变频器改造与伺服改造的优缺点比较
伺服电机与变频器的区别

伺服电机与变频器的区别
1、伺服和变频其实就是多了一个位置控制环,如果你只做速度控制,控制原理其实和变频器是一样的。
所谓速度精度只是取决于电机的编码器线数和伺服(或变频)的控制算法上,相当于不同的工程师用PLC编相同的项目程序一样,不同的程序其效果也是不同的
2、伺服电机因为考虑的精确的位置控制,所以伺服电机比变频电机的配置相对都比较高,比如编码器线数等,因为伺服的速度精度会高,但是如果高端变频器去控制高性能的伺服电机,速度精度也会很高。
你如果注意的话,西门子的高端伺服驱动S120其实是叫变频器的。
伺服电机和变频器加普通交流电机的工作原理基本相同,都是属于交直交电压型电机驱动器,只是技术指标要求差别大,所以在电机和驱动器设计方面有很大的差别。
在伺服系统中控制机械元件运转的发动机.是一种补助马达间接变速装置。
伺服电机,可使控制速度,位置精度非常准确。
将电压信号转化为转矩和转速以驱动控制对象。
流电机运行时静止不动的部分称为定子,定子的主要作用是产生磁场,由机座、主磁极、换向极、端盖、轴承和电刷装置等组成。
变频器与伺服驱动的应用比较

变频器与伺服驱动的应用比较在各种工业生产和自动化制造业中,变频器和伺服驱动器都是非常重要的电动机控制设备。
它们可以通过改变电动机的输入电压、频率以及控制电动机的转矩来实现精确、稳定的电动机控制。
虽然它们在某些应用场合下可以互相替代,但两者还是有很大的区别。
本文将探讨变频器和伺服驱动器的应用比较、各自的特点和优缺点,以及如何选择更适合自己的电动机控制设备。
1. 什么是变频器和伺服驱动器?变频器是一种用于调节电动机转速的电器设备。
它可以通过改变电源频率和电压的方式来控制电动机的转速和转矩,并且可以实现多种运动模式和控制模式。
变频器广泛应用于一些需要变速操作的场合,例如风扇、水泵、压缩机、输送带等。
伺服驱动器是一种用于精密控制电动机运动的设备。
伺服驱动器可以通过感知输出信号与设置值之间误差的大小,通过反馈控制来保证电动机的准确位置、速度和力矩。
伺服驱动器广泛应用于要求高精度位置、速度和力矩控制的场合,例如成套机器、机床、自动化生产线等。
2. 变频器和伺服驱动器的应用比较变频器和伺服驱动器作为电动机控制领域中的两个比较重要的设备,它们有着广泛的应用领域和优缺点。
2.1 变频器的应用比较变频器具有以下优点:(1)可以在一定程度上调整电动机的转速和转矩;(2)能够实现多种运动模式和控制模式;(3)具有稳定性和可靠性。
变频器的缺点主要是:(1)没有伺服驱动器精确,控制精度较低;(2)控制速度和力矩时,能量利用率不高。
所以,在一些精密控制的领域,如成型机器和机床,变频器并不是最佳的选择。
2.2 伺服驱动器的应用比较伺服驱动器具有以下优点:(1)具有更高的控制精度和位置精度;(2)控制速度和力矩时能量利用率高;(3)较小的定位误差,更适合精密位置控制。
伺服驱动器的缺点主要是:(1)价格较贵;(2)在某些低速高力矩的控制方式下需要较高的功率;(3)对电动机等其他系统的要求比较高。
3. 如何选择适合自己的电动机控制设备3.1 精度的需求如果要求的控制精度比较高,那么最好选择伺服驱动器。
变频器和伺服驱动的区别?

变频器和伺服驱动的区别?伺服系统:1、伺服驱动器在发展了变频技术的前提下,在驱动器内部的电流环,速度环和位置环(变频器没有该环)都进行了比一般变频更精确的控制技术和算法运算,在功能上也比传统的伺服强大很多,主要的一点可以进行精确的位置控制。
通过上位控制器发送的脉冲序列来控制速度和位置(当然也有些伺服内部集成了控制单元或通过总线通讯的方式直接将位置和速度等参数设定在驱动器里),驱动器内部的算法和更快更精确的计算以及性能更优良的电子器件使之更优越于变频器。
2、电机方面伺服电机的材料、结构和加工工艺要远远高于变频器驱动的交流电机(一般交流电机或恒力矩、恒功率等各类变频电机),也就是说当驱动器输出电流、电压、频率变化很快的电源时,伺服电机就能根据电源变化产生响应的动作变化,响应特性和抗过载能力远远高于变频器驱动的交流电机,电机方面的严重差异也是两者性能不同的根本。
就是说不是变频器输出不了变化那么快的电源信号,而是电机本身就反应不了,所以在变频的内部算法设定时为了保护电机做了相应的过载设定。
当然即使不设定变频器的输出能力还是有限的,有些性能优良的变频器就可以直接驱动伺服电机!伺服电机与变频电机的不同之处伺服是一个闭环控制系统,而变频器通常工作于开环控制,所以无论从速度还是精度上,变频器都无法和伺服相比。
变频只是伺服的一个部分,伺服是在变频的基础上进行闭环的精确控制从而达到更理想的效果。
变频器系统:变频器只是一个V-F转换,用于控制电机的一个器件。
而伺服是一个闭环的系统。
简单说变频器主要控制电机的转速。
伺服是既可以控制速度,又可以控制位置和移动量,力距,定位,从而达到精确、稳定,不会因变频而产生死机。
伺服不仅能达到以上的功能,而且产生一个闭环的系统,从而避免变频器产生的辐射。
变频器在变频过程中还会产生大量热量,造成温度的提高与声音,而伺服系统是不会产生这样的后果。
所以说伺服系统的达到的效果是变频电机无法比拟的。
变频器和伺服电机对比

伺服的基本概念是准确、精确、快速定位。
变频是伺服控制的一个必须的内部环节,伺服驱动器中同样存在变频(要进行无级调速)。
但伺服将电流环速度环或者位置环都闭合进行控制,这是很大的区别。
除此外,伺服电机的构造与普通电机是有区别的,要满足快速响应和准确定位。
现在市面上流通的交流伺服电机多为永磁同步交流伺服,但这种电机受工艺限制,很难做到很大的功率,十几KW以上的同步伺服价格及其昂贵,这样在现场应用允许的情况下多采用交流异步伺服,这时很多驱动器就是高端变频器,带编码器反馈闭环控制。
所谓伺服就是要满足准确、精确、快速定位,只要满足就不存在伺服变频之争。
一、两者的共同点:交流伺服的技术本身就是借鉴并应用了变频的技术,在直流电机的伺服控制的基础上通过变频的PWM方式模仿直流电机的控制方式来实现的,也就是说交流伺服电机必然有变频的这一环节:变频就是将工频的50、60HZ的交流电先整流成直流电,然后通过可控制门极的各类晶体管(IGBT,IGCT等)通过载波频率和PWM调节逆变为频率可调的波形类似于正余弦的脉动电,由于频率可调,所以交流电机的速度就可调了(n=60f/p ,n转速,f 频率,p极对数)二、谈谈变频器:简单的变频器只能调节交流电机的速度,这时可以开环也可以闭环要视控制方式和变频器而定,这就是传统意义上的V/F控制方式。
现在很多的变频已经通过数学模型的建立,将交流电机的定子磁场UVW3相转化为可以控制电机转速和转矩的两个电流的分量,现在大多数能进行力矩控制的著名品牌的变频器都是采用这样方式控制力矩,UVW每相的输出要加霍尔效应的电流检测装置,采样反馈后构成闭环负反馈的电流环的PID调节;ABB的变频又提出和这样方式不同的直接转矩控制技术,具体请查阅有关资料。
这样可以既控制电机的速度也可控制电机的力矩,而且速度的控制精度优于v/f控制,编码器反馈也可加可不加,加的时候控制精度和响应特性要好很多。
三、谈谈伺服:驱动器方面:伺服驱动器在发展了变频技术的前提下,在驱动器内部的电流环,速度环和位置环(变频器没有该环)都进行了比一般变频更精确的控制技术和算法运算,在功能上也比传统的变频强大很多,主要的一点可以进行精确的位置控制。
伺服器与变频器的区别

伺服的基本概念是准确、精确、快速定位。
变频是伺服控制的一个必须的内部环节,伺服驱动器中同样存在变频(要进行无级调速)。
但伺服将电流环速度环或者位置环都闭合进行控制,这是很大的区别。
除此外,伺服电机的构造与普通电机是有区别的,要满足快速响应和准确定位。
现在市面上流通的交流伺服电机多为永磁同步交流伺服,但这种电机受工艺限制,很难做到很大的功率,十几KW以上的同步伺服价格及其昂贵,这样在现场应用允许的情况下多采用交流异步伺服,这时很多驱动器就是高端变频器,带编码器反馈闭环控制。
所谓伺服就是要满足准确、精确、快速定位,只要满足就不存在伺服变频之争。
一、两者的共同点:交流伺服的技术本身就是借鉴并应用了变频的技术,在直流电机的伺服控制的基础上通过变频的PWM方式模仿直流电机的控制方式来实现的,也就是说交流伺服电机必然有变频的这一环节:变频就是将工频的50、60HZ的交流电先整流成直流电,然后通过可控制门极的各类晶体管(IGBT,IGCT等)通过载波频率和PWM调节逆变为频率可调的波形类似于正余弦的脉动电,由于频率可调,所以交流电机的速度就可调了(n=60f/p ,n转速,f频率,p极对数)二、谈谈变频器:简单的变频器只能调节交流电机的速度,这时可以开环也可以闭环要视控制方式和变频器而定,这就是传统意义上的V/F控制方式。
现在很多的变频已经通过数学模型的建立,将交流电机的定子磁场UVW3相转化为可以控制电机转速和转矩的两个电流的分量,现在大多数能进行力矩控制的著名品牌的变频器都是采用这样方式控制力矩,UVW每相的输出要加霍尔效应的电流检测装置,采样反馈后构成闭环负反馈的电流环的PID调节;ABB的变频又提出和这样方式不同的直接转矩控制技术,具体请查阅有关资料。
这样可以既控制电机的速度也可控制电机的力矩,而且速度的控制精度优于v/f控制,编码器反馈也可加可不加,加的时候控制精度和响应特性要好很多。
三、谈谈伺服:驱动器方面:伺服驱动器在发展了变频技术的前提下,在驱动器内部的电流环,速度环和位置环(变频器没有该环)都进行了比一般变频更精确的控制技术和算法运算,在功能上也比传统的变频强大很多,主要的一点可以进行精确的位置控制。
伺服电机与变频电机的区别

伺服电机与变频电机的区别在工业自动化领域中,伺服电机和变频电机都广泛应用于现代机械设备中,它们的作用都是在控制电机运行过程中保持稳定并达到精确控制的目的。
虽然在表面上它们看起来很相似,但它们在使用和功能方面有着很大的区别。
1. 定义与基本原理1.1 伺服电机伺服电机是一种主要应用于精度检测、定位和运动控制等领域的理想电机,它具有能够实现高速、高精度、高可靠性的特点。
伺服电机的工作原理是通过电机反馈技术,能够控制电机的角速度和位置精度,实现电机的闭环控制。
1.2 变频电机变频电机是由变频器和电机组成的一种电气传动系统,它的作用是将输入的电源频率和电压转换为可控的变频电压和变频电流,从而实现电机的运动控制。
其基本原理是通过改变电压频率和幅值的方式来改变电机转速和扭矩。
2. 控制性能2.1 伺服电机伺服电机在精度控制方面表现优异。
它可以通过对速度、角度和位置进行精确的测量,并根据反馈信号实现高精度闭环控制。
同时,伺服电机具有快速响应的特点,能够在短时间内实现实时响应和稳定性控制。
2.2 变频电机变频电机在控制性能方面表现出色。
它可以实现精准的速度和扭矩控制,并可通过调整电压和频率来改变电机的运行状态。
同时,变频电机还具有抗干扰、低噪音和高效能的特点。
3. 应用场景3.1 伺服电机伺服电机主要应用于需要高精确度运动的领域,例如CNC数控机床、机器人、半导体、电子应用等,还可以用于需要实现精确位置控制和定位功能的自动化系统。
3.2 变频电机变频电机广泛应用于工业生产和制造领域,例如风机、泵、压缩机、输送带等。
它可以实现精准的速度和扭矩调节,适用于各种需要不同电机速度的设备和场合。
4. 总结伺服电机和变频电机在现代机械行业中都扮演着重要角色,它们分别具有独特的控制性能和应用场景。
伺服电机的高精度、高速度和快速响应等特点适合需要实现高精度控制和定位任务的场合。
而变频电机以其高效能、低噪音和精准控制性能广泛应用于工业自动控制和节能领域。
变频器与伺服驱动器的作用

电动机使用变频器的作用就是为了调速,并降低启动电流。为了产生可变的电压和频率,该设备首先要把电源的交流电变换为直流电(DC),这个过程叫整流。把直流电(DC)变换为交流电(AC)的装置,其科学术语为“inverter”(逆变器)。一般逆变器是把直流电源逆变为一定的固定频率和一定电压的逆变电源。对于逆变为频率可调、电压可调的逆变器我们称为变频器。变频器输出的波形是模拟正弦波,主要是用在三相异步电动机调速用,又叫变频调速器。对于主要用在仪器仪表的检测设备中的波形要求较高的可变频率逆变器,要对波形进行整理,可以输出标准的正弦波,叫变频电源。一般变频电源是变频器价格的15--20倍。由于变频器设备中产生变化的电压或频率的主要装置叫“inverter”,故该产品本身就被命名为“inverter”,即:变频器。
3.软启动节能
电机硬启动对电网造成严重的冲击,而且还会对电网容量要求过高,启动时产生的大电流和震动时对挡板和阀门的损害极大,对设备、管路的使用寿命极为不利。而使用变频节能装置后,利用变频器的软启动功能将使启动电流从零开始,最大值也不超过额定电流,减轻了对电网的冲击和对供电容量的要求,延长了设备和阀门的使用寿命。节省了设备的维护费用。
--------------------------
变频器的作用功能:
变频器的作用主要是调整电机的功率、实现电机的变速运行,以达到省电的目的。同时变频器的作用可以降低电力线路电压波动,因为电压下降将会导致同一供电网络中的电压敏感设备故障跳闸或工作异常。采用了变频器后,变频器的作用能在零频零压时逐步启动,这样能最大程度的消除电压下降,发挥更大的优势。
1.变频节能
变频器节能主要表现在风机、水泵的应用上。为了保证生产的可靠性,各种生产机械在设计配用动力驱动时,都留有一定的富余量。当电机不能在满负荷下运行时,除达到动力驱动要求外,多余的力矩增加了有功功率的消耗,造成电能的浪费。风机、泵类等设备传统的调速方法是通过调节入口或出口的挡板、阀门开度来调节给风量和给水量,其输入功率大,且大量的能源消耗在挡板、阀门的截流过程中。当使用变频调速时,如果流量要求减小,通过降低泵或风机的转速即可满足要求。
伺服和变频的区别

伺服和变频的区别伺服与变频的一个重要区别是:变频可以无编码器,伺服则必须有编码器,作电子换向用,交流伺服的技术本身就是借鉴并应用了变频的技术,在直流电机的伺服控制的基础上通过变频的PWM方式模仿直流电机的控制方式来实现的,也就是说交流伺服电机必然有变频的这一环节:变频就是将工频的50、60HZ的交流电先整流成直流电,然后通过可控制门极的各类晶体管(IGBT,IGCT等)通过载波频率和PWM调节逆变为频率可调的波形类似于正余弦的脉动电,由于频率可调,所以交流电机的速度就可调了(n=60f/2p ,n转速,f频率,p极对数)谈谈变频器简单的变频器只能调节交流电机的速度,这时可以开环也可以闭环要视控制方式和变频器而定,这就是传统意义上的V/F控制方式。
现在很多的变频已经通过数学模型的建立,将交流电机的定子磁场UVW3相转化为可以控制电机转速和转矩的两个电流的分量,现在大多数能进行力矩控制的著名品牌的变频器都是采用这样方式控制力矩,UVW每相的输出要加摩尔效应的电流检测装置,采样反馈后构成闭环负反馈的电流环的PID调节;ABB的变频又提出和这样方式不同的直接转矩控制技术,具体请查阅有关资料。
这样可以既控制电机的速度也可控制电机的力矩,而且速度的控制精度优于v/f控制,编码器反馈也可加可不加,加的时候控制精度和响应特性要好很多。
谈谈伺服驱动器方面:伺服驱动器在发展了变频技术的前提下,在驱动器内部的电流环,速度环和位置环(变频器没有该环)都进行了比一般变频更精确的控制技术和算法运算,在功能上也比传统的伺服强大很多,主要的一点可以进行精确的位置控制。
通过上位控制器发送的脉冲序列来控制速度和位置(当然也有些伺服内部集成了控制单元或通过总线通讯的方式直接将位置和速度等参数设定在驱动器里),驱动器内部的算法和更快更精确的计算以及性能更优良的电子器件使之更优越于变频器。
电机方面:伺服电机的材料、结构和加工工艺要远远高于变频器驱动的交流电机(一般交流电机或恒力矩、恒功率等各类变频电机),也就是说当驱动器输出电流、电压、频率变化很快的电源时,伺服电机就能根据电源变化产生响应的动作变化,响应特性和抗过载能力远远高于变频器驱动的交流电机,电机方面的严重差异也是两者性能不同的根本。
变频器与伺服的区别

伺服与变频器有什么区别变频器和伺服驱动器作为传动系统中应用最广泛的驱动设备,两者稳稳地占据着驱动领域的绝大部分地盘。
谈起两者的区别,很多人只知道变频器常用于低端机械设备,而伺服驱动器则多用于高端机械设备,这是一种比较笼统的说法,今天我们来认知一下两者的异同~~~一、两者的定义变频器是利用电力半导体器件的通断作用将工频电源变换成另一频率的电能控制装置,能实现对交流异步电机的软启动、变频调速、提高运转精度、改变功率因素等功能。
变频器可驱动变频电机、普通交流电机,主要是充当调节电机转速的角色。
变频器通常由整流单元、中间电路、逆变器和控制器四部分组成。
伺服系统是使物体的位置、方位、状态等输出被控量能够跟随输入目标(或给定值)的任意变化的自动控制系统。
主要任务是按控制命令的要求、对功率进行放大、变换与调控等处理,使驱动装置输出的力矩、速度和位置控制的非常灵活方便。
伺服系统是用来精确地跟随或复现某个过程的反馈控制系统。
又称随动系统。
在很多情况下,伺服系统专指被控制量(系统的输出量)是机械位移或位移速度、加速度的反馈控制系统,其作用是使输出的机械位移(或转角)准确地跟踪输入的位移(或转角)。
伺服系统的结构组成和其他形式的反馈控制系统没有原则上的区别。
伺服系统按所用驱动元件的类型可分为机电伺服系统、液压伺服系统和气动伺服系统。
最基本的伺服系统包括伺服执行元件(电机、液压缸)、反馈元件和伺服驱动器。
若想让伺服系统运转顺利还需要一个上位机构,PLC、以及专门的运动控制卡,工控机+PCI卡,以便给伺服驱动器发送指令。
二、两者的工作原理变频器的调速原理主要受制于异步电动机的转速n、异步电动机的频率f、电动机转差率s、电动机极对数p这四个因素。
转速n与频率f成正比,只要改变频率f即可改变电动机的转速,当频率f 在0-50Hz的范围内变化时,电动机转速调节范围非常宽。
变频调速就是通过改变电动机电源频率实现速度调节的。
主要采用交—直—交方式,先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。
伺服改造和变频改造的区别

伺服改造和变频改造的区别目前主要节能方式传统、变频、伺服式电液节电比较由于交流伺服具有杰出的速度、力矩控制特性,使伺服式油电混合节能注塑机在不同工作阶段都具备了变频系统所不具备的崭新特点,双色注塑机节能改造方案就是注塑机伺服改造的节能方案之一,具体对比简述如下表莱普乐注塑机伺服改造合模、锁模阶段:动作要求:合模动作尽可能快速动作,在模具到位时立即停止,防止模具到位时撞模,并且在模具移动时如出现异物卡模时及时停止移动。
机型动作的实现能量消耗分析传统油压机采用调节阀门,部分流量进入开合模油缸推动锁模动作,其余流量经节流阀回流异步电机带动油泵以亚同步速转动,合模动作消耗部分流量,回流部分能量为浪费的能量变频式电液混合节能型变频器调节油泵的速度,油泵电机以适当的速度供油,流量回流很少锁模阶段油压较大而需要流量较少,但变频系统较难在低速下(10-20Hz以下)稳定运行,此阶段势必需要加大溢流,带来能量损耗。
伺服式电液混合节能型伺服器调节油泵速度,供油速度等于推动合模油缸所需要的油量,完全没有溢流,并且可以精确控制合模动作的行程距离,在到位后自动实现锁模。
在合模的过程中,伺服系统工作于带力矩限制的速度闭环控制模式,如果出现异物卡住模具导致阻力非正常增加时,电机会自动停止运行合模移动中电机效率可达85%以上,锁模阶段电机速度接近零速而最大出力不减,功率消耗最小。
射胶阶段:动作要求:匀速射出,速度精度高,射出量精确控制,射满模腔后立即转为压力控制进入保压过程机型动作的实现能量消耗分析传统油压机采用调节阀门,部分流量进入射胶油缸推动射胶动作,其余流量经节流阀回流异步电机带动油泵以亚同步速转动,射胶动作消耗部分流量,回流部分能量为浪费的能量。
由于射胶动作对压力和速度都有要求,因而电机负载较重,从电网取用功率很大,能量损失也比较大。
变频式电液混合节能型变频器调节油泵的速度,采用多段速度控制,在不同的阶段,油泵电机以适当的速度供油,高速射胶阶段需要流量较大而且油压较大,溢流压力大流量小。
变频器与伺服的区别

伺服与变频器有什么区别变频器和伺服驱动器作为传动系统中应用最广泛的驱动设备,两者稳稳地占据着驱动领域的绝大部分地盘。
谈起两者的区别,很多人只知道变频器常用于低端机械设备,而伺服驱动器则多用于高端机械设备,这是一种比较笼统的说法,今天我们来认知一下两者的异同~~~一、两者的定义变频器是利用电力半导体器件的通断作用将工频电源变换成另一频率的电能控制装置,能实现对交流异步电机的软启动、变频调速、提高运转精度、改变功率因素等功能。
变频器可驱动变频电机、普通交流电机,主要是充当调节电机转速的角色。
变频器通常由整流单元、中间电路、逆变器和控制器四部分组成。
伺服系统是使物体的位置、方位、状态等输出被控量能够跟随输入目标(或给定值)的任意变化的自动控制系统。
主要任务是按控制命令的要求、对功率进行放大、变换与调控等处理,使驱动装置输出的力矩、速度和位置控制的非常灵活方便。
伺服系统是用来精确地跟随或复现某个过程的反馈控制系统。
又称随动系统。
在很多情况下,伺服系统专指被控制量(系统的输出量)是机械位移或位移速度、加速度的反馈控制系统,其作用是使输出的机械位移(或转角)准确地跟踪输入的位移(或转角)。
伺服系统的结构组成和其他形式的反馈控制系统没有原则上的区别。
伺服系统按所用驱动元件的类型可分为机电伺服系统、液压伺服系统和气动伺服系统。
最基本的伺服系统包括伺服执行元件(电机、液压缸)、反馈元件和伺服驱动器。
若想让伺服系统运转顺利还需要一个上位机构,PLC、以及专门的运动控制卡,工控机+PCI卡,以便给伺服驱动器发送指令。
二、两者的工作原理变频器的调速原理主要受制于异步电动机的转速n、异步电动机的频率f、电动机转差率s、电动机极对数p这四个因素。
转速n与频率f成正比,只要改变频率f即可改变电动机的转速,当频率f 在0-50Hz的范围内变化时,电动机转速调节范围非常宽。
变频调速就是通过改变电动机电源频率实现速度调节的。
主要采用交—直—交方式,先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。
变频器改造与伺服改造的优缺点比较

变频器改造与伺服改造的优缺点比较1)电机温升的原因:电机在低速状态下运行,同时散热风扇的转速也降低,达不到散热的效果,所以温度会升高。
2)产品周期变长的原因:变频器是通过频率的改变来改变电机的转速,存在加、减速过程,响应速度慢,所以会使产品周期变长。
3)变频器的使用寿命:根据变频器的结构,变频器内部的元器件主要有电阻、电容、电感、半导体器件,PCB板和冷却风机等等。
PCB板大功率晶体管和二极管很容易由于过压、过流和过热而导致击穿或者烧坏;目前市面上冷却风机轴承最长能使用45000个小时,大概相当于满转速连续使用4.5年。
另外环境湿度太大会降低变频器内部的绝缘引起放电击穿导致PCB板发霉进而发生导线霉断或接插件不良,还会加速铜排和金属结构件氧化,导致主回路或动力端子排接触不良4)安装变频器之后,电机在低于400R/M下运行时,次品率增加:当电机转速在400R/M以下时,电流减小,磁通量减少,转矩减小,所以压力不够,容易出现不良品5)安装变频器之后,噪音增加的原因:由于变频器输出电压是由许多脉冲列组成,存在着高次谐波,这是产生噪音的最直接原因。
伺服电机是在变频器的基础上发展而来,变频器是一种过渡产品伺服是一个闭环控制系统,有反馈,而变频器工作于开环控制,没有反馈(控制器与被控对象间只有顺序作用而无反向联系且控制单方向进行)。
变频只是伺服的一个部分,伺服是在变频的基础上进行闭环的精确控制从而达到更理想的效果。
变频器只是一个V-F转换,用于控制电机的一个器件。
而伺服是一个闭环的系统。
简单说变频器主要控制电机的转速。
伺服是既可以控制速度,又可以控制位置和移动量,力距,定位,从而达到精确、稳定,不会因变频而产生死机。
伺服不仅能达到以上的功能,而且产生一个闭环的系统,从而避免变频器产生的辐射。
变频器在变频过程中还会产生大量热量,造成温度的提高与声音,而伺服系统是不会产生这样的后果。
所以说伺服系统的达到的效果是变频电机无法比拟的。
伺服和变频的区别

刹车时为“断电刹车”产生很大的反电动势(2000V)无法消除;能量冲入到上位控制板中,会造成CPU或I/O元件的损坏。
上位驱动器中已设计了“吸收电器”,故不会反冲入控制板中,保护元器件不会被损坏。
⑹
刹车采用机械抱闸式,故磨损大,寿命短,时间一到必须调整或更换刹车,导致维护成本增加。
电磁式刹车,灵敏反映,几乎免维护、长寿命。
①力矩②速度③位移
根据负载重量,要求的位移及速度,综合的计算出最佳运动曲线。
⑵
当频率小于10%时,输出力不够,产生爬行现象(低速性能不佳);
高速(90%)时,最快速度0.8m/s(不超过)。
低速性能优良,当1%速度时,运行稳定;
当高速99%时,最高线速度可达2m/s,如更换马达及减速机,可达3m/s。
⑶
能耗损失大(0.37kw及0.72kw)
全程满负载输出
变量功率输出,最高速时才达0.4w或0.75w
整体平均能耗为额定功率的一半
⑷
普通减速机结构简单,齿与齿之间间隙较大(背隙)本身存在先天定位偏差大的问题(1mm)
伺服马达专用精密型减速机,背隙在12弧分、
5弧分、3弧分不等,化成直线位移
为0.15mm、0.09mm、0.04mm。
⑺
抗干扰能力差,因为解码器为外置,存在安装误差。解码线接头处容易被外围干扰,造成定位不准。
内置解码器,解释度10000线以上,抗干扰能力强,分辨精度高。
变频刹车马达和伺服马达的本质区别
项目
变频刹车马达
伺服马达
⑴
采用变频器改变频率控制的方式来改变普通马达的转速,外加机械式刹车,靠断电后刹车来停止定位,外加编码器500线分辨率作位移回馈,定位精度较差
采用稀土永线以上的编码器读数。
浅谈变频器技术与伺服控制器技术

浅谈变频器技术技术摘要:运动控制系统的发展变频器是运动控制系统中的功率变换器,运动控制系统是作为机电能量变换器的电气传动技术的发展。
当今的运动控制系统是包含多种学科的技术领域,总的发展趋势是:驱动的交流化,功率变换器的高频化,控制的数字化、智能化和网络化。
因此,变频器作为系统的重要功率变换部件,提供可控的高性能变压变频的交流电源而得到迅猛发展。
1. 引言:经历了20世纪70年代中期的第二次石油危机之后,人们充分认识到了节能工作的重要性,并进一步重视和加强了对交流调速技术的研发工作,随着同时期内电力电子技术的发展,作为交流调速系统中心的变频器技术也得到了显著的发展,并逐渐进人了实用阶段。
虽然发展变频驱动技术最初的目的主要是为了节能,但是随着电力电子技术、微电子技术和控制理论的发展,电力半导体器件和微处理器的性能不断提高,变频驱动技术也得到了显著发展。
随着各种复杂控制技术在变频器技术中的应用,变频器的性能不断得到提高,而且应用范围也越来越广。
日前变频器不但在传统的电力拖动系统中得到了广泛的应用,而且几乎已经扩展到了工业生产的所有领域,并且在空调、洗衣机、电冰箱等家电产品中也得到了广泛应用。
2. 变频器技术的定义变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆成交流电。
对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。
变频调速是通过改变电机定子绕组供电的频率来达到调速的目的。
3. 变频器技术的历史变频技术是应交流电机无级调速的需要而诞生的。
20世纪60年代以后,电力电子器件经历了SCR(晶闸管)、GTO(门极可关断晶闸管)、BJT(双极型功率晶体管)、MOSFET(金属氧化物场效应管)、SIT(静电感应晶体管)、SITH(静电感应晶闸管)、MGT(MOS控制晶体管)、MCT(MOS控制晶闸管)、IGBT(绝缘栅双极型晶体管)、HVIGBT(耐高压绝缘栅双极型晶闸管)的发展过程,器件的更新促进了电力电子变换技术的不断发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变频器改造与伺服改造的优缺点比较
1)电机温升的原因:电机在低速状态下运行,同时散热风扇的转速也降低,达
不到散热的效果,所以温度会升高。
2)产品周期变长的原因:变频器是通过频率的改变来改变电机的转速,存在加、
减速过程,响应速度慢,所以会使产品周期变长。
3)变频器的使用寿命:根据变频器的结构,变频器内部的元器件主要有电阻、
电容、电感、半导体器件,PCB板和冷却风机等等。
PCB板大功率晶体管和二极管很容易由于过压、过流和过热而导致击穿或者烧坏;目前市面上冷却风机轴承最长能使用45000个小时,大概相当于满转速连续使用4.5年。
另外环境湿度太大会降低变频器内部的绝缘引起放电击穿导致PCB板发霉进而发生导线霉断或接插件不良,还会加速铜排和金属结构件氧化,导致主回路或动力端子排接触不良
4)安装变频器之后,电机在低于400R/M下运行时,次品率增加:当电机转速
在400R/M以下时,电流减小,磁通量减少,转矩减小,所以压力不够,容易出现不良品
5)安装变频器之后,噪音增加的原因:由于变频器输出电压是由许多脉冲列组
成,存在着高次谐波,这是产生噪音的最直接原因。
伺服电机是在变频器的基础上发展而来,变频器是一种过渡产品
伺服是一个闭环控制系统,有反馈,而变频器工作于开环控制,没有反馈(控制器与被控对象间只有顺序作用而无反向联系且控制单方向进行)。
变频只是伺服的一个部分,伺服是在变频的基础上进行闭环的精确控制从而达到更理想的效果。
变频器只是一个V-F转换,用于控制电机的一个器件。
而伺服是一个闭环的系统。
简单说变频器主要控制电机的转速。
伺服是既可以控制速度,又可以控制位置和移动量,力距,定位,从而达到精确、稳定,不会因变频而产生死机。
伺服不仅能达到以上的功能,而且产生一个闭环的系统,从而避免变频器产生的辐射。
变频器在变频过程中还会产生大量热量,造成温度的提高与声音,而伺服系统是不会产生这样的后果。
所以说伺服系统的达到的效果是变频电机无法比拟的。
伺服的基本概念是准确、精确、快速定位。
变频仅仅是伺服控制的一个必须的内部环节,伺服驱动器中同样存在变频(要进行无级调速)。
但伺服将电流环、速度环或者位置环都闭合进行控制,这是很大的区别。
除此外,伺服电机的构造与普通电机是有区别的,要满足快速响应和准确定位。
变频最早只是用来调速,无论同步还是异步电机都可以用,并不用来完成精确定位跟踪的工作,伺服本身的功能就是精确快速定位跟踪,变频器一般做不到这个效果。