点的坐标分别为:(﹣m,m),(+m,m)∵E点在二次函数的图象上,∴,解得或(不合题意,舍去).(3)存在.①如图1,当∠ACF=90°,AC=FC时,过点F作FG⊥y轴于G,∴∠AOC=∠CGF=90°,∵∠ACO+∠FCG=90°,∠GFC+∠FCG=90°,∴∠ACO=∠CFG,∴△ACO≌△CFG,∴CG=AO=4,∵CO=2,∴m=OG=2+4=6;反向延长FC,使得CF=CF′,此时△ACF′亦为等腰直角三角形,易得y C﹣y F′=CG=4,∴m=CO﹣4=2﹣4=﹣2.②如图2,当∠CAF=90°,AC=AF时,过点F作FP⊥x轴于P,∵∠AOC=∠APF=90°,∠ACO+∠OAC=90°,∠FAP+∠OAC=90°,∴∠ACO=∠FAP,∴△ACO≌△∠FAP,∴FP=AO=4,∴m=FP=4;反向延长FA,使得AF=AF′,此时△ACF’亦为等腰直角三角形,易得y A﹣y F′=FP=4,∴m=0﹣4=﹣4.③如图3,当∠AFC=90°,FA=FC时,则F点一定在AC的中垂线上,此时存在两个点分别记为F,F′,分别过F,F′两点作x轴、y轴的垂线,分别交于E,G,D,H.∵∠DFC+∠CFE=∠CFE+∠EFA=90°,∴∠DFC=∠EFA,∵∠CDF=∠AEF,CF=AF,∴△CDF≌△AEF,∴CD=AE,DF=EF,∴四边形OEFD为正方形,∴OA=OE+AE=OD+AE=OC+CD+AE=OC+2CD,∴4=2+2?CD,∴CD=1,∴m=OC+CD=2+1=3.∵∠HF′C+∠CGF′=∠CF′G+∠GF′A,∴∠HF′C=∠GF′A,∵∠HF′C=∠GF′A,CF′=AF′,∴△HF′C≌△GF′A,∴HF′=GF′,CH=AG,∴四边形OHF′G为正方形,∴OH=CH﹣CO=AG﹣CO=AO﹣OG﹣CO=AO﹣OH﹣CO=4﹣OH﹣2,∴OH=1,∴m=﹣1.∵y=﹣x2+x+2=﹣(x﹣)2+,∴y的最大值为.∵直线l与抛物线有两个交点,∴m<.∴m可取值为:﹣4、﹣2、﹣1或3.综上所述,直线l上存在一点F,使得△ACF是等腰直角三角形,m的值为﹣4、﹣2、﹣1或3 2.(1)∵抛物线y=﹣+bx+c图象经过A(﹣1,0),B(4,0)两点,∴根据题意,得,解得,所以抛物线的解析式为:;(2)①证明:∵把C(m,m﹣1)代入得∴,解得:m=3或m=﹣2,∵C(m,m﹣1)位于第一象限,∴,∴m>1,∴m=﹣2舍去,∴m=3,∴点C坐标为(3,2),过C点作CH⊥AB,垂足为H,则∠AHC=∠BHC=90°,由A(﹣1,0)、B(4,0)、C(3,2)得AH=4,CH=2,BH=1,AB=5∵,∠AHC=∠BHC=90°∴△AHC∽△CHB,∴∠ACH=∠CBH,∵∠CBH+∠BCH=90°∴∠ACH+∠BCH=90°∴∠ACB=90°,∵DE∥BC,DF∥AC,∴四边形DECF是平行四边形,∴?DECF是矩形;②存在;连接CD∵四边形DECF是矩形,∴EF=CD,当CD⊥AB时,CD的值最小,∵C(3,2),∴DC的最小值是2,∴EF的最小值是2;3. (1)解:顶点D的坐标为(3,﹣1).令y=0,得(x﹣3)2﹣1=0,解得:x1=3+,x2=3﹣,∵点A在点B的左侧,∴A(3﹣,0),B(3+,0).(2)证明:如答图1,过顶点D作DG⊥y轴于点G,则G(0,﹣1),GD=3.令x=0,得y=,∴C(0,).∴CG=OC+OG=+1=,∴tan∠DCG=.设对称轴交x轴于点M,则OM=3,DM=1,AM=3﹣(3﹣)=.由OE⊥CD,易知∠EOM=∠DCG.∴tan∠EOM=tan∠DCG==,解得EM=2,∴DE=EM+DM=3.在Rt△AEM中,AM=,EM=2,由勾股定理得:AE=;在Rt△ADM中,AM=,DM=1,由勾股定理得:AD=.∵AE2+AD2=6+3=9=DE2,∴△ADE为直角三角形,∠EAD=90°.设AE交CD于点F,∵∠AEO+∠EFH=90°,∠ADC+AFD=90°,∠EFH=∠AFD(对顶角相等),∴∠AEO=∠ADC.(3)解:依题意画出图形,如答图2所示:由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.设点P坐标为(x,y),由勾股定理得:EP2=(x﹣3)2+(y﹣2)2.∵y=(x﹣3)2﹣1,∴(x﹣3)2=2y+2.∴EP2=2y+2+(y﹣2)2=(y﹣1)2+5当y=1时,EP2有最小值,最小值为5.将y=1代入y=(x﹣3)2﹣1,得(x﹣3)2﹣1=1,解得:x1=1,x2=5.又∵点P在对称轴右侧的抛物线上,∴x1=1舍去.∴P(5,1).此时点Q坐标为(3,1)或(,)4.解:(1)∵该抛物线过点C(0,2),∴可设该抛物线的解析式为y=ax2+bx+2.将A(﹣1,0),B(4,0)代入,得,解得,∴抛物线的解析式为:y=﹣x2+x+2.(2)存在.由图象可知,以A、B为直角顶点的△ABE不存在,所以△ABE只可能是以点E为直角顶点的三角形.在Rt△BOC中,OC=2,OB=4,∴BC==.在Rt△BOC中,设BC边上的高为h,则×h=×2×4,∴h=.∵△BEA∽△COB,设E点坐标为(x,y),∴=,∴y=±2将y=2代入抛物线y=﹣x2+x+2,得x1=0,x2=3.当y=﹣2时,不合题意舍去.∴E点坐标为(0,2),(3,2).(3)如图2,连结AC,作DE⊥x轴于点E,作BF⊥AD于点F,∴∠BED=∠BFD=∠AFB=90°.设BC的解析式为y=kx+b,由图象,得,∴,y BC=﹣x+2.由BC∥AD,设AD的解析式为y=﹣x+n,由图象,得0=﹣×(﹣1)+n∴n=﹣,y AD=﹣x﹣.∴﹣x2+x+2=﹣x﹣,解得:x1=﹣1,x2=5∴D(﹣1,0)与A重合,舍去;∴D(5,﹣3).∵DE⊥x轴,∴DE=3,OE=5.由勾股定理,得BD=.∵A(﹣1,0),B(4,0),C(0,2),∴OA=1,OB=4,OC=2.∴AB=5在Rt△AOC中,Rt△BOC中,由勾股定理,得AC=,BC=2,∴AC2=5,BC2=20,AB2=25,∴AC2+BC2=AB2∴△ACB是直角三角形,∴∠ACB=90°.∵BC∥AD,∴∠CAF+∠ACB=180°,∴∠CAF=90°.∴∠CAF=∠ACB=∠AFB=90°,∴四边形ACBF是矩形,∴AC=BF=,在Rt△BFD中,由勾股定理,得DF=,∴DF=BF,∴∠ADB=45°5.解:(1)依题意,设二次函数的解析式为y=a(x﹣2)2,由于直线y=x+2与y轴交于(0,2),∴x=0,y=2满足y=a(x﹣2)2,于是求得a=,二次函数的解析式为y=(x﹣2)2;(2)∵PQ⊥x轴且横坐标为x,∴l=(x+2)﹣(x﹣2)2=﹣x2+3x,由得点B的坐标为B(6,8),∵点p在线段AB上运动,∴0<x<6.∵,∴当x=3时,.∴0<l<;(3)作MQ∥AP.过M作MD∥PQ,MD交AB于N,则四边形PQMD为平行四边形.∴MD=PQ,∵M(2,0),∴D(2,4),∴MD=4.∴.∴x2﹣6x+8=0,∴x1=2,x2=4.∵2<x<6,∴x=4.∴P(4,6),Q(4,2).即P点的坐标为:(4,6)6.:(1)∵点B(5,m)在直线y=﹣2x+7上,∴m=﹣5×2+7=﹣3,∴B(5,﹣3),∵抛物线经过原点O和点A,对称轴为x=2,∴点A的坐标为(4,0)设所求的抛物线对应函数关系式为y=a(x﹣0)(x﹣4),将点B(5,﹣3)代入上式,得﹣3=a(5﹣0)(5﹣4),∴a=﹣,∴所求的抛物线对应的函数关系式为y=﹣x(x﹣4),即y=﹣x2+x.(2)∵点A(4,0),B(5,﹣3),C(2,0),∴AC=4﹣2=2,BC==3,当点D在直线x=2的右侧时,当△DCB∽△ECB,∴=,即=,解得:CD=9,∴点D的坐标为:(11,0),当点D在直线x=2的左侧时,∵∠ACB=∠CDB+∠CBA,且∠ACB<∠DCB,∴在△DCB中不可能存在与∠DCB相等的角,即此时不存在点使三角形相似;综上所述,存在点D的坐标是(11,0),使三角形相似;(3)存在符合条件的点P使PB=PC,∵C(2,0),B(5,﹣3),∴∠ACB=45°,BC垂直平分线的解析式为:y=x﹣5,∴,∴解得:,,∴符合条件的点P的坐标为(,)或(,).7.解:(1)由图知:点D、E的纵坐标为2,依题意,有:﹣x2+3x=2,解得:x1=1、x2=2∴D(1,2)、E(2,2),DE=1.(2)如右图;矩形OABC中,∠OMA=90°,∴∠CMO=∠MAB=90°﹣∠AMB,又∠OCM=∠MBA=90°,∴△OCM∽△MBA,有:=设点M(m,2),则:CM=m,BM=5﹣m∴=,解得m1=1,m2=4∴点M的坐标为(1,2)或(4,2).(3)若以D、O、Q、M为顶点的四边形是平行四边形,那么点D、M不共点,所以点M取(4,2);①当DM为平行四边形的对角线时,点O、Q关于DM的中点对称,即点Q的纵坐标为4,由图知,点Q必不在抛物线图象上,不合题意;②当DM为平行四边形的边时,OM∥OQ,且OM=OQ;∵D(1,2)、M(4,2)∴OQ=DM=3,即Q(﹣3,0)或(3,0);经验证,点(﹣3,0)不在抛物线图象上;点(3,0)在抛物线图象上;综上,存在符合条件的点Q,且坐标为(3,0)8. 解:(1)设抛物线的解析式:y=a(x+4)(x﹣1),代入C(0,﹣2),得:﹣2=a(0+4)(0﹣1),解得:a=故抛物线的解析式:y=(x+4)(x﹣1)=x2+x﹣2.(2)∵当△BGH的面积是△CGH面积的3倍,∴BG:CG=3:1,即BG:BC=3:4;∵GH∥AC,∴==;易知:BA=OB+OA=5,则BH=AB=,∴OH=BH﹣OB=﹣1=,即H(﹣,0).(3)设直线AC:y=kx+b,代入A(﹣4,0)、C(0,﹣2),得:,解得故直线AC:y=﹣x﹣2;设M(x,x2+x﹣2),则N(x,﹣x﹣2),则:MN=(﹣x﹣2)﹣(x2+x﹣2)=﹣x2﹣2x=﹣(x+2)2+2因此当M运动到OA的中垂线上,即M(﹣2,﹣3)时,线段MN的长最大.9.(1)令x=0,可得y=3,故点C的坐标为(0,3);(2)将点A(3,0),B(4,1)代入可得:,解得:,故函数解析式为y=x2﹣x+3;(3)如图,∵点A(3,0),点B(4,1),∴直线AB的解析式为:y=x﹣3,∵A(3,0),C(0,3),∴OA=3,OC=3,∴tan∠OAC===1,∴∠OAC=45°,∴∠OAC=∠OAF=45°,∵∠OEF=∠OAF=45°,∠OFE=∠OAE=45°,∴OE=OF,∠EOF=180°﹣45°×2=90°,∴△OEF是等腰直角三角形,∴S△OEF=×OE×OF=OE2,当OE最小时,S△FEO最小,根据等腰直角三角形的性质,当OE⊥AC时,OE最小,此时点E为AC的中点,故点E的坐标为(,).10.解:(1)易知抛物线的顶点D(﹣6,﹣3),则DE=3,OE=6;∵AE2=3DE=9,∴AE=3,即A(﹣3,0);将A点坐标代入抛物线的解析式中,得:a(﹣3+6)2﹣3=0,即a=,即抛物线的解析式为:y=(x+6)2﹣3=x2+4x+9.(2)设点P(﹣6,t),易知C(0,9);则PC的中点Q(﹣3,);易知:PC=;若以PC为斜边构造直角三角形,在x轴上的直角顶点只有一个时,以PC为直径的圆与x轴相切,即:||=,解得t=1,故点P(﹣6,1),当点P与点E重合时,由抛物线的解析式可知,A(﹣3,0),B(﹣9,0).所以P(﹣6,0),故点P的坐标为(﹣6,1)或(﹣6,0),(3)设点M(a,b)(a<0,b>0),分两种情况讨论:①当NE=2DE时,NE=6,即N(﹣6,6),已知D(﹣6,﹣3),则有:直线MN的斜率:k1=,直线MD的斜率:k2=;由于MN⊥DM,则k1?k2==﹣1,整理得:a2+b2+12a﹣3b+18=0…(△),由抛物线的解析式得:a2+4a+9=b,整理得:a2+12a﹣3b+27=0…(□);(△)﹣(□)得:b2=9,即b=3(负值舍去),将b=3代入(□)得:a=﹣6+3,a=﹣6﹣3,故点M(﹣6+3,3)或(﹣6﹣3,3);②当2NE=DE时,NE=,即N(﹣6,),已知D(﹣6,﹣3),则有:直线MN的斜率:k1=,直线DM的斜率:k2=;由题意得:k1?k2==﹣1,整理得:a2+b2+b+12a+=0,而a2+12a﹣3b+27=0;两式相减,得:2b2+9b+9=0,解得b=﹣2,b=﹣,(均不符合题意,舍去);综上可知:存在符合条件的M点,且坐标为:M(﹣6+3,3)或(﹣6﹣3,3).11.(1)将A,B,C三点坐标代入y=ax2+bx+c中,得,解得,∴y=﹣x2+x﹣2=﹣(x﹣)2+;(2)设点P(,m),分别过A、C两点作对称轴的垂线,垂足为A′,C′,∵AP⊥CP,∴△AA′P∽△PC′C,可得=,即=,解得m1=,m2=﹣,∴P(,)或(,﹣);(3)①由B(6,1),C(0,﹣2),得直线BC的解析式为y=x﹣2,∴D(4,0),当E点为抛物线顶点时,满足条件的点E只有一个,此时S=×4×2+×4×=,∵S△BOC=×2×6=6,∴当6≤S<时,满足条件的点E有两个.②当4<S<6时,﹣x2+x﹣2=0的△>0,方程有两个不相等的实数根,此时0<n<1,需满足的条件点E只能在点H与点B之间的抛物线上,故此时满足条件的点E只有一个.12. 解:(1)∵抛物线的对称轴是直线x=1,设抛物线的解析式是y=a(x﹣1)2+k,∴解得:,∴y=﹣(x﹣1)2+4即y=﹣x2+2x+3(2)∵y=﹣x2+2x+3,当y=0时,∴x2﹣2x﹣3=0,解得:x1=﹣1,x2=3,∴B(3,0),A(﹣1,0)∴AB=4.设P(a,﹣a2+2a+3)∴S△ABP==﹣2(a﹣1)2+8,∴△ABP面积的最大值为8(3)设D的坐标为(1,b),∴=6,∴b=±6,∴D(1,6)或(1,﹣6),设AD的解析式为y=kx+b,得或解得:或∴直线AD的解析式为:y=3x+3或y=﹣3x﹣313. 解:(1)由题意,得,解得∴抛物线的解析式为y=﹣x2+4x﹣3;(2)①令﹣x2+4x﹣3=0,解得x1=1,x2=3,∴B(3,0),当点P在x轴上方时,如图1,过点A作直线BC的平行线交抛物线于点P,易求直线BC的解析式为y=x﹣3,∴设直线AP的解析式为y=x+n,∵直线AP过点A(1,0),代入求得n=﹣1.∴直线AP的解析式为y=x﹣1解方程组,得,∴点P1(2,1)当点P在x轴下方时,如图1:设直线AP1交y轴于点E(0,﹣1),把直线BC向下平移2个单位,交抛物线于点P2,P3,得直线P2P3的解析式为y=x﹣5,解方程组,得,∴P2(,),P3(,),综上所述,点P的坐标为:P1(2,1),P2(,),P3(,),②∵B(3,0),C(0,﹣3)∴OB=OC,∴∠OCB=∠OBC=45°设直线CP的解析式为y=kx﹣3如图2,延长CP交x轴于点Q,设∠OCA=α,则∠ACB=45°﹣α,∵∠PCB=∠BCA,∴∠PCB=45°﹣α,∴∠OQC=∠OBC﹣∠PCB=45°﹣(45°﹣α)=α,∴∠OCA=∠OQC又∵∠AOC=∠COQ=90°∴Rt△AOC∽Rt△COQ∴,∴,∴OQ=9,∴Q(9,0)∵直线CP过点Q(9,0),∴9k﹣3=0∴∴直线CP的解析式为.其它方法略.114.解:(1)设直线AB解析式为y=kx+b,将A(﹣2,2),B(6,6)代入,得,解得,∴y=x+3,令x=0,∴E(0,3);(2)设抛物线解析式为y=ax2+bx+c,将A(﹣2,2),B(6,6),O(0,0)三点坐标代入,得,解得,∴y=x2﹣x(3)依题意,得直线OB的解析式为y=x,设过N点且与直线OB平行的直线解析式为y=x+m,联立,得x2﹣6x﹣4m=0,当△=36+16m=0时,过N点与OB平行的直线与抛物线有唯一的公共点,则点N到BO的距离最大,所以△BON面积最大,解得m=﹣,x=3,y=,即N(3,);此时△BON面积=×6×6﹣(+6)×3﹣××3=;(4)过点A作AS⊥GQ于S,∵A(﹣2,2),B(6,6),N(3,),∵∠AOE=∠OAS=∠BOH=45°,OG=3,NG=,NS=,AS=5,在Rt△SAN和Rt△NOG中,∴tan∠SAN=tan∠NOG=,∴∠SAN=∠NOG,∴∠OAS﹣∠SAN=∠BOG﹣∠NOG,∴∠OAN=∠NOB,∴ON的延长线上存在一点P,使得△BOP∽△OAN,∵A(﹣2,2),N(3,),∵△BOP与△OAN相似(点B、O、P分别与点O、A、N对应),即△BOP∽△OAN,∴BO:OA=OP:AN=BP:ON又∵A(﹣2,2),N(3,),B(6,6),∴BO=6,OA=2,AN=,ON=,∴OP=,BP=,设P点坐标为(4x,x),∴16x2+x2=()2,解得x=,4x=15,∵P、P′关于直线y=x轴对称,∴P点坐标为(15,)或(,15).15.解:(1)∵抛物线y=ax2+bx+与x轴交于点A(﹣3,0),C(5,0)∴解得.∴抛物线的函数关系式为y=﹣x2+x+.(2)①延长NM 交AC 于E ,∵B 为抛物线y=﹣x 2+x+的顶点,∴B (1,8).(5分)∴BD=8,OD=1.∵C (5,0),∴CD=4.∵PM ⊥BD ,BD ⊥AC ,∴PM ∥AC .∴∠BPM=∠BDC=90°,∠BMP=∠BCD .∴△BPM ∽△BDC .∴=.根据题意可得BP=t ,∴=.∴PM=t .∵MN ∥BD ,PM ∥AC ,∠BDC=90°,∴四边形PMED 为矩形.∴DE=PM=t .∴OE=OD+DE=1+t .∴E (1+t ,0).∵点N 在抛物线上,横坐标为1+t ,∴点N 的纵坐标为﹣(1+t )2+(1+t )+.∴NE=﹣(1+t )2+(1+t )+=﹣t 2+8.∵PB=t ,PD=ME ,∴EM=8﹣t .∴MN=NE ﹣EM=﹣t 2+8﹣(8﹣t )=﹣(t ﹣4)2+2.当t=4时,MN 最大=2.②存在符合条件的t 值.连接OP ,如图(2).若四边形OPMC 是等腰梯形,只需OD=EC .∵OD=1,DE=PM=t ,∴EC=5﹣(t+1).∴5﹣(t+1)=1.解得t=6.∴当t=6时,四边形OPMC是等腰梯形16.(1)由题意,得:,解得:,∴所求抛物线的解析式为:y=﹣x2﹣x+4.(2)设点Q的坐标为(m,0),过点E作EG⊥x轴于点G.由﹣x2﹣x+4=0,得x1=2,x2=﹣4,∴点B的坐标为(2,0),∴AB=6,BQ=2﹣m,∵QE∥AC,∴△BQE∽△BAC,∴,即,∴EG=(2﹣m),∴S△CQE=S△CBQ﹣S△EBQ=BQ?CO﹣BQ?EG=(2﹣m)[4﹣(2﹣m)]=﹣(m+1)2+3又∵﹣4≤m≤2,∴当m=﹣1时,S△CQE有最大值3,此时Q(﹣1,0).(3)存在.在△ODF中.(ⅰ)若DO=DF,∵A(﹣4,0),D(﹣2,0)∴AD=OD=DF=2,又在Rt△AOC中,OA=OC=4,∴∠OAC=45°,∴∠DFA=∠OAC=45°,∴∠ADF=90°.此时,点F的坐标为(﹣2,2)(ⅱ)若FO=FD,过点F作FM⊥x轴于点M由等腰三角形的性质得:OM=MD=1,∴AM=3,∴在等腰直角△AMF中,MF=AM=3,∴F(﹣1,3);(ⅲ)若OD=OF,∵OA=OC=4,且∠AOC=90°,∴AC=4,∴点O到AC的距离为2,而OF=OD=2<2,∴此时不存在这样的直线l,使得△ODF是等腰三角形,综上所述,存在这样的直线l,使得△ODF是等腰三角形,所求点F的坐标为:F(﹣2,2)或(﹣1,3).17.解:(1)∵抛物线y=ax2++c与x轴交于点(﹣1,0)和点B,与y轴交于点C(0,4).∴,解得:,∴y=﹣x2++4;(2)令y=0,可得x1=﹣1,x2=3,∴B点坐标为:(3,0),设P点坐标为(x,y),依据题意得出:×4×|y|=,∴|y|=,∵y=﹣x2++4;=﹣(x﹣1)2+,∴抛物线开口向下,顶点坐标为(1,),∴纵坐标最大值为:,∴y=﹣,∴﹣=﹣x2++4;解得:x1=﹣2,x2=4,∴P点的坐标为:(4,﹣),(﹣2,﹣);(3)如图所示:在△ABC中,OB=3,CO=4,∠BOC=90°,由勾股定理得BC=5,∵DE⊥BC,∴∠EDC=∠BOC=90°,∵∠DCE=∠OCB,∴△DCE∽△OCB,∴==,∵CD=t,∴==,∴CE=t,DE=t,∴四边形DEOB的周长为l=EO+BO+DB+DE=4﹣t+3+t+5﹣t=12﹣t,t的取值范围是:0<t<.18.:(1)过C作CD⊥x轴于G,∵点C为线段AB的中点,∴CG是△OAB的中位线,∴点C的坐标是(1,2),┅┅┅┅┅┅┅┅(1分)又∵OA=2,OB=4,∴AB=,AC=,显然△ABO∽△ADC,∴,即,┅┅┅┅┅┅┅┅┅┅┅(2分)∴AD=5OD=AD﹣OA=3,∴点D的坐标是(﹣3,0);┅┅┅┅┅┅┅┅┅(3分)(2)解:设过B(0,4),C(1,2),D(﹣3,0)的抛物线的关系式为y=ax2+bx+c,∴,┅┅┅┅┅┅(4分)解得:,┅┅┅┅┅┅┅┅┅┅┅┅(5分)∴抛物线的关系式为;┅┅┅┅┅┅┅┅┅(6分)(3)解:设点P的坐标为(x,y)连BD,过点P作PH⊥x轴于H,交BD于E,S四边形PBCD=S△BCD+S△PBD,∵S△BCD=S△ACD为定值,∴要使四边形PBCD的面积最大就是使△PBD的面积最大,①当P在BD间的抛物线上时,即﹣3<x<0,S△PBD=S△PBE+S△PED=PE×DH+PE×OH=PE×OD=PE,∵PE=PH﹣EH=y P﹣y E,┅┅┅┅┅┅┅┅(7分)直线BD的关系式为y=,∴PE=,=,当x=时,PE最大为,∴点P的坐标(,),┅┅┅┅┅┅┅┅┅┅(8分)②当P在BC间的抛物线上时,即0<x<1,同理可求出四边形PBCD的面积,很显然,此时四边形PBCD的面积要小于点P在BD间的抛物线上时的四边形PBCD的面积,故P点的坐标是(,).┅┅┅┅┅┅┅┅┅(9分)19.解:(1)将点C(2,2)代入直线y=kx+4,可得k=﹣1所以直线的解析式为y=﹣x+4当x=1时,y=3,所以B点的坐标为(1,3)将B、C、O三点的坐标分别代入抛物线y=ax2+bx+c,可得解得,所以所求的抛物线为y=﹣2x2+5x.(2)因为ON的长是一定值,所以当点P为抛物线的顶点时,△PON的面积最大,又该抛物线的顶点坐标为(),此时tan∠PON=.(3)存在;把x=0代入直线y=﹣x+4得y=4,所以点A(0,4)把y=0代入抛物线y=﹣2x2+5x得x=0或x=,所以点N(,0)设动点P坐标为(x,y),其中y=﹣2x2+5x (0<x<)则得:S△OAP=|OA|?x=2xS△ONP=|ON|?y=?(﹣2x2+5x)=(﹣2x2+5x)由S△OAP=S△ONP,即2x=?(﹣2x2+5x)解得x=0或x=1,舍去x=0得x=1,由此得y=3所以得点P存在,其坐标为(1,3)20.解:(1)设抛物线的解析式为:y=a(x﹣3)2﹣3,依题意有:a(1﹣3)2﹣3=0,a=,∴该抛物线的解析式为:y=(x﹣3)2﹣3=x2﹣x+.(2)设B点关于y轴的对称点为B′,则B′(﹣1,0);设直线AB′的解析式为y=kx+b,则有:,解得;∴y=﹣x﹣;故P0(0,﹣).(3)由(1)的抛物线知:y=x 2﹣x+=(x﹣1)(x﹣5),故C(5,0);∵S四边形AP0BC=S△AB′C﹣S△BB′P0=×6×3﹣×2×=;∴S△BCM=S四边形AP0BC=;易知BC=4,则|y M|=;当M的纵坐标为时,x2﹣x+=,解得x=3+,x=3﹣;当M的纵坐标为﹣时,x2﹣x+=﹣,解得x=3+,x=3﹣;故符合条件的M点有四个,它们的坐标分别是:M1(3+,),M2(3﹣,),M3(3+,﹣),M4(3﹣,﹣).21.:(1)由于抛物线经过A(2,0),C(0,﹣1),则有:,解得;∴抛物线的解析式为:y=﹣x﹣1.(2)∵A(2,0),C(0,﹣1),∴直线AC:y=x﹣1;设D(x,0),则E(x,x﹣1),故DE=0﹣(x﹣1)=1﹣x;∴△DCE的面积:S=DE×|x D|=×(1﹣x)×x=﹣x2+x=﹣(x﹣1)2+,因此当x=1,即D(1,0)时,△DCE的面积最大,且最大值为.(3)由(1)的抛物线解析式易知:B(﹣1,0),可求得直线BC的解析式为:y=﹣x﹣1;设P(x,﹣x﹣1),因为A(2,0),C(0,﹣1),则有:AP2=(x﹣2)2+(﹣x﹣1)2=2x2﹣2x+5,AC2=5,CP2=x2+(﹣x﹣1+1)2=2x2;①当AP=CP时,AP2=CP2,有:2x2﹣2x+5=2x2,解得x=2.5,∴P1(2.5,﹣3.5);②当AP=AC时,AP2=AC2,有:2x2﹣2x+5=5,解得x=0(舍去),x=1,∴P2(1,﹣2);③当CP=AC时,CP2=AC2,有:2x2=5,解得x=±,∴P3(,﹣﹣1),P4(﹣,﹣1);综上所述,存在符合条件的P点,且P点坐标为:P1(2.5,﹣3.5)、P2(1,﹣2)、P3(,﹣﹣1)、P4(﹣,﹣1).22.解:(1)∵抛物线的顶点为Q(2,﹣1),∴设抛物线的解析式为y=a(x﹣2)2﹣1,将C(0,3)代入上式,得:3=a(0﹣2)2﹣1,a=1;∴y=(x﹣2)2﹣1,即y=x2﹣4x+3;(2)分两种情况:①当点P1为直角顶点时,点P1与点B重合;令y=0,得x2﹣4x+3=0,解得x1=1,x2=3;∵点A在点B的右边,∴B(1,0),A(3,0);∴P1(1,0);②当点A为△AP2D2的直角顶点时;∵OA=OC,∠AOC=90°,∴∠OAD2=45°;当∠D2AP2=90°时,∠OAP2=45°,∴AO平分∠D2AP2;又∵P2D2∥y轴,∴P2D2⊥AO,∴P2、D2关于x轴对称;设直线AC的函数关系式为y=kx+b(k≠0).将A(3,0),C(0,3)代入上式得:,解得;∴y=﹣x+3;设D2(x,﹣x+3),P2(x,x2﹣4x+3),则有:(﹣x+3)+(x2﹣4x+3)=0,即x2﹣5x+6=0;解得x1=2,x2=3(舍去);∴当x=2时,y=x2﹣4x+3=22﹣4×2+3=﹣1;∴P2的坐标为P2(2,﹣1)(即为抛物线顶点).∴P点坐标为P1(1,0),P2(2,﹣1);(3)由(2)知,当P点的坐标为P1(1,0)时,不能构成平行四边形;当点P的坐标为P2(2,﹣1)(即顶点Q)时,平移直线AP交x轴于点E,交抛物线于F;∵P(2,﹣1),∴可设F(x,1);∴x2﹣4x+3=1,解得x1=2﹣,x2=2+;∴符合条件的F点有两个,即F1(2﹣,1),F2(2+,1).23.解:(1)由已知A(0,6),B(6,6)在抛物线上,得方程组,(1分)解得.(3分)(2)①运动开始t秒时,EB=6﹣t,BF=t,S=EB?BF=(6﹣t)t=﹣t2+3t,(4分)以为S=﹣t2+3t=﹣(t﹣3)2+,所以当t=3时,S有最大值.(5分)②当S取得最大值时,∵由①知t=3,∴BF=3,CF=3,EB=6﹣3=3,若存在某点R,使得以E,B,R,F为顶点的四边形是平行四边形,则FR1=EB且FR1∥EB,。

(二次函数的应用)30道中考动点压轴题和函数压轴题

(二次函数的应用)30道中考动点压轴题和函数压轴题

(二次函数)二次函数30道中考动点压轴题和函数压轴题1如图1,在直角坐标系中,已知△AOC的两个顶点坐标分别为A(2,0),C(0,2).(1)请你以AC的中点为对称中心,画出△AOC的中心对称图形△ABC,此图与原图组成的四边形OABC的形状是,请说明理由;(2)如图2,已知D(12-,0),过A,C,D的抛物线与(1)所得的四边形OABC的边BC交于点E,求抛物线的解析式及点E的坐标;(3)在问题(2)的图形中,一动点P由抛物线上的点A开始,沿四边形OABC的边从A ﹣B﹣C向终点C运动,连接OP交AC于N,若P运动所经过的路程为x,试问:当x为何值时,△AON为等腰三角形(只写出判断的条件与对应的结果)?2如图,在平面直角坐标系中,直线1y=x+12与抛物线2y=ax+bx3-交于A,B两点,点A在x轴上,点B的纵坐标为3。

点P是直线AB下方的抛物线上一动点(不与A,B重合),过点P作x轴的垂线交直线AB与点C,作PD⊥AB于点D(1)求a,b及sin ACP∠的值(2)设点P的横坐标为m①用含m的代数式表示线段PD的长,并求出线段PD长的最大值;②连接PB,线段PC把△PDB分成两个三角形,是否存在适合的m值,使这两个三角形的面积之比为9:10?若存在,直接写出m值;若不存在,说明理由.3.已知直线y=kx+3(k<0)分别交x轴、y轴于A、B两点,线段OA上有一动点P由原点O向点A运动,速度为每秒1个单位长度,过点P作x轴的垂线交直线AB于点C,设运动时间为t秒.(1)当k=-1时,线段OA上另有一动点Q由点A向点O运动,它与点P以相同速度同时出发,当点P到达点A时两点同时停止运动(如图1).①直接写出t=1秒时C、Q两点的坐标;②若以Q、C、A为顶点的三角形与△AOB相似,求t的值.(2)当k =-34时,设以C 为顶点的抛物线y =(x +m)2+n 与直线AB 的另一交点为D (如图2).① 求CD 的长;② 设△COD 的OC 边上的高为h ,当t 为何值时,h 的值最大?4.已知二次函数的图象经过A (2,0)、C (0,12)两点,与x 轴的另一交点为点B ,且对称轴为直线x =4,设顶点为点D .(1)求二次函数的解析式及顶点D 的坐标;(2)如图1,在直线y =2x 上是否存在点E ,使四边形ODBE 为等腰梯形?若存在,求出点E 的坐标;若不存在,请说明理由;(3)如图2,点P 是线段OD 上的一个动点(不与O 、D 重合),以每秒 2 个单位长度的速度由点D 向点O 运动,过点P 作直线PQ ∥x 轴,交BD 于点Q ,将△DPQ 沿直线PQ 对折,得到△D 1PQ .在点P 运动的过程中,设△D 1PQ 与梯形OPQB 的重叠部分的面积为S ,运动时间为t 秒,求S 关于t 的函数关系式.5.A 、C 上,抛物线y =-2 3). (1)求抛物线的表达式;(2)如果点P 由点A 出发,沿AB 边以2cm /s 的速度向点B 运动,同时点Q 由点B 出发,沿BC 边以1cm /s 的速度向点C 运动,当其中一点到达终点时,另一点也随之停止运动.设S =PQ2(cm 2).①试求出S 与运动时间t 之间的函数关系式,并写出t 的取值范围;②当S 取54时,在抛物线上是否存在点R ,使得以点P 、B 、Q 、R 为顶点的四边形是平行图1图2图2 图1四边形?如果存在,求出R 点的坐标;如果不存在,请说明理由;(3)在抛物线的对称轴上求点M ,使得M 到D 、A 的距离之差最大,求出点M 的坐标.6.在梯形OABC 中,CB ∥OA ,∠AOC =60°,∠OAB =90°,OC =2,BC =4,以O 点为原点,OA 所在的直线为x 轴,建立平面直角坐标系,另有一边长为2的等边△DEF ,DE 在x 轴上(如图1),如果让△DEF 以每秒1个单位的速度向左作匀速直线运动,开始时点D 与点A 重合,当点D 到达坐标原点时运动停止.(1)设△DEF 运动时间为t ,△DEF 与梯形OABC 重叠部分的面积为S ,求S 关于t 的函数关系式;(2)探究:在△DEF 运动过程中,如果射线DF 交经过O 、C 、B 三点的抛物线于点G ,是否存在这样的时刻t ,使得△OAG 的面积与梯形OABC 的面积相等?若存在,求出t 的值;若不存在,请说明理由.7.已知二次函数y =ax2+bx -2的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点A 的坐标为(4,0),且当x =-2和x =5时二次函数的函数值y 相等. (1)求实数a 、b 的值;(2)如图1,动点E 、F 同时从A 点出发,其中点E 以每秒2个单位长度的速度沿AB 边向终点B 运动,点F 以每秒 5个单位长度的速度沿射线AC 方向运动.当点E 停止运动时,点F 随之停止运动.设运动时间为t 秒.连接EF ,将△AEF 沿EF 翻折,使点A 落在点D 处,得到△DEF .①当t 为何值时,线段DF 平分△ABC 的面积?②是否存在某一时刻t ,使得△DCF 为直角三角形?若存在,求出t 的值;若不存在,请说明理由.③设△DEF 与△ABC 重叠部分的面积为S ,求S 关于t 的函数关系式;(3)如图2,点P 在二次函数图象上运动,点Q 在二次函数图象的对称轴上运动,四边形PQBC 能否成为以PQ 为底的等腰梯形?如果能,直接写出P 、Q 两点的坐标;如果不能,请说明理由.8.如图,直线y=-43x+4与x轴交于点B,与y轴交于点C,二次函数的图象经过A(-1,0)、B、C三点.(1)求二次函数的表达式;(2)设二次函数图象的顶点为D,求四边形OCDB的面积;(3)若动点E、F同时从O点出发,其中点E以每秒32个单位长度的速度沿折线OBC按O→B→C的路线运动,点F以每秒4个单位长度的速度沿折线OCB按O→C→B的路线运动,当E、F两点相遇时,整个运动随之结束.设运动时间为t(秒),△OEF的面积为S(平方单位).①在E、F两点运动过程中,是否存在EF∥OC?若存在,求出此时t的值;若不存在,请说明理由;②求S关于t的函数关系式,并求S的最大值.9.已知抛物线y=4,0)点B作BC∥x轴交抛物线于点C.动点E、F分别从O、A两点同时出发,其中点E沿线段OA以每秒1个单位长度的速度向A点运动,点F沿折线A→B→C以每秒1个单位长度的速度向C点运动.设动点运动的时间为t(秒).(1)求抛物线的解析式;(2)记△EF A的面积为S,求S关于t的函数关系式,并求S的最大值,指出此时△EF A的形状;(3)是否存在这样的t值,使△EF A、F两点的坐标;若不存在,请说明理由.10.如图,抛物线y=ax2+bx+4与x轴交于A(-2,0)、B(4,0)两点,与y轴交于C 点.(1)求抛物线的解析式;(2)T是抛物线对称轴上的一点,且△ATC是以AC为底的等腰三角形,求点T的坐标;(3)M、Q两点分别从A、B点以每秒1个单位长度的速度沿x轴同时出发相向而行,当点M 到达原点时,点Q 立刻掉头并以每秒32个单位长度的速度向点B 方向移动,当点M 到达抛物线的对称轴时,两点停止运动.过点M 的直线l ⊥x 轴交AC 或BC 于点P .求点M 的运动时间t 与△APQ 面积S 的函数关系式,并求出S 的最大值.11.如图,对称轴为直线x =-1的抛物线经过点A (-3,0)和点C (0,3),与x 轴的另一交点为B .点P 、Q 同时从B 点出发,均以每秒1个单位长度的速度分别沿BA 、BC 边运动,其中一个点到达终点时,另一点也随之停止运动.设运动时间为t (秒). (1)求抛物线的解析式;(2)连接PQ ,将△BPQ 沿PQ 翻折,所得的△B ′PQ 与△ABC 重叠部分的面积记为S ,求S 与t 之间的函数关系式,并求S 的最大值; (3)若点D 的坐标为(-4,3),当点B ′ 恰好落在抛物线上时,在抛物线的对称轴时是否存在点M ,使四边形MADB ′的周长最小,若存在,求出这个最小值;若不存在,请说明理由.12.如图,抛物线y =ax2+bx +152(a ≠0)经过A (-3,0)、C (5,0)两点,点B 为抛物线的顶点,抛物线的对称轴与x 轴交于点D . (1)求此抛物线的解析式;(2)动点P 从点B 出发,沿线段BD 向终点D 作匀速运动,速度为每秒1个单位长度,运动时间为t s ,过点P 作PM ⊥BD 交BC 于点M ,过点M 作MN ∥BD ,交抛物线于点N . ①当t 为何值时,线段MN 最长;②在点P 运动的过程中,是否有某一时刻,使得以O 、P 、形?若存在,求出此刻的t 值;若不存在,请说明理由.13.如图,抛物线y =-x2-2x +3与x 轴相交于点A 、B (A 在B 的左侧),与y 轴交于点C . (1)求线段AC 所在直线的解析式;(2)点M 是第二象限内抛物线上的一点,且S △MAC=12S △MAB,求点M 的坐标; (3)点P 以每秒1个单位长度的速度,沿线段BA 由B 向A 运动,同时,点Q 以每秒2个单位长度的速度,从A 开始沿射线AC 运动,当P 到达A 时,整个运动随即结束.设运动的时间为t 秒.①求△APQ 的面积S 与t 的函数关系式,并求当t 为何值时,△APQ 的面积最大,最大面积是多少?②在整个运动过程中,以PQ 为直径的圆能否与直线BC 相切?若能,请直接写出相应的t 值;若不能,请说明理由;③直接写出线段PQ 的中点在整个运动过程中所经过路径的长.14.如图,二次函数c x y +-=221的图象经过点D ⎪⎭⎫ ⎝⎛-29,3,与x 轴交于A 、B 两点. ⑴求c 的值;⑵如图①,设点C 为该二次函数的图象在x 轴上方的一点,直线AC 将四边形ABCD 的面积二等分,试证明线段BD 被直线AC 平分,并求此时直线AC 的函数解析式; ⑶设点P 、Q 为该二次函数的图象在x 轴上方的两个动点,试猜想:是否存在这样的点P 、Q ,使△AQP ≌△ABP ?如果存在,请举例验证你的猜想;如果不存在,请说明理由.(图②供选用)15.(2010福建福州)如图,在△ABC 中,∠C =45°,BC =10,高AD =8,矩形EFPQ 的一边QP 在BC 边上,E 、F 两点分别在AB 、AC 上,AD 交EF 于点H . (1)求证:AH AD =EFBC;(2)设EF =x ,当x 为何值时,矩形EFPQ 的面积最大?并求其最大值;(3)当矩形EFPQ 的面积最大时,该矩形EFPQ 以每秒1个单位的速度沿射线QC 匀速运动(当点Q 与点C 重合时停止运动),设运动时间为t 秒,矩形EFFQ 与△ABC 重叠部分的面积为S ,求S 与t 的函数关系式.16.(2010福建福州)如图1,在平面直角坐标系中,点B 在直线y =2x 上,过点B 作x 轴的垂线,垂足为A ,OA =5.若抛物线y =16x 2+bx +c 过O 、A 两点.(1)求该抛物线的解析式;(2)若A 点关于直线y =2x 的对称点为C ,判断点C 是否在该抛物线上,并说明理由; (3)如图2,在(2)的条件下,⊙O 1是以BC 为直径的圆.过原点O 作⊙O 1的切线OP ,P 为切点(点P 与点C 不重合).抛物线上是否存在点Q ,使得以PQ 为直径的圆与⊙O 1相切?若存在,求出点Q 的横坐标;若不存在,请说明理由17.(2010江苏无锡)如图,矩形ABCD 的顶点A 、B 的坐标分别为(-4,0)和(2,0),BC=设直线AC 与直线x =4交于点E .(1)求以直线x =4为对称轴,且过C 与原点O 的抛物线的函数关系式,并说明此抛物线一定过点E ;(2)设(1)中的抛物线与x 轴的另一个交点为N ,M 是该抛物线上位于C 、N 之间的一动点,求△CMN 面积的最大值.(第2题)(图1) (图2)18.(2010湖南邵阳)如图,抛物线y =2134x x -++与x 轴交于点A 、B ,与y 轴相交于点C ,顶点为点D ,对称轴l 与直线BC 相交于点E ,与x 轴交于点F 。

二次函数—动点产生的线段最值问题典型例题

二次函数—动点产生的线段最值问题典型例题

二次函数——动点产生的线段最值问题【例1】如图,在直角坐标系中,点A,B,C 的坐标分别为(-1,0),(3,0),(0,3),过A,B,C 三点的抛物线的对称轴为直线l .(1)求抛物线的解析式及顶点D 的坐标;(2)点E 是抛物线的对称轴上的一个动点,求当AE+CE 最小时点E 的坐标;(3)点P 是x 轴上的一个动点,求当PD+PC 最小时点P 的坐标;(4)点Q 是抛物线的对称轴上的一个动点,当点Q 在什么位置时有QB QC-最大?并求出最大值.解:(1)设抛物线的解析式为:y=ax 2+bx+c ,∵抛物线经过A 、B 、C 三点, ∴09303a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:123a b c =-⎧⎪=⎨⎪=⎩,∴抛物线的解析式为:y=-x 2+2x+3.∵y=-x 2+2x+3= 2(1)4x --+, ∴该抛物线的对称轴为直线x=1,顶点D 的坐标为(1,4).(2)∵点A 关于抛物线的对称轴的对称点为B ,则AE=BE ,要使AE+CE 最小,即BE+CE 最小,则B 、E 、C 三点共线如图,连接BC 交抛物线的对称轴于点E ,解法一:设直线BC 的解析式为y=kx+n ,则303k n n +=⎧⎨=⎩,解得13k n =-⎧⎨=⎩∴3y x =-+.当x=1时,3132x -+=-+=,∴点E 的坐标为(1,2)解法二:设抛物线的对称轴交x 轴于点F .∵E F ∥y 轴,∴∠BEF =∠BCO ,∠BFE =∠BOC∴△BFE ∽△BOC ∴BF EF BO CO=, ∴3133EF -=, ∴2EF = ∴点E 的坐标为(1,2)(3)作出点C 关于x 轴的对称点为C′,则C′(0,-3),OC′=3,如图,连接C′D 交x 轴于点P ,∵点C 关于x 轴的对称点为C′,则PC=P C′,F E要使PD+PC 最小,即PD+P C′最小,则D 、P 、C′三点共线设直线C′D 的解析式为y=kx+n ,则43k n n +=⎧⎨=-⎩,解得73k n =⎧⎨=⎩∴73y x =-.当y=0时,073x =-,∴37x =∴点P 的坐标为(37,0) (4)∵点A 关于抛物线的对称轴的对称点为B ,则QB=QA , 要使QB QC -最大,即QA QC -最大,则A 、C 、Q 三点共线如图,连接AC 交抛物线的对称轴于点Q ,解法一:设直线AC 的解析式为y=kx+n ,则03k n n -+=⎧⎨=⎩,解得33k n =⎧⎨=⎩∴33y x =+.当x=1时,333136x +=⨯+=,∴点Q 的坐标为(1,6)解法二:设抛物线的对称轴交x 轴于点F .∵QF ∥y 轴,∴∠ACO =∠AQF ,∠AOC =∠AFQ∴△AOC ∽△AFQ ∴AO CO AF QF=, ∴1311QF=+, ∴6QF = ∴点Q 的坐标为(1,6)∴QB QC QA QC AC -=-===即当点Q 的坐标为(1,6)时,QB QC-【作业1】(2011菏泽)如图,抛物线y=21x 2+bx ﹣2与x 轴交于A ,B 两点,与y 轴交于C 点,且A (-1,0). (1)求抛物线的解析式及顶点D 的坐标;(2)判断△ABC 的形状,证明你的结论;(3)点M (m ,0)是x 轴上的一个动点,当MC+MD 的值最小时,求m 的值.解:(1)∵点A (﹣1,0)在抛物线y=21x 2+bx ﹣2上, ∴21×(﹣1 )2+b×(﹣1)﹣2=0,解得b=-23 ∴抛物线的解析式为y=21x 2﹣23x ﹣2. QF -- C ′Py=21x 2﹣23x ﹣2=21( x 2﹣3x ﹣4 )=21(x ﹣23)2﹣825, ∴顶点D 的坐标为 (23,﹣825). (2)当x=0时y=﹣2,∴C(0,﹣2),OC=2.当y=0时,21x 2﹣23x ﹣2=0,∴x 1=﹣1,x 2=4,∴B (4,0) ∴OA=1,OB=4,AB=5. ∵AB 2=25,AC 2=OA 2+OC 2=5,BC 2=OC 2+OB 2=20,∴AC 2+BC 2=AB 2.∴△ABC 是直角三角形.(3)作出点C 关于x 轴的对称点C′,则C′(0,2),OC′=2,连接C′D 交x 轴于点M ,根据轴对称性及两点之间线段最短可知,MC+MD 的值最小.解法一:设抛物线的对称轴交x 轴于点E .∵ED∥y 轴,∴∠OC′M=∠EDM,∠C′OM=∠DEM∴△C′OM∽△DEM. ∴ED C O EM OM '=,∴825223=-m m , ∴m=4124 解法二:设直线C′D 的解析式为y=kx+n , 则⎪⎩⎪⎨⎧-=+=825232n k n ,解得n=2,1241-=k ∴21241+-=x y . ∴当y=0时,-4124,4124,021241=∴==+m x x 【作业2】2011四川广安)如图所示,在平面直角坐标系中,四边形ABCD 是直角梯形,BC ∥AD ,∠BAD = 90°,BC 与y 轴相交于点M ,且M 是BC 的中点,A 、B 、D 三点的坐标分别是A (-1,0),B ( -1,2),D ( 3,0),连接DM ,并把线段DM 沿DA 方向平移到ON ,若抛物线y =ax 2+bx +c 经过点D 、M 、N .(1)求抛物线的解析式.(2)抛物线上是否存在点P .使得PA =PC .若存在,求出点P 的坐标;若不存在.请说明理由.(3)设抛物线与x 轴的另—个交点为E .点Q 是抛物线的对称轴上的一个动点,当点Q 在什么位置时有QE QC -最大?并求出最大值.解:(1)由题意可得M (0,2),N (-3,2), ∴ 2,293,093.c a b c a b c =⎧⎪=-+⎨⎪=++⎩ 解得:1,91,32.a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩E∴211293y x x =--+(2)∵PA =PC , ∴P 为AC 的垂直平分线上,依题意,AC 的垂直平分线经过(-1,2)、(1,0),其所在的直线为y =-x +1. 根据题意可列方程组21,11 2.93y x y x x =-+⎧⎪⎨=--+⎪⎩解得:1132x y ⎧=+⎪⎨=--⎪⎩2232x y ⎧=-⎪⎨=-+⎪⎩∴P 1(32+--)、P 2(32--+).(3)如图所示,延长DC 交抛物线的对称轴于点Q ,根据题意可知此时点Q 满足条件.由题意可知C (1,2),D (3,0),可求得CD 所在的直线的解析式为3y x =-+. 抛物线211293y x x =--+的对称轴为直线 1.5x =-. ∵点Q 在直线x =-1.5上,又在直线3y x =-+上. ∴Q (-1 .5,4.5),QE =QD . ∴QE QC QD QC CD -=-===.即当点Q 的坐标为(-1.5,4.5)时,QE QC -有最大值,最大值为。

二次函数动点问题专题

二次函数动点问题专题

二次函数动点问题专题一、因动点产生的面积问题1、如图,抛物线与x轴交与A(1,0),B(- 3,0)两点,(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由. (3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?,若存在,求出点P的坐标及△PBC的面积最大值.若没有,请说明理由.cbxxy++-=2ABC2、如图,抛物线y=12x2+b x-2与x轴交于A、B两点,与y轴交于C点,且A(-1,0)。

(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M(m,0)是x轴上一个动点,当CM+DM的值最小时,求m的值;(4)点P为直线BC下方抛物线上一动点,问当P在什么位置时,四边形ACPB 的面积最大,求出此时的P点坐标及最大面积。

3.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B 两点,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方抛物线上的动点.(1)求这个二次函数表达式;(2)连接PO、PC,并将△POC沿y轴对折,得到四边形POP′C,那么是否存在点P,使得四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.4、(2015中大附中一模)如图,已知抛物线c bx ax y ++=2过点A (6,0),B (-2,0),C (0,-3).(1)求此抛物线的解析式;(2)若点H 是该抛物线第四象限的任意一点,求四边形OCHA 的最大面积;(3)若点Q 在y 轴上,点G 为该抛物线的顶点,且∠GQA =45º,求点Q 的坐标.5、(2016•越秀区一模)如图,已知抛物线y=x 2﹣(m +3)x +9的顶点C 在x 轴正半轴上,一次函数y=x +3与抛物线交于A 、B 两点,与x 、y 轴分别交于D 、E 两点.(1)求m 的值;(2)求A 、B 两点的坐标;(3)当﹣3<x <1时,在抛物线上是否存在一点P ,使得△PAB 的面积是△ABC 面积的2倍?若存在,请求出点P 的坐标;若不存在,请说明理由.二、因动点产生的等腰三角形存在性问题1、已知:如图抛物线a x x y +-=421过点A (0,3),抛物线1y 与抛物线2y 关于y 轴对称,抛物线2y 的对称轴交x 轴于点B ,点P 是x 轴上的一个动点,点Q 是第四象限内抛物线1y 上的一点。

专题:二次函数中的动点问题(平行四边形存在性问题)

专题:二次函数中的动点问题(平行四边形存在性问题)

二次函数中的动点问题(二)平行四边形的存在性问题一.技巧提炼如图1,点人(召,开)、3(忑,儿)、C(X3Os)是坐标平面内不在同一直线上的三点。

平面直角坐标系中是否存在点D,使得以A、B、C、D四点为顶点的四边形为平行四边形,如果存在,请求出点D的坐标。

如图2,过A、B、C分别作BC、AC、AB的平行线,则以不在同一直线上的三点为顶点的平行四边形有三个。

由已知的三点坐标可根据图形平移的坐标性质,直接写出第四个顶点的坐标。

3、平面直角坐标系中直线和直线12:当h时k尸k2;当h丄I2时ki-k2=-14、二次函数中平行四边形的存在性问题:解题思路:(1)先分类(2)再画图(3)后计算二、精讲精练1、已知抛物线y=ax-+bx+c与x轴相交于A、E两点(A、B分别在原点的左右两侧),与y轴正半轴相交于C点,且OA:OB:OC=1:3:3,AABC的面积为6,(如图1)(1)求抛物线的解析式:(2)坐标平面内是否存在点M,使得以点M、A、B、C为顶点四边形是平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由;(3)如图2,在直线BC±方的抛物线上是否存在一动点P,ABCP面枳最大?如果存在,求出最人面积,2、如图,己知抛物线经过A(-2,0),B(・3,3)及原点6顶点为C(1)求抛物线的函数解析式:(2)设点D在抛物线上,点E在抛物线的对称轴上,且以AO为边的四边形AODE是平行四边形,求点D的坐标。

【变式练习】7如图,对称轴为直线x二一的抛物线经过点A(6,0)和B(0,4)・2(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第四彖限,四边形0EAF是以0A为对角线的平行四边形, 求平行四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;①当平行四边形OEAF的面积为24时,请判断平行四边形0EAF是否为菱形?②是否存在点E,使平行四边形0EAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.、方法规律1、平行四边形模型探究如图1,点&(內,开)、3(七,儿)、C(X3,”)是坐标平面内不在同一直线上的三点。

二次函数动点及最值问题

二次函数动点及最值问题

一、二次函数中的最值问题:例1:在平面直角坐标系中,全等的两个三角形Rt⊿AOB与Rt A’OC’如图放置,点B、C’的坐标分别为(1,3),(0,1),BO 与A’ C’相交于D,若⊿A’OC’绕点O旋转90°至⊿AOC,如图所示(1)若抛物线过C、A、A’,求此抛物线的解析式及对称轴;∴y=-x2+2x+3(2)、若点P是第一象限内抛物线线上的一动点,问P在何处时△AP A’的面积最大?最大面积是多少?并求出此时的点P的坐标。

(3)、设抛物线的顶点为N,在抛物线上是否存在点P,使△A’AN与△A’AP的面积相等?,若存在,请求出此时点P的坐标,若不存在,请说明理由。

例2、(2012攀枝花)如图,在平面直角坐标系xOy中,四边形ABCD是菱形,顶点A.C.D均在坐标轴上,且AB=5,sinB=.(1)求过A.C.D三点的抛物线的解析式;(2)记直线AB的解析式为y1=mx+n,(1)中抛物线的解析式为y2=ax2+bx+c,求当y1<y2时,自变量x的取值范围;(3)设直线AB与(1)中抛物线的另一个交点为E,P点为抛物线上A.E两点之间的一个动点,当P点在何处时,△PAE的面积最大?并求出面积的最大值.解答:解:(1)∵四边形ABCD是菱形,∴AB=AD=CD=BC=5,sinB=sinD=;Rt△OCD中,OC=CD•sinD=4,OD=3;OA=AD﹣OD=2,即:A(﹣2,0)、B(﹣5,4)、C(0,4)、D(3,0);设抛物线的解析式为:y=a(x+2)(x﹣3),得:2×(﹣3)a=4,a=﹣;∴抛物线:y=﹣x2+x+4.(2)由A(﹣2,0)、B(﹣5,4)得直线AB:y1=﹣x﹣;由(1)得:y2=﹣x2+x+4,则:,解得:,;由图可知:当y1<y2时,﹣2<x<5.(3)∵S△APE=AE•h,∴当P到直线AB的距离最远时,S△ABC最大;若设直线L∥AB,则直线L与抛物线有且只有一个交点时,该交点为点P;设直线L:y=﹣x+b,当直线L与抛物线有且只有一个交点时,﹣x+b=﹣x2+x+4,且△=0;求得:b=,即直线L:y=﹣x+;可得点P(,).由(2)得:E(5,﹣),则直线PE:y=﹣x+9;新课标第一网则点F(,0),AF=OA+OF=;∴△PAE的最大值:S△PAE=S△PAF+S△AEF=××(+)=.综上所述,当P(,)时,△PAE的面积最大,为.针对训练:1、(2013宜宾)如图,抛物线y1=x2﹣1交x轴的正半轴于点A,交y轴于点B,将此抛物线向右平移4个单位得抛物线y2,两条抛物线相交于点C.(1)请直接写出抛物线y2的解析式;(2)若点P是x轴上一动点,且满足∠CPA=∠OBA,求出所有满足条件的P点坐标;(3)在第四象限内抛物线y2上,是否存在点Q,使得△QOC中OC边上的高h有最大值?若存在,请求出点Q的坐标及h的最大值;若不存在,请说明理由.解答:解:(1)抛物线y1=x﹣1向右平移4个单位的顶点坐标为(4,﹣1),所以,抛物线y2的解析式为y2=(x﹣4)2﹣1;(2)x=0时,y=﹣1,y=0时,x2﹣1=0,解得x1=1,x2=﹣1,所以,点A(1,0),B(0,﹣1),∴∠OBA=45°,联立,解得,∴点C的坐标为(2,3),∵∠CPA=∠OBA,∴点P在点A的左边时,坐标为(﹣1,0),在点A的右边时,坐标为(5,0),所以,点P的坐标为(﹣1,0)或(5,0);(3)存在.∵点C(2,3),∴直线OC的解析式为y=x,设与OC平行的直线y=x+b,联立,消掉y得,2x2﹣19x+30﹣2b=0,当△=0,方程有两个相等的实数根时,△QOC中OC边上的高h有最大值,此时x1=x2=×(﹣)=,此时y=(﹣4)2﹣1=﹣,∴存在第四象限的点Q(,﹣),使得△QOC中OC边上的高h有最大值,此时△=192﹣4×2×(30﹣2b)=0,解得b=﹣,∴过点Q与OC平行的直线解析式为y=x﹣,令y=0,则x﹣=0,解得x=,设直线与x轴的交点为E,则E(,0),过点C作CD⊥x轴于D,根据勾股定理,OC==,则sin ∠COD==, 解得h 最大=×=.2、如图,抛物线)0(2232≠--=a x ax y 的图象与x 轴交于A 、B 两点,与y 轴交于C 点,已知B 点坐标为()0,4.(1)求抛物线的解析式;(2)试探究ABC ∆的外接圆的圆心位置,并求出圆心坐标;(3)若点M 是线段BC 下方的抛物线上一点,求MBC ∆的面积的最大值,并类型一、最值问题:类型一、最值问题:(2013•泸州)如图,在直角坐标系中,点A 的坐标为(﹣2,0),点B 的坐标为(1,﹣),已知抛物线y=ax 2+bx+c (a ≠0)经过三点A 、B 、O (O 为原点).(1)求抛物线的解析式;(2)在该抛物线的对称轴上,是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由;(3)如果点P 是该抛物线上x 轴上方的一个动点,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由.(注意:本题中的结果均保留根号)),﹣﹣(+,解得:﹣,﹣,﹣﹣x(PE(+y)﹣y)﹣((y+(﹣x+x x+()﹣的面积最大,最大值为××,,类型二、探索三角形的存在性。

二次函数动点问题压轴题专题汇编(含答案)

二次函数动点问题压轴题专题汇编(含答案)

二次函数动点问题压轴题专题汇编(含答案)二次函数的动态问题(动点)正方形ABCD的顶点A,B的坐标分别为(0,10),(8,4),顶点C,D在第一象限。

点P从点A出发,沿正方形按逆时针方向匀速运动,同时,点Q从点E(4,0)出发,沿x轴正方向以相同速度运动。

当点P到达点C时,P,Q两点同时停止运动,设运动的时间为t秒。

1) 求正方形ABCD的边长。

解:作BF⊥y轴于F。

则FB=8,FA=6,AB=10.2) 当点P在AB边上运动时,△OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分。

求P,Q两点的运动速度。

解:由图可知,点P从点A运动到点B用了10秒。

又AB=10,故P,Q两点的运动速度均为每秒1个单位。

3) 求(2)中面积S(平方单位)与时间t(秒)的函数关系式及面积S取最大值时点P的坐标。

解:方法一:作PG⊥y轴于G,则PG∥BF。

由相似三角形可得:GA/AP=FA/AB,即6/10=t/AP,故GA=3/5t。

又OG=10-3/5t,OQ=4+t。

则S=1/2×OQ×OG=1/2×(t+4)×(10-3/5t)=-3/10t²+19/5t+20.对XXX求导得:S'=(-6/5)t+19/5,令其为0,解得t=19/3.此时S有最大值。

此时GP=76/15,OG=31/5,P的坐标为(76/15,31/5)。

方法二:当t=5时,OG=7,OQ=9,S=63/2.设所求函数关系式为S=at²+bt+20.抛物线过点(5,63/2),则a=-3/10,b=19/2.代入可得S=-3/10t²+19/2t+20.同样可得最大值时t=19/3,P的坐标为(76/15,31/5)。

4) 若点P,Q保持(2)中的速度不变,则点P沿着AB边运动时,∠XXX的大小随着时间t的增大而增大;沿着BC边运动时,∠XXX的大小随着时间t的增大而减小。

初中数学二次函数动点问题

初中数学二次函数动点问题

动点问题1:相似三角形问题例1:如图①,在△ABC 中,AB=AC ,BC=acm ,∠B=30°.动点P 以1cm/s 的速度从点B 出发,沿折线B ﹣A ﹣C 运动到点C 时停止运动.设点P 出发x s 时,△PBC 的面积为y cm 2.已知y 与x 的函数图象如图②所示.请根据图中信息,解答下列问题:(1) 试判断△DOE 的形状,并说明理由;(2) 当a 为何值时,△DOE 与△ABC 相似?例2:矩形OABC 在平面直角坐标系中位置如图所示,A 、C 两点的坐标分别为A (6,0),C (0,-3),直线y =-43x 与BC 边相交于D 点. (1) 求点D 的坐标; (2) 若抛物线y =ax 2-49x 经过点A ,试确定此抛物线的表达式; (3) 设(2)中的抛物线的对称轴与直线OD 交于点M ,点P 为对称轴上一动点,以P 、O 、M 为顶点的三角形与△OCD例3.如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.(1)求抛物线的解析式;(2)在抛物线上求点M,使△MOB的面积是△AOB面积的3倍;(3)连结OA,AB,在x轴下方的抛物线上是否存在点N,使△OBN与△OAB相似?若存在,求出N点的坐标作业1.如图,已知抛物线y =x 2-1与x 轴交于A 、B 两点,与y 轴交于点C . (1)求A 、B 、C 三点的坐标.(2)过点A 作AP ∥CB 交抛物线于点P ,求四边形ACBP 的面积.(3)在x 轴上方的抛物线上是否存在一点M ,过M 作MG ⊥x 轴于点G ,使以A 、M 、G 三点为顶点的三角形与△PCA 相似?若存在,请求出M 点的坐标;否则,请说明理由.2.如图,已知抛物线y =43x 2+bx +c 与坐标轴交于A 、B 、C 三点,A 点的坐标为(-1,0),过点C 的直线y =t43x -3与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH ⊥OB 于点H .若PB =5t ,且0<t <1.(1)填空:点C 的坐标是___________,b =_______,c =_______;(2)求线段QH 的长(用含t 的式子表示);(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似?若存在,求出所有t3.已知,如图1,过点B (0,-1)作平行于x 轴的直线l ,抛物线y =41x2上的两点A 、B 的横坐标分别为-1和4,直线AB 交y 轴于点F ,过点A 、B 分别作直线l 的垂线,垂足分别为点C 、D ,连接CF 、DF .(1)求点A 、B 、F 的坐标;(2)求证:CF ⊥DF ; (3)点P 是抛物线y =41x 2对称轴右侧图象上的一动点,过点P 作PQ ⊥OP 交x 轴于点Q ,是否存在点P 使得△OPQ 与△CDF 相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.(备用图)(图1)。

(完整版)二次函数和动点(带详细答案)

(完整版)二次函数和动点(带详细答案)

二次函数和动点综合题型一.解答题(共30小题)1.(2015•滨州模拟)如图所示,在平面直角坐标系中,以点M(2,3)为圆心,5为半径的圆交x轴于A,B两点,过点M作x轴的垂线,垂足为D;过点B作⊙M的切线,与直线MD交于N点.(1)求点B、点N的坐标以及直线BN的解析式;(2)求过A、N、B、三点(对称轴与y轴平行)的抛物线的解析式;(3)设(2)中的抛物线与y轴交于点P,以点D,B,P三点为顶点作平行四边形,请你求出第四个顶点Q的坐标,并判断Q是否在(2)中的抛物线上.2.(2015•湖州模拟)如图①,Rt△ABC中,∠B=90°∠CAB=30°,AC⊥x轴.它的顶点A的坐标为(10,0),顶点B的坐标为,点P从点A出发,沿A→B→C的方向匀速运动,同时点Q从点D(0,2)出发,沿y轴正方向以相同速度运动,当点P到达点C时,两点同时停止运动,设运动的时间为t秒.(1)求∠BAO的度数.(直接写出结果)(2)当点P在AB上运动时,△OPQ的面积S与时间t(秒)之间的函数图象为抛物线的一部分(如图②),求点P的运动速度.(3)求题(2)中面积S与时间之间的函数关系式,及面积S取最大值时点P的坐标.(4)如果点P,Q保持题(2)中的速度不变,当t取何值时,PO=PQ,请说明理由.3.(2015•贵港一模)如图,二次函数的图象经过点A(4,0),B(﹣4,﹣4),且与y轴交于点C.(1)试求此二次函数的解析式;(2)试证明:∠BAO=∠CAO(其中O是原点);(3)若P是线段AB上的一个动点(不与A、B重合),过P作y轴的平行线,分别交此二次函数图象及x轴于Q、H两点,试问:是否存在这样的点P,使PH=2QH?若存在,请求出点P的坐标;若不存在,请说明理由.4.(2015•深圳模拟)已知正方形OABC中,O为坐标原点,点A在y轴的正半轴上,点C在x轴的正半轴上,点B(4,4).二次函数y=﹣x2+bx+c的图象经过点A、B.点P(t,0)是x轴上一动点,连接AP.(1)求此二次函数的解析式;(2)如图①,过点P作AP的垂线与线段BC交于点G,当点P在线段OC(点P不与点C、O重合)上运动至何处时,线段GC的长有最大值,求出这个最大值;(3)如图②,过点O作AP的垂线与直线BC交于点D,二次函数y=﹣x2+bx+c的图象上是否存在点Q,使得以P、C、Q、D为顶点的四边形是以PC为边的平行四边形?若存在,求出t的值;若不存在,请说明理由.5.(2014•泰安)二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).(1)求二次函数的表达式;。

(word完整版)初中数学二次函数动点问题

(word完整版)初中数学二次函数动点问题

函数性问题专题—动点问题函数及其图象是初中数学中的主要内容之一,也是初中数学与高中数学相联系的纽带.它与代数、几何、三角函数等知识有着密切联系,中考命题中既重点考查函数及其图象的有关基础知识,同时以函数为背景的综合性问题也是命题热点之一,多数省市作压轴题.因此,在中考复习中,关注这一热点显得十分重要.以函数为背景的综合性问题往往都可归结为动点性问题,我们把它归纳为以下七种题型(附例题)一、因动点而产生的面积问题例1:如图10,已知抛物线P:y=ax2+bx+c(a≠0) 与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线P上部分点的横坐标对应的纵坐标如下:x …-3 -2 1 2 …y …-52-4 -520 …(1) 求A、B、C三点的坐标;(2) 若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;(3) 当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=k·DF,若点M不在抛物线P上,求k的取值范围.若因为时间不够等方面的原因,经过探索、思考仍无法圆满解答本题,请不要轻易放弃,试试将上述(2)、(3)小题换为下列问题解答(已知条件及第(1)小题与上相同,完全正确解答只能得到5分):(2) 若点D的坐标为(1,0),求矩形DEFG的面积.例2:如图1,已知直线12y x=-与抛物线2164y x=-+交于A B,两点.(1)求A B,两点的坐标;(2)求线段AB的垂直平分线的解析式;(3)如图2,取与线段AB等长的一根橡皮筋,端点分别固定在A B,两处.用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P将与A B,构成无数个三角形,这些三角求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由.yxOyxOPA图2图1BBA图10例3:如图1,矩形ODEF 的一边落在矩形ABCO 的一边上,并且矩形ODE F ∽矩形ABCO ,其相似比为1 : 4,矩形ABCO 的边AB=4,BC=43.(1)求矩形ODEF 的面积; (2)将图l 中的矩形ODEF 绕点O 逆时针旋转 900,若旋转过程中OF 与OA 的夹角(图2中的∠FOA )的正切的值为x ,两个矩形重叠部分的面积为y ,求 y 与 x 的函数关系式;(3)将图1中的矩形ODEF 绕点O 逆时针旋转一周,连结EC 、EA ,△ACE 的面积是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,请说明理由。

二次函数动点问题典型例题

二次函数动点问题典型例题

二次函数动点问题典型例题等腰三角形问题1.如图,在平面直角坐标系中,已知抛物线y=ax2+bx的对称轴为x=1,且经过点A (2, 1), 点P是抛物线上的动点,P的横坐标为m (0<m<2),过点P作PB±x轴,垂足为B, PB 交OA于点C,点O关于直线PB的对称点为D,连接CD, AD,过点A作AE±x轴,垂足为E.(1)求抛物线的解析式;(2)填空:①用含m的式子表示点C, D的坐标:C (, ),D (, );②当m=一时,^ACD的周长最小;(3)若4ACD为等腰三角形,求出所有符合条件的点P的坐标.面积最大1.如图,抛物线丫=-3x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点口,已知A (- 1, 0), C (0, 2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使4PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.2 .已知:如图,直线y=3x+3与x 轴交于C 点,与y 轴交于A 点,B 点在x 轴上,△OAB 是 等腰直角三角形.(1)求过A 、B 、C 三点的抛物线的解析式; (2)若直线CDMB 交抛物线于D 点,求D 点的坐标;(3)若P 点是抛物线上的动点,且在第一象限,那么0PAB 是否有最大面积?若有,求出此时P 点的坐标和^PAB 的最大面积;若没有,请说明理由.3 . (2015•黔西南州)(第26题)如图,在平面直角坐标系中,平行四边形ABOC 如图放置, 将此平行四边形绕点O 顺时针旋转90°得到平行四边形A'B'OC'.抛物线y= - x 2+2x+3经过点A 、C 、A'三点.求平行四边形ABOC 和平行四边形A‘B‘OC'重叠部分400口的面积;(1) 求A 、A’、C 三点的坐标;(2) (3)点M是第一象限内抛物线上的一动点,问点M在何处时,^AMA’的面积最大?最大最短路径1.(2014绵阳)3口图,抛物线y=ax2+bx+c (a/0)的图象过点M (-2, \月),顶点坐标为N (-1, W),且与x轴交于A、B两点,与y轴交于C点.(1)求抛物线的解析式;(2)点P为抛物线对称轴上的动点,当△PBC为等腰三角形时,求点P的坐标;(3)在直线AC上是否存在一点Q,使4QBM的周长最小?若存在,求出Q点坐标;若不存在,请说明理由.2.(2014•泸州)如图,已知一次函数y1=1x+b的图象l与二次函数y2=-x2+mx+b的图象C' 都经过点B (0, 1)和点C,且图象C’过点A (2-.:亏0).(1)求二次函数的最大值;(2)设使y2>y1成立的x取值的所有整数和为s,若s是关于x的方程(1+■上)篁上邑=0的根,求a的值;_(3)若点F、G在图象C'上,长度为巧的线段DE在线段BC上移动,EF与DG始终平行于y 面积是多少?并写出此时M的坐标.轴,当四边形DEFG的面积最大时,在x轴上求点P,使PD+PE最小,求出点P的坐标.平行四边形1.(2015•贵州省贵阳,第24题9分)如图,经过点C (0, -4)的抛物线y=ax2+bx+c (aN0) 与x轴相交于A (-2, 0), B两点.(1) a > 0, b2-4ac > 0 (填“>”或“<”);(2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;(3)在(2)的条件下,连接AC, E是抛物线上一动点,过点E作AC的平行线交x轴于点F.是否存在这样的点E,使得以A, C, E, F为顶点所组成的四边形是平行四边形?若存在,2.(14分)(2015•葫芦岛)(第26题)如图,直线y=-^ x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+^x+c经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一动点,当^BEC面积最大时,请求出点E的坐标和4BEC面积的最大值?(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.管用图3.(2015•辽宁抚顺)(第26题,14分))已知,△ABC在平面直角坐标系中的位置如图①所示,A点坐标为(-6, 0), B点坐标为(4, 0),点D为BC的中点,点E为线段AB上一动点,连接DE经过点A、B、C三点的抛物线的解析式为y=ax2+bx+8.(1)求抛物线的解析式;(2)如图①,将4BDE以DE为轴翻折,点B的对称点为点G,当点G恰好落在抛物线的对称轴上时,求G点的坐标;(3)如图②,当点E在线段AB上运动时,抛物线y=ax2+bx+8的对称轴上是否存在点F,使得以C、D、E、F为顶点的四边形为平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.图①图②4.(2015•梧州,第26题12分)如图,抛物线y=ax2+bx+2与坐标轴交于A、B、C三点,其中B (4, 0)、C (- 2, 0),连接AB、AC,在第一象限内的抛物线上有一动点D,过D作DE±x轴,垂足为E,交AB于点F.(1)求此抛物线的解析式;(2)在DE上作点G,使G点与D点关于F点对称,以G为圆心,GD为半径作圆,当。

二次函数典型例题——动点

二次函数典型例题——动点

二次函数典型例题——动点在平面直角坐标系xOy 中,抛物线22y mx nx =+-与直线y =x -1交于A (-1,a )、B (b ,0)两点,与y 轴交于点C .(1)求抛物线的解析式; (2)求△ABC 的面积;(3)点(t,0)P 是x 轴上的一个动点.过点P 作x 轴的垂线交直线AB 于点M ,交抛物线于点N .当点M 位于点N 的上方时,直接写出t 的取值范围.C B AyxO解:(1)∵ 抛物线过原点和A (23,0-),∴ 抛物线对称轴为3-=x . ∴ B (3,3-).设抛物线的解析式为2+33y a x =+().∵ 抛物线经过(0, 0), ∴ 0=3a +3. ∴ a =-1.∴3)3(2++-=x y ……………………………………………1分 =.322x x --∵ C 为AB 的中点, A (23,0-)、B (3,3-), 可得 C (333,22-) . 可得直线OC 的解析式为x y 33-=. ……………………………………………2分 (2)连结OB . 依题意点E 为抛物线x x y 322--=与直线x y 33-=的交点(点E 与点O 不重合).由23323,y x y x x ⎧=-⎪⎨⎪=--⎩, 解得 53,35,3x y ⎧=-⎪⎪⎨⎪=⎪⎩或0,0.x y =⎧⎨=⎩(不合题意,舍).∴ E (535,33-) …………………………3分 过E 作EF ⊥y 轴于F , 可得OF =53,∵ OE =DE ,EF ⊥y 轴, ∴ OF=DF . ∴ DO =2OF =103. ∴ D (0,10)3. ………………………………………………………………………4分 ∴ BD =2210233733-+-=()(). ……………………………………………5分 (3)E 点的坐标为(333,22-)或(31,22-). ……………………………………………8分已知:抛物线1C :622-+-=bx x y 与抛物线2C 关于原点对称,抛物线1C 与x 轴分别交于A (1,0),B (m,0),顶点为M ,抛物线2C 与x 轴分别交于C ,D 两点(点C 在点D 的左侧),顶点为N . (1)求m 的值;(2)求抛物线2C 的解析式;(3)若抛物线1C 与抛物线2C 同时以每秒1个单位的速度沿x 轴方向分别向左、向右运动,此时记A ,B ,C ,D ,M ,N 在某一时刻的新位置分别为'''''',,,,,N M D C B A ,当点'A 与点'D 重合时运动停止.在运动过程中,四边形''''N C M B 能否形成矩形?若能,求出此时运动时间t (秒)的值,若不能,说明理由.(1)∵抛物线622-+-=bx x y 过点 A (1,0)∴620-+-=b …………………………………1分∴8=b∴抛物线1C 的解析式为 2)2(268222+--=-+-=x x x y ∴)2,2(M令0=y ,则06822=-+-x x 解这个方程,得3,121==x x∴3=m ……………………………………2分F CD E B AyxO(2)由题意,抛物线2C 过点C (-3,0),D (-1,0),N (-2,-2)∴抛物线2C 的解析式为 6822)2(222++=-+=x x x y …………3分 (3)过点'M 作H M '⊥x 轴于点H , …………………………………4分 若四边形''''N C M B 是矩形,则''OM OB =由题意,设'M )2,2(t -,'B )0,3(t -,则H )0,2(t - ………………5分 在Rt △OH M '中,2222'''OB OM H M OH ==+∴222)3(2)2(-=+-t t …………………………………6分 解得21=t ∴21=t 秒时,四边形''''N C M B 是矩形.………………………………7分如图,在矩形ABCO 中,AO=3,tan ∠ACB=34,以O 为坐标原点,OC 为x 轴,OA 为y 轴建立平面直角坐标系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数动点问题典型例题
一、等腰三角形问题
1. 如图,在平面直角坐标系中,已知抛物线y=ax2+bx的对称轴为x=,且经过点A(2,1),点P是抛物线上的动点,P的横坐标为m(0<m<2),过点P作PB⊥x轴,垂足为B,PB 交OA于点C,点O关于直线PB的对称点为D,连接CD,AD,过点A作AE⊥x轴,垂足为E.
(1)求抛物线的解析式;
(2)填空:
①用含m的式子表示点C,D的坐标:
C(,),D(,);
②当m= 时,△ACD的周长最小;
(3)若△ACD为等腰三角形,求出所有符合条件的点P的坐标.
二、面积最大
1. 如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).
(1)求抛物线的表达式;
(2)在抛物线的对称轴上是否存有点P,使△PCD是以CD为腰的等腰三角形?如果存有,直接写出P点的坐标;如果不存有,请说明理由;
(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.
2.已知:如图,直线y=3x+3与x轴交于C点,与y轴交于A点,B点在x轴上,△OAB是等腰直角三角形.
(1)求过A、B、C三点的抛物线的解析式;
(2)若直线CD∥AB交抛物线于D点,求D点的坐标;
(3)若P点是抛物线上的动点,且在第一象限,那么△PAB是否有最大面积?若有,求出此时P点的坐标和△PAB的最大面积;若没有,请说明理由.。

相关文档
最新文档