OlegT.Balovnev,AndreasBergmann,MartinBreunig,ArminB.Cremers,SergeShumilov InstituteofComput

合集下载

巴伦博伊姆接受德国联邦大十字勋章

巴伦博伊姆接受德国联邦大十字勋章

巴伦博伊姆接受德国联邦大十字勋章
佚名
【期刊名称】《音乐爱好者》
【年(卷),期】2002(000)012
【摘要】以色列指挥家兼钢琴家丹尼尔·巴伦博伊姆日前因为他对柏林文化生活所作的贡献百被授予德国联邦大十字勋章。

巴伦博伊姆是在自己担任音乐总监的德国国立歌剧院阿波罗大厅从柏林市长克劳斯·弗沃莱特的手中接过勋章的。

【总页数】1页(P59)
【正文语种】中文
【中图分类】J603
【相关文献】
1.二战后联邦德国“文化国家”战略与尧斯接受美学理论之关系 [J], 吴铁柱
2.大胆的尝试有益的启示——联邦德国财政专家来汉访问接受咨询 [J], 刘遇纯;彭天喜;陈键
3.联邦德国的德国统一政策研究现状--以联邦德国对民主德国的经济政策为考察核心 [J], 王超
4.陈佳洱院士荣获德意志联邦功勋十字勋章 [J], 聂玉昕
5.院士行动徐匡迪获瑞典皇家北极星大十字司令官勋章 [J], 王元晶(摄影)
因版权原因,仅展示原文概要,查看原文内容请购买。

俄罗斯新锐女高音Aida演绎《西班牙女郎》

俄罗斯新锐女高音Aida演绎《西班牙女郎》

俄罗斯新锐女高音Aida演绎《西班牙女郎》
俄罗斯女高音Aida Garifullina(生于1987年9月30日),是2013年多明戈歌剧比赛的大奖获得者,她的歌剧经常在俄罗斯马林斯基剧院和维也纳国家歌剧院上演。

她在鞑靼斯坦共和国的首府喀山,在母亲的影响下从小学习音乐,18岁时搬到德国纽伦堡学习音乐。

2007年考入维也纳音乐与表演艺术大学,两年后她歌剧舞台的首秀是饰演莫扎特的《女人心》的角色。

2013年7月在喀山举办的世界大学生运动会,她作为形象大使演唱了这首《白色的鸟》。

10月,她被授予鞑靼斯坦共和国荣誉艺术家。

Aida Garifullina相貌美貌性感,声音线条优美舒缓,声音技巧控制自如,音乐处理富于表现力,是一颗发展势头很强劲的歌剧新星。

这首《西班牙女郎》(La Spagnola Apos)由她演绎,更是感情充沛,抒情饱满。

巴伐利亚歌剧院《菲岱里奥》:发光攀登架上的爱情

巴伐利亚歌剧院《菲岱里奥》:发光攀登架上的爱情
个 “ 闻导演 ”, 丑 热衷于裸体 、鲜血和暴力 , 并且以此 闻名。当然 , 有时这种规律也 费尔南多出场时就像蝙蝠侠 的敌 会被打破 , 去年 (0 0年 ) 21 春天 , 比耶伊托在斯 图加特执 导的 《 帕西法尔》的演出就 恶 的小丑 , 以射 击 弗洛 列斯 坦 他
是这样一个特例 , 西班牙人高度严谨的影像和戏剧才华在该剧中被再次唤醒。此次 , 最终 却又是 他使 弗洛列斯坦 重获 在慕尼黑 巴伐利亚国立歌剧 院首演的贝多芬歌剧 《 菲岱里 奥》 为比耶伊托重新启动 真叫人看 不懂 ! 这些或 许就 是 比I
了灵感按钮 , 而且该剧也相当合他的胃口——充满监狱、 力、极权主义等经典意象。 权 谋杀 、酒精 , 已经成为来 自西班牙加泰 罗尼亚的舞台导演卡里科斯托 ・ 这 比耶伊 托的个性签名和惯用手法。但这位崇 尚虚无主义风格 的导 演将 如何把这些加进贝多
芬的歌剧 《 菲岱里奥》里 呢 ? 很明显 , 比耶伊托想显示出他的与众不 同。早在第一首 二重唱里 , 他就让忠厚
死 , 尤西 ・ 诺 麦里斯 (u sMyy ) J si l s 饰演 的倒霉的监狱看 守雅基见状 , l 试着制止他 , - -
1 P R o1 O EA 2 / 8 12
的独到之处 !
事实上 , 除了上述几个桥段之外 , 比耶伊托并未像观众和外界所期待的那样 , 暴
到 了更多的嘘声 ! 丽贝卡 ・ 瑞斯特为 《 菲岱里奥》修建 了一座巨大的迷宫 , 营造 出这样一种视幻效
果, 剧中所有人物都深陷其中。在莱因哈德 ・ 特劳布 (e h r a b 精心设计的灯 R i ad ru ) n T
光照明的协助之下 , 丽贝卡的舞台布景更显美丽 、大气。比耶伊托和他的制作团队还

中国的外科学家

中国的外科学家

中国的外科学家
中国有许多优秀的外科学家,以下是部分外籍院士介绍:
- 克里斯汀·阿芒托:法国化学家,同时也是法国科学院的院士。

- 瓦列里·邦杜:俄罗斯空间地球科学家,俄罗斯科学院副院长、国际欧亚科学院院长,兼任俄罗斯联邦教育和科学部/俄科院空间观测科学研究所所长。

- 默罕默德·贾马·迪恩:加拿大电子工程与应用物理学家,2015至2017年任加拿大皇家学会科学院院长。

- 马丁·格勒切尔:德国数学家,2015年10月起担任柏林科学院院长,同时还是美国科学院的院士。

- 约翰·霍普克罗夫特:美国计算机科学家,现任美国康奈尔大学教授,美国国家科学院、国家工程院、国家艺术与科学院院士,并且曾任美国总统国家科学委员会成员,曾获ACM图灵奖、IEEE冯诺依曼奖、美国工程院西蒙雷曼奖创始人奖。

这些外籍院士在各自的领域取得了卓越的成就,为中国的科技发展做出了重要贡献。

IEEE standard for Terminology and Test methods for ADC Std 1241-2000

IEEE standard for Terminology and Test methods for ADC Std 1241-2000

IEEE Std1241-2000 IEEE Standard for Terminology and Test Methods for Analog-to-Digital ConvertersSponsorWaveform Measurement and Analysis Technical Committeeof theof theIEEE Instrumentation and Measurement SocietyApproved7December2000IEEE-SA Standards BoardAbstract:IEEE Std1241-2000identifies analog-to-digital converter(ADC)error sources and provides test methods with which to perform the required error measurements.The information in this standard is useful both to manufacturers and to users of ADCs in that it provides a basis for evaluating and comparing existing devices,as well as providing a template for writing specifications for the procurement of new ones.In some applications,the information provided by the tests described in this standard can be used to correct ADC errors, e.g.,correction for gain and offset errors.This standard also presents terminology and definitions to aid the user in defining and testing ADCs.Keywords:ADC,A/D converter,analog-to-digital converter,digitizer,terminology,test methodsThe Institute of Electrical and Electronics Engineers,Inc.3Park Avenue,New York,NY10016-5997,USACopyrightß2001by the Institute of Electrical and Electronics Engineers,Inc.All rights reserved. Published 13 June 2001. Printed in the United States of America.Print:ISBN0-7381-2724-8SH94902PDF:ISBN0-7381-2725-6SS94902No part of this publication may be reproduced in any form,in an electronic retrieval system or otherwise,without the prior written permission of the publisher.IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association(IEEE-SA)Standards Board.The IEEE develops its standards through a consensus development process,approved by the American National Standards Institute,which brings together volunteers representing varied viewpoints and interests to achieve thefinal product.Volunteers are not necessarily members of the Institute and serve without compensation.While the IEEE administers the process and establishes rules to promote fairness in the consensus development process,the IEEE does not independently evaluate,test,or verify the accuracy of any of the information contained in its standards.Use of an IEEE Standard is wholly voluntary.The IEEE disclaims liability for any personal injury,property or other damage,of any nature whatsoever,whether special,indirect,consequential,or compensatory,directly or indirectly resulting from the publication,use of,or reliance upon this,or any other IEEE Standard document.The IEEE does not warrant or represent the accuracy or content of the material contained herein,and expressly disclaims any express or implied warranty,including any implied warranty of merchantability orfitness for a specific purpose,or that the use of the material contained herein is free from patent infringement.IEEE Standards documents are supplied‘‘AS IS.’’The existence of an IEEE Standard does not imply that there are no other ways to produce,test,measure,purchase, market,or provide other goods and services related to the scope of the IEEE Standard.Furthermore,the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through developments in the state of the art and comments received from users of the standard.Every IEEE Standard is subjected to review at least everyfive years for revision or reaffirmation.When a document is more thanfive years old and has not been reaffirmed,it is reasonable to conclude that its contents,although still of some value,do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE Standard.In publishing and making this document available,the IEEE is not suggesting or rendering professional or other services for,or on behalf of,any person or entity.Nor is the IEEE undertaking to perform any duty owed by any other person or entity to another.Any person utilizing this,and any other IEEE Standards document,should rely upon the advice of a competent professional in determining the exercise of reasonable care in any given circumstances.Interpretations:Occasionally questions may arise regarding the meaning of portions of standards as they relate to specific applications.When the need for interpretations is brought to the attention of IEEE,the Institute will initiate action to prepare appropriate responses.Since IEEE Standards represent a consensus of concerned interests,it is important to ensure that any interpretation has also received the concurrence of a balance of interests.For this reason, IEEE and the members of its societies and Standards Coordinating Committees are not able to provide an instant response to interpretation requests except in those cases where the matter has previously received formal consideration. Comments for revision of IEEE Standards are welcome from any interested party,regardless of membership affiliation with IEEE.Suggestions for changes in documents should be in the form of a proposed change of text,together with appropriate supporting ments on standards and requests for interpretations should be addressed to:Secretary,IEEE-SA Standards Board445Hoes LaneP.O.Box1331Piscataway,NJ08855-1331USANote:Attention is called to the possibility that implementation of this standard may require use of subjectmatter covered by patent rights.By publication of this standard,no position is taken with respect to theexistence or validity of any patent rights in connection therewith.The IEEE shall not be responsible foridentifying patents for which a license may be required by an IEEE standard or for conducting inquiriesinto the legal validity or scope of those patents that are brought to its attention.IEEE is the sole entity that may authorize the use of certification marks,trademarks,or other designations to indicate compliance with the materials set forth herein.Authorization to photocopy portions of any individual standard for internal or personal use is granted by the Institute of Electrical and Electronics Engineers,Inc.,provided that the appropriate fee is paid to Copyright Clearance Center. To arrange for payment of licensing fee,please contact Copyright Clearance Center,Customer Service,222Rosewood Drive,Danvers,MA01923USA;(978)750-8400.Permission to photocopy portions of any individual standard for educational classroom use can also be obtained through the Copyright Clearance Center.Introduction(This introduction is not a part of IEEE Std1241-2000,IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters.)This standard defines the terms,definitions,and test methods used to specify,characterize,and test analog-to-digital converters(ADCs).It is intended for the following:—Individuals and organizations who specify ADCs to be purchased—Individuals and organizations who purchase ADCs to be applied in their products —Individuals and organizations whose responsibility is to characterize and write reports on ADCs available for use in specific applications—Suppliers interested in providing high-quality and high-performance ADCs to acquirersThis standard is designed to help organizations and individuals—Incorporate quality considerations during the definition,evaluation,selection,and acceptance of supplier ADCs for operational use in their equipment—Determine how supplier ADCs should be evaluated,tested,and accepted for delivery to end users This standard is intended to satisfy the following objectives:—Promote consistency within organizations in acquiring third-party ADCs from component suppliers—Provide useful practices on including quality considerations during acquisition planning —Provide useful practices on evaluating and qualifying supplier capabilities to meet user requirements—Provide useful practices on evaluating and qualifying supplier ADCs—Assist individuals and organizations judging the quality and suitability of supplier ADCs for referral to end usersSeveral standards have previously been written that address the testing of analog-to-digital converters either directly or indirectly.These include—IEEE Std1057-1994a,which describes the testing of waveform recorders.This standard has been used as a guide for many of the techniques described in this standard.—IEEE Std746-1984[B16]b,which addresses the testing of analog-to-digital and digital-to-analog converters used for PCM television video signal processing.—JESD99-1[B21],which deals with the terms and definitions used to describe analog-to-digital and digital-to-analog converters.This standard does not include test methods.IEEE Std1241-2000for analog-to-digital converters is intended to focus specifically on terms and definitions as well as test methods for ADCs for a wide range of applications.a Information on references can be found in Clause2.b The numbers in brackets correspond to those in the bibliography in Annex C.As of October2000,the working group had the following membership:Steve Tilden,ChairPhilip Green,Secretary&Text EditorW.Thomas Meyer,Figures EditorPasquale Arpaia Giovanni Chiorboli Tom Linnenbrink*B.N.Suresh Babu Pasquale Daponte Solomon MaxAllan Belcher David Hansen Carlo MorandiDavid Bergman Fred Irons Bill PetersonEric Blom Dan Kien Pierre-Yves RoyDan Knierim*Chairman,TC-10CommitteeContributions were also made in prior years by:Jerry Blair John Deyst Norris NahmanWilliam Boyer Richard Kromer Otis M.SolomonSteve Broadstone Yves Langard T.Michael SoudersThe following members of the balloting committee voted on this standard:Pasquale Arpaia Pasquale Daponte W.Thomas MeyerSuresh Babu Philip Green Carlo MorandiEric Blom Fred Irons William E.PetersonSteven Broadstone Dan Knierim Pierre-Yves RoyGiovanni Chiorboli T.E.Linnenbrink Steven J.TildenSolomon MaxWhen the IEEE-SA Standards Board approved this standard on21September2000,it had the following membership:Donald N.Heirman,ChairJames T.Carlo,Vice-ChairJudith Gorman,SecretarySatish K.Aggarwal James H.Gurney James W.MooreMark D.Bowman Richard J.Holleman Robert F.MunznerGary R.Engmann Lowell G.Johnson Ronald C.PetersenHarold E.Epstein Robert J.Kennelly Gerald H.Petersonndis Floyd Joseph L.Koepfinger*John B.PoseyJay Forster*Peter H.Lips Gary S.RobinsonHoward M.Frazier L.Bruce McClung Akio TojoRuben D.Garzon Daleep C.Mohla Donald W.Zipse*Member EmeritusAlso included are the following nonvoting IEEE-SA Standards Board liaisons:Alan Cookson,NIST RepresentativeDonald R.Volzka,TAB RepresentativeDon MessinaIEEE Standards Project EditorContents1.Overview (1)1.1Scope (1)1.2Analog-to-digital converter background (2)1.3Guidance to the user (3)1.4Manufacturer-supplied information (5)2.References (7)3.Definitions and symbols (7)3.1Definitions (7)3.2Symbols and acronyms (14)4.Test methods (18)4.1General (18)4.2Analog input (41)4.3Static gain and offset (43)4.4Linearity (44)4.5Noise(total) (51)4.6Step response parameters (63)4.7Frequency response parameters (66)4.8Differential gain and phase (71)4.9Aperture effects (76)4.10Digital logic signals (78)4.11Pipeline delay (78)4.12Out-of-range recovery (78)4.13Word error rate (79)4.14Differential input specifications (81)4.15Comments on reference signals (82)4.16Power supply parameters (83)Annex A(informative)Comment on errors associated with word-error-rate measurement (84)Annex B(informative)Testing an ADC linearized with pseudorandom dither (86)Annex C(informative)Bibliography (90)IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters1.OverviewThis standard is divided into four clauses plus annexes.Clause1is a basic orientation.For further investigation,users of this standard can consult Clause2,which contains references to other IEEE standards on waveform measurement and relevant International Standardization Organization(ISO) documents.The definitions of technical terms and symbols used in this standard are presented in Clause3.Clause4presents a wide range of tests that measure the performance of an analog-to-digital converter.Annexes,containing the bibliography and informative comments on the tests presented in Clause4,augment the standard.1.1ScopeThe material presented in this standard is intended to provide common terminology and test methods for the testing and evaluation of analog-to-digital converters(ADCs).This standard considers only those ADCs whose output values have discrete values at discrete times,i.e., they are quantized and sampled.In general,this quantization is assumed to be nominally uniform(the input–output transfer curve is approximately a straight line)as discussed further in 1.3,and the sampling is assumed to be at a nominally uniform rate.Some but not all of the test methods in this standard can be used for ADCs that are designed for non-uniform quantization.This standard identifies ADC error sources and provides test methods with which to perform the required error measurements.The information in this standard is useful both to manufacturers and to users of ADCs in that it provides a basis for evaluating and comparing existing devices,as well as providing a template for writing specifications for the procurement of new ones.In some applications, the information provided by the tests described in this standard can be used to correct ADC errors, e.g.,correction for gain and offset errors.The reader should note that this standard has many similarities to IEEE Std1057-1994.Many of the tests and terms are nearly the same,since ADCs are a necessary part of digitizing waveform recorders.IEEEStd1241-2000IEEE STANDARD FOR TERMINOLOGY AND TEST METHODS 1.2Analog-to-digital converter backgroundThis standard considers only those ADCs whose output values have discrete values at discrete times, i.e.,they are quantized and sampled.Although different methods exist for representing a continuous analog signal as a discrete sequence of binary words,an underlying model implicit in many of the tests in this standard assumes that the relationship between the input signal and the output values approximates the staircase transfer curve depicted in Figure1a.Applying this model to a voltage-input ADC,the full-scale input range(FS)at the ADC is divided into uniform intervals,known as code bins, with nominal width Q.The number of code transition levels in the discrete transfer function is equal to 2NÀ1,where N is the number of digitized bits of the ADC.Note that there are ADCs that are designed such that N is not an integer,i.e.,the number of code transition levels is not an integral power of two. Inputs below thefirst transition or above the last transition are represented by the most negative and positive output codes,respectively.Note,however,that two conventions exist for relating V min and V max to the nominal transition points between code levels,mid-tread and mid-riser.The dotted lines at V min,V max,and(V minþV max)/2indicate what is often called the mid-tread convention,where thefirst transition is Q/2above V min and the last transition is3Q/2,below V max. This convention gets its name from the fact that the midpoint of the range,(V minþV max)/2,occurs in the middle of a code,i.e.,on the tread of the staircase transfer function.The second convention,called the mid-riser convention,is indicated in thefigure by dashed lines at V min,V max,and(V minþV max)/2. In this convention,V min isÀQ from thefirst transition,V max isþQ from the last transition,and the midpoint,(V minþV max)/2,occurs on a staircase riser.The difference between the two conventions is a displacement along the voltage axis by an amount Q/2.For all tests in this standard,this displacement has no effect on the results and either convention may be used.The one place where it does matter is when a device provides or expects user-provided reference signals.In this case the manufacturer must provide the necessary information relating the reference levels to the code transitions.In both conventions the number of code transitions is 2NÀ1and the full-scale range,FSR,is from V min to V max.Even in an ideal ADC,the quantization process produces errors.These errors contribute to the difference between the actual transfer curve and the ideal straight-line transfer curve,which is plotted as a function of the input signal in Figure1b.To use this standard,the user must understand how the transfer function maps its input values to output codewords,and how these output codewords are converted to the code bin numbering convention used in this standard.As shown in Figure1a,the lowest code bin is numbered0, the next is1,and so on up to the highest code bin,numbered(2NÀ1).In addition to unsigned binary(Figure1a),ADCs may use2’s complement,sign-magnitude,Gray,Binary-Coded-Decimal (BCD),or other output coding schemes.In these cases,a simple mapping of the ADC’s consecutive output codes to the unsigned binary codes can be used in applying various tests in this standard.Note that in the case of an ADC whose number of distinct output codes is not an integral power of2(e.g.,a BCD-coded ADC),the number of digitized bits N is still defined,but will not be an integer.Real ADCs have other errors in addition to the nominal quantization error shown in Figure1b.All errors can be divided into the categories of static and dynamic,depending on the rate of change of the input signal at the time of digitization.A slowly varying input can be considered a static signal if its effects are equivalent to those of a constant signal.Static errors,which include the quantization error, usually result from non-ideal spacing of the code transition levels.Dynamic errors occur because of additional sources of error induced by the time variation of the analog signal being sampled.Sources include harmonic distortion from the analog input stages,signal-dependent variations in the time of samples,dynamic effects in internal amplifier and comparator stages,and frequency-dependent variation in the spacing of the quantization levels.1.3Guidance to the user1.3.1InterfacingADCs present unique interfacing challenges,and without careful attention users can experience substandard results.As with all mixed-signal devices,ADCs perform as expected only when the analog and digital domains are brought together in a well-controlled fashion.The user should fully understand the manufacturer’s recommendations with regard to proper signal buffering and loading,input signal connections,transmission line matching,circuit layout patterns,power supply decoupling,and operating conditions.Edge characteristics for start-convert pulse(s)and clock(s)must be carefully chosen to ensure that input signal purity is maintained with sufficient margin up to the analog input pin(s).Most manufacturers now provide excellent ADC evaluation boards,which demonstrate IN P U T IN P U T(a)Figure 1—Staircase ADC transfer function,having full-scale range FSR and 2N À1levels,corresponding to N -bit quantizationIEEE FOR ANALOG-TO-DIGITAL CONVERTERS Std 1241-2000IEEEStd1241-2000IEEE STANDARD FOR TERMINOLOGY AND TEST METHODS recommended layout techniques,signal conditioning,and interfacing for their ADCs.If the characteristics of a new ADC are not well understood,then these boards should be analyzed or used before starting a new layout.1.3.2Test conditionsADC test specifications can be split into two groups:test conditions and test results.Typical examples of the former are:temperature,power supply voltages,clock frequency,and reference voltages. Examples of the latter are:power dissipation,effective number of bits,spurious free dynamic range (SFDR),and integral non-linearity(INL).The test methods defined in this standard describe the measurement of test results for given test conditions.ADC specification sheets will often give allowed ranges for some test condition(e.g.,power supply ranges).This implies that the ADC will function properly and that the test results will fall within their specified ranges for all test conditions within their specified ranges.Since the test condition ranges are generally specified in continuous intervals,they describe an infinite number of possible test conditions,which obviously cannot be exhaustively tested.It is up to the manufacturer or tester of an ADC to determine from design knowledge and/or testing the effect of the test conditions on the test result,and from there to determine the appropriate set of test conditions needed to accurately characterize the range of test results.For example,knowledge of the design may be sufficient to know that the highest power dissipation(test result)will occur at the highest power supply voltage(test condition),so the power dissipation test need be run only at the high end of the supply voltage range to check that the dissipation is within the maximum of its specified range.It is very important that relevant test conditions be stated when presenting test results.1.3.3Test equipmentOne must ensure that the performance of the test equipment used for these tests significantly exceeds the desired performance of the ADC under ers will likely need to include additional signal conditioning in the form offilters and pulse shapers.Accessories such as terminators, attenuators,delay lines,and other such devices are usually needed to match signal levels and to provide signal isolation to avoid corrupting the input stimuli.Quality testing requires following established procedures,most notably those specified in ISO9001: 2000[B18].In particular,traceability of instrumental calibration to a known standard is important. Commonly used test setups are described in4.1.1.1.3.4Test selectionWhen choosing which parameters to measure,one should follow the outline and hints in this clause to develop a procedure that logically and efficiently performs all needed tests on each unique setup. The standard has been designed to facilitate the development of these test procedures.In this standard the discrete Fourier transform(DFT)is used extensively for the extraction of frequency domain parameters because it provides numerous evaluation parameters from a single data record.DFT testing is the most prevalent technique used in the ADC manufacturing community,although the sine-fit test, also described in the standard,provides meaningful data.Nearly every user requires that the ADC should meet or exceed a minimum signal-to-noise-and-distortion ratio(SINAD)limit for the application and that the nonlinearity of the ADC be well understood.Certainly,the extent to whichthis standard is applied will depend upon the application;hence,the procedure should be tailored for each unique characterization plan.1.4Manufacturer-supplied information1.4.1General informationManufacturers shall supply the following general information:a)Model numberb)Physical characteristics:dimensions,packaging,pinoutsc)Power requirementsd)Environmental conditions:Safe operating,non-operating,and specified performance tempera-ture range;altitude limitations;humidity limits,operating and storage;vibration tolerance;and compliance with applicable electromagnetic interference specificationse)Any special or peculiar characteristicsf)Compliance with other specificationsg)Calibration interval,if required by ISO10012-2:1997[B19]h)Control signal characteristicsi)Output signal characteristicsj)Pipeline delay(if any)k)Exceptions to the above parameters where applicable1.4.2Minimum specificationsThe manufacturer shall provide the following specifications(see Clause3for definitions):a)Number of digitized bitsb)Range of allowable sample ratesc)Analog bandwidthd)Input signal full-scale range with nominal reference signal levelse)Input impedancef)Reference signal levels to be appliedg)Supply voltagesh)Supply currents(max,typ)i)Power dissipation(max,typ)1.4.3Additional specificationsa)Gain errorb)Offset errorc)Differential nonlinearityd)Harmonic distortion and spurious responsee)Integral nonlinearityf)Maximum static errorg)Signal-to-noise ratioh)Effective bitsi)Random noisej)Frequency responsek)Settling timel)Transition duration of step response(rise time)m)Slew rate limitn)Overshoot and precursorso)Aperture uncertainty(short-term time-base instability)p)Crosstalkq)Monotonicityr)Hysteresiss)Out-of-range recoveryt)Word error rateu)Common-mode rejection ratiov)Maximum common-mode signal levelw)Differential input impedancex)Intermodulation distortiony)Noise power ratioz)Differential gain and phase1.4.4Critical ADC parametersTable1is presented as a guide for many of the most common ADC applications.The wide range of ADC applications makes a comprehensive listing impossible.This table is intended to be a helpful starting point for users to apply this standard to their particular applications.Table1—Critical ADC parametersTypical applications Critical ADC parameters Performance issuesAudio SINAD,THD Power consumption.Crosstalk and gain matching.Automatic control MonotonicityShort-term settling,long-term stability Transfer function. Crosstalk and gain matching. Temperature stability.Digital oscilloscope/waveform recorder SINAD,ENOBBandwidthOut-of-range recoveryWord error rateSINAD for wide bandwidthamplitude resolution.Low thermal noise for repeatability.Bit error rate.Geophysical THD,SINAD,long-term stability Millihertz response.Image processing DNL,INL,SINAD,ENOBOut-of-range recoveryFull-scale step response DNL for sharp-edge detection. High-resolution at switching rate. Recovery for blooming.Radar and sonar SINAD,IMD,ENOBSFDROut-of-range recovery SINAD and IMD for clutter cancellation and Doppler processing.Spectrum analysis SINAD,ENOBSFDR SINAD and SFDR for high linear dynamic range measurements.Spread spectrum communication SINAD,IMD,ENOBSFDR,NPRNoise-to-distortion ratioIMD for quantization of smallsignals in a strong interferenceenvironment.SFDR for spatialfiltering.NPR for interchannel crosstalk.Telecommunication personal communications SINAD,NPR,SFDR,IMDBit error rateWord error rateWide input bandwidth channel bank.Interchannel crosstalk.Compression.Power consumption.Std1241-2000IEEE STANDARD FOR TERMINOLOGY AND TEST METHODS2.ReferencesThis standard shall be used in conjunction with the following publications.When the following specifications are superseded by an approved revision,the revision shall apply.IEC 60469-2(1987-12),Pulse measurement and analysis,general considerations.1IEEE Std 1057-1994,IEEE Standard for Digitizing Waveform Recorders.23.Definitions and symbolsFor the purposes of this standard,the following terms and definitions apply.The Authoritative Dictionary of IEEE Standards Terms [B15]should be referenced for terms not defined in this clause.3.1Definitions3.1.1AC-coupled analog-to-digital converter:An analog-to-digital converter utilizing a network which passes only the varying ac portion,not the static dc portion,of the analog input signal to the quantizer.3.1.2alternation band:The range of input levels which causes the converter output to alternate between two adjacent codes.A property of some analog-to-digital converters,it is the complement of the hysteresis property.3.1.3analog-to-digital converter (ADC):A device that converts a continuous time signal into a discrete-time discrete-amplitude signal.3.1.4aperture delay:The delay from a threshold crossing of the analog-to-digital converter clock which causes a sample of the analog input to be taken to the center of the aperture for that sample.COMINT ¼communications intelligence DNL ¼differential nonlinearity ENOB ¼effective number of bits ELINT ¼electronic intelligence NPR ¼noise power ratio INL ¼integral nonlinearity DG ¼differential gain errorSIGINT ¼signal intelligenceSINAD ¼signal-to-noise and distortion ratio THD ¼total harmonic distortion IMD ¼intermodulation distortion SFDR ¼spurious free dynamic range DP ¼differential phase errorTable 1—Critical ADC parameters (continued)Typical applicationsCritical ADC parametersPerformance issuesVideoDNL,SINAD,SFDR,DG,DP Differential gain and phase errors.Frequency response.Wideband digital receivers SIGINT,ELINT,COMINTSFDR,IMD SINADLinear dynamic range fordetection of low-level signals in a strong interference environment.Sampling frequency.1IEC publications are available from IEC Sales Department,Case Postale 131,3rue de Varemb,CH 1211,Gen ve 20,Switzerland/Suisse (http://www.iec.ch).IEC publications are also available in the United States from the Sales Department,American National Standards Institute,25W.43rd Street,Fourth Floor,New York,NY 10036,USA ().2IEEE publications are available from the Institute of Electrical and Electronics Engineers,445Hoes Lane,P.O.Box 1331,Piscataway,NJ 08855-1331,USA (/).。

试析《柏林·亚历山大广场》开放性的结局

试析《柏林·亚历山大广场》开放性的结局

试析《柏林亚历山大广场》开放性的结局
罗炜
【期刊名称】《中南民族大学学报(人文社会科学版)》
【年(卷),期】2002(022)002
【摘要】文章从德国著名作家阿尔弗雷德·德布林的长篇小说《柏林·亚历山大广场》的开放性结局入手,针对一些西方评论者的“褐”、“赤”不分说,通过作者对小说结尾处的修改和文本的逻辑结构分析,论述了小说的主题思想是反对法西斯的。

【总页数】4页(P87-90)
【作者】罗炜
【作者单位】北京大学外语学院德语系,北京 100871
【正文语种】中文
【中图分类】I516.074
【相关文献】
1.柏林火车站-亚历山大广场,柏林,德国 [J],
2.20世纪德语文学中的柏林城市意象与空间话语——以《柏林童年》《柏林,亚历山大广场》《意外之地》为例 [J], 傅琪
3.犯罪与成长:德布林的《柏林,亚历山大广场》 [J], 张杰
4.《柏林,亚历山大广场》的本体论解读 [J], 周雰
5.《柏林,亚历山大广场》的本体论解读 [J], 周雰
因版权原因,仅展示原文概要,查看原文内容请购买。

历年诺贝尔生理医学奖及化学奖获奖者整理

历年诺贝尔生理医学奖及化学奖获奖者整理

历年诺贝尔生理医学奖获奖者:1901年,埃米尔·阿道夫·冯·贝林(德国)。

利用血清疗法治疗白喉。

1902年,Ronald Ross(英国)。

关于疟疾的研究。

1903年,尼尔斯·吕贝里·芬森(丹麦)。

利用光辐射治疗狼疮。

1904年,巴甫洛夫(俄国)。

在神经生理学方面,提出了著名的条件反射和信号学说。

1905年,R.柯赫(德国)。

关于结核方面的研究和发现。

1906年,C.高尔基(意大利),桑地牙哥·拉蒙卡哈(Santiago Ramón y Cajal,西班牙)。

关于神经系统结构的研究。

1907年,Charles Louis Alphonse Laveran(法国),发现原生动物在引起疾病中的作用。

1908年,Ilya Ilyich Mechnikov(俄国),保罗·埃尔利希(德国)。

关于免疫方面的研究。

1909年,埃米尔·特奥多尔·科赫尔(Emil Theodor Kocher)(瑞士)。

关于甲状腺生理学,病理学和外科学方面的研究。

1910年,艾布瑞契·科塞尔(Albrecht Kossel)(德国)。

关于细胞化学尤其是蛋白质和核酸方面的研究。

1911年,Allvar Gullstrand(瑞典)。

关于眼睛屈光学方面的研究。

1912年,Alexis Carrel(法国)。

关于血管缝合以及血管和器官移植方面的研究。

1913年,Charles Robert Richet(法国)。

关于过敏反应的研究。

1914年,Robert Bárány(奥地利)。

关于内耳前庭装置生理学及病理学方面的研究。

1915年-1918年,未颁奖,奖金划拨到生理医学奖专门的基金上。

1919年,Jules Bordet(比利时)。

关于免疫方面的研究。

1920年,Schack August Steenberg Krogh(丹麦)。

1982年诺贝尔生理学医学奖

1982年诺贝尔生理学医学奖
1982年诺贝尔生理学 医学奖
—关于前列腺素和有关活性物质的发现
The Nobel Prize in Physiology or Medicine 1982
"for their discoveries concerning prostaglandins and related biologically active substances"
Sune K. Bergström – Autobiography
I was born January 10th, 1916 in Stockholm, Sweden. 1944 1946 - 47 1947 - 58 1958 - 80 1963 - 66 D. Med. Sci., Biochemistry, Karolinska Institutet, Stockholm Research Fellowship, Basel University, Basel Professor of Physiological Chemistry, The University of Lund, Lund Professor of Chemistry, Karolinska Institutet, Stockholm Dean of the Medical Faculty, Karolinska Institutet, Stockholm Rector of Karolinska Institutet, Stockholm Chairman of the Board of Directors, The Nobel Foundation, Stockholm Nobel Laureate in Physiology or Medicine,Stockholm President of the Royal Swedish Academy of Sciences

《英国病人》中的音乐

《英国病人》中的音乐

40基金课题基金项目:本论文为2019年度中央高校基本科研业务费(社科类)研究成果,项目批准号:XYMS201911《英国病人》中的音乐屈薇(华南理工大学,广东 广州 510641)摘要:影片《英国病人》向观众讲述了一个关于战争和爱情的史诗般故事。

影片中优美的音乐打破了时间与空间的界限,是推进影片情节发展的重要平行叙事符号,又是深化影片主题、表达角色情感的重要载体。

本文从形式主义电影批评视角,分析音乐在电影《英国病人》中的叙事和象征功能。

关键词:《英国病人》;电影音乐;叙事;象征中图分类号:J919 文献标志码:A 文章编号:1674-8883(2020)24-0040-02由安东尼·明格拉执导,拉尔夫·费因斯、斯科特·托马斯和朱丽叶·比诺什主演的电影《英国病人》是第69届奥斯卡金像奖的最大赢家。

影片改编自加拿大作家迈克尔·翁达杰同名小说,以第二次世界大战为背景,通过多种叙述方式,讲述了一个荡气回肠的爱情故事。

该片上映于1996年,虽未选用当红影星,却因其引人入胜的故事获得当年美国电影的票房第一位,一举拿下柏林电影节银熊奖和包括最佳配乐在内的9项奥斯卡大奖。

影片的配乐耗时半年之久,由“来自中东的文艺片御用作曲家”盖布瑞·亚拉德创作完成。

亚拉德不仅用配乐诠释了主人公艾马殊和凯瑟琳宁死不悔的感人爱情,还将影片的反战、反民族主义主题表现得淋漓尽致。

可以说,该片的成功在很大程度上得益于音乐的创作和选用。

一、音乐主导的叙事进程在故事情节的推进中,音乐作为主要的平行叙事符号,从一个空间渗透到另一个空间,把过去和现在联系到一起[1],主导主要叙事进程,引导观众厘清主、次要情节,同时作为主要叙事元素推动情节发展。

影片一开始便呈现给观众一则短小的“声音蒙太奇”——一个沙漠中细微的、叮叮咚咚的打击乐声,伴随着低沉而婉转的女声吟唱,随后又转变成大气磅礴的管弦乐,最后所有的声音融入了飞机引擎的声音[1]。

慕尼黑爱乐乐团1998年演出季曲目

慕尼黑爱乐乐团1998年演出季曲目

慕尼黑爱乐乐团1998年演出季曲目
倪绍陆
【期刊名称】《音乐爱好者》
【年(卷),期】1998(000)001
【摘要】2月16~18日柴科夫斯基《F小调第四交响曲》等指挥:塞姆扬·比奇柯夫 3月1日、2日 4~6日弗朗西斯·普朗克《G大调“荣誉”》拉赫玛尼诺夫康塔塔《春天》斯克里亚宾《E大调第一交响曲》指挥:德米特里·基塔扬柯慕尼黑爱乐合唱团领唱:安德列斯·赫尔曼 3月13日、14日、16日、17日音乐
【总页数】2页(P74-75)
【作者】倪绍陆
【作者单位】
【正文语种】中文
【中图分类】J609.5
【相关文献】
1.“姐夫”还魂记评杰吉耶夫和慕尼黑爱乐乐团南京音乐会 [J], 郑亚洪;
2.慕尼黑爱乐乐团上海音乐会记 [J], 刘恩惠
3.纽约爱乐乐团——1997-1998年度曲目异彩纷呈 [J], 鲲西;
4.2009慕尼黑歌剧节公布演出季细节 [J],
5.当月来华名团马泽尔与慕尼黑爱乐乐团 [J], 本刊记者;
因版权原因,仅展示原文概要,查看原文内容请购买。

戴卫·波帕尔与大提琴独奏曲《音乐会波兰舞曲》

戴卫·波帕尔与大提琴独奏曲《音乐会波兰舞曲》

戴卫·波帕尔与大提琴独奏曲《音乐会波兰舞曲》作者:杨瑾怡来源:《青年文学家》2012年第16期摘要:捷克著名大提琴演奏家,作曲家戴卫•波帕尔,有着超人的音乐天赋和非凡的音乐才华。

他不仅是杰出的大提琴演奏家,同时也是为优秀的作曲家。

他创作了大量优秀的大提琴作品,如《大提琴高级练习曲40首》、大提琴独奏曲《音乐会波兰舞曲》等等,为大提琴事业的发展作出了杰出的贡献。

关键词:戴卫·波帕尔;舞曲;《音乐会波兰舞曲》[中图分类号]:J647.23 [文献标识码]:A[文章编号]:1002-2139(2012)-16-0-01作为大提琴演奏家的波帕尔,是同时代大提琴演奏家中的佼佼者。

他第一个演奏了海顿,舒曼的大提琴协奏曲,演奏风格华丽、辉煌,音色优美并富有弹性,充分的体现出了波帕尔对大提琴技巧的掌握以及对大提琴性能特有的敏锐。

作为教学者,他根据自己教学实践经验的积累,创作了专门针对大提琴基本功练习的作品,其创作的小品多姿多彩,其中以舞曲、炫技类等特色小品最为著名。

例如:《音乐会波兰舞曲》Op.14,《匈牙利狂想曲》Op.68等。

一、舞曲与波兰舞曲舞曲作为器乐曲体裁,源于伴随舞蹈或队列行进的使用性乐曲体裁,特点是节拍分明,节奏各具特点。

外国著名器乐曲的舞曲大致分古典舞曲,近代舞曲和现代交谊舞曲。

古典舞曲流行于十六、十七世纪,于十七、十八世纪发展成为了纯器乐曲。

如:阿勒曼德,库朗特,萨拉班德,吉格组成等。

近代舞曲多半是为舞蹈伴奏或由民间舞曲加工改编而成为独立的器乐体裁。

如:圆舞曲,波罗乃兹等。

现代交谊舞同样也是由民间舞演变而来。

如:探戈舞曲,伦巴舞曲等。

波兰舞曲,也称“波罗乃兹”,是一种庄重的三拍子舞曲。

它源于波兰民间,十六世纪末被波兰宫廷所采用,在举行大典或集会时,由行进的队列来表演。

盛行于十八世纪的欧洲,成为舞会中的行列舞。

当它进入宫廷后,由声乐曲演变为器乐曲。

到十八世纪末,波兰舞曲逐渐成为音乐沙龙和家庭演奏的独奏曲。

2016德国古典音乐回声大奖最新榜单

2016德国古典音乐回声大奖最新榜单

2016德国古典音乐回声大奖最新榜单FEMALE SINGER OF THE YEAR(年度女歌手)ANNA NETREBKO安娜·奈瑞贝科(1971—)俄罗斯女高音歌唱家MACBETH(《麦克白》)MALE SINGER OF THE YEAR(年度男歌手)PHILIPPE JAROUSSKY菲利普·雅鲁斯基(1978—)法国假声男高音歌唱家GREEN: MéLODIES FRAN?AISES SUR DES POèMES DE VERLAINEINSTRUMENTALIST (CLARINET)(器乐/单簧管)MARTIN FR?ST马丁·福斯特瑞典单簧管演奏家ROOTS (《寻根》)INSTRUMENTALIST (CELLO)(器乐/大提琴)SOL GABETTA索尔·嘉碧妲(1981—)法、俄混血阿根廷大提琴家VASKS: PRESENCE(瓦斯克斯《存在》)INSTRUMENTALIST (PIANO)(器乐/钢琴)GRIGORY SOKOLOV格里戈里·索科洛夫(1950—)俄罗斯钢琴家SCHUBERT/BEETHOVEN(舒伯特/贝多芬)▲ 贝多芬第九钢琴奏鸣曲Op 14INSTRUMENTALIST (FLUTE)(器乐/长笛)STEFAN TEMMINGH南非长笛演奏家BIRDS(《鸟》)INSTRUMENTALIST (VIOLIN)(器乐/小提琴)PINCHAS ZUKERMAN皮恩卡斯·祖克曼(1948-)以色列小提琴家VAUGHAN WILLIAMS & ELGAR(拉尔夫·沃恩·威廉斯/埃尔加)CONDUCTOR OF THE YEAR(年度指挥)ANTONIO PAPPANO安东尼奥·帕帕诺(1959—)英籍意大利指挥家VERDI: AIDA(威尔第《阿依达》)ENSEMBLE/ORCHESTRA(合奏/交响乐团)BERLINER PHILHARMONIKER柏林爱乐JEAN SIBELIUS: SYMPHONIES 1-7(《西贝柳斯交响曲1—7》)ENSEMBLE/ORCHESTRA(合奏/乐队)CAPELLA DE LA TORREWATER MUSIC – TALES OF NYMPHS AND SIRENSENSEMBLE/ORCHESTRA(合奏/乐队)GERMAN BRASS 德国铜管BACH ON BRASSNEWCOMER (SAXOPHONE)(新人/萨克斯)ASYA FATEYEVASAXOPHONENEWCOMER (CELLO)(新人/大提琴)EDGAR MOREAUGIOVINCELLONEWCOMER (VIOLIN)(新人/小提琴)YURY REVICH8 SEASONSNEWCOMER (SINGER)(新人/歌手)ANDRè SCHUENSCHUMANN-WOLF-MARTIN: LIEDER(舒曼/马丁/沃尔夫艺术歌曲)NEWCOMER (PIANO)(新人/钢琴)AURELIASHIMKUSB-A-C-H – ICH RUF' ZU DIRTHE ‘KLASSIK OHNE GRENZEN’ PRIZE (CLASSICAL WITHOUT BORDERS)(“无国界”奖/古典音乐无国界)ANDREA BOCELLI安德烈·波切利(1958—)意大利歌唱家CINEMA(《电影》)THE ‘KLASSIK OHNE GRENZEN’ PRIZE (CLASSICAL WITHOUT BORDERS)(“无国界”奖/古典音乐无国界)JOHN WILSON ORCHESTRA | JOHN WILSONCOLE PORTER IN HOLLYWOODTHE ‘KLASSIK OHNE GRENZEN’ PRIZE (CLASSICAL WITHOUT BORDERS)(“无国界”奖/古典音乐无国界)SALUT SALONCARNIVAL FANTASYSYMPHONIC RECORDING (MUSIC UP TO AND INCLUDING 18TH CENTURY)(交响录音/18世纪及之前音乐)JORDI SAVALL | LE CONCERT DES NATIONS约第·沙瓦尔(1941—)维奥尔提琴演奏家、指挥家、研究学者LES éLéMENTSSYMPHONIC RECORDING (19TH CENTURY MUSIC)(交响录音/19世纪音乐)NIKOLAUS HARNONCOURT | CONCENTUS MUSICUS WIEN尼古拉斯·哈农库特(1929-)奥地利指挥大师BEETHOVEN: SYMPHONIES 4 & 5(《贝多芬第4、5交响曲》)SYMPHONIC RECORDING (20TH/21ST CENTURY MUSIC)(交响录音/20世纪/21世纪音乐)TEODOR CURRENTZIS | MUSICAETERNA特奥多尔·克雷提兹(1972—)俄裔希腊指挥家STRAVINSKY: LE SACRE DU PRINTEMPS(斯特拉文斯基《春之祭》)CONCERT RECORDING (MUSIC UP TO AND INCLUDING 18TH CENTURY)(协奏曲录音/18世纪及之前音乐)CHRISTOPHE COIN | ORCHESTER LE PHéNIX克里斯多夫·考因(1958—)法国大提琴家WAGENSEIL: CELLO CONCERTOS IN C UND A & SYMPHONIA IN C (《瓦根塞尔大提琴协奏曲》)CONCERT RECORDING (MUSIC UP TO AND INCLUDING 18TH CENTURY)(协奏曲录音/18世纪及之前音乐)FRAN?OIS LELEUX | MüNCHENER KAMMERORCHESTERFran?ois Leleux(1971—)法国双簧管演奏家HUMMEL & HAYDN: PRINCE ESTERHáZY CONCERTOSCONCERT RECORDING (MUSIC UP TO AND INCLUDING 18TH CENTURY)(协奏曲录音/18世纪及之前音乐)ANDREAS STAIER | FREIBURGER BAROCKORCHESTERBACH: HARPSICHORD CONCERTOSCONCERT RECORDING (19TH CENTURY MUSIC)(协奏曲录音/19世纪音乐)IL POMO D'ORO | RICCARDO MINASI | MAXIM EMYLYANYCHEVHAYDN: CONCERTOSCONCERT RECORDING (19TH CENTURY MUSIC)(协奏曲录音/19世纪音乐)JANINE JANSEN | LONDON SYMPHONY ORCHESTRA | ANTONIO PAPPANO珍妮·杨森(1978—)荷兰小提琴家/伦敦交响乐团/安东尼奥·帕帕诺(1959—)英籍意大利指挥家BRAHMS & BARTóK(勃拉姆斯/巴托克)CONCERT RECORDING (20TH/21ST CENTURY MUSIC)(协奏曲录音/20世纪/21世纪音乐)VILDE FRANG | FRANKFURT RADIO SYMPHONY | JAMES GAFFIGAN薇尔德·弗朗(1986—)挪威小提琴家/法国广播交响乐团/詹姆斯·加菲根BRITTEN/KORNGOLD: VIOLINKONZERTE (布列顿/科恩戈尔德《小提琴协奏曲》)CONCERT RECORDING (20TH/21ST CENTURY MUSIC)(协奏曲录音/20世纪/21世纪音乐)ANNA VINNITSKAYA | KREMERATA BALTICA安娜·维尼茨卡雅(1983—)俄罗斯钢琴家SCHOSTAKOWITSCH: KLAVIERKONZERTE(肖斯塔科维奇协奏曲)CHORAL RECORDING OF THE YEAR(年度合唱录音)CHOR DER SIXTINISCHEN KAPELLE | MASSIMO PALOMBELLACANTATE DOMINOOPERA RECORDING (17TH/18TH CENTURY OPERA)(歌剧录音17世纪/18世纪歌剧)IL POMO D'ORO | RICCARDO MINASI | MAX EMANUEL CENCIC | FRANCO FAGIOLILEONARDO VINCI: CATONE IN UTICAOPERA RECORDING (19TH CENTURY OPERA)(歌剧录音19世纪歌剧)FLEMISH RADIO CHOIR | BRUSSELS PHILHARMONIC | HERVé NIQUETFéLICIEN DAVID: HERCULANUMOPERA RECORDING (20TH/21TH CENTURY OPERA)(歌剧录音20世纪/21世纪歌剧)ORCHESTRE SYMPHONIQUE DE MONTRéAL | KENT NAGANO蒙特利尔交响乐团/长野健(1951—)日本指挥家HONEGGER & IBERT: L'AIGLONSOLO RECORDING (17TH/18TH CENTURY MUSIC | PIANO)(独奏录音17世纪/18世纪音乐| 钢琴)NELSON FREIRE尼尔森·弗莱雷(1944—)巴西钢琴家BACH(巴赫)SOLO RECORDING (19TH CENTURY MUSIC | PIANO)(独奏录音19世纪音乐| 钢琴)KHATIA BUNIATISHVILI 卡蒂雅·布尼亚季什维莉(1987—)格鲁吉亚钢琴家KALEIDOSCOPE(《万花筒》)▲ 斯特拉文斯基《彼得鲁斯卡》SOLO RECORDING (20/21TH CENTURY MUSIC | PIANO)(独奏录音20/21世纪音乐| 钢琴)BERTRAND CHAMAYOU贝特兰·查梅(1981—)法国钢琴家RAVEL: COMPLETE WORKS FOR SOLO PIANO(拉威尔钢琴独奏曲全集)SOLO RECORDING (VOICE | DUETS/OPERA ARIAS)(独唱录音声乐| 二重唱/歌剧咏叹调)OLGA PERETYATKOOlga Peretyatko(1980—)俄罗斯歌剧女高音ROSSINI!SOLO RECORDING (VOICE | ARIAS/RECITALS)(独唱录音声乐| 咏叹调/独唱会)CHRISTIANE KARG克里斯蒂安妮卡格(1980—)德国女高音SCENE!(《场景!》)SOLO RECORDING (VOICE | SONGS)(独唱录音声乐| 歌曲)HOLGER FALKERIK SATIE: MéLODI ES ET CHANSONSCHAMBER MUSIC RECORDING (17TH/18TH CENTURY MUSIC | WIND PLAYER)(室内乐录音17/18世纪音乐| 吹奏乐)BASSOON CONSORT FRANKFURT法兰克福巴松管乐队BACH: GOLDBERG VARIATIONEN(巴赫《哥德堡变奏曲》)CHAMBER MUSIC RECORDING (17TH/18THCENTURY MUSIC | STRING PLAYER)(室内乐录音17/18世纪音乐| 弦乐)HAGEN QUARTETTMOZART: STREICHQUARTETTE KV 387 & 458(莫札特:弦乐四重奏KV458&387)CHAMBER MUSIC RECORDING (17TH/18TH CENTURY MUSIC | MIXED ENSEMBLE)(室内乐录音17/18世纪音乐| 混合合奏)ROLF LISLEVANDSCARAMANZIACHAMBER MUSIC RECORDING (19TH CENTURY MUSIC | STRING PLAYER)(室内乐录音19世纪音乐| 弦乐)ARTEMIS QUARTETTBRAHMS: STREICHQUARTETTE 1 & 3(勃拉姆斯弦乐四重奏1 & 3)CHAMBER MUSIC RECORDING (19TH CENTURY MUSIC | MIXED ENSEMBLE)(室内乐录音19世纪音乐| 混合合奏)BEROLINA ENSEMBLEHUGO KAUN: KAMMERMUSIK CHAMBER MUSIC RECORDING (20TH/21ST CENTURY MUSIC | STRING PLAYER)(室内乐录音20/21世纪音乐| 弦乐)BELCEA QUARTETBERG, WEBERN,SCH?NBERG: CHAMBER MUSIC(贝尔格、韦伯恩、勋伯格)CHAMBER MUSIC RECORDING (20TH/21ST CENTURY MUSIC | MIXED ENSEMBLE)(室内乐录音20/21世纪音乐| 混合合奏)SERGEY & LUSINE KHACHATRYANMY ARMENIAOUTSTANDING ACHIEVEMENT IN EDITING(编辑杰出成就奖)AUDIOMAXNIEDERL?NDISCHE SONATEN FüR VIOLONCELLO UND KLAVIER, VOL. 7, DORIS HOCHSCHEID, CELLO/FRANS VAN RUTH, KLAVIERWORLD PREMIERE RECORDING OF THE YEAR(年度世界首演录音)SéBASTIEN DAUCé | ENSEMBLE CORRESPONDANCESLE CONCERT ROYAL DE LA NUITAUDIOPHILE MULTI-TRACK RECORDING OF THE YEAR(年度高保真多轨录音)MDG | CHRISTOPH SCHOENERBACH: ORGELTOCCATENAUDIOPHILE MULTI-TRACK RECORDING OF THE YEAR (SPECIAL AWARD: 3D HEADPHONES RECORDING)(年度高保真多轨录音特别奖:3D耳机录音)MUSICAPHON | INGO SCHMIDT-LUCASJOHANN GEORG LINIKE: MORTORIUMMUSIC DVD/BLU-RAY RECORDING (OPERA)(音乐DVD /蓝光录音歌剧)IDéALE AUDIENCE | OPéRA NATIONAL DEPARIS/MEZZO | DIANA DAMRAU狄安娜·达姆尧/巴黎国家歌剧院VERDI: LA TRAVIATA(威尔第《茶花女》)MUSIC DVD/BLU-RAY RECORDING (CONCERT)(音乐DVD /蓝光录音音乐会)LGM TéLéVISION | ALEXANDRE THARAUDBACH: GOLDBERG VARIATIONS(巴赫《哥德堡变奏曲》)MUSIC DVD/BLU-RAY RECORDING (DOCUMENTARY)(音乐DVD /蓝光录音纪录片)RALF PLEGERDIE AKTE TSCHAIKOWSKY(柴可夫斯基生平)FOSTERING YOUNG TALENT AWARD(培养青年人才奖)DAS EDUCATION-PROGRAMM DESKLAVIER-FESTIVALS RUHRBESTSELLER OF THE YEAR(年度畅销唱片)JONAS KAUFMANN乔纳斯·考夫曼(1969—)德国男高音歌唱家NESSUN DORMA - THE PUCCINI ALBUM(“今夜无人入睡”-聆听普契尼)榜单一览2016德国古典音乐回声奖颁奖典礼将于10月9日在柏林举行,届时将由德国的公共电视频道ZDF进行实况转播,敬请期待。

第三届德国“古典音乐奖”全新发榜

第三届德国“古典音乐奖”全新发榜
环球音乐
. All Rights Reserved.
第三届德 KLASSIK 古典音乐奖与英国的“留声机 奖”齐名,是世界最高级别古典音乐年度大奖之一。近日, 第三届 OPUS KLASSIK 德国古典音乐奖榜单公布,评审团 从 450 个提名中选出 25 个类别的获奖者。颁奖典礼于 10 月 在柏林音乐厅举行。埃琳娜·嘉兰莎、安妮·索菲·穆特、戴 安娜·达姆尧、维金古尔·奥拉弗森、约纳斯·考夫曼等成为 了本年度古典音乐奖获奖者。立陶宛指挥家米尔嘉·格拉日 奈特 - 泰拉获得年度指挥奖,这是女性指挥家首次获得古典 音乐的最高奖项。而在华人音乐家中,继 2019 年郎朗、黄 滨、周宇博三人获奖之后,指挥家汤沐海摘得奖项。今年作 为贝多芬大年,演绎贝多芬作品的优秀唱片自然少不了。伊 戈尔·勒维特的《贝多芬钢琴奏鸣曲》全集获得年度畅销唱 片,亚当·费舍尔与丹麦室内乐团(拿索斯)的《贝多芬交 响曲》全集获得年度交响乐畅销唱片。
004

赫尔穆特朗格尔 简介

赫尔穆特朗格尔  简介

赫尔穆特•朗格尔(德国,Icograda国际平面设计联合会前任主席)1994年和1999年在埃森以及科隆举行了欧洲联盟首脑会议,他为其中各国首脑聚会的椭圆形会议室提供了设计方案,并曾为欧盟国会和欧洲中央银行设计了高水准的“欧元’98”主题系列宣传计划,在1999年欧盟选举中,他为欧盟国会选举的揭晓活动做了创意性的设计。

作为平面设计师,赫尔穆特致力于研究性的概念主题工程和为一些国际性组织、知名公司与企业所做的高质量的视觉信息与传达的设计,其中国际性的设计课题包括了大名鼎鼎的联合国教科文组织、联合国环境规划署、欧盟议会、欧洲委员会、欧洲中央银行、Bayer公司、德国联邦政府和Zanders纸张公司所做的全球综合文化的媒体工程。

作为策展人,赫尔穆特曾为联合国教科文组织策划了数次全球性的综合文化交流项目。

他还是国际Biennales巴黎统筹委员会的发起人和建立者,同时也是设在都柏林的欧洲设计组织的创始人之一。

他一直鼓励有关于残疾人、老年人和有障碍人士的设计讨论,并积极地倡导着可持续设计和“绿色设计”。

值得一提的是,在赫尔穆特担任ICOGRADA主席期间,他一直为促进中国与全球设计团体之间的交流做着不懈的努力。

2000年8月,赫尔穆特·朗格尔应邀在珠海举行的平面设计论坛上做公开演讲,他立志要将自己在设计方面的心得以及自己对未来视觉发展导向的思考传递给中国设计同仁们。

2002年底,赫尔穆特携夫人再次访华,在上海担任国际商标标志双年展评委,并就中国的设计现状提出了自己独到的看法设计团队人员--赫尔姆特•朗格尔赫尔穆特•朗格尔(德国,Icograda国际平面设计联合会前任主席)简介1994年和1999年在埃森以及科隆举行了欧洲联盟首脑会议,他为其中各国首脑聚会的椭圆形会议室提供了设计方案,并曾为欧盟国会和欧洲中央银行设计了高水准的“欧元’98”主题系列宣传计划,在1999年欧盟选举中,他为欧盟国会选举的揭晓活动做了创意性的设计。

2024年乙型慢性肝炎防治全方位指南英文版

2024年乙型慢性肝炎防治全方位指南英文版

2024年乙型慢性肝炎防治全方位指南英文版Comprehensive Guide to the Prevention and Treatment of Hepatitis B in 2024In 2024, the prevention and treatment of Hepatitis B remain a significant public health concern globally. This comprehensive guide aims to provide valuable information on the various aspects of managing Hepatitis B to improve patient outcomes.Understanding Hepatitis BHepatitis B is a viral infection that affects the liver and can lead to chronic liver disease if left untreated. It is essential to understand the modes of transmission, symptoms, and risk factors associated with Hepatitis B to effectively prevent and manage the disease.Prevention StrategiesPreventing Hepatitis B is crucial in reducing the burden of the disease. Vaccination is the most effective way to prevent Hepatitis B infection. It is recommended to get vaccinated at an early age and follow up with booster doses as needed. Additionally, practicing safe sex, avoiding sharing needles, and practicing good hygiene are essential in preventing the spread of Hepatitis B.Screening and DiagnosisEarly detection of Hepatitis B is key to managing the disease effectively. Screening tests are available to detect the presence of the Hepatitis B virus in the blood. It is important to consult a healthcare provider for proper diagnosis and treatment if Hepatitis B is suspected.Treatment OptionsTreatment for Hepatitis B aims to reduce liver inflammation and prevent complications. Antiviral medications are commonly prescribed to manage Hepatitis B and improve liver function. It is essential toadhere to the treatment plan prescribed by a healthcare provider to achieve optimal outcomes.Lifestyle ModificationsMaking lifestyle changes can help manage Hepatitis B and improve overall health. Maintaining a healthy diet, exercising regularly, avoiding alcohol and smoking, and getting enough rest are essential in supporting liver health and managing Hepatitis B effectively.Monitoring and Follow-UpRegular monitoring and follow-up with a healthcare provider are essential in managing Hepatitis B. Monitoring liver function tests, viral load, and other relevant parameters can help track the progression of the disease and adjust treatment accordingly.ConclusionIn conclusion, Hepatitis B is a serious health condition that requires comprehensive management to prevent complications and improve patient outcomes. By following the prevention strategies, getting vaccinated, seeking early diagnosis and treatment, making lifestyle modifications, and regular monitoring, individuals can effectively manage Hepatitis B and lead a healthy life.Stay informed, stay proactive, and take control of your health to prevent and manage Hepatitis B effectively in 2024.。

巴塞罗那临床肝癌B期和C期患者施行部分肝切除术治疗的国际争议

巴塞罗那临床肝癌B期和C期患者施行部分肝切除术治疗的国际争议

A of BCLC need further resear—
【Key words】Liver
neoplasms;
Barcelona clinic liver International
cancer;Hepatectomy;
controversy
巴塞罗那临床肝癌(Barcelona
Clinic Liver Cancer, Asso—
患者[包括肿瘤侵犯门静脉和(或)肝静脉患者],只 应接受索拉非尼治疗。 如果追溯BCLC治疗策略的基础,其源于1999年
1项肝切除术治疗77例肝癌患者的研究,2项采用
Liver(EASL)and
the American Association
Liver Disease(AASLD),assuming that hepatectomy is only for patients in stage 0 or A of BCLC rather than for patients in stage B
2.1
Torzilli等的回顾性研究
A期和B期的分期标准仍有这么大的争议。BCLC
Torzilli等一。回顾性分析了10所世界著名医学 中心2 046例行肝切除术患者的临床资料,其中
36%是BCLC B期患者,14%是BCLC C期患者,即
分期于1999年提出¨6|,在10多年I"4经过了数次 修改¨6’21。22I。笔者认为应该由读者判断究竟是 Torzilli等‘1纠10所医学中心的人员错误理解BCLC 分期,还是BCLC分期在目前尚是模糊不清。
心对BCLC A期和B期的分期理解是正确的。
从这些高层次的辩论中,可思考为什么BCLC
分期在肝癌专家中仍有争议?这是否会使大多数普 通医师对BCLC分期更觉混乱?尤其是对BCLC
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

This work is funded by the German Research Fooperative project „Interoperable geoscientific information systems“.
ing to superior characteristics and changes of the atmosphere, can only be achieved, if the whole amount of relevant information is accessible in an uniform way and can be processed with different tools. The second project deals with 3D geological mapping. Geological maps present the geometry, lithology, age as well as some other characteristics of diverse geological bodies. Today’s geological maps are intrinsically two-dimensional. Only a well-trained geologist can restore in mind underlying 3D structures from the analogue maps. The progress in computer sciences makes actual the maintenance of digital 3D geological maps [Sie88]. However, there is no established geo-information system that could be used for the computer-aided design of such maps. The goal of the project is the construction of a consistent geological 3D-model of Southern Lower Saxony from primary geological data and its iterative refinement by using in rotation specialized geological - GOCAD [Mal92], [GO98] and geophysical - IGMAS [GöL88] tools. Geophysical modeling applies gravimetric and magnetic evaluations of the potential fields to extrapolate the geological information gained at the earth surface into the depth. However, on the initial stages it is not effective enough because of the large variability of parameters under consideration. To reduce the variability the geo-scientific modeling needs a kind of rough cast which can be provided by the interactive geological modeling with GOCAD. The stratigraphic information obtained in the result of geological modeling is further used for the refined computations of densities within IGMAS. 2 Requirements Though being apparently diverse, these domains appeared to have much in common from the viewpoint of data- and system integration. Due to many heterogeneous data formats and different computer platforms, the data are usually split into isolated partitions and therefore are not available in the whole volume to a particular application. On one hand this scenario supports effectively the specific needs of a concrete geo-discipline, but on the other hand it prevents the utilization of the entire data for the comprehensive analysis. Bridging the gap requires integration both on the logical (data-related) and the technical (system-related) layers. The logical layer precludes the development of interdisciplinary object models, describing the semantics of geo-objects, and mapping techniques that support semantically correct transformations from source formats to the integrated model. This involves mapping of attribute names, unit conversion, coordinate transformation, etc. The technical layer deals with heterogeneous computer architectures, operating systems and programming environments. Both domains have common requirements to data and systems integration: • formal definition of geo-objects in 3D space including their meta-information; • development of interdisciplinary object models; • database queries on „integrated data“; • data and methods exchange between geoscientific applications; • formal description of interfaces for the remote access to geo-services. Geo-scientific data are extremely heterogeneous. They have very complex hierarchical or network structures which are rather optimized for a particular task than standardized. The total integration of such data will need tremendous expenses. However, necessary steps in this direction can be made with less efforts. Therefore several levels of data integration are reasonable.
A CORBA-based Approach to Data and Systems Integration for 3D Geoscientific Applications1
Oleg T. Balovnev, Andreas Bergmann, Martin Breunig, Armin B. Cremers, Serge Shumilov Institute of Computer Science III University of Bonn Tel: +49 228 73-4535 Fax:+49 228 73-4382 e-mail: martin@cs.uni-bonn.de
Abstract
Today’s geo-information systems are not open enough to provide a required level of data and systems integration. In this paper we introduce an approach to data- and system- integration which is based on the common object request broker architecture (CORBA), which allows for various applications to exchange data as objects. As a result not only data but also data processing methods can be made accessible for the remote applications thus creating a basis for exchange of geo-services. The central role in the proposed approach plays an objectoriented geodata store built on top of common object model: objects which are uniformly stored in the database serve as mediators between extremely heterogeneous representations inherent to different geo-scientific applications. The approach is evaluated by the development of a prototype distributed environment for concrete geological and geophysical 3D modeling systems. Keywords: open geo-information system, data and systems integration, 3D geo-information system, geo-toolkit, geo-database.
相关文档
最新文档