2012初中数学总复习知识点总结

合集下载

初中数学总复习(全册)知识点归纳

初中数学总复习(全册)知识点归纳

初中数学总复习(全册)知识点归纳初中数学总复(全册)知识点归纳初中数学是我们研究过程中的重要一环,通过全面复初中数学知识点,可以巩固基础,为进一步的研究打下坚实的基础。

下面是初中数学全册知识点的归纳总结:一、数与式1. 自然数、整数、有理数和无理数的定义及性质2. 分数的概念、分数的大小比较、分数的运算3. 正数、负数、零的概念及性质4. 整式的定义和计算,含有一个未知数的整式5. 一元一次方程及方程的解法6. 百分数与百分之一的关系,百分数的计算7. 有序数对的表示方法,平面直角坐标系的认识和性质二、代数中的图形1. 点、线、面的概念,直线与曲线的区别2. 多边形的定义,凸多边形和凹多边形的区别3. 四边形的性质及分类,正方形、矩形、平行四边形和菱形的性质4. 二维坐标系,点的坐标,坐标的符号三、方程与不等式1. 一元二次方程的定义及解法,解一元二次方程的方法2. 二次函数的定义,二次函数的图象,图象的性质与应用3. 不等式的概念,不等式的解及图示四、实数的运算1. 实数与有理数的关系,无理数的性质与运算2. 加减法的性质和运算法则,乘法的性质和运算法则3. 分数的乘除法,有理数的乘除法五、数据的处理和应用1. 数据的整理和分类,统计图表的制作与解读2. 平均数的计算与应用3. 频数分布和频数分布图的制作与应用4. 数据的收集、整理、分析和解释六、几何与变换1. 几何基本概念,点、线、面、角、距离、平行和垂直2. 直角三角形、等腰三角形和等边三角形的性质3. 平行四边形、矩形和正方形的性质4. 空间几何图形的认识和性质,立体图形的展开和拼接七、统计与概率1. 抽样调查、统计指标和数据的分析2. 事件与概率,用频率估计概率3. 连续性随机事件的概率计算这是初中数学总复习(全册)知识点的一个概括性归纳。

希望对你的学习有所帮助!。

总复习初中数学知识点归纳(完整版)

总复习初中数学知识点归纳(完整版)

总复习初中数学知识点归纳(完整版)总复习初中数学知识点归纳(完整版)怎么写总复习初中数学知识点归纳才合适?看看吧。

在知识点结构中,知识被表述成为抽象的概念、具体的判断和现实中的案例。

因此,我们可以认为知识点是知识体系的微观结构。

下面小编给大家带来总复习初中数学知识点归纳,希望大家喜欢!总复习初中数学知识点归纳第二章整式的加减2、1整式1、单项式:由数字和字母乘积组成的式子。

系数,单项式的次数、单项式指的是数或字母的积的代数式、单独一个数或一个字母也是单项式、因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式、2、单项式的系数:是指单项式中的数字因数;3、单项数的次数:是指单项式中所有字母的指数的和、4、多项式:几个单项式的和。

判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式、每个单项式称项,常数项,多项式的次数就是多项式中次数的次数。

多项式的次数是指多项式里次数项的次数,这里是次数项,其次数是6;多项式的项是指在多项式中,每一个单项式、特别注意多项式的项包括它前面的性质符号、5、它们都是用字母表示数或列式表示数量关系。

注意单项式和多项式的每一项都包括它前面的符号。

6、单项式和多项式统称为整式。

2、2整式的加减1、同类项:所含字母相同,并且相同字母的指数也相同的项。

与字母前面的系数(≠0)无关。

2、同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可、同类项与系数大小、字母的排列顺序无关3、合并同类项:把多项式中的同类项合并成一项。

可以运用交换律,结合律和分配律。

4、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;5、去括号法则:去括号,看符号:是正号,不变号;是负号,全变号。

6、整式加减的一般步骤:一去、二找、三合(1)如果遇到括号按去括号法则先去括号、(2)结合同类项、(3)合并同类项葫芦岛初中数学公式归纳1、一元二次方程解法:(1)配方法:(X±a)2=b(b≥0)注:二次项系数必须化为1(2)公式法:aX2+bX+C=0(a≠0)确定a,b,c的值,计算b2-4ac≥0若b2-4ac>0则有两个不相等的实根,若b2-4ac=0则有两个相等的实根,若b2-4ac若b2-4ac≥0则用公式X=-b±√b2-4ac/2a注:必须化为一般形式(3)分解因式法①提公因式法:ma+mb=0→m(a+b)=0平方差公式:a2-b2=0→(a+b)(a-b)=0②运用公式法:完全平方公式:a2±2ab+b2=0→(a±b)2=0③十字相乘法2、锐角三角函数定义锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。

初中数学总复习

初中数学总复习

初中数学总复习初中数学总复资料1.数与代数1.1 数与式有理数:有限或循环小数(无理数:无限不循环小数)数轴:三要素相反数绝对值:│a│= a(a≥0)│a│=-a(a<0)倒数指数零指数:a=1(a≠0)负整指数:(a≠0,n是正整数)完全平方公式:(a±b)²=a²±2ab+b²平方差公式:(a+b)(a-b)=a²-b²幂的运算性质:am·an=am+nam÷an=am-nam)n=amnab)n=anbnan/n科学记数法:a×10n(1≤a<10,n是整数)算术平方根、平方根、立方根、1.2 方程与不等式一元二次方程定义及一般形式:ax²+bx+c=0(a≠0)解法:1.直接开平方法.2.配方法3.公式法:x1,2= (-b±√(b²-4ac))/2a4.因式分解法.根的判别式:Δ=b²-4ac>0,有两个解。

Δ=b²-4ac<0,无解。

Δ=b²-4ac=0,有1个解。

维达定理:x1+x2=-b/a,x1×x2=c/a常用等式:x1+x2=-b/a,x1×x2=c/a1.3 应用题1.行程问题:相遇问题、追及问题、水中航行:v顺=船速+水速;v逆=船速-水速2.增长率问题:起始数(1+X)=终止数3.工程问题:工作量=工作效率×工作时间(常把工作量看着单位“1”)。

4.几何问题1.4 分式方程(注意检验)由增根求参数的值:1.将原方程化为整式方程2.将增根带入化间后的整式方程,求出参数的值。

1.5 不等式的性质1.a>b→a+c>b+c2.a>b→ac>bc(c>0)3.a>b→ac<bc(c<0)4.a>b,b>c→a>c5.a>b,c>d→a+c>b+d.2.函数2.1 一次函数1.定义:y=kx+b(k≠0)2.图象:直线过点(0,b)—与y轴的交点和(-b/k,0)—与x轴的交点。

初中全部数学知识点归纳总结

初中全部数学知识点归纳总结

初中全部数学知识点归纳总结初中数学知识点归纳总结一、数与代数1. 有理数- 整数:正整数、零、负整数- 有理数的定义:整数和分数统称为有理数- 有理数的加法、减法、乘法、除法运算法则- 有理数的大小比较2. 整式与分式- 单项式:定义、同类项、合并同类项- 多项式:定义、加减法、乘法- 因式分解:提公因式、公式法、分组分解法- 分式:定义、基本性质、分式的乘除法和加减法3. 一元一次方程与不等式- 一元一次方程的定义、解法- 不等式的概念、性质、解集表示- 一元一次不等式和不等式组的解法4. 二元一次方程组- 代入法、消元法解二元一次方程组- 三元一次方程组的解法5. 函数及其图像- 函数的概念:定义、函数关系式- 一次函数、反比例函数的图像和性质- 二次函数的图像(抛物线)和性质- 函数的应用题二、几何1. 平面图形- 点、线、面的基本性质- 角的概念:邻角、对角、平行线、垂直- 三角形:分类、性质、内角和定理- 四边形:分类、性质- 圆的基本性质、圆周角、圆心角、弦、弧、切线2. 几何图形的计算- 三角形、四边形的面积计算公式- 圆的周长和面积公式- 多边形的内角和外角和公式- 相似三角形的性质和判定- 勾股定理及其应用3. 空间几何- 立体图形的基本概念:点、线、面、体- 常见立体图形(长方体、正方体、圆柱、圆锥、球)的性质 - 立体图形的表面积和体积计算公式4. 坐标系与图形变换- 平面直角坐标系的定义和性质- 点在坐标系中的位置表示- 图形的平移、旋转、对称变换三、统计与概率1. 统计- 数据的收集、整理和描述- 频数、频率、频数分布表- 统计图表(条形图、折线图、饼图)的绘制和解读2. 概率- 随机事件的概念- 概率的定义和计算- 简单事件和复合事件的概率以上是初中数学的主要知识点归纳总结。

在实际学习过程中,学生应该通过大量的练习题来巩固和深化对这些知识点的理解和应用。

同时,解题过程中要注意培养逻辑思维能力和解题技巧,以提高解题效率和准确率。

初中数学总复习提纲

初中数学总复习提纲

初中数学总复习提纲一、数的性质和运算1.自然数、整数、有理数、实数和虚数的含义及其性质2.整数的运算规则:加法、减法、乘法、除法、绝对值运算3.有理数的运算规则:加法、减法、乘法、除法、混合运算4.指数与指数运算5.逻辑与集合二、代数式与方程式1.代数式的定义及其性质2.平方、完全平方、立方和完全立方的求解3.一元一次方程的解法4.一元一次方程组的解法5.一元二次方程的解法及其应用6.用方程表示实际问题并解决实际问题7.勾股定理及其应用三、数与图形1.二维图形的边、角、面及其性质2.三角形、四边形和多边形的性质及其关系3.三角形的线段、角、面积公式及应用4.三角形的相似性质及其应用5.圆的定义、性质及公式6.圆的面积和周长的计算7.空间几何体的计算四、函数与应用1.函数的概念和性质2.函数图像的平移、伸缩和反射3.一次函数、二次函数、三次函数及其图像4.绝对值函数、分段函数及其图像5.函数的复合、反函数和逆函数6.数据的收集、整理、统计和分析7.概率与统计五、单位换算与计算检验1.长度、面积、体积和质量的单位换算2.时间、速度、密度、温度、角度的单位换算3.百分数和比例的计算4.计算结果的检验5.合理估算的方法与应用六、解题方法与思维培养1.数学解题的基本方法2.算术平均数、几何平均数和均值不等式的应用3.推理与证明4.逻辑思维与数学思维的培养5.综合应用题的解决方法以上是初中数学总复习的提纲,根据这个提纲进行复习,可以全面复习初中数学知识,有助于提高数学应试能力。

每个模块都要结合习题进行巩固,多做一些实际应用题,提高解决问题的能力。

同时,要注重思维培养和解题方法的掌握,通过多思考、多讨论、多练习,培养学生的数学思维能力。

初中数学总复习归纳总结(精选5篇)

初中数学总复习归纳总结(精选5篇)

初中数学总复习归纳总结(精选5篇)初中数学总复习归纳总结(精选5篇)良好的作息习惯和饮食习惯有利于身体和大脑的健康,提高学习效果。

做好笔记整理,对自己的思考和理解进行总结,方便复习和记忆。

下面就让小编给大家带来初中数学总复习归纳总结,希望大家喜欢!初中数学知识点总结11、重心的定义:平面图形中,几何图形的重心是当支撑或悬挂时图形能在水平面处于平衡状态,此时的支撑点或者悬挂点叫做平衡点,也叫做重心。

2、几种几何图形的重心:⑴ 线段的重心就是线段的中点;⑵ 平行四边形及特殊平行四边形的重心是它的两条对角线的交点;⑶ 三角形的三条中线交于一点,这一点就是三角形的重心;⑷ 任意多边形都有重心,以多边形的任意两个顶点作为悬挂点,把多边形悬挂时,过这两点铅垂线的交点就是这个多边形的重心。

提示:⑴ 无论几何图形的形状如何,重心都有且只有一个;⑵ 从物理学角度看,几何图形在悬挂或支撑时,位于重心两边的力矩相同。

3、常见图形重心的性质:⑴ 线段的重心把线段分为两等份;⑵ 平行四边形的重心把对角线分为两等份;⑶ 三角形的重心把中线分为1:2两部分(重心到顶点距离占2份,重心到对边中点距离占1份)。

上面对重心知识点的巩固学习,同学们都能熟练的掌握了吧,希望同学们很好的复习学习数学知识。

初中数学知识点总结2动点与函数图象问题常见的四种类型:1、三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.2、四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.3、圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象.4、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象.图形运动与函数图象问题常见的三种类型:1、线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.2、多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.3、多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.动点问题常见的四种类型:1、三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系.2、四边形中的动点问题:动点沿四边形的边运动,通过探究构成的新图形与原图形的全等或相似,得出它们的边或角的关系.3、圆中的动点问题:动点沿圆周运动,探究构成的新图形的边角等关系.4、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,探究是否存在动点构成的三角形是等腰三角形或与已知图形相似等问题.总结反思:本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,一次函数的解析式,三角形全等的判定和性质,等腰直角三角形的性质,平行线的性质等,数形结合思想的应用是解题的关键.解答动态性问题通常是对几何图形运动过程有一个完整、清晰的认识,发掘“动”与“静”的内在联系,寻求变化规律,从变中求不变,从而达到解题目的.解答函数的图象问题一般遵循的步骤:1、根据自变量的取值范围对函数进行分段.2、求出每段的解析式.3、由每段的解析式确定每段图象的形状.对于用图象描述分段函数的实际问题,要抓住以下几点:1、自变量变化而函数值不变化的图象用水平线段表示.2、自变量变化函数值也变化的增减变化情况.3、函数图象的最低点和最高点.初中数学知识点总结31、正数和负数的有关概念(1)正数:比0大的数叫做正数;负数:比0小的数叫做负数;0既不是正数,也不是负数。

初中数学总复习知识点整理(最全)

初中数学总复习知识点整理(最全)

初中数学总复习知识点整理(最全)知识点分类
1. 整数
1.1 整数的概念
1.2 整数的进位与退位
1.3 整数的加减法
1.4 整数的乘法
1.5 整数的除法
2.分数
2.1 几个基本概念
2.2 分数的基本性质2.3 分数的加减法
2.4 分数的乘法
2.5 分数的除法
3. 小数
3.1 小数的概念
3.2 小数与分数的转化3.3 小数的加减法
3.4 小数的乘法
3.5 小数的除法
4.代数
4.1 代数式的概念和性质4.2 代数式的加减法
4.3 代数式的乘法
4.4 公式和方程
4.5 解一元一次方程
5. 轴对称与余弦定理5.1 轴对称的基本概念5.2 轴对称的性质
5.3 用轴对称解题
5.4 余弦定理的概念和性质
5.5 用余弦定理解题
6.勾股定理与三角函数
6.1 勾股定理的概念和性质
6.2 在平面直角坐标系中应用勾股定理6.3 用勾股定理解决实际问题
6.4 三角函数的定义和性质
6.5 用三角函数解决实际问题
知识点重点
- 整数的进位与退位
- 分数的加减法
- 代数式的乘法
- 解一元一次方程
- 用轴对称解题
- 用余弦定理解题
- 用勾股定理解决实际问题- 用三角函数解决实际问题知识点易错点
- 乘方与加减混淆
- 分数的错位相乘
- 代数式乘法计算错误
- 方程解错
- 三角函数概念混淆
- 勾股定理和余弦定理运用错误
- 计算精度不足
以上是初中数学的总复习知识点整理,祝您考试顺利!。

2012年中考复习北师大初中数学重要知识点集锦(实用)

2012年中考复习北师大初中数学重要知识点集锦(实用)

a n a n a ambm a bab a b a b -=-=-)(121n x x x nx +++=)(212211n f f f nf x f x f x x k kk =++++++=])()()[(1222212x x x x x x ns n -++-+-= 2s s=2012北师大初中数学重要知识点集锦1.数的分类及概念:整数和分数统称有理数(有限小数和无限循环小数),像√3,π,0.101001∙∙∙叫无理数;有理数和无理数统称实数。

实数按正负也可分为:正整数、正分数、0、负整数、负分数,正无理数、负无理数。

2.自然数(0和正整数);奇数2n-1、偶数2n ;科学记数法:na 10⨯(1≤a <10,n 是整数),有效数字。

3.(1)倒数积为1;(2)相反数和为0,商为-1;(3)绝对值是距离,非负数。

4.数轴:①定义(“三要素”);②点与实数的一一对应关系。

(2)性质:若干个非负数的和为0,则每个非负数均为0。

5非负数:正实数与零的统称。

(表示为:x ≥0)(1)常见的非负数有:6.去绝对值法则:正数的绝对值是它本身,“+( )”;零的绝对值是零,“0”; 负数的绝对值是它的相反数,“-( )”。

7.实数的运算:加、减、乘、除、乘方、开方;运算法则,定律,顺序要熟悉。

8.单项式、多项式统称整式。

(注意单项式的系数、次数;多项式的次数,项数、项) 9. 同类项。

合并同类项(系数相加,字母及字母的指数不变)。

10. 算术平方根、 (正数a 的正的平方根); 0的平方根为0 。

正数的平方根:a ±(a>0)11. (1)最简二次根式:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式;(2)同类二次根式:化为最简二次根式以后,被开方数相同的二次根式;(3)分母有理化:化去分母中的根号。

12.因式分解:把一个多项式化成几个整式的积的形式常用方法:一提二套三分组,十字相乘不离手:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法。

初中数学知识点全面总结(完整版)

初中数学知识点全面总结(完整版)

初中数学知识点全面总结(完整版)初中数学知识点全面总结(完整版)1. 数字与代数- 自然数:1,2,3,...- 整数:包括自然数及其负数和0- 有理数:可以表示为两个整数的比值的数- 实数:包括有理数和无理数- 代数运算:加法、减法、乘法、除法- 代数式:可以含有数、字母和运算符号的式子2. 几何与图形- 点、线、面:几何学的基本概念- 直线和线段:由无数个点连成的图形- 角度:由两条射线共享一个端点而形成的图形- 三角形:有三条边和三个角的图形- 四边形:有四条边和四个角的图形- 圆和圆周:由一条曲线上的所有点组成的图形3. 数据和统计- 数据收集:通过调查、观察或实验来获得数据- 数据处理:整理、分类和统计数据的过程- 平均数:一组数值的中间值- 概率:事件发生的可能性4. 函数与方程- 函数:将一个或多个输入值关联到一个输出值的规则- 线性函数:图像为一条直线的函数- 一次方程:含有未知数的等式,且未知数的最高次数为1 - 二次函数:含有未知数的等式,且未知数的最高次数为2 - 不等式:包含不等关系的方程式5. 测量与几何变换- 长度、面积和体积的测量- 几何变换:平移、旋转、翻转和对称6. 概率与统计- 抽样调查:通过从整体中选取一部分作为样本来进行调查- 频率分布表:将数据按一定规则整理并统计出现频率- 相对频率:某一事件发生的频率与总次数之比- 抽样误差:由于样本选择不足而引起的统计结果误差以上是初中数学的主要知识点总结,希望对你有帮助!(注意:每个知识点只是简短介绍,具体内容还需进一步研究和理解。

)。

初中数学总复习知识点(全)

初中数学总复习知识点(全)

初中数学总复习知识点(全)数的整除性质- 定义:如果一个整数a除以另一个整数b,结果是整数并且没有余数,那么我们说a被b整除,其中a为被除数,b为除数。

- 整除性质:- 任何一个不等于0的整数a被1整除,即a÷1=a。

- 任何一个不等于0的整数a都被自身整除,即a÷a=1。

- 任何一个整数a都不能被0整除,即a÷0=无定义。

- 如果一个整数a被另一个整数b整除,那么a÷b的结果也是整数。

约数与倍数- 定义:- 如果一个整数a可以被另一个整数b整除,那么a是b的倍数,b是a的约数。

- 一个整数的因数是能整除这个整数的所有整数。

- 求1~100之间某数的倍数和约数的方法:- 找出所有小于或等于这个数的数字。

- 将这些数字从小到大排列。

- 再将它们一个一个地除以这个数。

- 能整除的就是约数,除得尽的就是倍数。

公约数与公倍数- 定义:- 两个或两个以上的整数共有的约数叫做这几个数的公约数,其中最大的公约数称为最大公约数。

- 两个或两个以上的整数倍数中最小的一个叫做这几个数的公倍数,其中最小的公倍数称为最小公倍数。

- 求两个数的最大公约数与最小公倍数的方法:- 找出这两个数的公约数。

- 从中选择最大的一个数作为最大公约数。

- 找出这两个数的公倍数。

- 从中选择最小的一个数作为最小公倍数。

质数与合数- 定义:- 在大于1的整数中,除了1和它本身以外没有其他因数的数叫做质数或素数。

- 大于1的整数中,除了1和本身外还有其他因数的数叫做合数。

- 判断一个数是否是质数的方法:- 如果一个数n不是质数,那么它的因数一定是1和n之间的一个数。

- 如果一个数n是质数,那么它的因数只有1和n。

分式- 定义:- 分数是由一个整数和一个非零整数构成的数,它们用分子和分母来表示,分子在上,分母在下,用一横线相连表示。

- 分式的基本运算:- 分式的加减法:- 先找出它们的最小公倍数,然后统一化来构造同分母的分式,最后进行加减运算。

(完整版)初中数学复习知识点总结

(完整版)初中数学复习知识点总结

初中数学复习知识点总结代数部分:第一部分、实数第二部分、代数式第三部分、方程和方程组第四部分、列方程(组)解应用题第五部分、不等式及不等式组第六部分、函数及其图像第七部分、统计初步几何部分:第一部分、线段、角、相交线、平行线第二部分、三角形第三部分、四边形第四部分、相似形第五部分、解直角三角形第六部分、圆代数部分第一部分:实数基础知识点:一、实数的分类:1、有理数:任何一个有理数总可以写成的形式,其中p、q是互质的整数,这是有理数的重要特征。

2、无理数:初中遇到的无理数有三种:开不尽的方根,如、;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、°等。

3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。

二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。

(1)实数a的相反数是 -a;(2)a和b互为相反数a+b=02、倒数:(1)实数a(a≠0)的倒数是;(2)a和b 互为倒数ab=1;(3)注意0没有倒数3、绝对值:(1)一个数a 的绝对值有以下三种情况:(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。

4、n次方根(1)平方根,算术平方根:设a≥0,称叫a的平方根,叫a的算术平方根。

(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

(3)立方根:叫实数a的立方根。

(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。

原点、正方向、单位长度是数轴的三要素。

2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。

初中数学知识点总结及公式大全

初中数学知识点总结及公式大全

初中数学知识点总结及公式大全数的性质和运算:1.自然数和整数性质2.有理数性质与运算3.实数的性质与大小比较4.数列的概念、特征与求和5.代数表达式的概念、运算和化简6.方程与不等式的概念、解法和应用7.根式的化简与运算平面图形与空间图形:1.平面角的概念、性质和计算2.平行线与平行线间角的关系3.三角形的性质、分类和判定4.四边形的性质、分类和判定5.圆与圆周角的性质和计算6.立体图形的性质和计算7.空间几何关系与证明数与代数:1.实数的运算与性质2.分式的运算与性质3.根式的运算与性质4.二次根式的性质与计算5.代数式(含多项式)的运算、化简与展开6.方程的应用与解法7.异或、绝对值与模运算函数与方程:1.函数的概念与性质2.一次函数的性质与图象3.二次函数的性质与图象4.指数函数与对数函数的性质5.消去法与代入法解方程6.方程及实际问题的应用7.二次函数及其图象的性质统计与概率:1.统计调查与数据整理2.数据分析与数据处理3.概率的概念、计算与应用4.事件与事件的概率计算5.概率的加法原理、乘法原理与推论6.统计图与统计量的计算7.正态分布与样本调查以上是初中数学的主要知识点,下面列举了一些常用的数学公式:1.平方公式:(a+b)²=a²+2ab+b²2.差平方公式:(a-b)²=a²-2ab+b²3.平方差公式:a²-b²=(a+b)(a-b)4.完全平方公式:a²+2ab+b²=(a+b)²5.勾股定理:a²+b²=c²(直角三角形中,a、b为直角边,c为斜边)6.正弦定理:a/sinA=b/sinB=c/sinC (非直角三角形中,a、b、c为边,A、B、C为角)7.余弦定理:c²=a²+b²-2ab*cosC(非直角三角形中,a、b、c为边,C为夹角)8.面积公式:矩形的面积=长*宽;正方形的面积=边长²;三角形的面积=底*高/29.圆的面积公式:A=πr²(A为圆的面积,r为半径)10.体积公式:长方体的体积=长*宽*高;圆柱体的体积=πr²h(r为底圆半径,h为高)。

完整版初中数学知识点归纳总结精华版

完整版初中数学知识点归纳总结精华版

初中数学知识点归纳总结一元一次方程1.概念:含有一个未知数,未知数的最高次数为1,这样的方程叫一元一次方程。

2.形式:ax + b = 0(a、b是常数,且a≠0)3.解法:移项、合并同类项、化简系数二元一次方程1.概念:含有两个未知数,未知数的最高次数为1,这样的方程叫二元一次方程。

2.形式:ax + by = c(a、b、c是常数,且a、b≠0)3.解法:消元法、代入法、行列式法一元一次不等式1.概念:含有一个未知数,未知数的最高次数为1,这样的不等式叫一元一次不等式。

2.形式:ax > b(a、b是常数,且a≠0)3.解法:同解一元一次方程,注意不等号的方向4.概念:分式是指形如a/b的表达式,其中a、b是整式,且b≠0。

5.性质:分式的分子、分母同时乘以(或除以)同一个非零整式,分式的值不变。

6.运算:加减乘除、分式的乘方点、线、面1.点:没有长度、宽度、高度的物体。

2.线:只有长度,没有宽度、高度的物体。

3.面:只有长度和宽度,没有高度的物体。

直线方程1.点斜式:y - y1 = k(x - x1)(k是直线的斜率,(x1, y1)是直线上的一点)2.截距式:y = kx + b(k是直线的斜率,b是直线在y轴上的截距)三角形1.概念:由三条线段首尾顺次连接所组成的图形叫三角形。

2.性质:三角形的内角和为180°,三角形的对边相等。

3.分类:不等边三角形、等腰三角形、等边三角形四边形1.概念:由四条线段首尾顺次连接所组成的图形叫四边形。

2.性质:四边形的内角和为360°,四边形的对边相等。

3.分类:矩形、平行四边形、梯形、菱形4.概念:平面上到一个固定点距离相等的所有点的集合叫圆。

5.性质:圆的半径相等,圆心到圆上任意一点的距离相等。

6.公式:圆的周长C = 2πr,圆的面积S = πr²概率与统计1.概念:事件发生的可能性叫概率。

2.求法:列举法、树状图法、列表法3.概念:统计学是研究数据收集、处理、分析、解释的科学。

【2012年】初中数学知识点总结【最新经典版】.

【2012年】初中数学知识点总结【最新经典版】.

初中数学知识点大全1、一元一次方程根的情况△=b2-4ac当△>0时,一元二次方程有2个不相等的实数根;当△=0时,一元二次方程有2个相同的实数根;当△<0时,一元二次方程没有实数根2、平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。

②平行四边形不相邻的两个顶点连成的线段叫他的对角线。

③平行四边形的对边/对角相等。

④平行四边形的对角线互相平分。

菱形:①一组邻边相等的平行四边形是菱形②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。

③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。

矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。

②矩形的对角线相等,四个角都是直角。

③对角线相等的平行四边形是矩形。

④正方形具有平行四边形,矩形,菱形的一切性质。

⑤一组邻边相等的矩形是正方形。

多边形:①N边形的内角和等于(N-2)180度②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)平均数:对于N个数X1,X2…X N,我们把(X1+X2+…+X N)/N叫做这个N个数的算术平均数,记为X加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。

二、基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1 平行四边形的对角相等53、平行四边形性质定理2 平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3 平行四边形的对角线互相平分56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、矩形性质定理1 矩形的四个角都是直角61、矩形性质定理2 矩形的对角线相等62、矩形判定定理1 有三个角是直角的四边形是矩形63、矩形判定定理2 对角线相等的平行四边形是矩形64、菱形性质定理1 菱形的四条边都相等65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1 四边都相等的四边形是菱形68、菱形判定定理2 对角线互相垂直的平行四边形是菱形69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1 关于中心对称的两个图形是全等的72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc如果ad=bc ,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3 三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2 相似三角形周长的比等于相似比98、性质定理3 相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆。

初中数学总复习知识点非常全面

初中数学总复习知识点非常全面

初中数学总复习知识点非常全面一、数的性质与关系1.整数、有理数、实数的概念、性质,R*的意义2.数轴的表示与意义3.绝对值的概念及性质二、整数的运算1.加减运算法则2.乘法法则、带余除法及整除的概念3.约数与倍数的概念4.公因数与最大公因数、公倍数与最小公倍数5.互质数的概念与判定法则三、有理数的运算1.有理数的概念与性质2.有理数的四则运算3.混合运算、带分数与有理数的比较与计算四、根与指数1.开方的概念与计算2.平方根、立方根的性质3.指数的概念与性质4.指数幂的运算与意义五、代数式及简单方程1.代数式的概念及常见形式2.代数式的四则运算3.一元一次方程的概念与解法4.解一元一次方程的三种基本方法六、分数与分数运算1.分数的概念、性质及表示方法2.分数的四则运算3.分数与小数的相互转化4.倒数、比例、直接与反比例关系七、平面图形的认识1.点、线、面、角的基本概念2.三角形、四边形、多边形的认识与性质3.平行线与垂直线的关系4.同位角、对顶角、内错角的性质八、相似与全等1.相似形的概念及性质2.相似三角形的判定、性质与计算3.勾股定理与勾股数的概念与应用4.三角形全等的判定、性质与计算九、圆的认识与应用1.圆的基本概念与性质2.圆周长与面积的计算3.弧的概念与计算4.扇形、梯形、菱形的面积计算十、平移与旋转1.平移的概念与性质2.旋转的概念与性质3.平移与旋转的运算与应用十一、统计与概率1.数据的搜集与整理2.数据图的绘制与分析3.概率的概念与计算十二、函数与方程1.函数的概念、图象与性质2.线性函数与非线性函数的概念与性质3.一元一次方程组的概念与解法4.一元一次不等式的概念与解法这些知识点涵盖了初中数学的主要内容,复习时应注意梳理思路,系统学习。

初中数学重点知识归纳总结

初中数学重点知识归纳总结

初中数学重点知识归纳总结初中数学的重要知识点有有理数、实数、一元一次方程、一元二次方程等。

然后分享具体的知识点。

(一)有理数(1)定义:由整数和分数组成的数。

包括正整数、0、负整数、正分数和负分数。

可以写成两个整数的比值。

(2)数轴:在数学中,数字可以用直线上的点来表示,称为数轴。

(3)逆数:逆数是一个数学术语,指绝对值相等,符号相反的两个数彼此相反。

(4)绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。

正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

(5)有理数的加减法将相同的符号加到相同的符号上,并将绝对值相加。

不同符号的加法,取绝对值大的加数的符号,用绝对值大的减去绝对值小的。

(6)有理数的乘法两个数相乘,符号相同的为正,符号不同的为负,再乘以绝对值。

任何数与0相乘,积为0.例:0×1=0(7)有理数的除法除以一个不为0的数等于乘以这个数的倒数。

两个数相除,同号为正,异号为负,除以绝对值。

0除以以任何一个不为0的数,都得0。

(8)有理数的乘方求n个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂。

其中,a叫做底数,n叫做指数。

当a?看作a的n次乘方的结果时,也可读作“a的n次幂”或“a的n次方”。

(二)实数(1)平方根平方根,又叫二次方根,表示为〔±√ ̄〕,其中属于非负数的平方根称之为算术平方根。

一个正数有两个实平方根,它们互为相反数,负数没有平方根。

(2)立方根如果一个数的立方等于a,那么这个数叫a的立方根,也称为三次方根。

立方根性质①在实数范围内,任何实数的立方根只有一个②在实数范围内,负数不能开平方,但可以开立方。

③0的立方根是0(3)实数实数是有理数和无理数的统称。

实数是封闭的,有序的,传递的,稠密的,完整的。

(三)一元一次方程1.一维线性方程是指只有一个未知数的方程,未知数的最高次为1,两边都是代数表达式。

2.判断一元一次方程的条件(1)首先必须是方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012初中数学总复习知识点总结一、第一轮复习1、第一轮复习的形式:“梳理知识脉络,构建知识体系”----理解为主,做题为辅(1)目的:过三关①过记忆关必须做到:在准确理解的基础上,牢记所有的基本概念(定义)、公式、定理,推论(性质,法则)等。

②过基本方法关需要做到:以基本题型为纲,理解并掌握中学数学中的基本解题方法,例如:配方法,因式分解法,换元法,判别式法(韦达定理),待定系数法,构造法,反证法等。

③过基本技能关。

应该做到:无论是对典型题、基本题,还是对综合题,应该很清楚地知道该题目所要考查的知识点,并能找到相应的解题方法。

(2)宗旨:知识系统化在这一阶段的教学把书中的内容进行归纳整理、组块,使之形成结构。

①数与代数分为3个大单元:数与式、方程与不等式、函数。

②空间和图形分为3个大单元:几何基本概念(线与角),平面图形,立体图形③统计与概率分为2个大单元:统计与概率2、第一轮复习应注意的问题(1)必须扎扎实实夯实基础中考试题按难:中:易=1:2:7的比例,基础分占总分的70%,因此必须对基础数学知识做到“准确理解”和“熟练掌握”,在应用基础知识时能做到熟练、正确和迅速。

(2)必须深钻教材,不能脱离课本按中考试卷的设计原则,基础题都是送分的题,有不少基础题都是课本上的原题或改造。

(3)掌握基础知识,一定要从理解角度出发数学知识的学习,必须要建立逻辑思维能力,基础知识只有理解透了,才可以举一反三、触类旁通。

相对而言,“题海战术”在这个阶段是不适用的。

二、第二轮复习1、第二轮复习的形式:“突出重点,综合提高”----练习专题化,专题规律化(1)目的:融会贯通考纲上的所有知识点①进行专题化训练将所有考纲上要求的知识点分为为多个专题,按专题进行复习,进行有针对性的、典型性、层次性、切中要害的强化练习。

②突出重点,难点和热点的内容在专题训练的基础上,要突出重点,抓住热点,突破难点。

按照中考的出题规律,每年的重点、难点和热点内容都大同小异,。

(2)宗旨:建立数学思想,培养数学能力在对初中阶段所有数学基本知识的理解掌握前提下,应该努力做到:①建立函数与方程的思想从函数的角度,去理解数,函数,方程、代数式以及跟图像的对应转化关系。

②提高数学阅读分析的能力学会用数学语言描述问题,并能还原问题的数学描述。

2、第二轮复习应注意的问题(1)专题的划分要合理专题的划分标准为相关知识点的联系紧密程度。

专题要有代表性和针对性,切忌面面俱到;始终围绕热点、难点、重点特别是中考必考内容选定专题。

(2)保证一定的习题量所谓“熟能生巧”,在这个阶段,所要做的就是将关键知识点进行综合、巩固、完善、提高。

要尽可能多的接触各类典型题。

(3)注重多思考,并及时总结规律每个专题内的知识点具有必然的紧密联系,不同专题之间的知识点同样会发生关联融合,要注重解题后的反思,总结规律。

三、第三轮复习1、第三轮复习的形式:“模拟训练,查缺补漏”目的:突破中考分数的非知识角度的障碍①研究历年中考真题,选择含金量高的模拟题分析历年中考题,对考点的掌握做到心中有数。

选择梯度设计合理,立足中考又稍高于中考难度的模拟题来做。

②调整自己的心里状态考试的成绩绝不仅仅取决于对知识点的掌握,在真正的考场上,心理状态和心里素质会带来很大的影响,所以在模拟训练时,一定要严格按照真正中考的时间以及相关要求来训练。

2、第三轮复习应注意的问题(1)通过做模拟题进行查缺补漏中考大纲要求掌握的知识点可谓众多,在经过前两轮的复习后,最后需要用做模拟题的方式来检查是否有遗漏生疏的知识点。

(2)克服不良的考试习惯中考考题都有相应的判分规则,要按照判分规则去优化答题思路和步骤,必须避免因为“审题不仔细,凭印象答题以及答题不规范”等原因造成的失分。

(3)总结适当的应试技巧在实际的考试过程中,完成一道题目并不一定非要按照从知识点的应用角度出发。

针对不少典型题,都有相应的解题技巧,既节约了做题时间,还保证了结果正确。

第一章 实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“a ±”。

2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0)0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥0 3、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。

考点四、科学记数法和近似数 (3—6分)1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

2、科学记数法把一个数写做na 10⨯±的形式,其中101<≤a ,n 是整数,这种记数法叫做科学记数法。

考点五、实数大小的比较 (3分)1、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

(2)求差比较:设a 、b 是实数,,0b a b a >⇔>- ,0b a b a =⇔=-b a b a <⇔<-0(3)求商比较法:设a 、b 是两正实数,;1;1;1b a b ab a b a b a b a <⇔<=⇔=>⇔>(4)绝对值比较法:设a 、b 是两负实数,则ba b a <⇔>。

(5)平方法:设a 、b 是两负实数,则b a b a <⇔>22。

考点六、实数的运算 (做题的基础,分值相当大)1、加法交换律 a b b a +=+2、加法结合律 )()(c b a c b a ++=++3、乘法交换律 ba ab =4、乘法结合律 )()(bc a c ab =5、乘法对加法的分配律 ac ab c b a +=+)(6、实数的运算顺序先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

第二章 代数式考点一、整式的有关概念 (3分)1、代数式:用运算符号把数或表示数的字母连接而成的式子叫做代数式。

单独的一个数或一个字母也是代数式。

2、单项式:只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如c b a 235-是6次单项式。

考点二、多项式 (11分)1、多项式:几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

单项式和多项式统称整式。

用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。

注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。

(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。

2、同类项:所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项。

3、去括号法则(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。

(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。

4、整式的运算法则 整式的加减法:(1)去括号;(2)合并同类项。

整式的乘法:),(都是正整数n m a a a n m n m +=∙),(都是正整数)(n m a a m n n m =)()(都是正整数n b a ab n n n = 22))((b a b a b a -=-+ 2222)(b ab a b a ++=+ 2222)(b ab a b a +-=-整式的除法:)0,,(≠=÷-a n m a a a n m n m 都是正整数 注意:(1)单项式乘单项式的结果仍然是单项式。

(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。

(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。

(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。

(5)公式中的字母可以表示数,也可以表示单项式或多项式。

(6)),0(1);0(10为正整数p a aaa a p p≠=≠=- (7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多项式是不能这么计算的。

考点三、因式分解 (11分)1、因式分解:把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。

2、因式分解的常用方法(1)提公因式法:)(c b a ac ab +=+ (2)运用公式法:))((22b a b a b a -+=-222)(2b a b ab a +=++222)(2b a b ab a -=+-(3)分组分解法:))(()()(d c b a d c b d c a bd bc ad ac ++=+++=+++(4)十字相乘法:))(()(2q a p a pq a q p a ++=+++ 3、因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提取公因式。

相关文档
最新文档