编码器三种输出形式.doc

合集下载

编码器说明书

编码器说明书

编码器说明书编码器是一种电子设备,可以将输入的模拟信号或数字信号转化成数字编码形式的信号输出。

它广泛应用于自动控制系统、数码通信和计算机控制等领域。

本说明书将为您介绍编码器的工作原理、应用范围及相关注意事项。

一、工作原理编码器是一种将运动或位置转化为数字信号的设备。

根据测量方式不同,编码器可以分为绝对编码器和增量编码器两种类型。

1.绝对编码器绝对编码器的输出码对应每个位置的最终精确位置信息。

当绝对编码器固定在系统中时,无需执行位置确认程序。

2.增量编码器增量编码器的输出码程式的位置变化。

通常,编码器会在一定的方向上旋转并且会感应这种旋转运动,并按照每个旋转位置产生指定的输出。

主要应用于运动与位置控制反馈系统。

二、应用范围编码器广泛应用于工业、航空、军事和医疗等领域。

以下是一些常见的应用场景:1. 工业生产对于制造业来说,编码器可以用于测量生产过程中的运动和位置。

例如,在机器人工厂中。

编码器可以测量机器人臂的运动,从而确保它的运动达到预期目标。

2. 汽车制造在汽车工业中,编码器可以用于测量引擎的转速与车轮的位置。

这对确保汽车在行驶时稳定且方向正确非常重要。

3. 聚光器激光聚光器通常瞄准特定的对象并进行一定的处理。

编码器可用于确定要聚焦的对象的位置。

4. 医疗科技在医疗设备领域,编码器可用于监测和操作手术工具的位置,并能够使手术更加精确。

5. 航空在飞机上,编码器可用于测量飞机在空中的位置与角度,从而确保飞机始终位于正确的位置上。

三、注意事项1.安装要求安装编码器应当遵循以下几个原则:a) 安装编码器的位置必须与被测量的物体保持稳定。

b) 安装编码器的地方应该保持干燥,不能碰撞或扭曲。

2. 选型要求选型时需要注意以下几点:a) 计算并确定测量结果的最小要求;b) 深入了解所要求的测量任务和要求精确度的范围;c) 确定所要测量的位置和承受压力的方向及大小。

3. 操作要求a) 高强度振动会影响编码器的输出精度,避免地震、震荡等环境;b) 编码器需要经常进行维护,防止灰尘和杂物进入设备内部;c) 禁止在未关闭电源的情况下进行拆卸安装等操作。

编码器技术参数

编码器技术参数

编码器技术参数编码器是一种用于测量物理量并将其转换为数字信号的设备,广泛应用于工业自动化、机械领域等。

编码器的技术参数取决于其具体类型和应用场景。

以下是一些常见的编码器技术参数,这些参数可能在不同的编码器类型中有所差异:1.分辨率:定义:分辨率是编码器能够区分的最小位移或角度的量度。

单位:通常以每圈的脉冲数或每毫米的脉冲数表示。

2.精度:定义:精度表示编码器输出值与实际位置之间的误差。

单位:以百分比或特定单位(如角度或长度)表示。

3.脉冲输出类型:定义:脉冲输出的类型,常见的有两相正交信号、单路脉冲、SSI(Synchronous Serial Interface)等。

特点:不同的输出类型适用于不同的应用场景,例如位置控制或速度控制。

4.工作电压:定义:编码器工作所需的电源电压。

范围:典型的工作电压包括 5V、12V 或 24V。

5.工作温度范围:定义:编码器能够正常工作的温度范围。

范围:通常在摄氏度或华氏度下表示,例如 -20°C 到 +85°C。

6.防护等级:定义:编码器外壳的防护等级,表示其对于灰尘、水分、震动等环境的抵抗能力。

示例:IP65 表示防尘、防喷水。

7.最大转速:定义:编码器能够测量的最大转速。

单位:典型的单位包括 RPM(每分钟转数)。

8.安装方式:定义:编码器的安装方式,例如轴向安装、法兰盘安装等。

特点:不同的安装方式适用于不同的机械结构。

9.输出信号类型:定义:编码器输出的信号类型,例如 TTL、HTL 等。

特点:不同的输出信号类型适用于不同的控制系统。

10.抗干扰性能:定义:编码器对于外部干扰的抵抗能力。

特点:对于工业环境中可能存在的电磁干扰具有重要意义。

11.寿命:定义:编码器的使用寿命,通常以小时或循环数表示。

取决于:受材料、工作条件等多个因素影响。

12.通信接口:定义:编码器与其他设备通信的接口,例如 Modbus、Profinet 等。

特点:通信接口决定了编码器的可集成性。

编码器输出形式.

编码器输出形式.

1 编码器基础1.1光电编码器编码器是传感器的一种,主要用来检测机械运动的速度、位置、角度、距离和计数等,许多马达控制均需配备编码器以供马达控制器作为换相、速度及位置的检出等,应用范围相当广泛。

按照不同的分类方法,编码器可以分为以下几种类型:根据检测原理,可分为光学式、磁电式、感应式和电容式。

根据输出信号形式,可以分为模拟量编码器、数字量编码器。

根据编码器方式,分为增量式编码器、绝对式编码器和混合式编码器。

光电编码器是集光、机、电技术于一体的数字化传感器,主要利用光栅衍射的原理来实现位移——数字变换,通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。

典型的光电编码器由码盘、检测光栅、光电转换电路(包括光源、光敏器件、信号转换电路)、机械部件等组成。

光电编码器具有结构简单、精度高、寿命长等优点,广泛应用于精密定位、速度、长度、加速度、振动等方面。

这里我们主要介绍SIMATIC S7系列高速计数产品普遍支持的增量式编码器和绝对式编码器。

1.2增量式编码器增量式编码器提供了一种对连续位移量离散化、增量化以及位移变化(速度)的传感方法。

增量式编码器的特点是每产生一个输出脉冲信号就对应于一个增量位移,它能够产生与位移增量等值的脉冲信号。

增量式编码器测量的是相对于某个基准点的相对位置增量,而不能够直接检测出绝对位置信息。

如图1-1所示,增量式编码器主要由光源、码盘、检测光栅、光电检测器件和转换电路组成。

在码盘上刻有节距相等的辐射状透光缝隙,相邻两个透光缝隙之间代表一个增量周期。

检测光栅上刻有A、B两组与码盘相对应的透光缝隙,用以通过或阻挡光源和光电检测器件之间的光线,它们的节距和码盘上的节距相等,并且两组透光缝隙错开1/4节距,使得光电检测器件输出的信号在相位上相差90°。

当码盘随着被测转轴转动时,检测光栅不动,光线透过码盘和检测光栅上的透过缝隙照射到光电检测器件上,光电检测器件就输出两组相位相差90°的近似于正弦波的电信号,电信号经过转换电路的信号处理,就可以得到被测轴的转角或速度信息。

旋转编码器种类及信号输出形式

旋转编码器种类及信号输出形式

旋转编码器种类及信号输出形式
旋转编码器是一种计数器,其功能是使用旋转轴旋转来检测和记录物体的旋转角度或位移距离。

它的编码方式有多种不同的类型,每种类型的输出信号形式也不同。

本文将介绍常见的四种旋转编码器类型,即定子磁极编码器、绝对式编码器、相位型编码器和编码器阵列。

定子磁极编码器是最常见的旋转编码器之一,它是在旋转轴上安装了一组磁极,当旋转轴旋转时,它们会产生电磁强度变化并由传感器检测,从而测量出旋转角度。

它的输出信号一般是四相编码信号,也称为ABZ信号,即A相、B相和Z相的模拟信号,这三个相位的变化是交互的,当旋转轴逆时针旋转时,A相和B相信号会按照特定规律交替变化而不会同时变化,而Z相信号由高电平变成低电平时则表示旋转轴的一个周期循环完成,同时也可以通过A相和B相的变化比例来检测旋转轴的角度变化。

绝对式编码器是一种新型编码器,与定子磁极编码器不同,绝对式编码器使用磁性存储介质来记录旋转角度,它具有比定子磁极编码器更高的精度和更长的工作寿命。

编码器的分类

编码器的分类

、编码器的分类根据检测原理,编码器可分为光学式、磁式、感应式和电容式,根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。

1.1 增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90。

,从而可方便的判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。

它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。

其缺点是无法输出轴转动的绝对位置信息。

1.2 绝对式编码器绝对式编码器是直接输出数字的传感器,在它的圆形码盘上沿径向有若干同心码盘,每条道上有透光和不透光的扇形区相间组成,相邻码道的扇区树木是双倍关系,码盘上的码道数是它的二进制数码的位数,在吗盘的一侧是光源,另一侧对应每一码道有一光敏元件,当吗盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。

这种编码器的特点是不要计数器,在转轴的任意位置都可读书一个固定的与位置相对应的数字码。

显然,吗道必须N条吗道。

目前国内已有16位的绝对编码器产品。

1.3 混合式绝对编码器混合式绝对编码器,它输出两组信息,一组信息用于检测磁极位置,带有绝对信息功能;另一组则完全同增量式编码器的输出信息。

二、光电编码器的应用增量型编码器与绝对型编码器区别1、角度测量汽车驾驶模拟器,对方向盘旋转角度的测量选用光电编码器作为传感器。

重力测量仪,采用光电编码器,把他的转轴与重力测量仪中补偿旋钮轴相连,扭转角度仪,利用编码器测量扭转角度变化,如扭转实验机、渔竿扭转钓性测试等。

摆锤冲击实验机,利用编码器计算冲击是摆角变化。

2、长度测量计米器,利用滚轮周长来测量物体的长度和距离。

拉线位移传感器,利用收卷轮周长计量物体长度距离。

联轴直测,与驱动直线位移的动力装置的主轴联轴,通过输出脉冲数计量。

介质检测,在直齿条、转动链条的链轮、同步带轮等来传递直线位移信息。

3、速度测量线速度,通过跟仪表连接,测量生产线的线速度角速度,通过编码器测量电机、转轴等的速度测量4、位置测量机床方面,记忆机床各个坐标点的坐标位置,如钻床等自动化控制方面,控制在牧歌位置进行指定动作。

编码器三种输出形式

编码器三种输出形式

编码器三种输出形式编码器是一种将输入数据转换为特定形式的设备或程序。

在计算机科学与信息技术领域,我们常常使用编码器来将信息从一种形式转换为另一种形式。

这种转换可以是数字到文本、文本到音频、图像到视频等。

在本文中,我将介绍三种常见的编码器输出形式。

1.数字编码:数字编码是一种将输入数据转换为一系列数字的编码形式。

这种编码形式通常用于数字信号处理、通信系统和计算机网络中。

数字编码可以是离散的或连续的。

离散的数字编码将输入数据表示为一系列离散的数字,例如二进制编码、格雷码等。

连续的数字编码将输入数据表示为一系列连续的数字,例如模拟信号的采样。

2.文本编码:文本编码是一种将输入数据转换为文本形式的编码形式。

这种编码形式通常用于自然语言处理、信息检索和文本分类等应用中。

文本编码将输入数据表示为一系列字符或单词。

常见的文本编码方法包括词袋模型、TF-IDF向量、词嵌入等。

词袋模型将文本表示为单词的频率向量,TF-IDF向量将文本表示为单词的重要性权重向量,词嵌入将文本表示为低维向量空间中的点。

3.图像编码:图像编码是一种将输入数据转换为图像形式的编码形式。

这种编码形式通常用于计算机视觉、图像处理和图像压缩等应用中。

图像编码将输入数据表示为一系列像素或色彩。

常见的图像编码方法包括位图、矢量图、JPEG、PNG等。

位图将图像表示为像素点的颜色值,矢量图将图像表示为几何图形的描述,JPEG和PNG是两种常用的图像压缩编码方法。

除了上述三种常见的编码器输出形式,还有许多其他特定领域的编码形式。

例如音频编码将音频数据表示为一系列音频样本,视频编码将视频数据表示为一系列视频帧。

编码器的输出形式取决于输入数据的类型,以及应用领域对输出数据的需求。

不同的编码形式具有不同的特点和应用场景。

了解和理解不同的编码形式有助于我们选择合适的编码方法,以及对编码数据进行正确的解码和处理。

在实际应用中,经常需要将不同编码形式的数据进行转换和交互,这也是编码器的重要功能之一。

编码器的集电极开路输出原理

编码器的集电极开路输出原理

编码器的集电极开路输出原理1. 引言1.1 编码器的作用编码器是一种常用的传感器设备,用于将机械运动转换为数字信号。

它的主要作用是对机械运动进行测量和控制,通常用于工业自动化系统中。

编码器可以精确地测量物体的位置、速度和角度,从而实现精准的定位和控制。

它在各种领域中都有广泛的应用,如机械制造、自动化设备、医疗器械等。

集电极开路输出是编码器的一种常见输出方式,其原理是利用编码器内部的传感器检测物体的运动,并将信号转换为开路或闭路状态。

通过读取这些开路或闭路信号,可以确定物体的位置和运动方向。

集电极开路输出通常用于需要高精度测量和控制的应用场合,如机器人控制、数控机床和印刷设备等。

编码器的作用是实现对机械运动的精确测量和控制,而集电极开路输出则是其中一种常见的输出方式,具有高精度和稳定性的特点,适用于需要精确定位和控制的各种应用领域。

1.2 集电极开路输出的定义编码器是一种用于将机械位移转换成数字信号的装置,常用于测量和控制系统中。

集电极开路输出是一种编码器的输出信号类型,通常用于表示某种状态或事件发生。

具体来说,集电极开路输出是指编码器输出的信号线上出现开路状态,表示编码器所测量的位置或事件未发生。

这种输出方式通常用于需要简单状态表示的应用中,能够提供清晰的信号反馈。

在集电极开路输出中,编码器的输出线路上只有在被触发后才会导通电流,否则会保持断开状态。

这种设计使得集电极开路输出具有较高的抗干扰能力,能够在复杂环境下稳定地传输信号。

集电极开路输出也具有快速响应的特点,能够在瞬间反映出编码器所测量的状态变化。

集电极开路输出是一种简单且可靠的编码器输出方式,适用于需要快速、准确地获取状态信息的场合。

它在各种测量和控制系统中得到广泛应用,为系统的稳定运行和精准控制提供了重要支持。

2. 正文2.1 编码器工作原理编码器是一种用于测量和控制运动系统的装置,主要用于将位置、速度和方向等信息转换成电信号输出。

编码器工作原理是利用编码盘和传感器之间的光电原理来实现。

编码器的工作原理介绍

编码器的工作原理介绍

访问其它设备的过程,如何回应来自其它设备的请求,以及怎样侦测错误并记录。它制定了
消息域格局和内容的公共格式。
当在一 Modbus 网络上通信时,此协议决定了每个控制器须要知道它们的设备地址,识
别按地址发来的消息,决定要产生何种行动。 如果需要回应,控制器将生成反馈信息并用
Modbus 协议发出。在其它网络上,包含了 Modbus 协议的消息转换为在此网络上使用的帧或
起始地址 读取点数 CRC 校验码
站 功 低 高 号能
︵码

址 ︶
编码器答:
01 03 02 XX XX XX XX
数据 CRC 校验码
Ⅱ波特率 : 2400bps 4800bps 9600bps 19200bps 57600bps
※ 出厂默认设置:①无奇偶校验位②波特率 19200bps③地址 0x01
※ 改变参数时,不要定时发送为避免损坏器件内部结构。发送一次返回数据匹
配代表设置成功。
Ⅲ功能码 03:
利用 Modbus 通信协议的 03 功能码,读取编码器数值。 主机的命令格式是从机地址、功能码、起始地址、字节数及 CRC 码。
低 高
站功
号能
︵码 地


编码器答:
01 03 04 00 0X XX XX XX XX
数据 数据 CRC 校验码
² 此类型编码器具有国际流行的同步串行接口,可与德国西门子 PLC 等系统接口通 讯,具有速度快,效率高等优点
3、异步串行(Mudbus)输出
Modbus 是由 Modicon(现为施耐德电气公司的一个品牌)在 1979 年发明的,是全球第 一个真正用于工业现场的总线协议。为更好地普及和推动 Modbus 在基于以太网上的分布式 应用,目前施耐德公司已将 Modbus 协议的所有权移交给 IDA(Interface for Distributed Automation,分布式自动化接口)组织,并成立了 Modbus-IDA 组织,为 Modbus 今后的发展 奠定了基础。在中国,Modbus 已经成为国家标准 GB/T19582-2008。据不完全统计:截止到 2007 年,Modbus 的节点安装数量已经超过了 1000 万个。

绝对值编码器的信号输出形式

绝对值编码器的信号输出形式

绝对值编码器的信号输出形式绝对值编码器信号输出有并行输出、串行输出、总线型输出、变送一体型输出1.并行输出:绝对值编码器输出的是多位数码(格雷码或纯二进制码),并行输出就是在接口上有多点高低电平输出,以代表数码的1 或0,对于位数不高的绝对编码器,一般就直接以此形式输出数码,可直接进入PLC 或上位机的I/O 接口,输出即时,连接简单。

但是并行输出有如下问题:1。

必须是格雷码,因为如是纯二进制码,在数据刷新时可能有多位变化,读数会在短时间里造成错码。

2。

所有接口必须确保连接好,因为如有个别连接不良点,该点电位始终是0,造成错码而无法判断。

3。

传输距离不能远,一般在一两米,对于复杂环境,最好有隔离。

4。

对于位数较多,要许多芯电缆,并要确保连接优良,由此带来工程难度,同样,对于编码器,要同时有许多节点输出,增加编码器的故障损坏率。

2.串行SSI 输出:串行输出就是通过约定,在时间上有先后的数据输出,这种约定称为通讯规约,其连接的物理形式有RS232、RS422(TTL)、RS485 等。

由于绝对值编码器好的厂家都是在德国,所以串行输出大部分是与德国的西门子配套的,如SSI 同步串行输出。

SSI 接口(RS422 模式),以两根数据线、两根时钟线连接,由接收设备向编码器发出中断的时钟脉冲,绝对的位置值由编码器与时钟脉冲同步输出至接收设备。

由接收设备发出时钟信号触发,编码器从高位(MSB)开始输出与时钟信号同步的串行信号. 串行输出连接线少,传输距离远,对于编码器的保护和可靠性就大大提高了。

一般高位数的绝对编码器都是用串行输出的。

3.现场总线型输出现场总线型编码器是多个编码器各以一对信号线连接在一起,通过设定地址,用通讯方式传输信号,信号的接收设备只需一个接口,就可以读多个编码器信号。

总线型编码器信号遵循RS485 的物理格式,其信号的编排方式称为通讯规。

编码器的分类

编码器的分类

编码器的分类编码器的定义:编码器(encoder)是一种用于运动控制的传感器。

它利用光电、电磁、电容或电感等感应原理,检测物体的机械位置及其变化,并将此信息转换为电信号后输出,作为运动控制的反馈,传递给各种运动控制装置。

编码器的用途:编码器被广泛应用于需要精准确定位置及速度的场合,如机床、机器人、电机反馈系统以及测量和控制设备等。

编码器的分类:编码器的分类概览1、按照机械结构形式,编码器可以分为旋转编码器(rotary encoder)和线性编码器(linear encoder)。

·旋转编码器的应用最为广泛,主要用于测量机械设备的角度、速度或者电机的转速。

·线性编码器主要用于测量线性位移,又可以分为拉线编码器(wire draw encoder)和直线编码器(line encoder)两类。

·拉线编码器是拉线盒(wire draw mechanism)与旋转编码器的机械组合,通过拉线盒这种机械装置将机械设备的直线运动转化为圆周运动,从而可以使用旋转编码器进行测量线性位移。

·直线编码器通常由阅读器(reader)和测量标尺(measuring ruler)组成,通过检测阅读器与测量标尺之间的相对位置,从而计算出机械位置及其变化。

2、按照电气输出形式,编码器可以分为增量型编码器(incremental encoder)和绝对值型编码器(absolute encoder)。

·增量型编码器的输出为周期性重复的信号,如方波或者正弦波脉冲。

因此,可以分为方波增量型编码器和正余弦波增量型编码器。

(1) 方波增量型编码器是最常用的编码器之一,通过计算方波脉冲的数量和频率得出长度和速度。

方波增量型编码器有电压型输出,如TTL(也称长线驱动、线驱动或RS422)和HTL(也称推挽输出或推拉输出)等,和开关型输出,如NPN 开路集电极输出和PNP开路集电极输出。

(2)正余弦波增量型编码器的输出一般为1Vpp或者0.5Vpp的正弦波和余弦波,通过计算正余弦的幅值可以精确的细分出微小的角度。

编码器的分类

编码器的分类

编码器的分类编码器的定义:编码器(encoder)是一种用于运动控制的传感器。

它利用光电、电磁、电容或电感等感应原理,检测物体的机械位置及其变化,并将此信息转换为电信号后输出,作为运动控制的反馈,传递给各种运动控制装置。

编码器的用途:编码器被广泛应用于需要精准确定位置及速度的场合,如机床、机器人、电机反馈系统以及测量和控制设备等。

编码器的分类:编码器的分类概览1、按照机械结构形式,编码器可以分为旋转编码器(rotary encoder)和线性编码器(linear encoder)。

·旋转编码器的应用最为广泛,主要用于测量机械设备的角度、速度或者电机的转速。

·线性编码器主要用于测量线性位移,又可以分为拉线编码器(wire draw encoder)和直线编码器(line encoder)两类。

·拉线编码器是拉线盒(wire draw mechanism)与旋转编码器的机械组合,通过拉线盒这种机械装置将机械设备的直线运动转化为圆周运动,从而可以使用旋转编码器进行测量线性位移。

·直线编码器通常由阅读器(reader)和测量标尺(measuring ruler)组成,通过检测阅读器与测量标尺之间的相对位置,从而计算出机械位置及其变化。

2、按照电气输出形式,编码器可以分为增量型编码器(incremental encoder)和绝对值型编码器(absolute encoder)。

·增量型编码器的输出为周期性重复的信号,如方波或者正弦波脉冲。

因此,可以分为方波增量型编码器和正余弦波增量型编码器。

(1) 方波增量型编码器是最常用的编码器之一,通过计算方波脉冲的数量和频率得出长度和速度。

方波增量型编码器有电压型输出,如TTL(也称长线驱动、线驱动或RS422)和HTL(也称推挽输出或推拉输出)等,和开关型输出,如NPN 开路集电极输出和PNP开路集电极输出。

(2)正余弦波增量型编码器的输出一般为1Vpp或者0.5Vpp的正弦波和余弦波,通过计算正余弦的幅值可以精确的细分出微小的角度。

编码器的类型与原理

编码器的类型与原理

十进制与格雷码的参照
绝对值编码器的输出形式
1 并行输出模式 多少位(码道)绝对值编码器就有多少根 信号电缆,每根电缆代表一位数据,以电缆 输出电平的高低代表1或0,物理器件与增量 值编码器相似 ,有集电极开路PNP,NPN型, 差分驱动,推挽式,差分高电平有效或低电平 有效来针对PNP或NPN的物理器件格式 ,并 行输出一般已格雷码形式输出,又称格雷码编 码器
增量式编码器特点
编码器每转动一个预先设定的角度将输出 一个脉冲信号,通过统计脉冲信号的数量 来计算旋转的角度,因此编码器输出的位 置数据是相对的 由于采用固定脉冲信号,因此旋转角度的 起始位可以任意设定 由于采用相对编码,因此掉电后旋转角度 数据会丢失需要重新复位
增量式编码器问题
1 增量型编码器存在零点累计误差 2 抗干扰较差, 3 接收设备的停机需断电记忆,开机应找 零或参考位等问题 绝对值编码器的出现正好解决了这些问题
1
2 旋转变压器的定子和转子之间的磁通分布符合正弦规 律,因此当激磁电压加到定子绕组上时,通过电磁耦合, 转子绕组产生感应电动势,如图4-9所示。其输出电压的 大小取决于转子的角向位置,即随着转子偏移的角度呈 正弦变化。由变压器原理,设原边绕组匝数为N1,副边 绕组匝数为N2,k=N1/N2为变压比,当原边输入交变电 压
Connect the shield in the Sub D on the encoder 用屏蔽的D型接口连接编码器
Connect the shield to the electronics shield clamp of the inverter
在变换器的电路板上用线卡连接
Connect the shield to the PG fitting of the encoder 编码器用屏蔽的PG接口连接

编码器内部PNP NPN详解说明书 有图示

编码器内部PNP NPN详解说明书 有图示

编码器输出信号类型一般情况下,从编码器的光电检测器件获取的信号电平较低,波形也不规则,不能直接用于控制、信号处理和远距离传输,所以在编码器内还需要对信号进行放大、整形等处理。

经过处理的输出信号一般近似于正弦波或矩形波,因为矩形波输出信号容易进行数字处理,所以在控制系统中应用比较广泛。

增量式光电编码器的信号输出有集电极开路输出、电压输出、线驱动输出和推挽式输出等多种信号形式。

1集电极开路输出集电极开路输出是以输出电路的晶体管发射极作为公共端,并且集电极悬空的输出电路。

根据使用的晶体管类型不同,可以分为NPN集电极开路输出(也称作漏型输出,当逻辑1时输出电压为0V,如图2-1所示)和PNP集电极开路输出(也称作源型输出,当逻辑1时,输出电压为电源电压,如图2-2所示)两种形式。

在编码器供电电压和信号接受装置的电压不一致的情况下可以使用这种类型的输出电路。

图2-1 NPN集电极开路输出图2-2 PNP集电极开路输出对于PNP型的集电极开路输出的编码器信号,可以接入到漏型输入的模块中,具体的接线原理如图2-3所示。

注意:PNP型的集电极开路输出的编码器信号不能直接接入源型输入的模块中。

图2-3 PNP型输出的接线原理对于NPN型的集电极开路输出的编码器信号,可以接入到源型输入的模块中,具体的接线原理如图2-4所示。

注意:NPN型的集电极开路输出的编码器信号不能直接接入漏型输入的模块中。

图2-4 NPN型输出的接线原理2.2电压输出型电压输出是在集电极开路输出电路的基础上,在电源和集电极之间接了一个上拉电阻,这样就使得集电极和电源之间能有了一个稳定的电压状态,如图2-5。

一般在编码器供电电压和信号接受装置的电压一致的情况下使用这种类型的输出电路。

图2-5电压输出型2.3推挽式输出推挽式输出方式由两个分别为PNP型和NPN型的三极管组成,如图2-6所示。

当其中一个三极管导通时,另外一个三极管则关断,两个输出晶体管交互进行动作。

编码器的工作原理简介

编码器的工作原理简介

编码器的工作原理简介绝对脉冲编码器:APC增量脉冲编码器:SPC两者一般都应用于速度控制或位置控制系统的检测元件.旋转编码器是用来测量转速的装置。

它分为单路输出和双路输出两种。

技术参数主要有每转脉冲数(几十个到几千个都有),和供电电压等。

单路输出是指旋转编码器的输出是一组脉冲,而双路输出的旋转编码器输出两组相位差90度的脉冲,通过这两组脉冲不仅可以测量转速,还可以判断旋转的方向。

增量型编码器与绝对型编码器的区分编码器如以信号原理来分,有增量型编码器,绝对型编码器。

增量型编码器 (旋转型)工作原理:由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。

由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。

编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。

分辨率—编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。

信号输出:信号输出有正弦波(电流或电压),方波(TTL、HTL),集电极开路(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL也称推拉式、推挽式输出,编码器的信号接收设备接口应与编码器对应。

信号连接—编码器的脉冲信号一般连接计数器、PLC、计算机,PLC和计算机连接的模块有低速模块与高速模块之分,开关频率有低有高。

MM440编码器原理接线

MM440编码器原理接线

常问问题:编码器接口电路及MM440联接
主题:编码器接口电路
标题:常用编码器输出形式
答案:
1.集电极开路型:
通常编码器不提供R1这个电阻,需要外电路来实现上拉电平或下拉电平.
a).NPN 型 b).PNP 型
2.推拉输出型:
当输出信号”1” 时T1导通,输出”0”时T2导通,在此电路中由于输出电流
有流入和流出两个方向,因此当电缆延长时,波形失真小,电缆可以延长到100米
左右.电源为DC 5-30 V,推拉电流最大30mA
Vcc
Out
Gnd
Vcc Out Gnd
Vcc Out Gnd T1 T2
3.线驱动输出型:
线驱动输出是按照RS-422A 标准数据传输电路设计,可以使用双绞电缆进行长距离传输,最长可达到1200M
例: 编码器与MM440联接:
说明:在MM440变频器上连接A,AN ,B,BN 脉冲.
注意事项:
1.编码器与编码器模板之间的连线需采用双绞屏蔽电缆,屏蔽层必须与模
板的屏蔽端子相连.
2.信号电缆必须与动力电缆分开布置.
3.需要根据编码器类型正确设置拨码开关的位置.
4.编码器端子说明
模板接线图举例:
1.TTL联接:
2.HTL联接
3. 外接电源。

旋转编码器的集电极开路输出、电压输出、互补输出和线性驱动输出之间的区别是什么

旋转编码器的集电极开路输出、电压输出、互补输出和线性驱动输出之间的区别是什么

/ProductQuestion/faq92.html(第 1/4 页)2010-11-25 12:58:56
旋转编码器的集电极开路输出、电压输出、互补输出和线性驱动输出之间的区别是什么?_欧姆龙(OMRON)
继电器 开关 控制元器件
电压输出是在集电极开路输出的电路基础上,在电源间和集电极之间接了一个上拉电阻,使得集电极和电源之间能 有一个稳定的电压状态,见图3。
么?
常见问题分类
传感器 光电传感器 接近传感器 压力传感器 旋转编码器 位移|测长传感器 视觉传感器 微型光电传感器 PLC
旋转编码器的集电极开路输出、电压输出、互补输出和线性驱动输出之间的区 别是什么?
集电极开路输出是以输出电路的晶体管发射极作为公共端,并且集电极悬空的输出电 路。一般分为NPN集电极开路输出(见图1)和PNP集电极开路输出(见图2)。
旋转编码器的集电极开路输出、电压输出、互补输出和线性驱动输出之间的区别是什么?_欧姆龙(OMRON)
线性驱动输出是采用RS-422标准,用AM26LS31芯片应用于高速、长距离数据传输的输出模式。信号以差分形式输 出,因此抗干扰能力更强。输出信号需专门能接收线性驱动输出的设备才能接收。输出电路见图5。
上一条:增量型编码器输出A相、B相、Z相分别代表什么含义? 下一条:旋转编码器有延长导线型号吗?如果要延长,导线规格有什么要求? 相关问题 > 各种输出形式的旋转编码器与后续设备(PLC、计数器等)接线分别怎么接? > 增量型编码器输出A相、B相、Z相分别代表什么含义? > 绝对型编码器选型:PNP输出,外径是直径50mm,电源电压DC12V~DC24V,分辨率是256 > 旋转编码器有延长导线型号吗?如果要延长,导线规格有什么要求? > 增量型编码器和绝对型编码器有什么区别? > 马达r7m-a40030-s1和驱动r7d-ap04h之间的编码器电缆(CN2)没有标配的吗? > 绝对值编码器的接线,使用问题 > 旋转编码器问题

增量型编码器与绝对型编码器区别是什么意思

增量型编码器与绝对型编码器区别是什么意思

增量型编码器与绝对型编码器区别是什么意思增量型编码器与绝对型编码器区别是什么意思一、编码器的分类根据检测原理,编码器可分为光学式、磁式、感应式和电容式,根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。

1.1增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90。

,从而可方便的判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。

它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。

其缺点是无法输出轴转动的绝对位置信息。

1.2绝对式编码器绝对式编码器是直接输出数字的传感器,在它的圆形码盘上沿径向有若干同心码盘,每条道上有透光和不透光的扇形区相间组成,相邻码道的扇区树木是双倍关系,码盘上的码道数是它的二进制数码的位数,在吗盘的一侧是光源,另一侧对应每一码道有一光敏元件,当吗盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。

这种编码器的特点是不要计数器,在转轴的任意位置都可读书一个固定的与位置相对应的数字码。

显然,吗道必须N条吗道。

目前国内已有16位的绝对编码器产品。

1.3混合式绝对编码器混合式绝对编码器,它输出两组信息,一组信息用于检测磁极位置,带有绝对信息功能;另一组则完全同增量式编码器的输出信息。

二、光电编码器的应用1、角度测量汽车驾驶模拟器,对方向盘旋转角度的测量选用光电编码器作为传感器。

重力测量仪,采用光电编码器,把他的转轴与重力测量仪中补偿旋钮轴相连,扭转角度仪,利用编码器测量扭转角度变化,如扭转实验机、渔竿扭转钓性测试等。

摆锤冲击实验机,利用编码器计算冲击是摆角变化。

2、长度测量计米器,利用滚轮周长来测量物体的长度和距离。

拉线位移传感器,利用收卷轮周长计量物体长度距离。

联轴直测,与驱动直线位移的动力装置的主轴联轴,通过输出脉冲数计量。

介质检测,在直齿条、转动链条的链轮、同步带轮等来传递直线位移信息。

编码器使用说明

编码器使用说明

编码器使用说明光电编码器基础1.1 概述光电编码器是一种集光、机、电为一体的数字化检测装置,它具有分辨率高、精度高、结构简单、体积小、使用可靠、易于维护、性价比高等优点。

近10几年来,发展为一种成熟的多规格、高性能的系列工业化产品,在数控机床、机器人、雷达、光电经纬仪、地面指挥仪、高精度闭环调速系统、伺服系统等诸多领域中得到了广泛的应用。

光电编码器可以定义为:一种通过光电转换,将输至轴上的机械、几何位移量转换成脉冲或数字量的传感器,它主要用于速度或位置(角度)的检测。

典型的光电编码器由码盘(Disk)、检测光栅(Mask)、光电转换电路(包括光源、光敏器件、信号转换电路)、机械部件等组成。

一般来说,根据光电编码器产生脉冲的方式不同,可以分为增量式、绝对式以及复合式三大类。

按编码器运动部件的运动方式来分,可以分为旋转式和直线式两种。

由于直线式运动可以借助机械连接转变为旋转式运动,反之亦然。

因此,只有在那些结构形式和运动方式都有利于使用直线式光电编码器的场合才予使用。

旋转式光电编码器容易做成全封闭型式,易于实现小型化,传感长度较长,具有较长的环境适用能力,因而在实际工业生产中得到广泛的应用,在本书中主要针对旋转式光电编码器,如不特别说明,所提到的光电编码器则指旋转式光电编码器。

1.2 增量式光电编码器1.2.1 原理及其结构增量式光电编码器的特点是每产生一个输出脉冲信号就对应于一个增量位移,但是不能通过输出脉冲区别出在哪个位置上的增量。

它能够产生与位移增量等值的脉冲信号,其作用是提供一种对连续位移量离散化或增量化以及位移变化(速度)的传感方法,它是相对于某个基准点的相对位置增量,不能够直接检测出轴的绝对位置信息。

一般来说,增量式光电编码器输出A、B两相互差电度角的脉冲信号(即所谓的两组正交输出信号),从而可方便地判断出旋转方向。

同时还有用作参考零位的Z相标志(指示)脉冲信号,码盘每旋转一周,只发出一个标志信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.旋转编码器的输出形式集电极开路输出、电压输出、互补输出和线性驱动输出之
间的区别是什么?
集电极开路输出是以输出电路的晶体管发射极作为公共端,并且集电极悬空的输出电路。

一般分为NPN集电极开路输出(见图1)和PNP集电极开路输出(见图2)。

图1
图2
电压输出是在集电极开路输出的电路基础上,在电源间和集电极之间接了一个上拉电阻,使得集电极和电源之间能有一个稳定的电压状态,见图3。

图3
互补输出(或称推挽输出)
是输出上具备NPN和PNP两种输出晶体管的输出电路。

根据输出信号的[H]、[L],2个输出晶体管交互进行[ON]、[OFF]动作,比集电极开路输出的电路传输距离能稍远,也可与集电极开路输入机器(NPN、PNP)连接。

输出电路见图4。

图4
线性驱动(或称长线驱动、差分驱动)输出
是采用RS-422标准,用AM26LS31芯片应用于高速、长距离数据传输的输出模式。

信号以差分形式输出,因此抗干扰能力更强。

输出信号需专门能接收线性驱动输出的设备才能
接收。

输出电路见图5。

图5。

相关文档
最新文档