小学比和比例的数学练习题
2023年冀教版六年级数学上册《比和比例》习题
《比和比例》习题一、概念1、像1:3、3:1这样的表示方法叫做(),“:”是()。
2、比表示(),比值表示();比例表示()。
3、比值通常用()表示,也可以用()和()表示。
4、比的前项、后项()乘或除以(),比值(),这叫做比的基本性质。
利用比的基本性质可以()。
5、在比例里,()等于(),这叫做比例的基本性质。
利用比例的基本性质可以()。
6、组成比例的四个数叫做比例的()。
两端的两项叫做比例的(),中间的两项叫做比例的()。
7、把比化成()的过程叫做化简化。
8、最简单的整数比的前项和后项必须是()数,并且前项和后项()。
9、化简比的结果是(),求比值最后的结果是()。
10、比、除法、分数三者的联系:a:b=()÷()=()()()11、标出比各部分的名称:8 :4= 212、标出比例中内项和外项:24:48=1:213、判断两个比能不能组成比例,关键看()。
14、比的后项()为0。
二、读一读下面的比。
1、地球上的淡水含量与地球上水总量的比为3:100。
读作:2、人的血液重量与体重的比是1:13。
读作:3、我们喝的鲜橙多中橙汁与水的比是1:9。
读作:4、妈妈做米饭时米与水的比是1:3。
读作:5、人的脚长与身高的比1:7。
读作:二、填空。
1、5:8=()÷( )=()()114=()÷( )= (): ( )():6 =0.5 2:5=16:()=()÷15 ∶=2∶()=()∶102、某校六年级一班有男生24人,女生25人。
(1)男生人数与女生人数的比是( ),比值是( )。
(2)女生人数与男生人数的比是( ),比值是( )。
(3)女生人数与全班人数的比是( ),比值是( )。
(4)全班人数与女生人数的比是( ),比值是( )。
3、小明3分钟走了240米,小杰5分钟走了350米。
(1)小明与小杰行走时间的比是( ),比值是( )。
(2)小明行走的路程与小杰的路程的比是( ),比值是( )。
5-2比和比例分类小练习1-11
比和比例分类练习一(按比例分配)1、甲工厂有120人,乙工厂有80人。
从乙工厂调几人到甲工厂才能使甲工厂与乙工厂的人数之比是5:3?2、甲班有60人,乙班有80人。
从甲班调几人到乙班才能使甲乙两班人数的比是2:3?3、小明有25元,小华有35元。
小华给小明几元才能使小明与小华的钱数比是2:1?4、甲筐有50个苹果,乙筐有70个苹果。
从乙筐拿几个苹果放入甲筐才能使甲乙两筐苹果个数比是7:5?5、有一个长方体,长与宽的比是2:1,宽与高的比是3:2.。
求长与高的比。
6、有一个长方体,长与宽的比是2:1,宽与高的比是3:2.。
已知这个长方体的全部棱长之和是220cm,求这个长方体的体积。
7、甲、乙、丙三人分138只贝壳,甲每取走5只乙就取4只,乙每取走5只丙就取6只。
问:最后三人各分到多少只贝壳?比和比例分类练习二(按比例分配)1、光明小学将五年级的140名学生,分成三个小组进行植树活动。
已知第一小组和第二小组人数的比是2︰3,第二小组和第三小组人数的比是4︰5.这三个小组各有多少人?2、某农场把61600公亩耕地划归为粮田、棉田与其它作物,粮田、棉田之间的面积之比为7︰2,棉田与其他作物面积的比是6︰1.每种作物各是多少公亩?3、黄山小学六年级的同学分三组参加植树。
第一组与第二组的人数的比是5︰4,第二组与第三组人数的比是3︰2,已知第一组的人数比二、三两组人数的总和少15人,六年级参加植树的共有多少人?4、科技组与作文组人数的比是9︰10,作文组与数学组的人数的比是5︰7,已知数学组与科技组共有69人。
数学组比作文组多多少人?5、五年级三个班举行数学竞赛。
一班参加比赛的占全年级参赛总人数的31,二班与三班参加比赛人数的比是11︰13,二班比三班少8人。
一班有多少人参加了数学竞赛?6、光华电视机厂上半年生产的电视机产量占全年生产计划的85,照这样的速度计算,全年可超产1000台。
这个工厂上半年生产电视机多少台?比和比例分类练习三1、甲、乙两校原有图书本数的比是7︰5,如果甲校给乙校650本,甲、乙两校图书的本数的比就是3︰4.原来甲校有图书多少本?2、小明读一本书,已读和未读的页数比是1︰5.如果再读30页,则已读和未读的页数之比为3︰5.这本书共有多少页?3、甲、乙两包糖的重量比是4︰1.从甲包取出130克放入乙包后,甲、乙两包糖的重量比为7︰5.原来甲包有多少克糖?4、甲、乙两人的钱数之比是3:1,如果甲给乙0.6元,两人的钱数之比变为2:1,两人共有多少钱?5、一斑和二班的人数之比是8:7,如果将一斑的8名同学调到二班去,则一斑和二班的人数之比变为4:5。
(完整版)小学六年级数学比和比例综合练习题
比和比率姓名( )得分()一、 填空:1. 甲乙两数的比是 11:9, 甲数占甲、乙两数和的() ,乙数占甲、乙两数和的 ()。
甲、( )( ) 乙两数的比是 3:2 ,甲数是乙数的()倍,乙数是甲数的() 。
( )2. 某班男生人数与女生人数的比是3,女生人数与男生人数的比是(),男生人数4和女生人数的比是()。
女生人数是总人数的比是()。
3. 一本书,小明计划每日看2,这本书计划()看完。
74. 一根绳长 2 米,把它均匀剪成5 段,每段长是()米,每段是这根绳索的() 。
( )( )5. 王老师用 180 张纸订 5 本簿本,用纸的张数和所订的簿本数的比是(),这个比的比值的意义是( )。
6. 一个正方形的周长是8米,它的面积是()平方米。
57.9吨大豆可榨油1吨, 1 吨大豆可榨油()吨,要榨 1 吨油需大豆()吨。
838. 甲数的 2等于乙数的2,甲数与乙数的比是()。
359. 把甲数的 1给乙,甲、乙两数相等,甲数是乙数的(),甲数比乙数多() 。
7 ()()10. 甲数比乙数多 1,甲数与乙数比是()。
乙数比甲数少() 。
4( )11. 在 6 :5 = 1.2 中,6 是比的(),5 是比的(),1.2 是比的( )。
在 4 :7 =48 :84 中, 4 和 84 是比率的(),7 和 48 是比率的()。
12. 4 :5=24 ÷()= () :1513. 一种盐水是由盐和水按 1 : 30 的重量配制而成的。
此中,盐的重量占盐水的(—) ,水的重量占盐水的 (—)。
图上距离 3 厘米表示实质距离 180 千米,这幅图的比率尺是( )。
一幅地图的比率尺是图上 6 厘米表示实质距离 ()千米。
实质距离 150 千米在图上要画( )厘米。
14. 12 的约数有(),选择此中的四个约数,把它们构成一个比例是()。
写出两个比值是 8 的比()、()。
15. 加工部件的总个数必定,每小时加工的部件个数的加工的时间()比率;订数学书的本数与所需要的钱数(的部件和没有加工的部件个数(16. 假如 x ÷ y =712 ×2,那么 x 和y 成()比率;加工部件的总个数必定,已经加工)比率。
比和比例六年级练习题
比和比例六年级练习题在六年级数学教学中,比和比例是一个非常重要的知识点。
比和比例的学习对学生的数学整体素养有着很大的帮助。
下面我将为大家提供一些六年级比和比例的练习题,希望能够帮助大家巩固和提高这方面的知识。
1. 小明学校有300名学生,其中男生占总人数的3/5,女生占总人数的2/5。
请问男生有多少人?女生有多少人?解析:男生人数 = 总人数 ×男生比例 = 300 × 3/5 = 180人女生人数 = 总人数 ×女生比例 = 300 × 2/5 = 120人所以男生有180人,女生有120人。
2. 小明有一些鸟的照片。
他用其中的1/4放在相册里,用其中的1/8放在电脑里,还剩下36张照片。
请问小明一共有多少张鸟的照片?解析:(1-1/4-1/8)×鸟的照片总数 = 36(7/8) ×鸟的照片总数 = 36鸟的照片总数= 36 × 8/7 = 416/7 ≈ 59张所以小明一共有59张鸟的照片。
3. 甲乙两个人同时开始用自行车沿同一条道路前进。
甲的速度是乙的两倍。
2小时后,甲乙两人相距56公里。
请问甲的速度是多少?解析:假设甲的速度为v,则乙的速度为v/2。
甲乙两人相对速度为v - v/2 = v/2。
2小时后,他们相对位移为2 × (v/2) = v 个单位。
根据题意,相对位移为56公里,所以v = 56。
甲的速度为v = 56公里/小时。
4. 甲刷一间屋子需要2个小时,乙刷同样大小的一间屋子需要3个小时。
请问他们一起刷完两间屋子需要多少时间?解析:甲的单位时间刷墙的能力为1/2。
乙的单位时间刷墙的能力为1/3。
他们一起刷墙的单位时间能力为1/2 + 1/3 = 5/6。
所以他们一起刷完两间屋子需要(1/5/6)小时 = 6/5小时 = 1.2小时。
5. 一辆车在2小时内以60公里的速度行驶,然后在再接下来的3小时内以80公里的速度行驶。
小学数学比和比例练习题
小学数学比和比例练习题1. 题目:小明手中有10个苹果,小李手中有20个苹果,求小明手中苹果数量与小李手中苹果数量的比值。
解答:小明手中苹果数量与小李手中苹果数量的比值为1:2。
2. 题目:某校全校学生人数为500人,其中男生占总人数的40%,女生占总人数的60%,求男生和女生的人数各为多少。
解答:男生人数为500 × 40% = 200人,女生人数为500 × 60% = 300人。
3. 题目:小华每天步行上学的时间是30分钟,小明每天骑自行车上学的时间是20分钟,求二者上学时间的比值。
解答:小华上学时间与小明上学时间的比值为30分钟:20分钟,可以简化为3:2。
4. 题目:一桶油漆能涂刷50平方米的墙面,求涂刷100平方米的墙面需要多少桶油漆?解答:涂刷100平方米的墙面需要的油漆桶数为100平方米 ÷ 50平方米/桶 = 2桶。
5. 题目:某豆浆机每分钟可以榨取2升的豆浆,小明需要榨取10升的豆浆,求他榨取豆浆需要的时间。
解答:榨取10升的豆浆所需时间为10升 ÷ 2升/分钟 = 5分钟。
6. 题目:小玲的工资是小智的3倍,小智的工资是小明的2倍,若小明的工资为3000元,求小玲的工资。
解答:小智的工资为小明的2倍,所以小智的工资为2 × 3000元 = 6000元。
小玲的工资为小智的3倍,所以小玲的工资为3 × 6000元 = 18000元。
7. 题目:一种果汁的配方为果汁浓缩液:水 = 1:4,若需要制作20升果汁,求需要多少升的果汁浓缩液和水。
解答:根据配方比例,果汁浓缩液的量为总量的1/5,即20升 × 1/5 = 4升。
水的量为总量的4/5,即20升 × 4/5 = 16升。
8. 题目:一辆汽车每小时行驶60公里,小明骑自行车每小时行驶20公里,求一辆行驶了120公里的汽车所用的时间与小明骑自行车行驶了同样距离所用的时间的比值。
苏教版数学六年级下册应用题特训~比和比例(专项训练)【含答案】
苏教版数学六年级下册应用题特训:比和比例(专项训练)1.在比例尺是1∶500的一幅地图上,量得一块长方形菜地的周长是28厘米,已知这块菜地的长和(1)第一天和第二天行驶的路程分别与时间的比能组成比例吗?为什么?如能组成比例,请写出来.(2)两天行驶路程的比和两天行驶时间的比能组成比例吗?为什么?如能,把组成的比例写出来.9.按要求完成问题.比例尺1:20000(1)如果要从小区修一条通向学校和医院之间的公路的小路,怎样修才能使小路最短?请在途中用线段画出来.(2)医院大约在学校的()方向,它们之间的实际距离约是()米.10.甲、乙、丙三人进行200米的赛跑,甲跑到终点时,乙还剩20米未跑完,丙还剩25米未跑完.问,当乙跑到终点时,丙还剩多少米未跑完?11.在1:1800000的地图上一段6cm长的公路,在另外一幅地图上同样的这条公路长8cm,求另外这幅地图的比例尺.12.张老师到京东文具店买28支同样的钢笔,要付448元.照这样计算,如果陈老师想再多买同样的钢笔30支,他一共带了900元,够吗?13.在比例尺是1∶25000000的地图上标出甲、乙两地.已知甲、乙两地的实际距离是4500千米,图上两地相距多少厘米?14.把左边的长方形按比放大后得到右边的长方形,请写出比例,并求出x的值。
(单位:cm)15.淘气和笑笑收集的邮票张数的比是3∶5,淘气收集了36张邮票,笑笑收集了多少张邮票?【用比例解】16.学校图书馆科技书本数与故事书本数的比是3∶2,故事书有180本,科技书有多少本?(用比例方法解)17.在标有的地图上,量得甲、乙两地相距9厘米.一参考答案:9.(1);(2)18【详解】圆内正方形图上对角线表示6cm,则实际长度为6m,实际面积为18m2.19.2.5小时【详解】略20.12天【详解】解:设x天可以完成任务.10x=8×15解得x=12答:12天可以修完.。
比和比例精选题
比和比例(1)例1、在比例尺是25000001的地图上,量得两城市之间的距离是8厘米,如果画在比例尺是80000001的地图上,图上距离是多少厘米?(1)在1︰5000000的地图上,甲、乙两城相距3厘米。
在1︰3000000的地图上相距多少厘米?(2)在比例尺是1︰3000000的地图上,量得甲、乙两地的距离是40厘米。
两辆汽车同时从甲、乙两地相对开出,经过12小时相遇,已知甲汽车每小时行48千米,乙汽车每小时行多少千米?(3)在比例尺是8︰1的精密零件图上,量得零件的长是5厘米。
这个零件实际长多少?例2、张、王、李三人共有54元,张用了自己钱的53,王用了自己钱的43,李用了自己钱的32,各买了一支相同的钢笔。
三人各有多少钱?学校 班级 姓名(1)甲、乙、丙三人原来共有2100元,甲用去自己钱的21,乙用去自己钱的31,丙用去自己钱的52,结果三人用去的钱数同样多,、。
三人原来各有多少元钱?(2)三根铁丝一共长215米,第一根铁丝用去31,第二根铁丝用去43,第三根铁丝用去52后,三根铁丝剩下的长度相等。
三根铁丝原来各长多少米?(3)甲、乙、丙三个工人,由于超额完成任务,共得奖金120元,甲得的3倍等于乙得到的5倍,乙得到的2倍等于丙得到的3倍。
甲、乙、丙各得奖金多少元?例3、买甲、乙两种铅笔共208支,甲种铅笔每支3角,乙种铅笔每支5角,买两种铅笔用去的钱数相同。
问:甲种铅笔买了几支?(1)一辆汽车三天共行945千米,第一天行6小时,第二天行7小时,第三天行8小时。
如果每天所行的速度相等,那么三天各行多少千米?(2)加工一个零件,甲需3分钟,乙需3.5分钟,丙需4分钟。
现有1825个零件需要加工,如果规定三人用同样的时间,那么各应加工多少个零件?例4、一个车间有两个小组,第一小组与第二小组的人数比是5︰3,如果第一小组有14人到第二小组,那么第一小组与第二小组人数比为1︰2,原来两个小组各有多少人?(1)盒子里有花弹子和白弹子,两种弹子的个数比是5︰6,如果取出8个花弹子,放入8个白弹子,那么花、白两种弹子数量比是4︰7,盒子里原来有两种弹子各多少个?(2)一个车间女职工和男职工人数比是2︰3,如果增加15名女职工,减少15名男职工,那么女职工和男职工人数比是3︰2,这个车间原来有女职工和男职工各有多少人?(3)工地上有甲、乙两队沙子,两堆沙子的质量比是3︰4,如果从甲堆运出8吨放入乙堆,两堆沙子的比就是1︰3。
比和比例题100道
比和比例题100道1、一种盐水,盐的质量是水的25%,现有5克盐,要配制这种盐水,需要加多少克水?2、一种盐水,盐与水的质量比是1:4,现有5克盐,要配制这种盐水,需要加入多少克水?3、从济南到郑州的公路长440千米,一辆中巴车2小时行了160千米,照这样计算,从济南到郑州需要多少小时?先说说路程和时间成什么比例,再用比例解。
4、文化路小学六年级征订《数学报》,一班订了25份,二班订了20份,一班比二班多花了100元。
每份《数学报》多少元?5、图书室有一个书架一共两层,上层数量与下层数量的比是5:6,从上层拿20本放到下层后,上、下两层的数量比是3:4。
上、下两层书架一共有多少本书?6、甲乙两辆汽车从两个城市相对开出,2小时后在距中点16千米处相遇,这时甲车与乙车所行的路程比是3:4,甲、乙两车的速度各是多少?7、甲乙两车同时从两地相向而行,两小时相遇,已知两地相距180千米,甲乙的速度比是3:2,甲乙两车的速度各是多少?8、上海到杭州的距离是144千米,在比例尺1:2000000的地图上,上海到杭州是多少厘米?9、天草服装厂3天加工女装1800套,照这样计算,要生产5400套,需要多少天?(用比例解)10、“百大三联”有一批电脑,卖出总数的80%,又运来140台,这时电脑总数与原来总数的比是2:3,百大三联原来电脑多少台?11、一辆汽车一次加油支付60元,行驶了300千米。
现在要去800千米的某地接运一批货物回来,需要多少汽油费?12、客车和货车同时从甲、乙两城中点处向相反方向开出,3小时后客车到达甲城,货车离乙城还有60千米,客车与货车的速度比是3:2,求甲、乙两城的距离。
13、火车用26秒的时间通过一个厂256米的隧道(即从车头进入车尾离开出口),这列火车又用16秒的时间通过了96米的隧道,求列车的长度。
(用比例解答)14、建一幢楼房,所占地是一个厂60米、宽45米的长方形,画在比例尺是1:1000的地图上,图上长方形的面积是多少平方厘米?15、某一时刻测得一烟囱在阳光下影长为16.2米,同时测得一根长4米的竹竿的影长为1.8米,求烟囱的高度(用比例)16、铺设一条管道,如果每天铺30米,15天铺完;如果每天铺45米,多少天铺完?(用比例)17、在比例尺是1:600的图纸上,一个圆形花坛的周长是9.42厘米。
六年级 比与比例练习(8套)
比和比例(一)一、 精学精用1、 填空(1) 两个数相除,又叫做( );( )叫做比值。
(2) 比号前面的数叫做比的( ),比号后面的数叫做比的( )。
(3) 比的前项和比的后项同时( ),( )不变,这就是比的基本性质。
(4) 把比化简成最简单的整数比,通常叫做( )。
(5) 填写下面比与除法、分数之间的关系表:(6) 甲正方体的棱长是5分米,乙正方体的棱长是甲正方体的4倍:① 甲乙两个正方体的棱长的比是( ); ② 甲乙两个正方体底面周长的比是( ); ③ 甲乙两个正方体的底面积的比是( ); ④ 甲乙两个正方体的表面积的比是( ); ⑤ 甲乙两个正方体的体积的比是( )。
2、求下列各比的比值105:35 2.4:8 70:0.5 12:48 105:51:二、 活学活用1、 求比的未知项X:18.4=141 1255:x=0.26 x:531212= 158542=X :2、 化简下列各比 8:0.5 69232.5:23.1:18.6 51:173、 求下列各比的比值3:45 18:4 0.25:12 6:61 3192:4、 配制一种糖水,在150克的水中,放了25克的糖。
(1)写出糖和水的质量的比,并化简。
(2)写出糖和糖水的质量的比,并化简。
(3)写出水喝糖水的质量的比,并化简。
比和比例(二)3、精学精练(3)填空 (1)()211530÷==( )÷( )=()35(2) 一辆汽车3小时行了195千米,汽车所行的路程和所用的时间的比是( )。
(3) 某班有男生18人,女生22人,男生和全班人数的比是( )。
(4) 甲数是乙数的1.5倍,甲数和乙数的比是( )。
(5) 直角三角形的两个锐角的比是2:3,它的两个锐角分别是( )度和( )度。
(6) 男生占全班人数的60%,女生人数和男生人数的比是( )。
(7) 大圆与小圆的半径的比是2:1,小圆与大圆的面积的比是( )。
六年级下册-第二单元比和比例能力提高题和奥数题(附答案)
第二单元 比和比例能力提升题和奥数题板块一 比例题1.小明读一本书,已读的页数和未读的页数之比是5∶4,如果再读27页,已读的页数和未读的页数之比是2∶1。
求这本书有多少页?练习1.甲、乙两袋糖果的质量比是3∶2,如果从甲袋糖果中拿出5千克放入乙袋,这时甲、乙两袋糖果的质量比是1∶1。
两袋糖果一共重多少千克?例题2.甲数是乙数的103,乙数是丙数的94,求这三个数的连比。
练习2.在学校召开的秋季运动会上,李小强、刘小刚、王小林三个人参加了百米赛跑。
赛跑的过程中,李小强的速度比刘小刚慢101,刘小刚的速度比王小林慢101,他们三人的速度比是多少?例题3.蓝天小学和新世纪小学学生人数的比为3∶5。
如果从蓝天小学转入新世纪小学150人,则蓝天小学与新世纪小学学生人数的比为3∶7。
求原来蓝天小学和新世纪小学各有多少人?练习3.甲、乙两个仓库货物的质量比是7:5,如果甲仓给乙仓26吨,那么甲、乙两个仓库货物的质量比是3:4.甲仓原来有多少吨货物?例题4.某高速公路收费站对于过往车辆收费标准是:大客车30元,小客车15元,小轿车10元。
某日通过该收费站的大客车和小客车数量之比是5:6,小客车与小轿车之比是4:11,收取小轿车的通行费比大客车多210元。
求这天这三种车辆通过的数量。
练习4.学校组织体检,收费标准如下:老师每人3元,学生每人2元。
已知老师和学生的人数比为2:9,共收得体检费3120元。
那么老师、学生各有多少人?例题5.甲、乙、丙三人合买一台电视机,甲所付钱数的21等于乙所付钱数的31,等于丙所付钱数的73。
已知丙比甲多付了120元,那么这台电视机多少钱?练习5..甲、乙、丙三人逛商场,甲花的钱数的21等于乙花的钱数的31,乙花的钱数的74等于丙花的钱数的43,丙比甲多花47元,乙花了多少元?例题6.张、王、李、赵4人联合为灾区捐款,张捐的钱数是王,李,赵总和的41,王捐的钱是张,李,赵总和的237,李捐的钱是张,王,赵总和的114,赵捐了9元钱。
小学六年级数学比和比例(难题)
比和比例(1)
2、某校合唱队与舞蹈队人数之比为3 :2,如果将合唱队的队员调10名到舞蹈队,
那么这时的人数比为7 :8,原合唱队有人
3、甲、乙、丙三人外出参观。
午餐时,甲带有4包点心,乙带有3包点心,丙带有
7元钱却没有买到食物,他们决定把甲、乙二人的点心平均分成三份食用,由丙把7元钱还给甲和乙,那么,甲应分得元
@
4、三个容积相同的瓶子装满酒精溶液,酒精与水的比分别是3 :2, 3 :1, 4 :1,
当把三瓶酒精溶液混合时,酒精与水的比是
5、有甲、乙、丙三个长方体,它们的长之比是2 :2 :3,宽之比是3 :5 :6,高之比是6 :2 :5,如果丙的体积是90立方厘米,那么甲、乙两个长方体的体积之和是
立方厘米。
比和比例(2)
3.4.
5.6.
比和比例(3)
比和比例(4)。
六年级下学期数学小升初比和比例专项练习及一套参考答案精品带答案
六年级下学期数学小升初比和比例专项练习一.选择题(共20题,共40分)1.把一个面积是72cm2的长方形按1∶2缩小,缩小后的长方形的面积是()。
A.18cm2B.36cm2C.72cm2D.144cm22.下面的说法中,正确的有()句。
①一个正方体的棱长扩大2倍,它的表面积扩大4倍,体积扩大8倍②把4:5的前项和后项同时增加5倍,比值不变③甲数的相当于乙数的,乙数与甲数的比值是④一根1米长的绳子,用去50%,还剩50%米⑤A=2×3×5,B=2×3×7,A和B的最小公倍数是210⑥时间一定,速度和路程成反比例关系A.2B.3C.4D.53.如果5a=3b,那么a和b的关系是()。
A.成正比例B.成反比例C.不成比例D.没有关系4.比例尺一定,实际距离扩大到原来的5倍,则图上距离()。
A.缩小到原来的B.扩大到原来的5倍 C.不变5.用地砖铺一间教室,地砖的块数和()成反比例。
A.每块地砖的边长B.每块地砖的面积C.每块地砖的周长6.把一个正方形接2:1的比例放大后,得到的图形与原来的图形相比较,()。
A.面积扩大到原来的2倍B.周长扩大到原来的2倍C.面积扩大到原来的D.周长缩小到原来的7.把1块饼平均分成若干份,每块饼的大小和份数()。
A.成正比例B.成反比例C.不成比例8.把一块三角形的地画在比例尺是1:500的图纸上,量得图上三角形的底是12厘米,高8厘米,这块地实际面积是()。
A.480平方米B.240平方米C.1200平方米9.下面选项,()是比值。
A.篮球比赛记分牌上显示21:16B.比例尺C.圆周率 D.a:b10.下列各题中,哪两种量不成比例()。
A.长方形的面积一定,长和宽B.征订《小学生周报》,征订的数量和总价C.收入一定,支出和结余11.下列各种关系中,成反比例关系的是()。
A.某人年龄一定,他的身高与体重。
B.平行四边形的面积一定,它的底和高。
小学六年级数学比和比例(难题)
比和比例(1)
2、某校合唱队与舞蹈队人数之比为3 :2,如果将合唱队的队员调10名到舞蹈队,
那么这时的人数比为7 :8,原合唱队有人
3、甲、乙、丙三人外出参观。
午餐时,甲带有4包点心,乙带有3包点心,丙带有
7元钱却没有买到食物,他们决定把甲、乙二人的点心平均分成三份食用,由丙把7元钱还给甲和乙,那么,甲应分得元
@
4、三个容积相同的瓶子装满酒精溶液,酒精与水的比分别是3 :2, 3 :1, 4 :1,
当把三瓶酒精溶液混合时,酒精与水的比是
5、有甲、乙、丙三个长方体,它们的长之比是2 :2 :3,宽之比是3 :5 :6,高之比是6 :2 :5,如果丙的体积是90立方厘米,那么甲、乙两个长方体的体积之和是
立方厘米。
比和比例(2)
3.4.
5.6.
比和比例(3)
比和比例(4)。
比和比例 小学数学 测试题
一、选择题1. 两个圆重叠部分的面积相当于小圆面积的,相当于大圆面积的。
大、小圆面积的比是()。
A.12∶5B.5∶12C.7∶5D.5∶72. ()中的两种量不成比例。
A.从北京到广州,列车行驶的平均速度和所需时间B.一箱苹果,吃去的个数和剩下的个数C.同一时刻、同一地点物体的高度和影子的长度3. 农场养的牛与羊的数量比是9∶20。
已知农场养牛比羊少22只,养羊()只。
A.2 B.40 C.198 D.2204. 下列描述中的两种相关联的量成反比例关系的是()。
A.圆柱的底面直径一定,高和侧面积B.小明从学校去市图书馆,他骑自行车的速度和时间C.小明的年龄和小明妈妈的年龄D.中的和5. 关于比例尺1∶50000,下列说法不正确的是()。
A.图上距离是实际距离的B.图上1厘米的线段表示实际距离50000千米C.把实际距离缩小到它的画在图纸上二、口算和估算6. 直接写出得数。
5×0.5÷5×0.5=7.78+2.2=73.17÷9.12≈ 0.3752= 6.3∶()=0.9三、填空题7. 甲车和乙车的速度比是5∶4,若两车行完相同的路程,时间比为( )。
8. ==÷.9. 一个长方形的周长是36厘米,长与宽的比是5∶4,这个长方形的面积是( )平方厘米。
10. A除以B的商是3,________∶________。
11. 将比例尺1∶50000改写成线段比例尺是( )。
四、解答题12. 一幅中国交通地图比例尺为在这幅地图上量得甲、乙两座城市之间相距6厘米,一辆出租车从甲城开出,3.75小时后到达乙城。
出租车平均每小时行多少千米?13. 张师傅两天加工一批零件,第一天完成的个数比零件总个数的多60个,第二天完成的个数与第一天完成的比是1∶3。
这批零件一共有多少个?14. 如图中每个小方格的边长表示1厘米。
(1)把图中的三角形绕C点顺时针旋转90°,画出旋转后的图形,旋转后,B点的位置用数对表示是。
数学比和比例的应用试题
数学比和比例的应用试题1.树台小学回族学生有1100人,回族学生人数与汉族学生人数的比是11:2,树台小学有汉族同学多少名?【答案】200【解析】由“回族学生人数与汉族学生人数的比是11:2”,可知:回族学生人数占11份,汉族学生人数占2份,用回族学生人数除以回族学生人数占得份数,先求出一份的数,然后即可求出汉族学生人数.解:1100÷11×2,=100×2,=200(人);答:树台小学有汉族同学200名.点评:此题是比的应用,主要考查先求一份的数,再求几份的数.2.粮店运来的大米比面粉多108袋,大米和面粉的比是5:4,运来大米和面粉各多少袋?【答案】大米有540袋,面粉有432袋.【解析】由它们的比是5:4可知,面数是大米的,而大米比面粉多108袋,所以大米有108÷(1﹣)袋,进而求出面粉有多少袋.解:大米有:108÷(1﹣)=540(袋);面粉有:540×=432(袋);答:大米有540袋,面粉有432袋.点评:本题主要根据它们的比先求出面粉是大米的几分之几后再根据多的袋数求出各有多少袋.3.鸡的只数与鸭的只数比是4:7.(1)鸡的只数是鸭的只数的.(2)鸭的只数是鸡鸭总数的.(3)鸭的只数是鸡的只数的倍.【答案】,,1.75.【解析】鸡的只数与鸭的只数比是4:7,把鸡的只数看作4份,鸭的只数7份.则鸡的只数和鸭的只数一共有4+7=11份,据此解答.解:(1)鸡的只数是鸭的只数的:4;(2)鸭的只数是鸡鸭总数的:7÷(4+7)=;(3)鸭的只数是鸡的只数的:7÷4=1.75.点评:解答此题的关键是利用份数进行解答.4.学前班有几十位小朋友,老师买来176个苹果,216块饼干,324粒糖,并将它们尽可能多的平均分给每位小朋友,余下的苹果、饼干、糖的数量之比是1:2:3.问:学前班有多少位小朋友?【答案】34【解析】因为1+2=3,176+216﹣324=68,所以全班的人数应是68的约数.68的大于10的约数是17、34和68.据此解答.解:如果全班人数为17,176÷17=10…6,216÷17=12…12,324÷17=19…1,16:12:1≠1:2:3不符合题意;如果全班人数为34,176÷34=5…6,216÷34=6…12,324÷34=9…18,6:12:18=1:2:3符合题意;如果全班人数为68,176÷68=2…40,216÷68=3…12,324÷68=4…52,40:12:52≠1:2:3不符合题意;答:学前班有34位小朋友.点评:本题的关键是先求全班的最多是多少,然后再分情况进行讨论.5.六年级甲乙两班人数比为3:2,甲班转给乙班3名同学后,两班人数比为4:3,问甲乙两班原来各有多少人?【答案】甲班原来有63人,乙班原来有42人.【解析】根据“六年级甲乙两班人数比为3:2”,可知甲班人数是乙班的,设乙班原有x人,甲班就有x人;再根据“甲班转给乙班3名同学后,两班人数比为4:3”,列出比例,进而解比例得解.解:设乙班原有x人,甲班就有x人,由题意得:(x﹣3):(x+3)=4:3,x﹣9=4x+12,x=21,x=42;x=×42=63;答:甲班原来有63人,乙班原来有42人.点评:此题考查比的应用,关键是根据甲乙人数的比,推知甲班人数是乙班的,再根据甲班转给乙班3名后的比,列出比例得解.6.东、西两个仓库所存粮食的比是7:3.如果从东仓库运60吨粮食到西仓库,则东仓库存粮占西仓库的150%,两个仓库共存粮多少吨?【答案】600【解析】因两个仓库存粮的总数不变,原来东仓库的存粮占两库存粮的,“从东仓库运60吨粮食到西仓库,则东仓库存粮占西仓库的150%”,就是东仓库与乙仓库存粮的比是150:100=3:2,这是东仓库的存粮就占两库存粮的,60吨对应的分率就是两库存粮的﹣=,据此解答.解:东仓库存粮占西仓库的150%”,就是东仓库与乙仓库存粮的比是150:100=3:2,这是东仓库的存粮就占两库存粮的,60÷(﹣),=60÷,=600(吨).答:两个仓库共存粮600吨.点评:本题的关键是抓住不变量的两库存粮的总数,再分别求出东仓存粮原来和运出后各占两库总数的几分之几,然后根据60对应的分率求出两库的存粮总数.7.甲乙两车间人数比是3:5,若从乙车间调10人到甲车间,现在甲乙车间的人数比是2:3,原来甲车间有多少人?【答案】30【解析】根据题干,设原来甲车间有3x人,则乙车间就是5x人,从乙车间调10人到甲车间后,甲车间是3x+10人,乙车间是5x﹣10人,再根据现在甲乙车间的人数比是2:3,列出比例式求出x的值即可解答.解:设原来甲车间有3x人,则乙车间就是5x人,根据题意可得:(3x+10):(5x﹣10)=2:3,2(5x﹣10)=3(3x+10),10x﹣20=9x+30,x=10,10×3=30(人),答:甲车间原有30人.点评:解答此题的关键是利用已知的甲乙两个车间的人数之比,正确的设出未知数,再根据变化后的比列出比例式即可解答.8.妈妈5月份的工资是3200元,这个月花去的和剩下的钱数的比是5:3,花去的比剩下的多多少元?【答案】800【解析】由题意,把3200元看作5=3=8份,每份是3200÷8=400(元),又知花去的比剩下的多2份,那么花去的比剩下的多400×2元,解决问题.解:3200÷(5+3)×(5﹣3),=3200÷8×2,=400×2,=800(元);答:花去的比剩下的多800元.点评:把总钱数看作8份数,求出每份数,进一步解决问题.9.一辆汽车从甲城开往乙城,3小时行驶105km.用同样的速度又行驶了1.2小时到达乙城,甲城到乙城有多少千米?(用比例解)【答案】147【解析】根据速度一定,路程与时间成正比例,由此列出比例解决问题.解:设甲、乙两地相距x千米,105:3=x:(3+1.2),3x=105×(3+1.2),3x=441,x=147;答:甲城到乙城有147千米.点评:解答此题的关键是,根据题意及路程、速度与时间的关系,判断路程与时间成正比例,注意1.2小时是在前面3小时行驶后又行驶的时间,不是总路程对应的时间.10.一块铜锌的合金质量是760g,现在按锌、铜1:3的比例重新熔铸,需要添加40g铜,原有锌、铜各多少克?【答案】锌重200克,铜重560克.【解析】由题意得现在合金的重量为760+40=800克,根据现在合金中锌:铜=1:3,可知把总重量平均分成1+3=4份,用总重量除以总份数即可求出一份的重量,再用一份的重量分别乘各自占的份数即可求出现在合金中各自的重量,进而可以求出原来的重量.据此解答即可.解:(760+40)÷(1+3),=800÷4,=200(克),锌重:200×1=200(克)原来铜重:760﹣200=560(克).答:原有锌重200克,铜重560克.点评:此题主要考查利用比的应用解决实际问题.关键是求出每一份的重量.11.用192厘米的铁丝做一个长方体的框架.长、宽、高的比是7:5:4.这个长方体框架的体积是多少?【答案】3780【解析】根据“用192厘米的铁丝做一个长方体的框架”,可知一个长、宽、高的长度和是192除以4,也就是要分配的总量;把这个总量按7:5:4的比例进行分配,进一步求出它的长、宽、高的长度分别是多少,这个长方体框架的体积也就迎刃而解了.解:要分配的总量:192÷4=48(厘米),长:48×=21(厘米),宽:48×=15(厘米),高:48×=12(厘米),长方体框架的体积:21×15×12=3780(立方厘米).答:这个长方体框架的体积是3780立方厘米.点评:此题属于比的应用按比例分配题,关键是弄清要分配的总量和按什么比例进行分配,再进一步解决问题.12.小明读一本书,第一天读了全书的,第二天比第一天多读26页,这时已读的与剩下的页数比是7:5,这本书小明还有多少页没读?【解析】70读了两天后,已读的与剩下的页数比是7:5,即此时已读的占全部的,由于第一天读了第一天读了全书的,则第二天读的占全书的﹣,第二天比第一天多读了全书的﹣﹣,第二天比第一天多读26页,则全书的页数为26÷(﹣﹣),由此可知,这本书小明没有读的还有26÷(﹣﹣)×页.解:26÷(﹣﹣)×=26÷(﹣﹣)×,=26÷×,=70(页).答:小明没读的页数为70页.点评:首先根据两天后已读的页数与未读页数的比,求出已读页数占全部页数的分率,进而求出第二天比第一天多读的占全部的分率是完成本题的关键.13. A、B两的地相距360千米,甲、乙两车同时从两地出发,相向而行,3小时后相遇.已知甲车与乙车速度的比是7:5,求乙车的速度.【答案】50【解析】根据路程除以相遇时间等于速度和,即可求出甲、乙的速度和,再由甲车与乙车速度的比是7:5,即可求出乙车的速度.解:360÷3=120(千米),乙车的速度占甲、乙速度和的几分之几:5÷(7+5)=,120×=50(千米);答:乙车的速度是50千米.点评:解答此题的关键是,根据速度,路程,相遇时间的关系,求出速度和,再找出对应量,根据乘法的意义,列式解答即可.14.哲商小学原来新、老两个校区六年级人数的比是5:7,这学期老校有30人去新校,新校有6人转到老校,这样新校六年级的人数是老校六年级人数的.现在新校区六年级学生有多少人?【答案】384【解析】老校有30人去新校,新校有6人转到老校,变化的人数实际为(30﹣6),在这个过程中,实际不变的量是总人数,所以把两校总人数当做单位“1”,通过两校人数比的变化求出总人数是多少之后就能求出新校区有多少人.解:(30﹣6)÷(﹣)=24÷=864(人),864×=384(人)答:现在新校区六年级学生有384人.点评:本题关健是找出不变量,然后根据不变量求出所求问题.15.将8本相同厚度的书叠起来,高度是30厘米.如果将20本这样相同厚度的书叠起来,那么高度是多少厘米?(要求用比例的方法)【答案】75厘米.【解析】根据题意知道,一本书的厚度一定,书叠起的高度与书的本数成正比例,由此列比例解答.解:设20本书叠起的高度是x厘米,30:8=x:20,8x=30×20,x=,x=75;答:20本书叠起的高度是75厘米.点评:解答此题的关键是,先判断出哪两种相关联的量成何比例,再列出比例解答即可.16.求未知数Ⅹ﹣3x=:4=3.5:x.【答案】x=;x=10.【解析】(1)根据等式的性质,在方程两边同时加上3x,再减去,最后除以3来解.(2)先根据比例的基本性质,把原式转化为,再根据等式的性质,在方程两边同时除以来解.解:(1),,,,x=;(2):4=3.5:x,,,点评:本题考查了学生利用比例的基本性质和等式的性质解方程的能力,注意等号要对齐.17.三个修路队共同修一条长120千米的路,第一队修了这条路的,第二队与第三队所修路长的比是3:5,第三队修了多少千米?【答案】第三队修了45千米【解析】根据分数乘法的意义,先求出第二队和第三队所修路长的和是:120×(1)=72千米;再根据比的意义,即可求出第三队修的路长.解:120×(1)=72(千米),3+5=8,72×=45(千米),答:第三队修了45千米.点评:此题考查了利用分数乘法的意义解决问题的方法以及比在实际问题中的应用.18.100吨甘蔗可以榨糖12吨,照这样计算,6000吨甘蔗可以榨糖多少吨?如果要榨糖360吨,需要用甘蔗多少吨?【答案】6000吨甘蔗可以榨糖720吨;如果要榨糖360吨,需要用甘蔗3000吨.【解析】根据甘蔗的榨糖量一定,甘蔗的质量与糖的质量成正比例,由此设出未知数,列出比例解答即可.解:(1)6000吨甘蔗可以榨糖x吨,100:12=6000:x,100x=12×6000,x=720;(2)如果要榨糖360吨,需要用甘蔗y吨,100:12=y:360,12y=100×360,y=,y=3000;答:6000吨甘蔗可以榨糖720吨;如果要榨糖360吨,需要用甘蔗3000吨.点评:解答此题的关键是,根据题意,先判断哪两种相关联的量成何比例,即两个量的乘积一定则成反比例,两个量的比值一定则成正比例;再列出比例解答即可.19.李师傅3小时做了48个零件.照这样计算,8小时可做多少个零件?(用比例解答)【答案】8小时可做128个零件【解析】根据题意知道,工作效率一定,工作量和工作时间成正比例,由此列式解答即可.解:8小时可做x个零件,x:8=48:3,3x=8×48,x=,x=128;答:8小时可做128个零件.点评:解答此题的关键是,弄清题意,根据工作效率,工作时间和工作量三者的关系,列式解答即可.20.贝贝家来了3位客人,贝贝拿出20ml浓缩果汁按1:50的比给客人冲果汁喝,用如下图的玻璃杯,果汁倒至处,贝贝和客人每人一杯够吗?【答案】贝贝和客人每人一不杯够【解析】根据题意,求出20ml浓缩果汁按1:50,可配果汁多少,再利用圆柱的体积公式求出玻璃杯的体积,再进行比较即可.解:果汁体积为20×50=1000(ml)=1000(立方厘米),6÷2=3(厘米),4个玻璃杯里果汁体积为π×32×15××4=1130.4(立方厘米),1130.4>1000.2;答:贝贝和客人每人一不杯够.点评:解答此题主要分清所求物体的形状,转化为求有关图形的体积或面积的问题,把实际问题转化为数学问题,再运用数学知识解决.21.一艘轮船从甲港驶往乙港,每小时行25千米.12小时到达,返回时每小时行30千米,几小时可以到达?(用比例知识解答)【答案】10小时可以到达【解析】根据路程一定,速度与时间成反比例,由此列出比例解答即可.解:设x小时可以到达,30x=25×12,x=,x=10,答:10小时可以到达.点评:解答此题的关键是,根据题意,先判断哪两种相关联的量成何比例,即两个量的乘积一定则成反比例,两个量的比值一定则成正比例;再列出比例解答即可.22.(2011•平和县模拟)架线班要架设一条通讯线路,计划每天架设105米,40天完成.如果每天架设120米,多少天可以完成?(用方程解)【答案】35天可以完成【解析】根据通讯线路的总米数一定,每天架设的米数与架设的天数成反比例,由此列出比例解决问题.解:设x天可以完成,120x=105×40,x=,x=35,答:35天可以完成.点评:解答此题的关键是,每天架设的米数×架设的天数=通讯线路的总米数(一定),由此判断成何比例.23.(2011•宿州模拟)正方形的周长和边长的比是4:1..【答案】正确【解析】因为正方形的周长=边长×4,所以正方形的周长与边长的比是4:1;据此解答即可.解:正方形的周长与边长的比是:(边长×4):边长=4:1;故答案为:正确.点评:解答此题关键是根据正方形的周长的计算公式,进一步求得问题即可.24.(2011•郑州模拟)操场上有108名同学在锻炼身体,其中女生占,后来又来了几名女生,使女生人数和男生人数的比是3:7,后来来了几名女生?【答案】后来来了12名女生【解析】根据“女生占,”知道男生占(1﹣)由此求出男生的人数;再根据后来女生人数和男生人数的比是3:7,知道后来男生占总数的,又因为男生的人数不变,所以可以求出后来的总人数,进而求出后来来的女生的人数.解:108×(1﹣)﹣108,=108×﹣108,=84×﹣108,=120﹣108,=12(名);答:后来来了12名女生.点评:解答此题的关键是,根据题意知道男生的人数不变,然后将比转化成分数,再找出对应量,利用基本的数量关系列式解答即可.25.(2012•宜宾县模拟)AB两种商品原来价格之比为7:3,如果它们的价格分别上涨70元,则价格之比变成7:4.问这两种商品原来的价格各是多少元?【答案】甲种商品原来的价格是210元,乙种商品原来的价格是90元【解析】根据题意知道,甲、乙两种商品的价格差不会变化,由此根据“甲、乙两种商品的价格之比是7:3”,知道原来甲占价格差的,再根据“价格之比是7:4.”知道后来甲占价格差的,由此用70除以(﹣),即可求出价格差,进而求出这两种商品原来的价格.解:价格差是:70÷(﹣),=70÷,=70×,=120(元);甲原来的价格是:120×,=120×,=210(元),乙原来的价格:210﹣120=90(元);答:甲种商品原来的价格是210元,乙种商品原来的价格是90元.点评:解答此题的关键是,根据价格差不变化,将比转化为分率,统一单位“1”,再根据基本的数量关系解决问题.26.有正方形和长方形两种不同的纸板,正方形纸板总数与长方形纸板总数之比为2:5.现在将这些纸板全部用来拼成横式和竖式两种无盖纸盒,其中竖式盒由一块正方形纸板做底面,四块长方形纸板做侧面(图1),横式盒由一块长方形纸板做底面,两块长方形和两块正方形纸板做侧面(图2),那么做成的竖式纸盒与横式纸盒个数之比是多少?【答案】做成的竖式纸盒与横式纸盒个数之比是4:3【解析】此题可以用设数法来解答,假设竖式纸盒有a个,横式纸盒有b个,由题意列式为(a+2b):(4a+3b)=2:5,然后化简即可.解:设竖式纸盒有a个,横式纸盒有b个,则共用长方形纸板(4a+3b)块,正方形纸板(a+2b)块.根据题意有:(a+2b):(4a+3b)=2:5,即5(a+2b)=2(4a+3b),5a+10b=8a+6b,3a=4b,即a:b=4:3.答:做成的竖式纸盒与横式纸盒个数之比是4:3.点评:此题的解题思路是:先设出竖式纸盒和横式纸盒的个数,然后相应地表示出共用长方形纸板的块数,正方形纸板的块数,再根据正方形纸板总数与长方形纸板总数之比为2:5,列出等式并化简.27.装修一间客厅,用边长5dm的方砖铺地,需要80块,用边长4dm的方砖铺地需要多少块?(用比例知识解答)【答案】用边长4dm的方砖铺地需要125块【解析】根据题意知道客厅的面积一定,方砖的面积与方砖的块数成反比例,由此列出比例解决问题.解:设用边长4dm的方砖铺地需要x块,4×4×x=5×5×80,16x=25×80,x=,x=125;答:用边长4dm的方砖铺地需要125块.点评:解答本题的关键是判断哪两种量成何比例,注意此题给出的5dm与4dm是方砖的边长,不是方砖的面积.28.李师傅要加工一批零件,如果每小时加工50个,6小时可以加工完.若每小时加工60个,多少小时可以加工完?(用比例解)【答案】5小时可以加工完【解析】根据题意知道,零件的总个数一定,即总工作量一定,工作效率与工作时间成反比例,由此列出比例解答即可.解:设x小时可以加工完,60x=50×6,x=,x=5,答:5小时可以加工完.点评:关键是根据题意,先判断哪两种相关联的量成何比例,即两个量的乘积一定则成反比例,两个量的比值一定则成正比例;再列出比例解答即可.29.(2010•泸西县模拟)一座16层高的住宅楼(层高3米),地基深为8米.按照这样的比例,盖一座22层高的住宅楼,需打多深的地基?【答案】需打11米深的地基【解析】由题意可知:每米的楼高需打地基的深度是一定的,则楼的高度与地基的深度成正比例关系,据此即可列比例求解.解:设需打x米深的地基,则有(16×3):8=(22×3):x,48x=66×8,48x=528,x=11;答:需打11米深的地基.点评:解答此题的主要依据是:若两个量的商一定,则这两个量成正比例,从而可以列比例求解.30.(2012•同心县模拟)用600页纸装订同样的练习本如下表:600=(2)、根据上面的关系式,求X=15时,Y=.(3)、练习本每本的页数和装订的本数成比例吗?成什么比例?说明理由.【答案】XY,40【解析】(1)由表格知道每本装订的页数×装订的本数=600,所以用Y表示装订的本数,用X表示每本装订的页数,那么600=XY;(2)把X=15时代入XY=600解方程即可求出Y的值;(3)判练习本每本的页数和装订的本数之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:(1)因为每本装订的页数×装订的本数=600,所以用Y表示装订的本数,用X表示每本装订的页数,那么600=XY;(2)把X=15时代入XY=600,即15Y=600,Y=600÷15,Y=40,(3)因为练习本每本的页数×装订的本数=600(一定),符合反比例的意义,所以练习本每本的页数和装订的本数成反比例,故答案为:XY,40.点评:本题主要是利用正、反比例的意义解决问题.31.小明和小红所集邮票张数的比是5:6,小明给小红10张邮票后,小明和小红邮票张数的比是4:5.小明和小红一共有多少张邮票?【答案】小明和小红一共有990张邮票【解析】因原来小明和小红所集邮票张数的比是5:6,就是小明的邮票张数占全部邮票的,小明给小红10张邮票后,小明和小红邮票张数的比是4:5,就是小明的邮票张数占全部邮票的,也就是全部邮票的()就是10,根据分数除法的意义可列式解答.解:10,=10÷,=10,=990(张).答:小明和小红一共有990张邮票.点评:本题考查了学生对比与分数的掌握,和利用分数除法的意义解题的能力.32.某工程队男女职工人数的比是4:3.因支援其他工程,调走女职工66人,这时女职工人数是男职工人数的,这个工程队原来有男职工多少人?【答案】这个工程队原来有男职工有216人【解析】根据“男女职工人数的比是4:3.”知道女职工人数是男职工的,又根据题意知道男职工的人数不变,而女职工的人数由占男职工的变为占男职工人数的,是因为调走女职工66人,因此用对应的数66除以对应的分数(﹣),就是要求的单位“1”,即原来男职工的人数.解:66÷(﹣),=66÷,=66×,=216(人);答:这个工程队原来有男职工有216人.点评:根据男职工的人数不变,将单位“1”统一为男职工的人数,再找出对应的分率与对应的数,用除法列式解答即可.33.同一种方砖铺一间长8米,宽6米的乒乓球室的地板,先用200块方砖就铺了32平方米,余下的还要多少方砖?(用比例解)【答案】余下的还要100块方砖【解析】由题意可知:每块方砖的面积是一定的,则铺设的底面的面积与需要的方砖的块数成正比例,据此即可列比例求解.解:设余下的还要x方砖,则有32:200=(8×6﹣32):x,32x=200×(8×6﹣32),32x=200×16,32x=3200,x=100;答:余下的还要100块方砖.点评:解答此题的主要依据是:若两个相关联量的商一定,则这两个量成正比,从而可以列比例求解.34.建筑工地计划运进一批水泥,第一次运来总数的25%,第二次运来180吨,这时运来的与没运来的吨数比是4:3,工地计划运进的这批水泥是多少吨?【答案】工地计划运进的这批水泥是560吨【解析】第二次运来180吨后,运来的与没运来的吨数比是4:3,即已运来的占总数的,又第一次运来总数的25%,则这180吨占总数的﹣25%,所以这批水泥共有180÷(﹣25%)吨.解:180÷(﹣25%)=180÷(﹣25%),=180÷,=560(吨).答:工地计划运进的这批水泥是560吨.点评:首先根据二次运来180吨,运来的与没运来的吨数比求出已运来的占总数的分率是完成本题的关键.35.修一条公路,已经修的和没有修的长度比是1:3,再修300米,已经修的长度是没有修的,共修了多少千米?【答案】共修了1.2千米【解析】根据“已经修的和没有修的长度比是1:3,”知道已经修的占公路总长度的,再根据“已经修的长度是没有修的,”知道已经修的长度占公路总长度的,,由此用(﹣)去除对应的量300米就是这条路的总长度,进而求出修路的千米数.解:300÷(﹣)=300÷,=3600(米);3600×,=3600×,=1200(米),1200米=1.2千米.答:共修了1.2千米.点评:这道题单位“1”是这条公路的全长,单位“1”是不变的,统一单位“1”,找到300米的对应分率,用除法求出单位“1”进而得出答案.36.(2012•商丘模拟)一堆煤,第一天运走的吨数与总吨数的比是1:3,第二天运走4.5吨后,两天正好运走了总数的一半,这堆煤有多少吨?【答案】这堆煤有27吨【解析】把这堆煤的总量看作单位“1”,由题意可知:第一天运走的吨数占总吨数的,再据“第二天运走4.5吨后,两天正好运走了总数的一半”可知,第二天运走的吨数占总吨数的(),而第二天运走的实际吨数是4.5吨,所以用4.5除以()就是这堆煤的总量.解:4.5÷(),=4.5÷,=27(吨);答:这堆煤有27吨.点评:解答此题的关键是求出4.5吨的对应分率(),进而求出这堆煤的总量.37.装配车间要装配一批洗衣机,计划每天装配42台,20天内完成任务,实际每天多装配8台,需要几天完成?(有比例知识解)【答案】实际每天多装配8台,需要16.8天完成【解析】根据题意知道洗衣机的总量一定,每天装配的台数×装配需要的天数=洗衣机的总量(一定),所以每天装配的台数与装配需要的天数成反比例,由此列出比例解答即可.解:设需要x天就可以完成任务,(42+8)x=42×20,50x=840,x=16.8;答:实际每天多装配8台,需要16.8天完成.点评:解答此题的关键是明白,洗衣机的总量一定,每天装配的台数与装配需要的天数成反比例.38.工程队修一条路,上半月修好的米数与全长的比是1:5.如果再修360米,就正好修了这条路的一半.这条路全长多少米?【答案】这条路全长1200米【解析】把全长看作单位“1”,根据“上半月修好的米数与全长的比是1:5”,可知上半月修好的米数占全长的,再根据“如果再修360米,就正好修了这条路的一半”,可以求出360 米就相当于全长的(﹣),然后用除法计算.解:360÷(﹣),=360×,=1200(米);答:这条路全长1200米.点评:此题主要考查分数除法的应用及比与分数的关系,用数量除以它的对应分率就是单位“1”,即全长.39.李明与王华身高的比是6:5,李明比王华高;王华比李明矮.【答案】;【解析】(1)把王华的身高看作单位“1”,则李明的身高是王华身高的,于是利用分数减法的意义即可求解;(2)把李明的身高看作单位“1”,则王华的身高是李明身高的,于是利用分数减法的意义即可求解.解:(1)﹣1=;(2)1﹣=;故答案为:;.点评:解答此题的关键是:要设出不同的单位“1”,比谁就把谁看作单位“1”,从而问题逐步得解.40.一种合金中A和B两种物质的质量比是4:5,那么A物质的质量占这种合金的.【答案】【解析】一种合金中A和B两种物质的质量比是4:5,A物质的质量占这种合金的,据此解答.解:=,答:么A物质的质量占这种合金的.故答案为:.点评:本题主要考查了学生对比与分数之产关系的掌握情况.41.某校男生人数和女生人数的比是8:7,则男生人数占全校学生人数的,女生人数占全校学生人数的.【答案】;【解析】根据题干,可知单位“1”的量是全校学生人数,男生人数占了其中的8份,女生人数占了其中的7份,进而可知全校学生就是8+7=15分,据此用男生人数除以全校人数,用女生人数除以全校人数即可解答.解:7+8=15,。
小学数学比与比例练习题
小学数学比与比例练习题一、填空题1. 小明一年内历史书籍阅读了12本,数学书籍阅读了8本,比值是______。
2. 某班有40名学生,其中男生有18名,女生有______名,男女生比是2:1。
3. 甲乙两地的距离是60公里,乙丙两地的距离是40公里,两地距离的比是______。
4. 一桶果汁里有3升苹果汁和2升橙汁,苹果汁与橙汁的比是______。
5. 书店进货了240本故事书和120本科普书,故事书与科普书的比是______。
二、选择题1. 小明家属于数学书和语文书的比是1:2,如果他有16本数学书,他家共有多少本书?a) 16本 b) 24本 c) 32本 d) 48本2. 甲乙两地之间的距离是160公里,甲乙两地的比例尺是1:40000,地图上甲乙两地的距离表示为多少厘米?a) 2厘米 b) 4厘米 c) 8厘米 d) 16厘米3. 某队比赛中,A队得到了90分,B队得到了120分,以下哪个比例正确表示A队得分与B队得分之间的关系?a) 3:2 b) 2:3 c) 3:4 d) 4:34. 一箱苹果有20千克,其中有8千克是红苹果,其余是绿苹果,红苹果与绿苹果的比是多少?a) 1:3 b) 2:3 c) 2:5 d) 3:25. 小华用了4天时间完成了30页作业,小红用了6天时间完成了多少页同样的作业?a) 10页 b) 15页 c) 18页 d) 20页三、解答题1. 一个整数与它的一半的比是2:3,这个整数是多少?2. 某班有60名学生,其中男生有36名,女生和男生的比是2:3,请问女生有多少名?3. 一桶果汁有8升,如果果汁中苹果汁和橙汁的比是3:2,苹果汁有多少升?4. 甲乙两地之间的距离是120千米,根据比例尺1:50000,地图上甲乙两地的距离是多少厘米?5. 甲乙两地的距离是180千米,根据比例尺1:30000,地图上甲乙两地的距离是多少厘米?四、综合题某公司有80名员工,其中男员工有36名,女员工和男员工的比是2:3。
小学六年级比和比例练习题
7、甲仓库存粮比乙仓存粮多100吨.而甲仓库存粮的 3/4 与乙仓库存粮的 4/5 相等.原来甲、乙两仓库各存粮多少吨?
8、A、B两种商品的价格比是7:3.如果它们的价格分别上涨700元后.价格之比是7:4.这两种商品原来各多少元?
10、甲、乙两仓库货物的比为6:5.后来甲仓运进180吨.乙仓运进30吨.这时甲仓与乙仓货物的比是18:11.原来两仓库共有多少吨?
11、某校买来A、B两种篮球共100个.已知甲种篮球每个30元.乙种篮球每个20元.且甲、乙两种篮球所用钱数一样多.求甲、乙两种篮球各买了多少个?
12、小明从甲地到乙地.去时每小时行6千米.回来时每小时行9千米.来回共用5小时.小明来回共走了多少千米?
13、一辆汽车在甲、乙两站之间行驶.往返一次共用4小时.已知汽车去时每小时行驶45千米.返回时每小时行驶30千米.求甲、乙两站相距多少千米?
14、甲、乙、丙、丁四个班绿化植树.甲班种树占总数的 3/20 .乙班占总数的25%.丙、丁两班种树的比是5:6.如果甲班比乙班少种12棵.丁班种树多少棵?
15、甲、乙两仓库存货吨数比是4:3.如果由甲库中取出8吨放到乙库中.则甲、乙两仓库存货吨数比是4:5.两仓库原存货总吨数是多少吨?
16、A、B、C是三个顺次咬合的齿轮.已知齿轮A旋转7圈时.齿轮C旋转6圈.
(1)如果A的齿数是42.那么C的齿数是多少?
(2)如果B旋转7圈.C旋转1圈.那么 A旋转8圈时.B旋转了多少圈?。
小学数学六年级比和比例习题
六年级数学比和比例专题训练题一、填空题1、在一个比例里,两个外项的积是最小的质数,一个内项是0.5,另一个内项是( )。
2、甲数×43=乙数×60%,甲:乙=( : )。
3、0.75:32化成最简整数比是( )。
4、一幅地图的线段比例尺是 它表示实际距离是图上距离的( )倍。
5、在10001的图纸上,一个正方形的面积为16平方厘米,它的实际面积是( )平方米。
6、甲数的53是甲乙两数和的41,甲乙两数的比是( )。
7、一个比例式,两个外项的和是37,差是13,比值是65,这个比例式可以是( )。
8、一车水果重1.8吨,按2:3:5的比例分配给甲、乙、丙三个水果店,乙水果店分得这批水果的( )。
9、)星期天,小丽看一本书用了2小时15分,小红同样一本书用了2.15小时,小丽和小红看书用的时间比是( )。
10、在一个比例式中。
两个外项都质数,它们的积是22,一个内项是这个积的101,这个比例式可以是( )。
11、两地相距80千米,画在比例尺是1:400000的地图上,应画( )厘米。
12、一杯糖水,糖与水的比是1:4,喝去21杯糖水后,又用水加满,这时糖与水的比是( )。
13、已知一个比例的两个外项分别是3和41,组成比例的两个比的比值是21,这个比例是( )。
14、甲数比乙数多32,甲数与乙数的比是( )。
15、甲、乙、丙三个数的平均数是15,甲、乙、丙三个数的比是2:3:4,甲数是( )。
16、一个比例的两个内项互为倒数,一个外项是81,另一个外项是( )。
17、圆柱的高一定,圆柱的底面积与体积( )比例。
18、东风小学六年级人数是五年级人数的98,五年级与六年级人数的比是( )。
19、学校购到一批书,按2:3:5借给四、五、六三个年级。
四年级借到这批书的( )%。
20、一个机器零件长2米,在设计图上这个零件长4厘米,这幅设计图的比例尺是( )。
21、把3克盐放入12克水中,盐与盐水重量的最简整数比是( )。
六年级下册数学小升初比和比例专项练习(各地真题)
六年级下册数学小升初比和比例专项练习一.选择题(共20题,共40分)1.ab=c(a、b、c均不为0),当a一定时,b与c()。
A.成正比例B.成反比例C.不成比例2.班级数一定,每班人数和总人数()。
A.成反比例B.成正比例C.不成比例D.不成正比例3.下列说法中,不正确的是()。
A.2019年二月份是28天。
B.零件实际长0.2厘米,画在图纸上长30厘米,这幅图的比例尺是1:150。
C.9时30分,钟面上时针与分针组成的较小夹角是一个钝角。
D.两个质数的积一定是一个合数。
4.下面的问题,还需要确定一个信息才能解决,是()。
某花店新进了玫瑰、百合,菊花三种花,已知玫瑰有200朵,是三种花中数量最多的。
这个花店一共新进了多少朵花?A.玫瑰比菊花多20朵B.三种花的总数是百合的6倍C.玫现的数量占三种花总数的D.攻瑰、百合的数量比是5:35.将一个三角形按2:1的比放大后,面积是原来的()倍。
A.1B.2C.4D.86.下面第()组的两个比不能组成比例。
A.7∶8和14∶16B.0.6∶0.2和3∶1C.19∶110 和10∶97.解比例。
=,x= ()A.4B.2.4C.4.2D. 58.给一个房间铺地砖,所需砖的块数与每块砖的()成反比例。
A.边长B.面积C.体积9.0.25∶2与下面()不能组成比例。
A.2.5∶20B.2∶C.0.05∶0.4D.1∶810.用一定的钱买地砖,每块砖的价钱和买砖块数()。
A.成正比例B.成反比例C.不成比例D.不成反比例11.一块地砖的面积一定,铺地面积和用砖块数()。
A.成正比例B.成反比例C.不成比例12.一个精密零件,画在比例尺是20:1的图纸上,图上长度是15cm,这个零件的实际长度是()。
A.0.75cmB.0.3cmC.150cmD.300cm13.把一个正方形接2:1的比例放大后,得到的图形与原来的图形相比较,()。
A.面积扩大到原来的2倍B.周长扩大到原来的2倍C.面积扩大到原来的D.周长缩小到原来的14.下面成正比例的是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比和比例及比例解题
1.比的意义:两个数相除又叫做两个数的比。
2.“:”是比号,读作“比”。
3.比的前项除以后项所得的商,叫做比值。
4.比的前项和后项同时乘上或者除以相同的数(0除外),比值不变。
5.根据比的基本性质可以把比化成最简单的整数比。
6.比例尺=图上距离:实际距离
7.比例的意义表示两个比相等的式子叫做比例。
8.在比例里,两个外项的积等于两个两个内向的积。
9.正比例和反比例 (同正异反)
成正比:X÷Y=K
成反比:XY=K
路程=速度×时间
工作效率=工作总量÷工作时间
例题1
一辆大巴从广州开往韶关,行了一段路程后离韶关还有210千米,接着又行了全程的20%,这时已行路程和未行路程的比是3:2,两地相距多少千米?
1.修一条公路,甲队修了全长的三分之一,乙队和丙队
修路的比是3:5,已知甲队比乙队多修24米,这条路
全长多少米?
某中学有甲乙两个初中毕业班,甲乙两个班的人数之比是7:6,如果将甲班的11个同学调到乙班,则甲乙两个班的
人数比是4:5,甲乙两个班共有学生多少名?
练习2
甲乙两个班的课外书数量之比是3:4,后来甲班借给乙班40本,这时甲班图书馆的课外书数量是乙班的二分之一,甲乙原来各有多少本课外书?
例题3
甲乙两人分别从A.B两地出发,相向而行,出发时他们的速度比是5:3,他们第一次相遇后,甲的速度提高了20%,乙的速度提高了30%。
这样当甲到达B地时,乙离A地还有61千米,那么A.B两地的距离是多少千米?
练习3
甲乙两车分别从A.B两地出发,相向而行,出发时他们的速度比是3:2,他们第一次相遇后,甲的速度提高了30%,乙的速度提高了20%。
这样当甲到达B地时,乙离A地还有20千米,那么A.B两地的距离是多少千米?
甲乙丙三个人种树,甲种的棵数是乙丙和的二分之一,乙种的棵数是甲丙和的三分之一,已知丙种了130颗,甲乙各种了多少棵?
练习题
1.甲乙两人同时从东西两镇相向而行,甲乙的速度比是3:4,已知甲行了全程的三分之一,离相遇地点还有20千米,东西两镇相距多少千米?
2.甲乙两人从南北两城同时出发相向而行,甲行了全程的十三分五时正好与乙相遇,已知甲每小时行4.5千米,乙走全程需要6.5小时,南北两地相距多少千米?
3.甲乙两辆汽车分别从AB两地同时出发,在距中点40千米处相遇,甲行全程需要10小时,乙行全程需15小时,求AB两地的距离.
4.甲乙两车同时从AB两地相对开出,经过3小时相遇,相遇时甲车行了全程的九分之四,甲车每小时比乙车少行10 千米,两地相距多少千米?
5.甲乙同时从AB两地相向而行,速度比是5:8。
两车相遇后继续以原来的速度前进。
甲到B地后立即返回,乙到A地后也立即返回,他们在途中又一次相遇。
如果两次相遇的
地点相距72千米,AB相距多少千米?
6.甲乙两个书架上书的比是3:2,如果从甲书架取出10本书
放入乙书架后,甲乙两个书架上书的数量的比变为8:7,两个书架上共有多少书?
7.甲乙两人沿400米环形跑道练习跑步,若他们同时同地反
向而行,且甲的速度比乙快25%,当两人第一次相遇时,甲跑了多少米?
8.某校六年级有甲乙两个班,甲班学生是乙班的七分之五,
如果从甲班调3人到甲班,甲班人数就是乙班的五分之
四,甲乙两班原来各有多少学生?
9.甲的年龄是乙丙丁年龄和的三分之一,乙的年龄是甲丙丁
年龄和的四分之一,丙的年龄是甲乙丁年龄和的五分之一,丁的年龄是46岁,甲乙丙分别多少岁?。