郑州中考数学模拟题1

合集下载

2022学年河南省郑州市市级名校中考数学全真模拟试题(含答案解析)

2022学年河南省郑州市市级名校中考数学全真模拟试题(含答案解析)

2022学年河南省郑州市市级名校中考数学全真模拟测试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、测试卷卷上答题无效。

一、选择题(共10小题,每小题3分,共30分) 1.下列因式分解正确的是( ) A .()2211x x +=+B .()22211x x x +-=- C .()()22x 22x 1x 1=-+-D .()2212x x x x -+=-+2.已知21x y =⎧⎨=⎩是二元一次方程组71mx ny nx my +=⎧⎨-=⎩的解,则m+3n 的值是( )A .4B .6C .7D .83.如图所示,二次函数y=ax 2+bx+c (a≠0)的图象经过点(﹣1,2),且与x 轴交点的横坐标分别为x 1、x 2,其中﹣2<x 1<﹣1,0<x 2<1.下列结论:①4a ﹣2b+c <0;②2a ﹣b <0;③abc <0;④b 2+8a <4ac . 其中正确的结论有( )A .1个B .2个C .3个D .4个4.下列各数中,相反数等于本身的数是( ) A .–1B .0C .1D .25.某公园有A 、B 、C 、D 四个入口,每个游客都是随机从一个入口进入公园,则甲、乙两位游客恰好从同一个入口进入公园的概率是( ) A .12B .14C .16D .186.运用乘法公式计算(4+x )(4﹣x )的结果是( ) A .x 2﹣16B .16﹣x 2C .16﹣8x +x 2D .8﹣x 27.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字的一面相对面上的字是( )A .国B .厉C .害D .了8. (3分)如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )A .210B .41C .52D .519.如图,O 是ABC 的外接圆,已知ABO 50∠=,则ACB ∠的大小为( )A .40B .30C .45D .5010.如图,在射线AB 上顺次取两点C ,D ,使AC =CD =1,以CD 为边作矩形CDEF ,DE =2,将射线AB 绕点A 沿逆时针方向旋转,旋转角记为α(其中0°<α<45°),旋转后记作射线AB ′,射线AB ′分别交矩形CDEF 的边CF ,DE 于点G ,H .若CG =x ,EH =y ,则下列函数图象中,能反映y 与x 之间关系的是( )A .B .C .D.二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,AB是半圆O的直径,点C、D是半圆O的三等分点,若弦CD=2,则图中阴影部分的面积为.12.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[1.3]=1,(1.3)=3,[1.3)=1.则下列说法正确的是________.(写出所有正确说法的序号)①当x=1.7时,[x]+(x)+[x)=6;②当x=﹣1.1时,[x]+(x)+[x)=﹣7;③方程4[x]+3(x)+[x)=11的解为1<x<1.5;④当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有两个交点.13.分解因式:3m2﹣6mn+3n2=_____.14.在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a),如图,若曲线y=2x(x>0)与此正方形的边有交点,则a的取值范围是_______.15.已知⊙O半径为1,A、B在⊙O上,且2AB=AB所对的圆周角为__o.16.当x=_________时,分式323xx-+的值为零.三、解答题(共8题,共72分)17.(8分)为了弘扬我国古代数学发展的伟大成就,某校九年级进行了一次数学知识竞赛,并设立了以我国古代数学家名字命名的四个奖项:“祖冲之奖”、“刘徽奖”、“赵爽奖”和“杨辉奖”,根据获奖情况绘制成如图1和图2所示的条形统计图和扇形统计图,并得到了获“祖冲之奖”的学生成绩统计表:“祖冲之奖”的学生成绩统计表:分数/分80 85 90 95人数/人 4 2 10 4根据图表中的信息,解答下列问题:(1)这次获得“刘徽奖”的人数是_____,并将条形统计图补充完整;(2)获得“祖冲之奖”的学生成绩的中位数是_____分,众数是_____分;(3)在这次数学知识竟赛中有这样一道题:一个不透明的盒子里有完全相同的三个小球,球上分别标有数字“﹣2”,“﹣1”和“2”,随机摸出一个小球,把小球上的数字记为x放回后再随机摸出一个小球,把小球上的数字记为y,把x作为横坐标,把y作为纵坐标,记作点(x,y).用列表法或树状图法求这个点在第二象限的概率.18.(8分)如图,点A的坐标为(﹣4,0),点B的坐标为(0,﹣2),把点A绕点B顺时针旋转90°得到的点C恰好在抛物线y=ax2上,点P是抛物线y=ax2上的一个动点(不与点O重合),把点P向下平移2个单位得到动点Q,则:(1)直接写出AB所在直线的解析式、点C的坐标、a的值;(2)连接OP、AQ,当OP+AQ获得最小值时,求这个最小值及此时点P的坐标;(3)是否存在这样的点P,使得∠QPO=∠OBC,若不存在,请说明理由;若存在,请你直接写出此时P点的坐标.19.(8分)如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)20.(8分)已知点E是矩形ABCD的边CD上一点,BF⊥AE于点F,求证△ABF∽△EAD.21.(8分)九(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:m=,n=;扇形统计图中机器人项目所对应扇形的圆心角度数为°;从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.22.(10分)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?23.(12分)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系.(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B的速度是多少?(3)求L 1,L 2分别表示的两辆汽车的s 与t 的关系式. (4)2小时后,两车相距多少千米? (5)行驶多长时间后,A 、B 两车相遇?24.有这样一个问题:探究函数y =316x ﹣2x 的图象与性质. 小东根据学习函数的经验,对函数y =316x ﹣2x 的图象与性质进行了探究.下面是小东的探究过程,请补充完整: (1)函数y =316x ﹣2x 的自变量x 的取值范围是_______; (2)如表是y 与x 的几组对应值 x …﹣4﹣3.5 ﹣3﹣2﹣11233.54…y …﹣83﹣74832 831160 ﹣116 ﹣83 m74883…则m 的值为_______;(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象; (4)观察图象,写出该函数的两条性质________.2022学年模拟测试卷参考答案(含详细解析)一、选择题(共10小题,每小题3分,共30分) 1、C 【答案解析】依据因式分解的定义以及提公因式法和公式法,即可得到正确结论. 【题目详解】解:D 选项中,多项式x 2-x+2在实数范围内不能因式分解; 选项B ,A 中的等式不成立;选项C 中,2x 2-2=2(x 2-1)=2(x+1)(x-1),正确. 故选C . 【答案点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法. 2、D 【答案解析】分析:根据二元一次方程组的解,直接代入构成含有m 、n 的新方程组,解方程组求出m 、n 的值,代入即可求解.详解:根据题意,将21x y =⎧⎨=⎩代入71mx ny nx my +=⎧⎨-=⎩,得:2721m n m n +=⎧⎨-+=⎩①②,①+②,得:m+3n=8, 故选D .点睛:此题主要考查了二元一次方程组的解,利用代入法求出未知参数是解题关键,比较简单,是常考题型. 3、C 【答案解析】首先根据抛物线的开口方向可得到a <0,抛物线交y 轴于正半轴,则c >0,而抛物线与x 轴的交点中,﹣2<x 1<﹣1、0<x 2<1说明抛物线的对称轴在﹣1~0之间,即x =﹣2ba>﹣1,可根据这些条件以及函数图象上一些特殊点的坐标来进行判断 【题目详解】由图知:抛物线的开口向下,则a <0;抛物线的对称轴x=﹣2ba>﹣1,且c >0;①由图可得:当x=﹣2时,y <0,即4a ﹣2b+c <0,故①正确; ②已知x=﹣2ba>﹣1,且a <0,所以2a ﹣b <0,故②正确; ③抛物线对称轴位于y 轴的左侧,则a 、b 同号,又c >0,故abc >0,所以③不正确;④由于抛物线的对称轴大于﹣1,所以抛物线的顶点纵坐标应该大于2,即:244ac b a>2,由于a <0,所以4ac ﹣b2<8a ,即b 2+8a >4ac ,故④正确; 因此正确的结论是①②④. 故选:C . 【答案点睛】本题主要考查对二次函数图象与系数的关系,抛物线与x 轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,能根据图象确定与系数有关的式子的正负是解此题的关键. 4、B 【答案解析】根据相反数的意义,只有符号不同的数为相反数. 【题目详解】解:相反数等于本身的数是1. 故选B . 【答案点睛】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,1的相反数是1. 5、B 【答案解析】画树状图列出所有等可能结果,从中确定出甲、乙两位游客恰好从同一个入口进入公园的结果数,再利用概率公式计算可得. 【题目详解】 画树状图如下:由树状图知共有16种等可能结果,其中甲、乙两位游客恰好从同一个入口进入公园的结果有4种, 所以甲、乙两位游客恰好从同一个入口进入公园的概率为416=14, 故选B .【答案点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.6、B【答案解析】根据平方差公式计算即可得解.【题目详解】222+-=-=-,x x x x(4)(4)416故选:B.【答案点睛】本题主要考查了整式的乘法公式,熟练掌握平方差公式的运算是解决本题的关键.7、A【答案解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【题目详解】∴有“我”字一面的相对面上的字是国.故答案选A.【答案点睛】本题考查的知识点是专题:正方体相对两个面上的文字,解题的关键是熟练的掌握正方体相对两个面上的文字.8、B【答案解析】根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.【题目详解】根据三角形数列的特点,归纳出每n9行从左至右第5个数是故选B【答案点睛】本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.9、A 【答案解析】解:△AOB 中,OA=OB ,∠ABO=30°; ∴∠AOB=180°-2∠ABO=120°; ∴∠ACB=∠AOB=60°;故选A .10、D 【答案解析】∵四边形CDEF 是矩形,∴CF ∥DE ,∴△ACG ∽△ADH ,∴CG ACDH AD=, ∵AC =CD =1,∴AD =2,∴12x DH =,∴DH =2x ,∵DE =2,∴y =2﹣2x , ∵0°<α<45°,∴0<x <1, 故选D .【答案点睛】本题主要考查了旋转、相似等知识,解题的关键是根据已知得出△ACG ∽△ADH.二、填空题(本大题共6个小题,每小题3分,共18分) 11、23π. 【答案解析】测试卷分析:连结OC 、OD ,因为C 、D 是半圆O 的三等分点,所以,∠BOD =∠COD =60°,所以,三角形OCD为等边三角形,所以,半圆O 的半径为OC =CD =2,S 扇形OBDC =1204360π⨯=43π,S △OBC =12312⨯⨯=3,S 弓形CD =S 扇形ODC -S △ODC =6041233602π⨯-⨯⨯=233π-,所以阴影部分的面积为为S =43π-3-(233π-)=23π.考点:扇形的面积计算. 12、②③ 【答案解析】测试卷解析:①当x=1.7时, [x]+(x )+[x )=[1.7]+(1.7)+[1.7)=1+1+1=5,故①错误;②当x=﹣1.1时,[x]+(x )+[x )=[﹣1.1]+(﹣1.1)+[﹣1.1)=(﹣3)+(﹣1)+(﹣1)=﹣7,故②正确;③当1<x <1.5时,4[x]+3(x )+[x )=4×1+3×1+1=4+6+1=11,故③正确;④∵﹣1<x <1时,∴当﹣1<x <﹣0.5时,y=[x]+(x )+x=﹣1+0+x=x ﹣1,当﹣0.5<x <0时,y=[x]+(x )+x=﹣1+0+x=x ﹣1,当x=0时,y=[x]+(x )+x=0+0+0=0,当0<x <0.5时,y=[x]+(x )+x=0+1+x=x+1,当0.5<x <1时,y=[x]+(x )+x=0+1+x=x+1,∵y=4x ,则x ﹣1=4x 时,得x=;x+1=4x 时,得x=;当x=0时,y=4x=0,∴当﹣1<x <1时,函数y=[x]+(x )+x 的图象与正比例函数y=4x 的图象有三个交点,故④错误,故答案为②③.考点:1.两条直线相交或平行问题;1.有理数大小比较;3.解一元一次不等式组.13、3(m-n )2【答案解析】原式=2232)m mn n -+(=23()m n - 故填:23()m n -14221a ≤≤【答案解析】 因为A 点的坐标为(a ,a ),则C (a ﹣1,a ﹣1),根据题意只要分别求出当A 点或C 点在曲线上时a 的值即可得到答案.【题目详解】解:∵A 点的坐标为(a ,a ),∴C (a ﹣1,a ﹣1),当C 在双曲线y=2x 时,则a ﹣1=21a -, 解得a=2+1; 当A 在双曲线y=2x 时,则a=2a, 解得a=2,∴a 的取值范围是2≤a≤2+1. 故答案为2≤a≤2+1.【答案点睛】本题主要考查反比例函数与几何图形的综合问题,解此题的关键在于根据题意找到关键点,然后将关键点的坐标代入反比例函数求得确定值即可.15、45º或135º【答案解析】测试卷解析:如图所示,∵OC ⊥AB ,∴C 为AB 的中点,即1222AC BC AB === 在Rt △AOC 中,OA =1, 22AC = 根据勾股定理得:2222OC OA AC =-=即OC =AC , ∴△AOC 为等腰直角三角形,45AOC ∴∠=,同理45BOC ∠=,90AOB AOC BOC ∴∠=∠+∠=,∵∠AOB 与∠ADB 都对AB ,1452ADB AOB ,∴∠=∠= ∵大角270AOB ∠=,135.AEB ∴∠=则弦AB 所对的圆周角为45或135.故答案为45或135.16、2【答案解析】根据若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1计算即可.【题目详解】解:依题意得:2﹣x=1且2x+2≠1.解得x=2,故答案为2.【答案点睛】本题考查的是分式为1的条件和一元二次方程的解法,掌握若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1是解题的关键.三、解答题(共8题,共72分)17、(1)刘徽奖的人数为40人,补全统计图见解析;(2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分;(3)P (点在第二象限)29=. 【答案解析】(1)先根据祖冲之奖的人数及其百分比求得总人数,再根据扇形图求出赵爽奖、杨辉奖的人数,继而根据各奖项的人数之和等于总人数求得刘徽奖的人数,据此可得;(2)根据中位数和众数的定义求解可得;(3)列表得出所有等可能结果,再找到这个点在第二象限的结果,根据概率公式求解可得.【题目详解】(1)∵获奖的学生人数为20÷10%=200人,∴赵爽奖的人数为200×24%=48人,杨辉奖的人数为200×46%=92人,则刘徽奖的人数为200﹣(20+48+92)=40,补全统计图如下:故答案为40;(2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分.故答案为90、90;(3)列表法:∵第二象限的点有(﹣2,2)和(﹣1,2),∴P (点在第二象限)29. 【答案点睛】 本题考查了用列表法或画树状图法求概率、频数分布直方图以及利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查列表法或画树状图法求概率.18、(1)a=12;(2)OP+AQ 的最小值为5P 的坐标为(﹣1,12);(3)P (﹣4,8)或(4,8), 【答案解析】(1)利用待定系数法求出直线AB 解析式,根据旋转性质确定出C 的坐标,代入二次函数解析式求出a 的值即可; (2)连接BQ ,可得PQ 与OB 平行,而PQ=OB ,得到四边形PQBO 为平行四边形,当Q 在线段AB 上时,求出OP+AQ 的最小值,并求出此时P 的坐标即可;(3)存在这样的点P ,使得∠QPO=∠OBC ,如备用图所示,延长PQ 交x 轴于点H ,设此时点P 的坐标为(m ,12m 2),根据正切函数定义确定出m 的值,即可确定出P 的坐标.【题目详解】解:(1)设直线AB 解析式为y=kx+b ,把A(﹣4,0),B(0,﹣2)代入得:402k bb-+=⎧⎨=-⎩,解得:122kb⎧=-⎪⎨⎪=-⎩,∴直线AB的解析式为y=﹣12x﹣2,根据题意得:点C的坐标为(2,2),把C(2,2)代入二次函数解析式得:a=12;(2)连接BQ,则易得PQ∥OB,且PQ=OB,∴四边形PQBO是平行四边形,∴OP=BQ,∴OP+AQ=BQ+5(等号成立的条件是点Q在线段AB上),∵直线AB的解析式为y=﹣12x﹣2,∴可设此时点Q的坐标为(t,﹣12t﹣2),于是,此时点P的坐标为(t,﹣12 t),∵点P在抛物线y=12x2上,∴﹣12t=12t2,解得:t=0或t=﹣1,∴当t=0,点P与点O重合,不合题意,应舍去,∴OP+AQ的最小值为5P的坐标为(﹣1,12);(3)P(﹣4,8)或(4,8),如备用图所示,延长PQ交x轴于点H,设此时点P 的坐标为(m ,12m 2), 则tan ∠HPO=2212m OH PH m m ==, 又,易得tan ∠OBC=12, 当tan ∠HPO=tan ∠OBC 时,可使得∠QPO=∠OBC ,于是,得212m =, 解得:m=±4, 所以P (﹣4,8)或(4,8).【答案点睛】此题属于二次函数综合题,涉及的知识有:二次函数的图象与性质,待定系数法求一次函数解析式,旋转的性质,以及锐角三角函数定义,熟练掌握各自的性质是解本题的关键.19、(1)5.6(2)货物MNQP 应挪走,理由见解析.【答案解析】(1)如图,作AD ⊥BC 于点DRt △ABD 中,AD=ABsin45°=4222⨯在Rt △ACD 中,∵∠ACD=30°∴AC=2AD=42 5.6≈ 即新传送带AC 的长度约为5.6米.(2)结论:货物MNQP 应挪走.在Rt △ABD 中,BD=ABcos45°=42=222⨯ 在Rt △ACD 中,CD=ACcos30°= 342=262⨯ ∴CB=CD —BD=()26-22=26-2 2.1≈ ∵PC=PB —CB ≈4—2.1=1.9<2∴货物MNQP 应挪走.20、证明见解析【答案解析】测试卷分析:先利用等角的余角相等得到.DAE BAF ∠=∠根据有两组角对应相等,即可证明两三角形相似. 测试卷解析:∵四边形ABCD 为矩形,90,BAD D ∴∠=∠=90DAE BAE ∴∠+∠=,BF AE ⊥于点F ,90ABF BAE ∴∠+∠=,DAE BAF ∴∠=∠,.ABF EAD ∴∽点睛:两组角对应相等,两三角形相似.21、(1)8,3; (2)144;(3)23. 【答案解析】测试卷分析:(1)利用航模小组先求出数据总数,再求出n .(2)小组所占圆心角=;(3)列表格求概率.测试卷解析:(1); (2);(3)将选航模项目的名男生编上号码,将名女生编上号码. 用表格列出所有可能出现的结果:由表格可知,共有种可能出现的结果,并且它们都是第可能的,其中“名男生、名女生”有种可能.(名男生、名女生).(如用树状图,酌情相应给分)考点:统计与概率的综合运用.22、(1)y=﹣30x+1;(2)每件售价定为55元时,每星期的销售利润最大,最大利润2元;(3)该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.【答案解析】(1) 每星期的销售量等于原来的销售量加上因降价而多销售的销售量, 代入即可求解函数关系式;(2) 根据利润=销售量 (销售单价-成本) , 建立二次函数, 用配方法求得最大值.(3) 根据题意可列不等式, 再取等将其转化为一元二次方程并求解, 根据每星期的销售利润所在抛物线开口向下求出满足条件的x的取值范围, 再根据(1) 中一元一次方程求得满足条件的x的取值范围内y的最小值即可.【题目详解】(1)y=300+30(60﹣x)=﹣30x+1.(2)设每星期利润为W元,W=(x﹣40)(﹣30x+1)=﹣30(x﹣55)2+2.∴x=55时,W最大值=2.∴每件售价定为55元时,每星期的销售利润最大,最大利润2元.(3)由题意(x﹣40)(﹣30x+1)≥6480,解得52≤x≤58,当x=52时,销售300+30×8=540,当x=58时,销售300+30×2=360,∴该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.【答案点睛】本题主要考查一次函数的应用和二次函数的应用,注意综合运用所学知识解题.23、(1)L1表示汽车B到甲地的距离与行驶时间的关系;(2)汽车B的速度是1.5千米/分;(3)s1=﹣1.5t+330,s2=t;(4)2小时后,两车相距30千米;(5)行驶132分钟,A、B两车相遇.【答案解析】测试卷分析:(1)直接根据函数图象的走向和题意可知L 1表示汽车B 到甲地的距离与行驶时间的关系; (2)由L 1上60分钟处点的坐标可知路程和时间,从而求得速度;(3)先分别设出函数,利用函数图象上的已知点,使用待定系数法可求得函数解析式; (4)结合(3)中函数图象求得120t =时s 的值,做差即可求解;(5)求出函数图象的交点坐标即可求解.测试卷解析:(1)函数图形可知汽车B 是由乙地开往甲地,故L 1表示汽车B 到甲地的距离与行驶时间的关系;(2)(330﹣240)÷60=1.5(千米/分);(3)设L 1为1s kt b =+, 把点(0,330),(60,240)代入得1.5330.k b =-=, 所以1 1.5330s t ;=-+ 设L 2为2s k t =',把点(60,60)代入得 1.k '=所以2.s t =(4)当120t =时,12150120.s s ==,330﹣150﹣120=60(千米);所以2小时后,两车相距60千米;(5)当12s s =时, 1.5330,t t -+=解得132.t =即行驶132分钟,A 、B 两车相遇.24、(1)任意实数;(2)32-;(3)见解析;(4)①当x <﹣2时,y 随x 的增大而增大;②当x >2时,y 随x 的增大而增大.【答案解析】(1)没有限定要求,所以x 为任意实数,(2)把x =3代入函数解析式即可,(3)描点,连线即可解题,(4)看图确定极点坐标,即可找到增减区间.【题目详解】解:(1)函数y =316x ﹣2x 的自变量x 的取值范围是任意实数;故答案为任意实数;(2)把x =3代入y =316x ﹣2x 得,y =﹣32; 故答案为﹣32; (3)如图所示;(4)根据图象得,①当x <﹣2时,y 随x 的增大而增大;②当x >2时,y 随x 的增大而增大.故答案为①当x <﹣2时,y 随x 的增大而增大;②当x >2时,y 随x 的增大而增大.【答案点睛】本题考查了函数的图像和性质,属于简单题,熟悉函数的图像和概念是解题关键.。

郑州市初三中考数学一模模拟试题【含答案】

郑州市初三中考数学一模模拟试题【含答案】

郑州市初三中考数学一模模拟试题【含答案】一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.(3分)﹣3的相反数是()A.3B.﹣3C.±3D.2.(3分)下列计算正确的是()A.2a+3b=5ab B.=±6C.a2b÷2ab=a2D.(2ab2)3=8a3b63.(3分)如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A.B.C.D.4.(3分)一组数据1,2,3,3,4,5.若添加一个数据3,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差5.(3分)如图,AB是⊙O的直径,直线P A与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为()A.20°B.25°C.40°D.50°6.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=()A.B.2C.D.7.(3分)已知实数x、y满足:x﹣y﹣3=0和2y3+y﹣6=0.则﹣y2的值为()A.0B.C.1D.8.(3分)如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,当y<0时x的取值范围是()A.x>2B.0<x<4C.﹣1<x<4D.x<﹣1 或x>4二、填空题(本大题共10小题,每小题3分,共30分.)9.(3分)“五一”小长假期间,扬州市区8家主要封闭式景区共接待游客528600人次,同比增长20.56%.用科学记数法表示528600为.10.(3分)若有意义,则x的取值范围是.11.(3分)分解因式:mx2﹣4m=.12.(3分)若方程x2+kx+9=0有两个相等的实数根,则k=.13.(3分)一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为cm2.14.(3分)如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是.15.(3分)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为.16.(3分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.17.(3分)如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x2+4x+2的一部分,曲线BC是双曲线y=的一部分,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P(2018,m)与Q(2025,n)均在该波浪线上,则mn=.18.(3分)如图,⊙O的直径AB=8,C为弧AB的中点,P为弧BC上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,连接BD,则BD的最小值是.三、解答题(本大题有10小题,共96分.)19.(8分)(1)计算:|﹣3|﹣tan30°+20180﹣()﹣1;(2)化简:(1+a)(1﹣a)+a(a﹣2).20.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.21.(8分)若关于x的分式方程=1的解是正数,求m的取值范围.22.(8分)小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的.(1)如果有2个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用“画树状图”或“列表”等方法写出分析过程)(2)如果有n个路口,则小明在每个路口都没有遇到红灯的概率是.23.(10分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6m的B处安置高为1.5m的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长.(结果保留根号)24.(10分)如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且ED⊥DB,FB ⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.25.(10分)观察下表:我们把某一格中所有字母相加得到的多项式称为特征多项式,例如:第1格的“特征多项式”为x+4y.回答下列问题:(1)第4格的“特征多项式”为,第n格的“特征多项式”为;(2)若第1格的“特征多项式”的值为2,第2格的“特征多项式”的值为﹣6.①求x,y的值;②在①的条件下,第n格的“特征多项式的值”随着n的变化而变化,求“特征多项式的值”的最大值及此时n值.26.如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,E为BC的中点,连接DE.(1)求证:DE为⊙O的切线;(2)如果⊙O的半径为3,ED=4,延长EO交⊙O于F,连接DF,与OA交于点G,求OG的长.27.(12分)在平面直角坐标系中,点O为原点,点A的坐标为(﹣8,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=45°,OE=OA,求直线EF的函数表达式;(2)如图3,若α为锐角,且tanα=,当EA⊥x轴时,正方形对角线EG与OF相交于点M,求线段AM的长;(3)当正方形OEFG的顶点F落在y轴正半轴上时,直线AE与直线FG相交于点P,是否存在△OEP的两边之比为:1?若存在,求出点P的坐标;若不存在,试说明理由.28.如图,已知抛物线y=ax2﹣2ax﹣9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△P AD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,+均为定值,并求出该定值.参考答案与试题解析一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是﹣(﹣3)=3.故选:A.2.【分析】直接利用合并同类项法则以及算术平方根、整式的除法运算法则、积的乘方运算法则分别化简得出答案.【解答】解:A、2a+3b无法计算,故此选项错误;B、=6,故此选项错误;C、a2b÷2ab=a,故此选项错误;D、(2ab2)3=8a3b6,正确.故选:D.3.【分析】俯视图是从物体上面看到的图形,应把所看到的所有棱都表示在所得图形中.【解答】解:从上面看,图2的俯视图是正方形,有一条对角线.故选:C.4.【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【解答】解:A、原来数据的平均数是3,添加数字3后平均数仍为3,故A与要求不符;B、原来数据的众数是3,添加数字3后众数仍为3,故B与要求不符;C、原来数据的中位数是3,添加数字3后中位数仍为3,故C与要求不符;D、原来数据的方差==,添加数字3后的方差==,故方差发生了变化.故选:D.5.【分析】利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠P AO的度数,然后利用圆周角定理来求∠ABC的度数.【解答】解:如图,∵AB是⊙O的直径,直线P A与⊙O相切于点A,∴∠P AO=90°.又∵∠P=40°,∴∠POA=50°,∴∠ABC=∠POA=25°.故选:B.6.【分析】求出AB=3,由平行线分线段成比例定理得出比例式,即可得出结果.【解答】解:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴==.故选:A.7.【分析】根据x﹣y﹣3=0和2y3+y﹣6=0,可以得到x与y的关系和y2﹣的值,从而可以求得所求式子的值.【解答】解:∵x﹣y﹣3=0和2y3+y﹣6=0,∴x=y+3,y2+﹣=0,∴y2﹣=﹣∴﹣y2==1+=1﹣(﹣)=1+=,故选:D.8.【分析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【解答】解:∵y3=(kx+b)(mx+n),y<0,∴(kx+b)(mx+n)<0,∵y1=kx+b,y2=mx+n,即y1•y2<0,有以下两种情况:(1)当y1>0,y2<0时,此时,x<﹣1;(2)当y1<0,y2>0时,此时,x>4,故选:D.二、填空题(本大题共10小题,每小题3分,共30分.)9.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:528600=5.286×105,故答案为:5.286×10510.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意,得:x﹣2≠0,解得:x≠2.故答案是:x≠2.11.【分析】首先提取公因式m,进而利用平方差公式分解因式即可.【解答】解:mx2﹣4m=m(x2﹣4)=m(x+2)(x﹣2).故答案为:m(x+2)(x﹣2).12.【分析】根据根判别式△=b2﹣4ac的意义得到△=0,即k2﹣4×1×9=0,然后解方程即可.【解答】解:∵方程x2+kx+9=0有两个相等的实数根,∴△=0,即k2﹣4•1•9=0,解得k=±6.故答案为±6.13.【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.【解答】解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=2π•5=10π,∴圆锥的侧面积=•10π•2=10π(cm2).故答案为:10π.14.【分析】连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到|k|=4,然后去绝对值即可得到满足条件的k的值.【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△ABC=4,而S△OAB=|k|,∴|k|=4,∵k<0,∴k=﹣8.故答案为:﹣8.15.【分析】根据平行线的性质可得出∠3=∠4+∠5,结合对顶角相等可得出∠3=∠1+∠2,代入∠1=30°、∠3=45°,即可求出∠2的度数.【解答】解:给各角标上序号,如图所示.∵∠3=∠4+∠5,∠1=∠4,∠2=∠5,∴∠3=∠1+∠2.又∵∠1=30°,∠3=45°,∴∠2=15°.故答案为:15°.16.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.17.【分析】依据题意可得,A,C之间的水平距离为6,点Q与点P的水平距离为7,A,B之间的水平距离为2,双曲线解析式为y=,依据点P'、点B离x轴的距离相同,都为6,即点P的纵坐标m=6,点Q“、点Q'离x轴的距离相同,都为4,即点Q的纵坐标n=4,即可得到mn的值.【解答】解:由图可得,A,C之间的水平距离为6,2018÷6=336…2,由抛物线y=﹣x2+4x+2可得,顶点B(2,6),即A,B之间的水平距离为2,∴点P'、点B离x轴的距离相同,都为6,即点P的纵坐标m=6,由抛物线解析式可得AO=2,即点C的纵坐标为2,∴C(6,2),∴k=2×6=12,∴双曲线解析式为y=,2025﹣2018=7,故点Q与点P的水平距离为7,∵点P'、Q“之间的水平距离=(2+7)﹣(2+6)=1,∴点Q“的横坐标=2+1=3,∴在y=中,令x=3,则y=4,∴点Q“、点Q'离x轴的距离相同,都为4,即点Q的纵坐标n=4,∴mn=6×4=24,故答案为:24.18.【分析】以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,依据∠ADC=135°,可得点D的运动轨迹为以Q为圆心,AQ为半径的,依据△ACQ中,AQ=4,【解答】解:如图所示,以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,连接AC,BC,BQ.∵⊙O的直径为AB,C为的中点,∴∠APC=45°,又∵CD⊥CP,∴∠DCP=90°,∴∠PDC=45°,∠ADC=135°,∴点D的运动轨迹为以Q为圆心,AQ为半径的,又∵AB=8,C为的中点,∴△ACB是等腰直角三角形,∴AC=4,∴△ACQ中,AQ=4,∴BQ==4,∵BD≥BQ﹣DQ,∴BD的最小值为4﹣4.故答案为:4﹣4.三、解答题(本大题有10小题,共96分.)19.【分析】(1)根据实数的混合计算解答即可;(2)根据整式的混合计算解答即可.【解答】解:(1)原式==﹣1.(2)原式=1﹣a2+a2﹣2a=1﹣2a20.【分析】(1)根据文史类的人数以及文史类所占的百分比即可求出总人数;(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数;【解答】解:(1)∵喜欢文史类的人数为76人,占总人数的38%,∴此次调查的总人数为:76÷38%=200人,故答案为:200;(2)∵喜欢生活类书籍的人数占总人数的15%,∴喜欢生活类书籍的人数为:200×15%=30人,∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,如图所示:(3)∵喜欢社科类书籍的人数为:24人,∴喜欢社科类书籍的人数占了总人数的百分比为:×100%=12%,∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°×35%=126°;(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%=240人.21.【分析】分式方程去分母转化为整式方程,表示出整式方程的解,由分式方程的解为正数确定出m的范围即可.【解答】解:去分母得:1+m=x﹣2,解得:x=m+3,由分式方程的解为正数,得到m+3>0,且m+3≠2,解得:m>﹣3且m≠﹣1.22.【分析】(1)画树状图列出所有等可能结果,从中找到到第二个路口时第一次遇到红灯的结果数,根据概率公式计算可得.(2)根据在第1个路口没有遇到红灯的概率为,到第2个路口还没有遇到红灯的概率为=()2可得答案.【解答】解:(1)画树状图如下:由树状图知,共有9种等可能结果,其中到第二个路口时第一次遇到红灯的结果数为2,所以到第二个路口时第一次遇到红灯的概率为;(2)∵在第1个路口没有遇到红灯的概率为,到第2个路口还没有遇到红灯的概率为=()2,∴到第n个路口都没有遇到红灯的概率为()n,故答案为:()n.23.【分析】由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.【解答】解:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×=2(米),∵DH=1.5,∴CD=2 +1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE==(4+)(米),答:拉线CE的长约为(4+)米.24.【分析】(1)由四边形ABCD为平行四边形,利用平行四边形的性质得到对边平行且相等,对角相等,再由垂直的定义得到一对直角相等,利用等式的性质得到一对角相等,利用ASA即可得证;(2)过D作DH垂直于AB,在直角三角形ADH中,利用30度所对的直角边等于斜边的一半得到AD=2DH,在直角三角形DEB中,利用斜边上的中线等于斜边的一半得到EB=2DH,易得四边形EBFD为平行四边形,利用平行四边形的对边相等得到EB=DF,等量代换即可得证.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD=CB,∠A=∠C,AD∥CB,AB∥CD,∴∠ADB=∠CBD,∵ED⊥DB,FB⊥BD,∴∠EDB=∠FBD=90°,∴∠ADE=∠CBF,在△AED和△CFB中,,∴△AED≌△CFB(ASA);(2)作DH⊥AB,垂足为H,在Rt△ADH中,∠A=30°,∴AD=2DH,在Rt△DEB中,∠DEB=45°,∴EB=2DH,∵ED⊥DB,FB⊥BD.∴DE∥BF,∵AB∥CD,∴四边形EBFD为平行四边形,∴FD=EB,∴DA=DF.25.【分析】(1)利用已知表格中x,y个数变化规律得出第2格的“特征多项式”以及第n 格的“特征多项式”;(2)①利用(1)中所求得出关于x,y的等式组成方程组求出答案;②利用二次函数最值求法得出答案.【解答】解:(1)由表格中数据可得:第4格的“特征多项式”为:16x+25y,第n格的“特征多项式”为:n2x+(n+1)2y(n为正整数);故答案为:16x+25y,n2x+(n+1)2y(n为正整数);(2)①由题意可得:,解得:答:x的值为﹣6,y的值为2.②设W=n2x+(n+1)2y当x=﹣6,y=2时:W=﹣6n2+2(n+1)2=,此函数开口向下,对称轴为,∴当时,W随n的增大而减小,又∵n为正整数∴当n=1时,W有最大值,W最大=﹣4×(1﹣)2+3=2,即:第1格的特征多项式的值有最大值,最大值为2.26.【分析】(1)首先连接OD,由BE=EC,CO=OA,得出OE∥AB,根据平行线与等腰三角形的性质,易证得△COE≌△DOE,即可得∠ODE=∠OCE=90°,则可证得ED 为⊙O的切线;(2)只要证明OE∥AB,推出,由此构建方程即可解决问题;【解答】解:(1)证明:连接OD,∵E为BC的中点,AC为直径,∴BE=EC,CO=OA,∴OE∥AB,∴∠COE=∠CAD,∠EOD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠COE=∠DOE,在△COE和△DOE中,,∴△COE≌△DOE(SAS),∴∠ODE=∠OCE=90°,∴ED⊥OD,∴ED是圆O的切线;(2)连接CD;由题意EC、ED是⊙O的切线,∴EC=ED,∵OC=OD,∴OE⊥CD,∵AC是直径,∴∠CDA=90°,∴CD⊥AB,∴OE∥AB,∴,在Rt△ECO中,EO==5,∵∠EOC=∠CAD,∴cos∠CAD=cos∠EOC=,∴AD=,设OG=x,则有,∴x=,∴OG=.27.【分析】(1)求出E、F两点坐标,利用待定系数法即可解决问题;(2)如图3中,作MH⊥OA于H,MK⊥AE交AE的延长线于K.只要证明四边形AOMK 是正方形,证明AE+OA=2AH即可解决问题;(3)如图2中,设F(0,2a),则E(﹣a,a).构建一次函数利用方程组求出交点P 坐标,分三种情形讨论求解即可;【解答】解:(1)∵OE=OA=8,α=45°,∴E(﹣4,4),F(0,8),设直线EF的解析式为y=kx+b,则有,解得∴直线EF的解析式为y=x+8.(2)如图3中,作MH⊥OA于H,MK⊥AE交AE的延长线于K.在Rt△AEO中,tan∠AOE==,OA=8,∴AE=4,∵四边形EOGF是正方形,∴∠EMO=90°,∵∠EAO=∠EMO=90°,∴E、A、O、M四点共圆,∴∠EAM=∠EOM=45°,∴∠MAK=∠MAH=45°,∵MK⊥AE,MH⊥OA,∴MK=MH,四边形KAOM是正方形,∵EM=OM,∴△MKE≌△MHO,∴EK=OH,∴AK+AH=2AH=AE+EK+OA﹣OH=12,∴AH=6,∴AM=AH=6.(3)如图2中,设F(0,2a),则E(﹣a,a).∵A(﹣8,0),E(﹣a,a),∴直线AP的解析式为y=x+,直线FG的解析式为y=﹣x+2a,由,解得,∴P(,).①当PO=OE时,∴PO2=2OE2,则有:+=4a2,解得a=4或﹣4(舍弃)或0(舍弃),此时P(0,8).②当PO=PE时,则有:+=2[(+a)2+(﹣a)2],解得:a=4或12,此时P(0,8)或(﹣24,48),③当PE=EO时,[(+a)2+(﹣a)2]=4a2,解得a=8或0(舍弃),∴P(﹣8,24)综上所述,满足条件的点P的坐标为(0,8),(﹣8,24),(﹣24,48).28.【分析】(1)由点C的坐标为(0,3),可知﹣9a=3,故此可求得a的值,然后令y=0得到关于x的方程,解关于x的方程可得到点A和点B的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;(2)利用特殊锐角三角函数值可求得∠CAO=60°,依据AE为∠BAC的角平分线可求得∠DAO=30°,然后利用特殊锐角三角函数值可求得OD=1,则可得到点D的坐标.设点P的坐标为(,a).依据两点的距离公式可求得AD、AP、DP的长,然后分为AD =P A、AD=DP、AP=DP三种情况列方程求解即可;(3)设直线MN的解析式为y=kx+1,接下来求得点M和点N的横坐标,于是可得到AN的长,然后利用特殊锐角三角函数值可求得AM的长,最后将AM和AN的长代入化简即可.【解答】解:(1)∵C(0,3).∴﹣9a=3,解得:a=﹣.令y=0得:ax2﹣2 ax﹣9a=0,∵a≠0,∴x2﹣2 x﹣9=0,解得:x=﹣或x=3.∴点A的坐标为(﹣,0),B(3,0).∴抛物线的对称轴为x=.(2)∵OA=,OC=3,∴tan∠CAO=,∴∠CAO=60°.∵AE为∠BAC的平分线,∴∠DAO=30°.∴DO=AO=1.∴点D的坐标为(0,1)设点P的坐标为(,a).依据两点间的距离公式可知:AD2=4,AP2=12+a2,DP2=3+(a﹣1)2.当AD=P A时,4=12+a2,方程无解.当AD=DP时,4=3+(a﹣1)2,解得a=0或a=2(舍去),∴点P的坐标为(,0).当AP=DP时,12+a2=3+(a﹣1)2,解得a=﹣4.∴点P的坐标为(,﹣4).综上所述,点P的坐标为(,0)或(,﹣4).(3)设直线AC的解析式为y=mx+3,将点A的坐标代入得:﹣m+3=0,解得:m =,∴直线AC的解析式为y=x+3.设直线MN的解析式为y=kx+1.把y=0代入y=kx+1得:kx+1=0,解得:x=﹣,∴点N的坐标为(﹣,0).∴AN=﹣+=.将y=x+3与y=kx+1联立解得:x=.∴点M的横坐标为.过点M作MG⊥x轴,垂足为G.则AG=+.∵∠MAG=60°,∠AGM=90°,∴AM=2AG=+2=.∴+=+=+===.中学数学一模模拟试卷一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.(3分)﹣3的相反数是()A.3B.﹣3C.±3D.2.(3分)下列计算正确的是()A.2a+3b=5ab B.=±6C.a2b÷2ab=a2D.(2ab2)3=8a3b63.(3分)如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A.B.C.D.4.(3分)一组数据1,2,3,3,4,5.若添加一个数据3,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差5.(3分)如图,AB是⊙O的直径,直线P A与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为()A.20°B.25°C.40°D.50°6.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=()A.B.2C.D.7.(3分)已知实数x、y满足:x﹣y﹣3=0和2y3+y﹣6=0.则﹣y2的值为()A.0B.C.1D.8.(3分)如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,当y<0时x的取值范围是()A.x>2B.0<x<4C.﹣1<x<4D.x<﹣1 或x>4二、填空题(本大题共10小题,每小题3分,共30分.)9.(3分)“五一”小长假期间,扬州市区8家主要封闭式景区共接待游客528600人次,同比增长20.56%.用科学记数法表示528600为.10.(3分)若有意义,则x的取值范围是.11.(3分)分解因式:mx2﹣4m=.12.(3分)若方程x2+kx+9=0有两个相等的实数根,则k=.13.(3分)一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为cm2.14.(3分)如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是.15.(3分)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为.16.(3分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.17.(3分)如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x2+4x+2的一部分,曲线BC是双曲线y=的一部分,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P(2018,m)与Q(2025,n)均在该波浪线上,则mn=.18.(3分)如图,⊙O的直径AB=8,C为弧AB的中点,P为弧BC上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,连接BD,则BD的最小值是.三、解答题(本大题有10小题,共96分.)19.(8分)(1)计算:|﹣3|﹣tan30°+20180﹣()﹣1;(2)化简:(1+a)(1﹣a)+a(a﹣2).20.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.21.(8分)若关于x的分式方程=1的解是正数,求m的取值范围.22.(8分)小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的.(1)如果有2个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用“画树状图”或“列表”等方法写出分析过程)(2)如果有n个路口,则小明在每个路口都没有遇到红灯的概率是.23.(10分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6m的B处安置高为1.5m的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长.(结果保留根号)24.(10分)如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且ED⊥DB,FB ⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.25.(10分)观察下表:我们把某一格中所有字母相加得到的多项式称为特征多项式,例如:第1格的“特征多项式”为x+4y.回答下列问题:(1)第4格的“特征多项式”为,第n格的“特征多项式”为;(2)若第1格的“特征多项式”的值为2,第2格的“特征多项式”的值为﹣6.①求x,y的值;②在①的条件下,第n格的“特征多项式的值”随着n的变化而变化,求“特征多项式的值”的最大值及此时n值.26.如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,E为BC的中点,连接DE.(1)求证:DE为⊙O的切线;(2)如果⊙O的半径为3,ED=4,延长EO交⊙O于F,连接DF,与OA交于点G,求OG的长.27.(12分)在平面直角坐标系中,点O为原点,点A的坐标为(﹣8,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=45°,OE=OA,求直线EF的函数表达式;(2)如图3,若α为锐角,且tanα=,当EA⊥x轴时,正方形对角线EG与OF相交于点M,求线段AM的长;(3)当正方形OEFG的顶点F落在y轴正半轴上时,直线AE与直线FG相交于点P,是否存在△OEP的两边之比为:1?若存在,求出点P的坐标;若不存在,试说明理由.28.如图,已知抛物线y=ax2﹣2ax﹣9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△P AD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,+均为定值,并求出该定值.参考答案与试题解析一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是﹣(﹣3)=3.故选:A.2.【分析】直接利用合并同类项法则以及算术平方根、整式的除法运算法则、积的乘方运算法则分别化简得出答案.【解答】解:A、2a+3b无法计算,故此选项错误;B、=6,故此选项错误;C、a2b÷2ab=a,故此选项错误;D、(2ab2)3=8a3b6,正确.故选:D.3.【分析】俯视图是从物体上面看到的图形,应把所看到的所有棱都表示在所得图形中.【解答】解:从上面看,图2的俯视图是正方形,有一条对角线.故选:C.4.【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【解答】解:A、原来数据的平均数是3,添加数字3后平均数仍为3,故A与要求不符;B、原来数据的众数是3,添加数字3后众数仍为3,故B与要求不符;C、原来数据的中位数是3,添加数字3后中位数仍为3,故C与要求不符;D、原来数据的方差==,添加数字3后的方差==,故方差发生了变化.故选:D.5.【分析】利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠P AO的度数,然后利用圆周角定理来求∠ABC的度数.【解答】解:如图,∵AB是⊙O的直径,直线P A与⊙O相切于点A,∴∠P AO=90°.又∵∠P=40°,∴∠POA=50°,∴∠ABC=∠POA=25°.故选:B.6.【分析】求出AB=3,由平行线分线段成比例定理得出比例式,即可得出结果.【解答】解:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴==.故选:A.7.【分析】根据x﹣y﹣3=0和2y3+y﹣6=0,可以得到x与y的关系和y2﹣的值,从而可以求得所求式子的值.【解答】解:∵x﹣y﹣3=0和2y3+y﹣6=0,∴x=y+3,y2+﹣=0,∴y2﹣=﹣∴﹣y2==1+=1﹣(﹣)=1+=,故选:D.8.【分析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【解答】解:∵y3=(kx+b)(mx+n),y<0,∴(kx+b)(mx+n)<0,∵y1=kx+b,y2=mx+n,即y1•y2<0,有以下两种情况:(1)当y1>0,y2<0时,此时,x<﹣1;(2)当y1<0,y2>0时,此时,x>4,故选:D.二、填空题(本大题共10小题,每小题3分,共30分.)9.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:528600=5.286×105,故答案为:5.286×10510.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意,得:x﹣2≠0,解得:x≠2.故答案是:x≠2.11.【分析】首先提取公因式m,进而利用平方差公式分解因式即可.【解答】解:mx2﹣4m=m(x2﹣4)=m(x+2)(x﹣2).故答案为:m(x+2)(x﹣2).12.【分析】根据根判别式△=b2﹣4ac的意义得到△=0,即k2﹣4×1×9=0,然后解方程即可.【解答】解:∵方程x2+kx+9=0有两个相等的实数根,∴△=0,即k2﹣4•1•9=0,解得k=±6.故答案为±6.13.【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.【解答】解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=2π•5=10π,∴圆锥的侧面积=•10π•2=10π(cm2).故答案为:10π.14.【分析】连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到|k|=4,然后去绝对值即可得到满足条件的k的值.【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△ABC=4,而S△OAB=|k|,∴|k|=4,∵k<0,∴k=﹣8.故答案为:﹣8.15.【分析】根据平行线的性质可得出∠3=∠4+∠5,结合对顶角相等可得出∠3=∠1+∠2,代入∠1=30°、∠3=45°,即可求出∠2的度数.【解答】解:给各角标上序号,如图所示.∵∠3=∠4+∠5,∠1=∠4,∠2=∠5,∴∠3=∠1+∠2.又∵∠1=30°,∠3=45°,∴∠2=15°.故答案为:15°.。

【3套试卷】郑州市中考第一次模拟考试数学精选含答案

【3套试卷】郑州市中考第一次模拟考试数学精选含答案

中考模拟考试数学试题一、选择题.(30分)1.-0.2的倒数是 ( )A.-2B.-5C.5D.0.2 2.如图,直线m ∥n,∠1=70∘,∠2=30∘,则∠A= ( ) A.40o B.50o C.30o D.20o 3.下列运算正确的是 ( )A.422a a a =+B.632-b b -=)(C.322x 2x 2x =•D.222)-m n m n -=(4.将抛物线y=−2(x+1)2−2向左平移2个单位,向下平移3个单位后的新抛物线解析式为( )A.y=−2(x −1)2+1B.y=−2(x+3)2−5C.y=−2(x −1)2−5D.y=−2(x+3)2+1 5.《九章算术》中,将两底面是直角三角形的棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,主视图中的虚线平分矩形的面积,则该“堑堵”的侧面积为( ) A .2 B .4+2 2 C .4+4 2 D .6+4 26.把下列图形形①线段;②角;③等边三角形;④;平行四边形;⑤矩形;⑥菱形;⑦正方形既是轴对称图形,又是中心对称图有几 个 ( ) A. 3 B. 4 C. 5 D. 67.九年级参展作品中有4件获得一等奖,其中有2名作者是男生,2名作者是女生.现在要在抽两人去参加学校总结表彰座谈会,求恰好抽中一男一女的概率 ( )A. B. C. D. 8.如图,在△ABC 中,∠C=90∘,∠B=30∘,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N,再分别以M 、N 为圆心,大于 MN 的长为半径画弧,两弧交于点P,连结AP 并延长交BC 于点D,若CD=3,则BD 的长是( )9.如图,在矩形ABCD 中,CD=2,以点C 为圆心,CD 长为半径画弧,交AB 边于点E ,且E ( ) A. B. C. D. 10.在Rt △ABC 中,点D 在边AC 上一点,将△ABD 沿直线BD 翻折,点A 落在E 处.若∠BAC=030,BC=1,当DE ⊥AC 时,则AD 的长为 ( ) A. B. C.13- 或 D +8 + 12.分式方程23x +=11x -的解是_________. 13.太阳的半径约为696000km ,把696000这个数用科学计数法表示为 14. 一座石拱桥的桥拱是近似的抛物线形。

河南省郑州市2021年数学中考一模试卷(I)卷

河南省郑州市2021年数学中考一模试卷(I)卷

河南省郑州市2021年数学中考一模试卷(I )卷姓名: ________ 班级: ___________________ 成绩: ___________________一、填空题(共8题;共8分)1. (1 分)当 , bVO 时,忌= _____________________ o2. (1分)若多项式x2 - x+a 可分解为(x+1) (x-2),则a 的值为 _________.3. (1分)(2019八下•长春月考)一次函数y=(2m-6)x+5中,y 随x 的增大而减小,则m 的取值范围是 4・(1分)(2017九下•东台期中)如图,甲、乙两名同学分别站在C 、D 的位置时,乙的影子与甲的影子的6. (1分)如图所示,PA 切00于A, PB 切00于B, 0P 交00于C,下列说法:①PA 二PB,②Z1二Z2,③0P7・(1分)(2017七下•抚宁期末)将一个长方形纸条按图折叠一下,若Z1二140° ,则Z2二 _________洞的最髙点)离水而2米,水而下降1米时,水而的宽度为. ,拱顶(拱桥8.(1 分)(2017 •陆良模拟)如图,在。

0 中,弦 AB〃CD,若ZABC二40° ,则ZB0D二______第1页共11贞二s选择题(共6题;共12分)9.(2分)(2016八上•阜康期中)已知一个正多边形的一个外角为36° ,则这个正多边形的边数是()A・8B・9C・10D・1110.(2分)(2017九上•莒南期末)已知二次函数y=ax2+bx+c (a^O)的图象如图所示,则下列结论中正确B・3是方程ax2+bx+c=0的一个根C ・ a+b+c=OD •当xVl时,y随x的增大而减小11・(2分)已知两圆的半径分別为6和4,圆心距为2,则两圆的位置关系是()A .相交B .内含C .外切D •内切12・(2分)sin30°的绝对值是()1A. 2返B.TD .忑13.(2分)在平而直角坐标系中,0为坐标原点,点A的坐标为(1, G), M为坐标轴上一点,且使得AMOA 为等腰三角形,则满足条件的点M的个数为A・4B・5C・6D・814.(2分)(2017 •苏州模拟)某细胞截而可以近似看成圆,它的半径约为0. 000 000787m,则0. 000 000787 用科学记数法表示为()A ・ 7. 87X107B ・ 7. 87X10-7C ・ 0.787X10 -7D ・ 7. 87X10-6三、解答题(共7题;共60分)115.(5分)(2015八上•黄冈期末)解方程:~=14—・16.(5分)(2018 •吉林模拟)为了了解学生参加体冇活动的情况,学校对学生进行随机抽样调查,其中一个问题是'‘你平均每天参加体冇活动的时间是多少?”,共有4个选项:A. 1.5小时以上B. 1〜1.5小时C. 0.5〜1小时D. 0.5小时以下图1、2是根据调查结果绘制的两幅不完整的统讣图,请你根据统汁图提供的信息,解答以下问题:(1)本次一共调查了________ 名学生:学生参加体育活动时间的中位数落在__________ 时间段(填写上而所给“A”、“B”、“C”、“D” 中的一个选项);(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估il•全校可能有多少劣学生平均每天参加体冇活动的时间在0. 5小时以下.(10分)如图所示,直线1是一次函数y=kx-b的图象,点A, B在直线1上・根据图象回答下列间题:17.(2)写岀不等式kx+b>2的解集・18.(5分)(2020 •黄石模拟)某广场有一块长50米、宽30米的空地,现要将它改造为花园,请你设讣一个修建方案,使满足下列条件:①正中间留出一条宽2米的道路(如图):②道路两旁修建花坛,且花坛总而积占整个而积(不包括道路)的一半;③设计好的整个图形既是轴对称图形,又是中心对称图形.(计算结果精确到0. 1米).19.(10分)(2017 •大石桥模拟)如图,在RtAABC中,ZACB二90° , D是AB边上一点,以BD为宜径的00 与边AC相切于点E,连结DE并延长,与BC的延长线交于点F.(2)若 BC二6, AD=4,求 sinA 的值.20. (10分)对x, y 定义一种新运算T,规定:T(x, y)二+ \ 处0 +处1式右边是通常的四则运算,例如:T(0, 1)=2x0+1二b. (1)已知 T(l, -l)=-2, T ⑷ 2)二1・① 求a ,b 的值: Z(2n/, 5 - 4m) < 4② 若关于m 的不等式组7t/w,3-2jn)>p 恰好有3个整数解,求实数p 的取值范用;(2)若T(x, y)二T(y, x)对任意实数x, y 都成立(这里T(x, y)和T(y, x)均有意义),则a, b 应满足怎样的 关系式?121. (15分)(2014 •北海)如图(1),抛物线尸-4 x2+x+c 与x 轴交于A. B 两点,与y 轴交于点C,其中点A 的坐标为(-2, 0).求此抛物线的解析式:(2)① 若点D 是第一彖限内抛物线上的一个动点,过点D 作DE 丄x 轴于E,连接CD,以0E 为直径作如图(2), 试求当CD 与0M 相切时D 点的坐标;② 点F 是x 轴上的动点,在抛物线上是否存在一点G,使A 、C 、G 、F 四点为顶点的四边形是平行四边形?若存 在,求出点G 的坐标:若不存在,请说明理由.参考答案填空题(共8题;共8分)I 、【第1空】小咼2一 1、【第1空】-23_1、【第1空】mvMI 、【第1空】65-1.【篥闽2衙(其中a, b 均为非零常数),这里等⑴ ⑵(1)6_1、【第1空】⑪②、③7一1、【第1空】108_1、【第1空】«0°二、选择题(共6题;共12分)9- 1. °10-1、B11- 1. D12- 1. A13- 1. °14-1、B三、解答题(共7题;共60分)2x=x ・ 2+1 rx= -11经栓验X」1皇原方程的鱗,15-1、则原方程的解是X二• 1【第1空】20016—1、【第2空】B觸:有200-60-30-10 = 100人,补全统计图如图所示:解:田图可知:函数圉象与x 轴的交点坐标A 为(•芥0 > ,且y 随啲墙大而墙大, 17- 1、函数圏銀与渤的交点A 橫坐标为-2 ,则方程kx+b=0的解为)(=-2 17_2、解:密数BBW 经过原(2,2) f 函数y 極的墙大而堵大.当x>2时f 有kx+b>2 r 即不等式kx+b>2的解霆为:x>2解:设计成如下图方氮设花坛的边与空地之间的距离为殊,田超息可列方程:・・・,2-27x 十90 = 0. 鱗得:口 = 3・9门护23.1 (舍去> •舶值约取M 探18_1花坛四周与空地的鉅离•中间与1E 路的距离都约为3.9米・16-3. 学校有150人平均毎天蓼加体育囂症0.5小时以下占5% ;则3000«5%=150 .?在0.5小时以下. (50—2 — 4工X3O — 2x) =(50-啊解:用样卒估计总体,每天養加休育50B *-------------证明:连結0E .•/AC切OO于E ..\OE 丄AC .交,N ACB=90°卽BC丄AC ,.\OEnBC/.z:OED=zF .又/OD=OE f・・zOED二zODE .M ODE"F19-1、•••BD=BF解:设00半径为『,由(1)知,OEli BC得二AOE»ABC・・_ OE gn 厂+4 _ r'"AB=JC * 2H2 = 6 '・・P・r・12=0 .鱗之得r厂4 "2二・3(舍去〉•在RI-AOE中..\sinA= % =19-2 >0H ?q c )(C A Q )驱需H+d z 塔+ XZ ・噩-(;T m 田曲二—02lrl 8mwqhp ®濮• S “q4ez 品・ I L "(z、b T 匸 Z«二祥空6於仝-除怔垄3囂掘・常、・二丄2解:方法一;gD(「y) . (x>O r y>0),ME(x r O) ,M( | ,0),由(l)«]C(0r3), 彌MC. MD fT DE、CD与O0相切,/.zOCM=zMCD . zCDM=^EDM f/.zCMD=90° r•,COM"MED r•£O OXf…亦■3 x/, T = *> .又・・・D点析式y=・1 x?+x+3 r•・x=孕(1土点)’又・・・x > 0 rX弓⑴店),.-.y= g (3+伍),则D点的坐标是:(弓(1+岳‘ £(3+点)②^设存左満足祭件的点G (“ b )•若构成的四边形是"CGF.(下图1)则G与C关于直线x=2对称.,・・G融坐旋;(4“);若构成的四边形是aACFG .(下图2 )则田平行四边形的性质有E・3 , 交.・・1 a2+a-*-3= - 3 ..\a=2±2 ^7 r此时G原的坐标是:(2±2点.・3)图1 團2第11页共11贞。

中考模拟数学试题及答案

中考模拟数学试题及答案

中考模拟数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14B. √2C. 0.33333…D. 1/3答案:B2. 一个数的相反数是-5,这个数是:A. 5B. -5C. 0D. 1/5答案:A3. 以下哪个方程是一元一次方程?A. 2x + 3 = 0B. x^2 - 4 = 0C. 3x - 2y = 5D. x/2 + 3 = 0答案:A4. 一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是:A. 11B. 13C. 16D. 无法确定答案:B5. 函数y = 2x + 3的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C6. 以下哪个选项是整式的乘法?A. (x + 2)(x - 2)B. x^2 + 2x + 1C. x/(x + 1)D. x^2 - 4x + 4答案:A7. 一个圆的半径为3,那么这个圆的面积是:A. 9πB. 18πD. 36π答案:C8. 如果一个角的补角是120°,那么这个角是:A. 60°B. 30°C. 90°D. 120°答案:B9. 以下哪个选项是不等式?A. x + 2 = 3B. 2x - 3 > 0C. 4x^2 - 9 = 0D. 3x + 2y = 510. 以下哪个选项是二次函数?A. y = 2x + 3B. y = x^2 + 2x + 1C. y = 1/xD. y = √x答案:B二、填空题(每题3分,共30分)11. 一个数的绝对值是5,这个数可以是______。

答案:±512. 一个角的余角是30°,那么这个角是______。

答案:60°13. 一个数的平方是16,这个数是______。

答案:±414. 一个等腰直角三角形的斜边长为5,那么这个三角形的面积是______。

郑州市初三中考数学一模模拟试题

郑州市初三中考数学一模模拟试题

郑州市初三中考数学一模模拟试题一、选择题(本大题共8小题,共24分)1.2的算术平方根是()A. B. C. D. 22.下列运算正确的是()A. B. C. D.3.近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学记数法表示为()A. B. C. D.4.如图是由4个大小相同的正方体组合而成的几何体,其左视图是()A. B. C. D.5.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:A. 中位数是2B. 众数是17C. 平均数是2D. 方差是26.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A. B. C. D.7.如图,反比例函数y=的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k的值为()A.B.C.D.8.如图,菱形ABCD的边AB=5,面积为20,∠BAD<90°,⊙O与边AB、AD都相切,AO=2,则⊙O的半径长等于()A. B. C. D.二、填空题(本大题共8小题,共24分)9.-5的相反数是______.10.分解因式:4a2-4a+1=______.11.若在实数范围内有意义,则x的取值范围为______.12.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD=______度.13.如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是______.14.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为______℃.15.如图,把等边△ABC沿着DE折叠,使点A恰好落在BC边上的点P处,且DP⊥BC,若BP=4cm,则EC=______cm.16.如图,在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC的周长,则DE的长是______.三、计算题(本大题共3小题,共20分)17.计算|-6|+(-2)3+()018.化简:19.小明、小刚和小红打算各自随机选择本周日的上午或下午去兴化李中水上森林游玩.(1)小明和小刚都在本周日上午去游玩的概率为______;(2)求他们三人在同一个半天去游玩的概率.四、解答题(本大题共8小题,共82分)20.解不等式组21.某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错的题目进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:请根据图中信息,解答下列问题(1)该调查的样本容量为______,a=______%,b=______%,“常常”对应扇形的圆心角为______°(2)请你补全条形统计图;(3)若该校共有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的学生有多少名?22.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)当∠BAE为多少度时,四边形AECF是菱形?请说明理由.23.某公司组织员工到附近的景点旅游,根据旅行社提供的收费方案,绘制了如图所示的图象,图中折线ABCD表示人均收费y(元)与参加旅游的人数x(人)之间的函数关系.(1)当参加旅游的人数不超过10人时,人均收费为______元;(2)如果该公司支付给旅行社3600元,那么参加这次旅游的人数是多少?24.如图,一种侧面形状为矩形的行李箱,箱盖打开后,盖子的一端靠在墙上,此时BC=10cm,箱底端点E与墙角G的距离为65cm,∠DCG=60°.(1)箱盖绕点A转过的角度为______,点B到墙面的距离为______cm;(2)求箱子的宽EF(结果保留整数,可用科学计算器).(参考数据:=1.41,=1.73)25.如图,在直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,-),点D在劣弧上,连接BD交x轴于点C,且∠COD=∠CBO.(1)求⊙M的半径;(2)求证:BD平分∠ABO;(3)在线段BD的延长线上找一点E,使得直线AE恰好为⊙M的切线,求此时点E的坐标.26.如图,在平面直角坐标系中,二次函数y=ax2+bx-的图象经过点A(-1,0)、C(2,0),与y轴交于点B,其对称轴与x轴交于点D(1)求二次函数的表达式及其顶点坐标;(2)M(s,t)为抛物线对称轴上的一个动点,①若平面内存在点N,使得A、B、M、N为顶点的四边形为矩形,直接写出点M的坐标;②连接MA、MB,若∠AMB不小于60°,求t的取值范围.27.正方形ABCD的边长为1,点O是BC边上的一个动点(与B,C不重合),以O为顶点在BC所在直线的上方作∠MON=90°(1)当OM经过点A时,①请直接填空:ON______(可能,不可能)过D点:(图1仅供分析)②如图2,在ON上截取OE=OA,过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,求证:四边形EFCH为正方形;③如图2,将②中的已知与结论互换,即在ON上取点E(E点在正方形ABCD外部),过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,若四边形EFCH为正方形,那么OE与OA是否相等?请说明理由;(2)当点O在射线BC上且OM不过点A时,设OM交边AB于G,且OG=2.在ON上存在点P,过P点作PK垂直于直线BC,垂足为点K,使得S△PKO=S△OBG,连接GP,则当BO为何值时,四边形PKBG的面积最大?最大面积为多少?答案和解析1.【答案】B【解析】解:2的算术平方根是,故选:B.根据算术平方根的定义直接解答即可.本题考查的是算术平方根的定义,即一个数正的平方根叫这个数的算术平方根.2.【答案】C【解析】解:A、a3•a3=a6,故此选项错误;B、a3+a3=2a3,故此选项错误;C、(a3)2=a6,正确;D、a6•a2=a8,故此选项错误.故选:C.分别利用同底数幂的乘除运算法则以及幂的乘方运算、合并同类项法则判断得出答案.此题主要考查了同底数幂的乘除运算以及幂的乘方运算、合并同类项等知识,正确掌握运算法则是解题关键.3.【答案】D【解析】解:将180000用科学记数法表示为1.8×105,故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【解析】解:从左边看得到的是两个叠在一起的正方形.故选:A.左视图是从左边看得出的图形,结合所给图形及选项即可得出答案.此题考查了简单几何体的三视图,属于基础题,解答本题的关键是掌握左视图的观察位置.5.【答案】A【解析】解:观察表格,可知这组样本数据的平均数为:(0×4+1×12+2×16+3×17+4×1)÷50=;∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,故选:A.先根据表格提示的数据得出50名学生读书的册数,然后除以50即可求出平均数;在这组样本数据中,3出现的次数最多,所以求出了众数;将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,从而求出中位数是2,根据方差公式即可得出答案.本题考查的知识点有:用样本估计总体、众数、方差以及中位数的知识,解题的关键是牢记概念及公式.6.【答案】C【解析】解:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,由题意可得:2(1+x)2=4.5,解得:x1=0.5=50%,x2=-2.5(不合题意舍去),答:该店销售额平均每月的增长率为50%;故选:C.设每月增长率为x,据题意可知:三月份销售额为2(1+x)2万元,依此等量关系列出方程,求解即可.本题考查了一元二次方程的应用;解题的关键在于理解清楚题目的意思,根据条件找出等量关系,列出方程求解.本题需注意根据题意分别列出二、三月份销售额的代数式.7.【答案】D【解析】解:过点P作PE⊥y轴于点E∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴ABDO为矩形∴AB=DO∴S矩形ABDO=S=6▱ABCD∵P为对角线交点,PE⊥y轴∴四边形PDOE为矩形面积为3即DO•EO=3∴设P点坐标为(x,y)k=xy=-3故选:D.由平行四边形面积转化为矩形BDOA面积,在得到矩形PDOE面积,应用反比例函数比例系数k的意义即可.本题考查了反比例函数k的几何意义以及平行四边形的性质,理解等底等高的平行四边形与矩形面积相等是解题的关键.8.【答案】D【解析】解:连接AC、BD、OE,∵四边形ABCD是菱形,∴AC⊥BD,AM=CM,BM=DM,∵⊙O与边AB、AD都相切,∴点O在AC上,设AM=x,BM=y,∵∠BAD<90°,∴x>y,由勾股定理得,x2+y2=25,∵菱形ABCD的面积为20,∴xy=5,,解得,x=2,y=,∵⊙O与边AB相切,∴∠OEA=90°,∵∠OEA=∠BMA,∠OAE=∠BAM,∴△AOE∽△ABM,∴=,即=,解得,OE=,故选:D.连接AC、BD、OE,根据菱形的性质、勾股定理分别求出AM、BM,根据切线的性质得到∠OEA=90°,证明△AOE∽△ABM,根据相似三角形的性质列出比例式,计算即可.本题考查的是切线的性质、菱形的性质、相似三角形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键.9.【答案】5解:-5的相反数是5.故答案为:5.根据相反数的定义直接求得结果.本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.10.【答案】(2a-1)2【解析】解:4a2-4a+1=(2a-1)2.故答案为:(2a-1)2.根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,本题可用完全平方公式分解因式.本题考查用完全平方公式法进行因式分解,能用完全平方公式法进行因式分解的式子的特点需熟练掌握.11.【答案】x≥2【解析】解:由题意得:x-2≥0,解得:x≥2,故答案为:x≥2.根据二次根式有意义的条件可得x-2≥0,再解即可.此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.12.【答案】30【解析】解:∵△AOB绕点O按逆时针方向旋转45°后得到△COD,∴∠BOD=45°,∴∠AOD=∠BOD-∠AOB=45°-15°=30°.故答案为:30.根据旋转的性质可得∠BOD,再根据∠AOD=∠BOD-∠AOB计算即可得解.本题考查了旋转的性质,主要利用了旋转角的概念,需熟记.13.【答案】【解析】解:∵∠BOC=2∠AOC,∠BOC+∠AOC=180°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴OA=3,∴的长度==π,∴圆锥底面圆的半径=,故答案为:.根据平角的定义得到∠AOC=60°,推出△AOC是等边三角形,得到OA=3,根据弧长的规定得到的长度==π,于是得到结论.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.14.【答案】-40【解析】解:根据题意得x+32=x,解得x=-40.故答案是:-40.根据题意得x+32=x,解方程即可求得x的值.本题考查了函数的关系式,根据摄氏度数值与华氏度数值恰好相等转化为解方程问题是关键.15.【答案】(2+2)【解析】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC,∴∠BPD=90°,∵PB=4cm,∴BD=8cm,PD=4cm,∵把等边△A BC沿着D E折叠,使点A恰好落在BC边上的点P处,∴AD=PD=4cm,∠DPE=∠A=60°,∴AB=(8+4)cm,∴BC=(8+4)cm,∴PC=BC-BP=(4+4)cm,∵∠EPC=180°-90°-60°=30°,∴∠PEC=90°,∴CE=PC=(2+2)cm,故答案为:2+2.根据等边三角形的性质得到∠A=∠B=∠C=60°,AB=BC,根据直角三角形的性质得到BD=8cm,PD=4cm,根据折叠的性质得到AD=PD=4cm,∠DPE=∠A=60°,解直角三角形即可得到结论.本题考查了翻折变换-折叠问题,等边三角形的性质,直角三角形的性质,正确的理解题意是解题的关键.16.【答案】【解析】解:延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,∵DE平分△ABC的周长,∴ME=EB,又AD=DB,∴DE=AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=60°,AN=MN,∴AN=AC•sin∠ACN=,∴AM=,∴DE=,故答案为:.延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,根据题意得到ME=EB,根据三角形中位线定理得到DE=AM,根据等腰三角形的性质求出∠ACN,根据正弦的概念求出AN,计算即可.本题考查的是三角形中位线定理、等腰三角形的性质、解直角三角形,掌握三角形中位线定理、正确作出辅助线是解题的关键.17.【答案】解:原式=6-8+1=-1.【解析】直接利用零指数幂的性质以及绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.18.【答案】解:==a.【解析】根据分式的减法和除法可以解答本题.本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.19.【答案】【解析】解:(1)画树状图为:共有4种等可能的结果数,其中小明和小刚都在本周日上午去游玩的结果数为1,所以小明和小刚都在本周日上午去游玩的概率=;故答案为(2)画树状图为:共有8种等可能的结果数,其中他们三人在同一个半天去游玩的结果数为2,所以他们三人在同一个半天去游玩的概率=.(1)画树状图展示所有4种等可能的结果数,找出小明和小刚都在本周日上午去游玩的结果数,然后根据概率公式求解;(2)画树状图展示所有8种等可能的结果数,找出小明和小刚都在本周日上午去游玩的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.【答案】解:解不等式2x>1-x,得:x>,解不等式4x+2<x+4,得:x<,则不等式组的解集为<x<.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.【答案】200 12 36 108【解析】解:(1)∵44÷22%=200(名)∴该调查的样本容量为200;a=24÷200=12%,b=72÷200=36%,“常常”对应扇形的圆心角为:360°×30%=108°.(2)200×30%=60(名).(3)∵3200×36%=1152(名)∴“总是”对错题进行整理、分析、改正的学生有1152名.故答案为:200、12、36、108.(1)首先用“有时”对错题进行整理、分析、改正的学生的人数除以22%,求出该调查的样本容量为多少;然后分别用很少、总是“对自己做错的题目进行整理、分析、改正”的人数除以样本容量,求出a、b的值各是多少;最后根据“常常”对应的人数的百分比是30%,求出“常常”对应扇形的圆心角为多少即可.(2)求出常常“对自己做错的题目进行整理、分析、改正”的人数,补全条形统计图即可.(3)用该校学生的人数乘“总是”对错题进行整理、分析、改正的学生占的百分率即可.此题主要考查了条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.【答案】解:(1)∵四边形ABCD为矩形,∴AB=CD,AD∥BC,∠B=∠D=90°,∠BAC=∠DCA.由翻折的性质可知:∠EAB=∠BAC,∠DCF=∠DCA.∴∠EAB=∠DCF.∠∠在△ABE和△CDF中,∠∠∴△ABE≌△CDF(ASA),∴DF=BE.∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形;(2)当∠BAE=30°时,四边形AECF是菱形,理由:由折叠可知,∠BAE=∠CAE=30°,∵∠B=90°,∴∠ACE=90°-30°=60°,即∠CAE=∠ACE,∴EA=EC,∵四边形AECF是平行四边形,∴四边形AECF是菱形.【解析】(1)首先证明△ABE≌△CDF,则DF=BE,然后可得到AF=EC,依据一组对边平行且相等四边形是平行四边形可证明AECF 是平行四边形;(2)由折叠性质得到∠BAE=∠CAE=30°,求得∠ACE=90°-30°=60°,即∠CAE=∠ACE,得到EA=EC,于是得到结论.本题主要考查了菱形的判定,全等三角形的判定和性质,折叠的性质、矩形的性质、平行四边形的判定定理和勾股定理等,综合运用各定理是解答此题的关键.23.【答案】240【解析】解:(1)观察图象可知:当参加旅游的人数不超过10人时,人均收费为240元.故答案为240.(2)∵3600÷240=15,3600÷150=24,∴收费标准在BC段,设直线BC的解析式为y=kx+b,则有,解得,∴y=-6x+300,由题意(-6x+300)x=3600,解得x=20或30(舍弃)答:参加这次旅游的人数是20人.(1)观察图象即可解决问题;(2)首先判断收费标准在BC段,求出直线BC的解析式,列出方程即可解决问题.本题考查一次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,读懂图象信息,用数形结合的思想思考问题,属于中考常考题型.24.【答案】150° 5【解析】解:(1)如图,过点B作BH⊥CG于H,过点D作CG的垂线MN交AF于M,交HG于N.∵∠DCG=60°,∴∠CDN=30°.又∵四边形ABCD是矩形,∴∠ADC=∠BCD=90°,∴∠MAD=∠CDN=30°(同角的余角相等),∴箱盖绕点A转过的角度为:360°-90°-30°-90°=150°.在直角△BCH中,∠BCH=30°,BC=10cm,则BH=BC=5cm.故答案是:150°;5;(2)在直角△AMD中,AD=BC=10cm,∠MAD=30°,则MD=AD•sin30°=×10=5(cm).∵∠DCN=30°,∴cos∠DCN=cos30°==,即=,解得EF=32.4.即箱子的宽EF是32.4cm.(1)如图,过点B作BH⊥CG于H,过点D作CG的垂线MN交AF于M,交HG于N.利用矩形的性质、直角三角形的性质以及等角的余角相等得到∠MAD=30°,根据周角的定义易求箱盖绕点A转过的角度;通过解直角△BHC来求BH的长度;(2)通过解直角△AMD得到线段MD的长度,则DN=65-EF-DM,利用解直角△DCN来求CD的长度,即EF的长度即可.本题考查了解直角三角形的应用.主要是余弦概念及运算,关键把实际问题转化为数学问题加以计算.25.【答案】解:(1)∵点A(,0)与点B(0,-),∴OA=,OB=,∴AB==2,∵∠AOB=90°,∴AB是直径,∴⊙M的半径为:;(2)∵∠COD=∠CBO,∠COD=∠CBA,∴∠CBO=∠CBA,即BD平分∠ABO;(3)如图,过点A作AE⊥AB,垂足为A,交BD的延长线于点E,过点E作EF⊥OA于点F,即AE是切线,∵在Rt△AOB中,tan∠OAB===,∴∠OAB=30°,∴∠ABO=90°-∠OAB=60°,∴∠ABC=∠OBC=∠ABO=30°,∴OC=OB•tan30°=×=,∴AC=OA-OC=,∴∠ACE=∠ABC+∠OAB=60°,∴∠EAC=60°,∴△ACE是等边三角形,∴AE=AC=,∴AF=AE=,EF=AE=,∴OF=OA-AF=,∴点E的坐标为:(,).【解析】(1)由点A(,0)与点B(0,-),可求得线段AB的长,然后由∠AOB=90°,可得AB是直径,继而求得⊙M的半径;(2)由圆周角定理可得:∠COD=∠ABC,又由∠COD=∠CBO,即可得BD平分∠ABO;(3)首先过点A作AE⊥AB,垂足为A,交BD的延长线于点E,过点E作EF⊥OA于点F,易得△AEC是等边三角形,继而求得EF与AF的长,则可求得点E的坐标.此题属于圆的综合题,考查了勾股定理、圆周角定理、等边三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.26.【答案】解:(1)∵二次函数y=ax2+bx-的图象经过点A(-1,0)、C(2,0),∴,得,∴y=x2-x-=,∴二次函数的表达式是y=x2-x-,顶点坐标是(,);(2)①点M的坐标为(,),(,-)或(,-),理由:当AM1⊥AB时,如右图1所示,∵点A(-1,0),点B(0,-),∴OA=1,OB=,∴tan∠BAO==,∴∠BAO=60°,∴∠OAM1=30°,∴tan∠OAM1=,解得,DM1=,∴M1的坐标为(,);当BM3⊥AB时,同理可得,,解得,DM3=,∴M3的坐标为(,-);当点M2到线段AB的中点的距离等于线段AB的一半时,∵点A(-1,0),点B(0,-),∴线段AB中点的坐标为(-,),线段AB的长度是2,设点M2的坐标为(,m),则,解得,m=,即点M2的坐标为(,-);由上可得,点M的坐标为(,),(,-)或(,-);②如图2所示,作AB的垂直平分线,于y轴交于点F,由题意知,AB=2,∠BAF=∠ABO=30°,∠AFB=120°,∴以F为圆心,AF长为半径作圆交对称轴于点M和M′点,则∠AMB=∠AM′B=∠AFB=60°,∵∠BAF=∠ABO=30°,OA=1,∴∠FAO=30°,AF==FM=FM′,OF=,过点F作FG⊥MM′于点G,∵FG=,∴MG=M′G=,又∵G(,-),∴M(,),M′(,),∴≤t≤.【解析】(1)根据二次函数y=ax2+bx-的图象经过点A(-1,0)、C(2,0),可以求得该函数的解析式,然后将函数解析式化为顶点式,即可得到该函数的顶点坐标;(2)①根据题意,画出相应的图形,然后利用分类讨论的方法即可求得点M的坐标;②根据题意,构造一个圆,然后根据圆周角与圆心角的关系和∠AMB不小于60°,即可求得t的取值范围.本题是一道二次函数综合题,解答本题的关键是明确题意,找出所求问题需要的条件,作出合适的辅助线,利用分类讨论和数形结合的思想解答.27.【答案】不可能【解析】解:(1)①若ON过点D,则OA>AB,OD>CD,∴OA2>AD2,OD2>AD2,∴OA2+OD2>2AD2≠AD2,∴∠AOD≠90°,这与∠MON=90°矛盾,∴ON不可能过D点,故答案为:不可能;②如图2中,∵EH⊥CD,EF⊥BC,∴∠EHC=∠EFC=90°,且∠HCF=90°,∴四边形EFCH为矩形,∵∠MON=90°,∴∠EOF=90°-∠AOB,在正方形ABCD中,∠BAO=90°-∠AOB,∴∠EOF=∠BAO,在△OFE和△ABO中,,∴△OFE≌△ABO(AAS),∴EF=OB,OF=AB,又OF=CF+OC=AB=BC=BO+OC=EF+OC,∴CF=EF,∴四边形EFCH为正方形;③结论:OA=OE.理由:如图2-1中,连接EC,在BA上取一点Q,使得BQ=BO,连接OQ.∵AB=BC,BQ=BO,∴AQ=QC,∵∠QAO=∠EOC,∠AQO=∠ECO=135°,∴△AQO≌△OCE(ASA),∴AO=OE.(2)2 3 3 3 3 2∵∠POK=∠OGB ,∠PKO=∠OBG , ∴△PKO ∽△OBG , ∵S △PKO =S △OBG , ∴=()2=,∴OP=1,∴S △POG =OG •OP=×1×2=1,设OB=a ,BG=b ,则a 2+b 2=OG 2=4, ∴b=,∴S △OBG =ab=a==,∴当a 2=2时,△OBG 有最大值1,此时S △PKO =S △OBG =, ∴四边形PKBG 的最大面积为1+1+=.∴当BO 为时,四边形PKBG 的面积最大,最大面积为.(1)①若ON 过点D 时,则在△OAD 中不满足勾股定理,可知不可能过D 点; ②由条件可先判业四边形EFCH 为矩形,再证明△OFE ≌△ABO ,可证得结论;③结论:OA=OE .如图2-1中,连接EC ,在BA 上取一点Q ,使得BQ=BO ,连接OQ .证明△AQO ≌△OCE (ASA )即可. (2)由条件可证明△PKO ∽△OBG ,利用相似三角形的性质可求得OP=2,可求得△POG 面积为定值及△PKO 和△OBG 的关系,只要△CGB 的面积有最大值时,则四边形PKBG 的面积就最大,设OB=a ,BG=b ,由勾股定理可用b 表示出a ,则可用a 表示出△OBG 的面积,利用二次函数的性质可求得其最大值,则可求得四边形PKBG 面积的最大值.本题为四边形的综合应用,涉及矩形的判定和性质、全等三角形的判定和性质、相似三角形的判定和性质、三角形的面积、二次函数的性质及方程思想等知识.在(1)①中注意反中学数学一模模拟试卷一.选择题(共 10 小题)1.在数轴上,与原点的距离是 2 个单位长度的点所表示的数是()A .2B .﹣2C .±2D .2.据统计,我市常住人口为 268.93 万人,用科学记数法表示 268.93 万人为()A .268.93×104 人B .2.6893×107 人C .2.6893×106 人D .0.26893×107 人3.下列运算正确的是()A . += B . 4 - = 4C . 2 ⨯ = 2D .4+ =24.下列 4 个图形中:①圆;②正五边形;③正三角形;④菱形、从中任意取两个图形,都是中心对称图形的概率为()53231 A . B . C .D .435.已知直线 y 1=2x+1,y2=-2x+1,则下列说法正确的是( )A .两直线互相平行B .两直线互相垂直C .两直线关于 x 轴对称D .两直线关于 y 轴对称6.小明骑自行车到学校上学,若每小时骑 15 千米,可早到 10 分钟,若每小时骑 13 千米,则迟到 5 分钟,设他家到学校的路程为 x 千米,下列方程正确的是( )A .B .C .D .7.若 m >n ,则下列各式中一定成立的是( )A .m ﹣2>n ﹣3B .m ﹣5<n ﹣5C .﹣2m >﹣2nD .3m <4n8.如图,在正方形 A BCD 纸片中,EF 是 B C 的垂直平分线,按以下四种方法折叠纸片,图中不能折出 30°角的是()A .B .C .D .9.直角三角形的三边为 x ,x ﹣y ,x +y 且 x 、y 都为正整数,则三角形其中一边长可能为( ) A .31B .41C .51D .6110.如图,△ABC 中,点D 为边BC 的点,点E、F 分别是边AB、AC 上两点,且EF∥BC,若AE:EB=m,BD:DC=n,则()A.若m>1,n>1,则2S△AEF>S△ABD B.若m>1,n<1,则2S△AEF<S△ABDC.若m<1,n<1,则2S△AEF<S△ABD D.若m<1,n>1,则2S△AEF<S△ABD二.填空题(共 5 小题)11.分解因式:4x2﹣4=.12.已知圆弧的长为10πcm,弧的半径为20cm,则圆弧的度数为.13.如图,将一张含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=44°,则∠1 的大小为.15.已知实数m,n 满足m²-6m=n+3,且满足不等式m - 2 ⋅(7 -m) > 0,则n的取值范围。

郑州市初三中考数学一模模拟试卷【含答案】

郑州市初三中考数学一模模拟试卷【含答案】

郑州市初三中考数学一模模拟试卷【含答案】一.选择题(满分24分,每小题3分)1.下列计算正确的是()A.﹣=B.()﹣1=﹣C.÷=2 D.3﹣=3 2.一组数据:2,3,3,4,若添加一个数据3,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差3.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.4.如果关于x的方程(a﹣5)x2﹣4x﹣1=0有两个实数根,则a满足的条件是()A.a≠5 B.a≥1 C.a>1且a≠5 D.a≥1且a≠5 5.如图,AB是半圆O的直径,C是OB的中点,过点C作CD⊥AB,交半圆于点D,则与的长度的比为()A.1:2 B.1:3 C.1:4 D.1:56.如图:长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合.折痕为EF,则DE长为()A.4.8 cm B.5 cm C.5.8 cm D.6 cm7.游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽是红色游泳帽的2倍,设男孩有x人,女孩有y人,则下列方程组正确的是()A.B.C.D.8.如图,一次函数y1=ax+b和反比例函数y2=的图象相交于A,B两点,则使y1>y2成立的x取值范围是()A.﹣2<x<0或0<x<4 B.x<﹣2或0<x<4C.x<﹣2或x>4 D.﹣2<x<0或x>4二.填空题(满分24分,每小题3分)9.分解因式:x2﹣9x=.10.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.11.已知关于x,y的方程组的解满足x+y=5,则k的值为.12.一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是.13.如图,AB是半圆的直径,点O为圆心,OA=5,弦AC=8,OD⊥AC,垂足为E,交⊙O 于D,连接BE.设∠BEC=α,则sinα的值为.14.如图,在网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠OAB的正弦值是.15.已知△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,则∠A的度数是.16.如图,在Rt△ABC中,∠BAC=90°,AB=AC=2,AD为BC边上的高,动点P在AD上,从点A出发,沿A→D方向运动,设AP=x,△ABP的面积为S1,矩形PDFE的面积为S 2,y=S1+S2,则y与x的关系式是.三.解答题17.(6分)解不等式组并写出它的整数解.18.(6分)解分式方程:﹣1=.19.(6分)在边长为1的小正方形组成的网格中建立如图所示的平面直角坐标系,△ABC 为格点三角形(顶点是网格线的交点).(1)画出△ABC先向上平移2个单位长度,再向左平移3个单位长度得到的△A1B1C1;(2)以点O为位似中心,在第一象限画出△ABC的位似图形△A2B2C2,使△A2B2C2与△ABC的位似比为2:1.20.(6分)重庆市物价局发出通知,从2011年2月18日起降低部分抗生素药品和神经系统类药品最高零售价格,共涉及162个品种,某药房对售出的抗生素药品A、B、C、D、E 的销量进行统计,绘制成如下统计图:(1)补全折线统计图;(2)计算2月份售出各类抗生素销量的极差为;(3)2月份王老师到药房买了抗生素类药D、E各一盒,若D中有两盒是降价药,E中有一盒是降价药,请用画树状图或列表法求出他买到两盒都是降价药的概率.21.(6分)如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF ⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=6,BC=10,求EF的长.22.(6分)在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造.(1)原计划今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化的里程数至少是多少千米?(2)到今年5月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程数正好是原计划的最小值.2017年通过政府投入780万元进行村级道路硬化和道路拓宽的里程数共45千米,每千米的道路硬化和道路拓宽的经费之比为1:2,且里程数之比为2:1.为加快美丽乡村建设,政府决定加大投入.经测算:从今年6月起至年底,如果政府投入经费在2017年的基础上增加10a%(a>0),并全部用于道路硬化和道路拓宽,而每千米道路硬化、道路拓宽的费用也在2017年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在今年1至5月的基础上分别增加5a%,8a%,求a的值.四.解答题23.(8分)如图,AB是⊙O的直径,点C是圆上一点,点D是的中点,延长AD至点E,使得AB=BE.(1)求证:△ACF∽△EBF;(2)若BE=10,tan E=,求CF的长.24.(8分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线y=﹣x+3交AB,BC分别于点M,N,反比例函数y =的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.25.(10分)某市实施产业精准扶贫,帮助贫困户承包荒山种植某品种蜜柚.已知该蜜柚的成本价为6元/千克,到了收获季节投入市场销售时,调查市场行情后,发现该蜜柚不会亏本,且每天的销售量y(千克)与销售单价x(元)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某村农户今年共采摘蜜柚12000千克,若该品种蜜柚的保质期为50天,按照(2)的销售方式,能否在保质期内全部销售完这批蜜柚?若能,请说明理由;若不能,应定销售价为多少元时,既能销售完又能获得最大利润?26.(10分)如图,在直角坐标系中,直线y=﹣x+b与x轴正半轴,y轴正半轴分别交于点A,B,点F(2,0),点E在第一象限,△OEF为等边三角形,连接AE,BE(1)求点E的坐标;的面积;(2)当BE所在的直线将△OEF的面积分为3:1时,求S△AEB(3)取线段AB的中点P,连接PE,OP,当△OEP是以OE为腰的等腰三角形时,则b=(直接写出b的值)参考答案一.选择题1.解:(A)原式=﹣,故A错误;(B)原式==,故B错误;(D)原式=2,故D错误;故选:C.2.解:原数据的2、3、3、4的平均数为=3,中位数为=3,众数为3,方差为×[(2﹣3)2+(3﹣3)2×2+(4﹣3)2]=0.5;新数据2、3、3、3、4的平均数为=3,中位数为3,众数为3,方差为×[(2﹣3)2+(3﹣3)2×3+(4﹣3)2]=0.4;∴添加一个数据3,方差发生变化,故选:D.3.解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选:B.4.解:由题意知,△=(﹣4)2﹣4×(a﹣5)×(﹣1)≥0,且a﹣5≠0,解得:a≥1且a≠5,故选:D.5.解:连接OD,∵AB是半圆O的直径,C是OB的中点,∴OD=2OC,∵CD⊥AB,∴∠DOB=60°,∴∠AOD=120°,∴与的长度的比为,故选:A.6.解:设DE=xcm,则BE=DE=x,AE=AB﹣BE=10﹣x,在Rt △ADE 中,DE 2=AE 2+AD 2, 即x 2=(10﹣x )2+16. 解得:x =5.8. 故选:C .7.解:设男孩x 人,女孩有y 人,根据题意得出:,解得:,故选:C .8.解:观察函数图象可发现:当x <﹣2或0<x <4时,一次函数图象在反比例函数图象上方,∴使y 1>y 2成立的x 取值范围是x <﹣2或0<x <4. 故选:B . 二.填空题9.解:原式=x •x ﹣9•x =x (x ﹣9), 故答案为:x (x ﹣9).10.解:∵袋中装有6个黑球和n 个白球, ∴袋中一共有球(6+n )个,∵从中任摸一个球,恰好是黑球的概率为, ∴=,解得:n =2. 故答案为:2. 11.解:,②×2﹣①,得3x =9k +9,解得x =3k +3,把x =3k +3代入①,得3k +3+2y =k ﹣1,解得y =﹣k ﹣2,∵x+y=5,∴3k+3﹣k﹣2=5,解得k=2.故答案为:212.解:设扇形的半径为r,圆心角为n°.由题意:•π•r=π,∴r=4,∴=π,∴n=120,故答案为120°13.解:连结BC,如图,∵AB是半圆的直径,∴∠ACB=90°,在Rt△ABC中,AC=8,AB=10,∴BC==6,∵OD⊥AC,∴AE=CE=AC=4,在Rt△BCE中,BE==2,∴sinα===.故答案为:.14.解:如图,过点O作OC⊥AB的延长线于点C,则AC =4,OC =2, 在Rt △ACO 中,AO =,∴sin ∠OAB =.故答案为:.15.解:如图:连接BO ,CO ,∵△ABC 的边BC =4cm ,⊙O 是其外接圆,且半径也为4cm , ∴△OBC 是等边三角形, ∴∠BOC =60°, ∴∠A =30°.若点A 在劣弧BC 上时,∠A =150°. ∴∠A =30°或150°. 故答案为:30°或150°.16.解:∵在Rt △ABC 中,∠BAC =90°,AB =AC =2,AD 为BC 边上的高,AP =x ,∴∠BAD =∠CAD =45°,BC =4,AD =2, ∴AP =PE =x ,PD =AD ﹣AP =2﹣x , ∴y =S 1+S 2=+(2﹣x )•x =﹣x 2+3x故答案为:y ═﹣x 2+3x . 三.解答题 17.解:,由①得:x≥﹣1,由②得:x<2,∴不等式组的解集为﹣1≤x<2,则不等式组的整数解为﹣1,0,1.18.解:方程两边同时乘以(x+2)(x﹣2)得:(x﹣2)2﹣(x+2)(x﹣2)=16解得:x=﹣2,检验:当x=﹣2时,(x+2)(x﹣2)=0,∴x=﹣2是原方程的增根,原方程无解.19.解:(1)△A1B1C1;如图所示.(2)△A2B2C2如图所示.20.解:(1)2月份销售抗生素的总数是:6÷30%=20(盒),则E类的销售盒数是:20×10%=2(盒),则A类销售的盒数是:20﹣5﹣6﹣3﹣2=4(盒),;(2)极差是:6﹣2=4(盒);(3)若D中有两盒是降价药都用D表示,另一盒不降价的记作D,E中有一盒是降价药1,记作E,另一盒记作E1则共有20种情况,他买到两盒都是降价药的有6种情况,则概率是:=.21.证明:(1)∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形,∵∠BAC=90°,E是BC的中点,∴AE=CE=BC,∴四边形AECD是菱形;(2)过A作AH⊥BC于点H,∵∠BAC=90°,AB=6,BC=10,∴AC=,∵,∴AH=,∵点E是BC的中点,BC=10,四边形AECD是菱形,∴CD=CE=5,∵S=CE•AH=CD•EF,▱AECD∴EF=AH=.法二:连接ED交AC于O,由题意得:AC=8,计算得ED=6..计算得5EF=6✘4,EF=.22.解:(1)设道路硬化的里程数是x千米,则道路拓宽的里程数是(50﹣x)千米,根据题意得:x≥4(50﹣x),解得:x≥40.答:原计划今年1至5月,道路硬化的里程数至少是40千米.(2)设2017年通过政府投人780万元进行村级道路硬化和道路拓宽的里程数分别为2x 千米、x千米,2x+x=45,x=15,2x=30,设每千米的道路硬化和道路拓宽的经费分别为y万元、2y万元,30y+15×2y=780,y=13,2y=26,2018年1至5月:道路硬化的里程为40千米,道路拓宽的里程为10千米,由题意得:13(1+a%)•40(1+5a%)+26(1+5a%)•10(1+8a%)=780(1+10a%),设a%=m,则520(1+m)(1+5m)+260(1+5m)(1+8m)=780(1+10m),10m2﹣m=0,m 1=,m2=0(舍),∴a=10.四.解答题23.(1)证明:∵点D是的中点,∴∠CAD=∠BAE.∵AB=BE,∴∠BAE=∠E,∴∠CAF=∠E.又∵∠AFC=∠EFB,∴△ACF∽△EBF;(2)解:∵AB为⊙O的直径,∴∠ACB=90°.∵△ACF∽△EBF,∴∠EBF=∠ACF=90°.∵BE=10,tan E=,∴BF=BE•tan E=.∵∠CAF=∠E,∴AC=3CF.在Rt△ABC中,∠ACB=90°,AB=BE=10,AC=3CF,BC=CF+,∴AB2=AC2+BC2,即102=9CF2+(CF+)2,解得:CF=或CF=﹣(舍去).∴CF的长为.24.解:(1)∵B(4,2),四边形OABC是矩形,∴OA=BC=2,将y=2代入y=﹣x+3得:x=2,∴M(2,2),将x=4代入y=﹣x+3得:y=1,∴N(4,1),把M的坐标代入y=得:k=4,∴反比例函数的解析式是y=;(2)由题意可得:S四边形BMON =S矩形OABC﹣S△AOM﹣S△CON=4×2﹣×2×2﹣×4×1=4;∵△OPM的面积与四边形BMON的面积相等,∴OP×AM=4,∵AM=2,∴OP=4,∴点P的坐标是(0,4)或(0,﹣4).25.解:(1)将点(15,200)、(10,300)代入一次函数表达式:y=kx+b得:,解得:,即:函数的表达式为:y=﹣20x+500,(25>x≥6);(2)设:该品种蜜柚定价为x元时,每天销售获得的利润w最大,则:w=y(x﹣6)=﹣20(x﹣25)(x﹣6),∵﹣20<0,故w有最大值,当x=﹣==15.5时,w的最大值为1805元;(3)当x=15.5时,y=190,50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完;设:应定销售价为x元时,既能销售完又能获得最大利润w,由题意得:50(500﹣20x)≥12000,解得:x≤13,w=﹣20(x﹣25)(x﹣6),当x=13时,w=1680,此时,既能销售完又能获得最大利润.26.解:(1)如图1,过E作EC⊥x轴于C,∵点F(2,0),∴OF=2,∵△OEF为等边三角形,∴OC=OF=1,Rt△OEC中,∠EOC=60°,∴∠OEC=30°,∴EC=,∴E(1,);(2)当BE所在的直线将△OEF的面积分为3:1时,存在两种情况:①如图2,S△OED :S△EDF=3:1,即OD:DF=3:1,∴D(,0),∵E(1,),∴ED的解析式为:y=﹣2x+3,∴B(0,3),A(3,0),∴OB=OA=3,∴S△AEB =S△AOB﹣S△EOB﹣S△AOE=×3×3﹣×3×1﹣×3×=﹣﹣=9﹣;②S△OED :S△EDF=1:3,即OD:DF=1:3,∴D(,0),∵E(1,),∴ED的解析式为:y=2x﹣,∴B(0,﹣),∵点B在y轴正半轴上,∴此种情况不符合题意;综上,S△AEB的面积是9﹣;(3)存在两种情况:①如图3,OE=EP,过E作ED⊥y轴于D,作EM⊥AB于M,作EG⊥OP于G,∵△AOB是等腰直角三角形,P是AB的中点,∴OP⊥AB,∴∠EGP=∠GPM=∠EMP=90°,∴四边形EGPM是矩形,∵OE=EP,∴EM=PG=OP=AB=,∴S△AOB =S△BOE+S△AOE+S△ABE,=++,b=2+2.②如图4,当OE=OP时,则OE=OP=2,∵△AOB是等腰直角三角形,P是AB的中点,∴AB=2OP=4,∴OB=2,即b=2,故答案为:2+2或2.中学数学一模模拟试卷一、选择题(本大题共10小题,每小题3分,共24分)每小题只有一个正确选项. 1.在实数0,﹣,,|﹣2|中,最小的是()A.B.﹣C.0D.|﹣2|2.下列运算正确的是()A.﹣(﹣x+1)=x+1B.C.D.(a﹣b)2=a2﹣b23.下列四个多项式,哪一个是2x2+5x﹣3的因式()A.2x﹣1B.2x﹣3C.x﹣1D.x﹣34.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3B.m+6C.2m+3D.2m+65.关于x的方程x2+kx+k﹣1=0的根的情况描述正确的是()A.k为任何实数,方程都没有实数根B.k为任何实数,方程都有两个实数根C.k为任何实数,方程都有两个相等的实数根D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种6.某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员的得分平均数大于乙运动员的得分平均数D.甲运动员的成绩比乙运动员的成绩稳定7.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折8.一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是()A.B.C.D.9.下列说法中①一个角的两边分别垂直于另一角的两边,则这两个角相等②数据5,2,7,1,2,4的中位数是3,众数是2③等腰梯形既是中心对称图形,又是轴对称图形④Rt△ABC中,∠C=90°,两直角边a、b分别是方程x2﹣7x+7=0的两个根,则AB边上的中线长为正确命题有()A.0个B.1个C.2个D.3个10.如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.2B.2+C.2D.2+二、填空题(本大题共6小题,每小题3分,共24分)11.化简:÷=.12.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.13从﹣2,﹣1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是.14.已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B 落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠EGC的度数为.15.以数轴上的原点O为圆心,3为半径的扇形中,圆心角∠AOB=90°,另一个扇形是以点P为圆心,5为半径,圆心角∠CPD=60°,点P在数轴上表示实数a,如图.如果两个扇形的圆弧部分(和)相交,那么实数a的取值范围是.16.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标是.三、(本大题共3个小题,每小题各6分,共18分)17.先化简,再求值:(﹣2),其中x=2.18.分别按下列要求解答:(1)在图1中.作出⊙O关于直线l成轴对称的图形;(2)在图2中.作出△ABC关于点P成中心对称的图形.19.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围时,采用方案一更合算?四、(本大题共2个小题,每小题8分,共16分)20.根据全国人口普查结果显示:某市常住人口总数由第五次的400万人增加到第六次的450万人,常住人口的学历状况统计图如下(部分信息未给出):解答下列问题:(1)计算第六次人口普查小学学历的人数,并把条形统计图补充完整;(2)第六次人口普查结果与第五次相比,该市常住人口中高中学历人数增长的百分比是多少?21.如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.(1)若AC=6,AB=10,求⊙O的半径;(2)连接OE、ED、DF、EF.若四边形BDEF是平行四边形,试判断四边形OFDE的形状,并说明理由.五、(本大题共2小题,每小题9分,共18分)22.如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证:AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.23.设,,,…,.若,求S(用含n的代数式表示,其中n为正整数).六、(本大题共2小题,每小题10分,共20分)24.在平面直角坐标系xOy中,边长为a(a为大于0的常数)的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限.(1)当∠BAO=45°时,求点P的坐标;(2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB 的平分线上;(3)设点P到x轴的距离为h,试确定h的取值范围,并说明理由.25.在平面直角坐标系xOy中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直线l2相交于点P.点E为直线l2上一动点,反比例函数(k>0)的图象过点E与直线l1相交于点F.(1)若点E与点P重合,求k的值;(2)连接OE、OF、EF.请将△OEF的面积用k表示出来;(3)是否存在点E使△OEF的面积为△PEF面积的2倍?若存在,求出点E坐标;若不存在,请说明理由.参考答案一、选择题(本大题共10小题,每小题3分,共24分)每小题只有一个正确选项. 1.(3分)在实数0,﹣,,|﹣2|中,最小的是()A.B.﹣C.0D.|﹣2|【解答】解:|﹣2|=2,∵四个数中只有﹣,﹣为负数,∴应从﹣,﹣中选;∵|﹣|>|﹣|,∴﹣<﹣.故选:B.2.(3分)下列运算正确的是()A.﹣(﹣x+1)=x+1B.C.D.(a﹣b)2=a2﹣b2【解答】解:A、﹣(﹣x+1)=x﹣1,故本选项错误;B、=3﹣故本选项错误;C、|﹣2|=2﹣故本选项正确;D、(a﹣b)2=a2﹣2ab+b2故本选项错误;故选:C.3.(3分)下列四个多项式,哪一个是2x2+5x﹣3的因式()A.2x﹣1B.2x﹣3C.x﹣1D.x﹣3【解答】解:∵2x2+5x﹣3=(2x﹣1)(x+3),2x﹣1与x+3是多项式的因式,故选:A.4.(3分)如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3B.m+6C.2m+3D.2m+6【解答】解:依题意得剩余部分为(m+3)2﹣m2=(m+3+m)(m+3﹣m)=3(2m+3)=6m+9,而拼成的矩形一边长为3,∴另一边长是=2m+3.故选:C.5.(3分)关于x的方程x2+kx+k﹣1=0的根的情况描述正确的是()A.k为任何实数,方程都没有实数根B.k为任何实数,方程都有两个实数根C.k为任何实数,方程都有两个相等的实数根D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种【解答】解:△=k2﹣4(k﹣1)=k2﹣4k+4=(k﹣2)2,∵(k﹣2)2,≥0,即△≥0,∴原方程有两个实数根,当k=2时,方程有两个相等的实数根.故选:B.6.(3分)某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员的得分平均数大于乙运动员的得分平均数D.甲运动员的成绩比乙运动员的成绩稳定【解答】解:A、由图可知甲、乙运动员第一场比赛得分相同,第十二场比赛得分甲运动员比乙运动员得分高,所以甲运动员得分的极差大于乙运动员得分的极差,故A选项正确;B、由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员得分的中位数大于乙运动员得分的中位数,故B选项正确;C、由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员的得分平均数大于乙运动员的得分平均数,故C选项正确;D、由图可知甲运动员得分数据波动性较大,乙运动员得分数据波动性较小,乙运动员的成绩比甲运动员的成绩稳定,故D选项错误.故选:D.7.(3分)某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折【解答】解:设可打x折,则有1200×﹣800≥800×5%,解得x≥7.即最多打7折.故选:B.8.(3分)一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是()A.B.C.D.【解答】解:因为x+y=k(矩形的面积是一定值),整理得y=﹣x+k,由此可知y是x的一次函数,图象经过第一、二、四象限,x、y都不能为0,且x>0,y >0,图象位于第一象限,所以只有A符合要求.故选:A.9.(3分)下列说法中①一个角的两边分别垂直于另一角的两边,则这两个角相等②数据5,2,7,1,2,4的中位数是3,众数是2③等腰梯形既是中心对称图形,又是轴对称图形④Rt△ABC中,∠C=90°,两直角边a、b分别是方程x2﹣7x+7=0的两个根,则AB边上的中线长为正确命题有()A.0个B.1个C.2个D.3个【解答】解:①一个角的两边垂直于另一个角的两边,这两个角互补或相等,所以①错误.②数据1,2,2,4,5,7,中位数是(2+4)=3,其中2出现的次数最多,众数是2,所以②正确.③等腰梯形只是轴对称图形,而不是中心对称图形,所以③错误.④根据根与系数的关系有:a+b=7,ab=7,∴a2+b2=(a+b)2﹣2ab=49﹣14=35,即:AB2=35,AB=∴AB边上的中线的长为.所以④正确.故选:C.10.(3分)如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y =x的图象被⊙P截得的弦AB的长为,则a的值是()A.2B.2+C.2D.2+【解答】解:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接P A.∵PE⊥AB,AB=2,半径为2,∴AE=AB=,P A=2,根据勾股定理得:PE==1,∵点A在直线y=x上,∴∠AOC=45°,∵∠DCO=90°,∴∠ODC=45°,∴△OCD是等腰直角三角形,∴OC=CD=2,∴∠PDE=∠ODC=45°,∴∠DPE=∠PDE=45°,∴DE=PE=1,∴PD=.∵⊙P的圆心是(2,a),∴a=PD+DC=2+.故选:B.二、填空题(本大题共6小题,每小题3分,共24分)11.(3分)化简:÷=.【解答】解:原式=•=.故答案为:12.(3分)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=15度.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.13.(3分)从﹣2,﹣1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是.【解答】解:共有6种情况,在第四象限的情况数有2种,所以概率为.故答案为:.14.(3分)已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠EGC的度数为80°.【解答】解:由翻折可得∠B′=∠B=60°,∴∠A=∠B′=60°,∵∠AFD=∠GFB′,∴△ADF∽△B′GF,∴∠ADF=∠B′GF,∵∠EGC=∠FGB′,∴∠EGC=∠ADF=80°.故答案为:80°.15.(3分)以数轴上的原点O为圆心,3为半径的扇形中,圆心角∠AOB=90°,另一个扇形是以点P为圆心,5为半径,圆心角∠CPD=60°,点P在数轴上表示实数a,如图.如果两个扇形的圆弧部分(和)相交,那么实数a的取值范围是﹣4≤a≤﹣2.【解答】解:当A、D两点重合时,PO=PD﹣OD=5﹣3=2,此时P点坐标为a=﹣2,当B在弧CD时,由勾股定理得,PO===4,此时P点坐标为a =﹣4,则实数a的取值范围是﹣4≤a≤﹣2.故答案为:﹣4≤a≤﹣2.16.(3分)如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标是(2,0)或(4,0)或(2,0)或(﹣2,0)..【解答】解:(1)当点P在x轴正半轴上,①以OA为腰时,∵A的坐标是(2,2),∴∠AOP=45°,OA=2,∴P的坐标是(4,0)或(2,0);②以OA为底边时,∵点A的坐标是(2,2),∴当点P的坐标为:(2,0)时,OP=AP;(2)当点P在x轴负半轴上,③以OA为腰时,∵A的坐标是(2,2),∴OA=2,∴OA=OP=2,∴P的坐标是(﹣2,0).故答案为:(2,0)或(4,0)或(2,0)或(﹣2,0).三、(本大题共3个小题,每小题各6分,共18分)17.(6分)先化简,再求值:(﹣2),其中x=2.【解答】解:原式==×=,当x=2时,原式=﹣=﹣1.18.(6分)分别按下列要求解答:(1)在图1中.作出⊙O关于直线l成轴对称的图形;(2)在图2中.作出△ABC关于点P成中心对称的图形.【解答】解:(1)(2)如图所示:19.(6分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围时,采用方案一更合算?【解答】解:(1)120×0.95=114(元),若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付114元;(2)设所付钱为y元,购买商品价格为x元,则按方案一可得到一次函数的关系式:y=0.8x+168,则按方案二可得到一次函数的关系式:y=0.95x,如果方案一更合算,那么可得到:0.95x>0.8x+168,解得:x>1120,∴所购买商品的价格在1120元以上时,采用方案一更合算.四、(本大题共2个小题,每小题8分,共16分)20.(8分)根据第五次、第六次全国人口普查结果显示:某市常住人口总数由第五次的400万人增加到第六次的450万人,常住人口的学历状况统计图如下(部分信息未给出):解答下列问题:(1)计算第六次人口普查小学学历的人数,并把条形统计图补充完整;(2)第六次人口普查结果与第五次相比,该市常住人口中高中学历人数增长的百分比是多少?【解答】解:(1)450﹣36﹣55﹣180﹣49=130(万人);(2)第五次人口普查中,该市常住人口中高中学历人数的百分比是:1﹣3%﹣17%﹣38%﹣32%=10%,人数是400×10%=40(万人),∴第六次人口普查中,该市常住人口中高中学历人数是55万人,∴第六次人口普查结果与第五次相比,该市常住人口中高中学历人数增长的百分比是:×100%=37.5%.21.(8分)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.(1)若AC=6,AB=10,求⊙O的半径;(2)连接OE、ED、DF、EF.若四边形BDEF是平行四边形,试判断四边形OFDE的形状,并说明理由.【解答】解:(1)连接OD.设⊙O的半径为r.∵BC切⊙O于点D,∴OD⊥BC.∵∠C=90°,∴OD∥AC,∴△OBD∽△ABC.∴=,即10r=6(10﹣r).解得r=,∴⊙O的半径为.(2)四边形OFDE是菱形.理由如下:∵四边形BDEF是平行四边形,∴∠DEF=∠B.∵∠DEF=∠DOB,∴∠B=∠DOB.∵∠ODB=90°,∴∠DOB+∠B=90°,∴∠DOB=60°.∵DE∥AB,∴∠ODE=60°.∵OD=OE.∴OD=DE.∵OD=OF,∴DE=OF.又∵DE∥OF,∴四边形OFDE是平行四边形.∵OE=OF,∴平行四边形OFDE是菱形.五、(本大题共2小题,每小题9分,共18分)22.(9分)如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证:AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.【解答】(1)证明:在△ACD与△ABE中,∵,∴△ACD≌△ABE,∴AD=AE.(2)答:直线OA垂直平分BC.理由如下:连接BC,AO并延长交BC于F,在Rt△ADO与Rt△AEO中,∴Rt△ADO≌Rt△AEO(HL),∴∠DAO=∠EAO,即OA是∠BAC的平分线,又∵AB=AC,∴OA⊥BC且平分BC.23.(9分)设,,,…,.若,求S(用含n的代数式表示,其中n 为正整数).【解答】解:∵,,,…,.∴S1=()2,S2=()2,S3=()2,…,S n=()2,∵,∴S=,∴S=1+,∴S=1+1﹣+1+﹣+…+1+,∴S=n+1﹣=.六、(本大题共2小题,每小题10分,共20分)24.(10分)在平面直角坐标系xOy中,边长为a(a为大于0的常数)的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限.(1)当∠BAO=45°时,求点P的坐标;(2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB 的平分线上;(3)设点P到x轴的距离为h,试确定h的取值范围,并说明理由.【解答】(1)解:∵∠BP A=90°,P A=PB,∴∠P AB=45°,∵∠BAO=45°,∴∠P AO=90°,∴四边形OAPB是正方形,∴P点的坐标为:(a,a).(2)证明:作PE⊥x轴交x轴于E点,作PF⊥y轴交y轴于F点,∵∠BPE+∠EP A=90°,∠EPB+∠FPB=90°,∴∠FPB=∠EP A,∵∠PFB=∠PEA,BP=AP,∴△PBF≌△P AE,∴PE=PF,∴点P都在∠AOB的平分线上.(3)解:作PE⊥x轴交x轴于E点,作PF⊥y轴交y轴于F点,则PE=h,设∠APE =α.在直角△APE中,∠AEP=90°,P A=,∴PE=P A•cosα=•cosα,又∵顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),∴0°≤α<45°,∴<h≤.25.(10分)在平面直角坐标系xOy中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直线l2相交于点P.点E为直线l2上一动点,反比例函数(k>0)的图象过点E与直线l1相交于点F.(1)若点E与点P重合,求k的值;(2)连接OE、OF、EF.请将△OEF的面积用k表示出来;(3)是否存在点E使△OEF的面积为△PEF面积的2倍?若存在,求出点E坐标;若不存在,请说明理由.。

河南省郑州市中考一模数学考试卷(解析版)(初三)中考模拟.doc

河南省郑州市中考一模数学考试卷(解析版)(初三)中考模拟.doc

河南省郑州市中考一模数学考试卷(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】下列图形中是中心对称图形的有()个.A.1 B.2 C.3 D.4【答案】B.【解析】试题分析:根据中心对称图形的概念可得第2个、第4个图形是中心对称图形,共2个.故选B.考点:中心对称图形.【题文】解一元二次方程x2﹣8x﹣5=0,用配方法可变形为()A.(x+4)2=11 B.(x﹣4)2=11 C.(x+4)2=21 D.(x﹣4)2=21【答案】D.【解析】试题分析:移项得x2﹣8x=5,两边都加上一次项系数一半的平方可得x2﹣8x+16=5+16,即(x﹣4)2=21,故选D.考点:解一元二次方程-配方法.【题文】如图,点F在平行四边形ABCD的边AB上,射线CF交DA的延长线于点E,在不添加辅助线的情况下,与△AEF相似的三角形有()A.0个 B.1个 C.2个 D.3个【答案】C.【解析】试题分析:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥DC,∴△AEF∽△CBF,△AEF∽△DEC,∴与△AEF 相似的三角形有2个.故选C.考点:相似三角形的判定;平行四边形的性质.评卷人得分【题文】如图,用一个半径为5cm的定滑轮带动重物上升,滑轮上一点P旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了()A.πcm B.2πcm C.3πcm D.5πcm【答案】C.【解析】试题分析:根据定滑轮的性质得到重物上升的即为转过的弧长,利用弧长公式得:l==3πcm,则重物上升了3πcm,故选C.考点:旋转的性质.【题文】下列说法正确的是()A.投掷一枚均匀的硬币,正面朝上的概率是B.投掷一枚图钉,钉尖朝上、朝下的概率一样C.投掷一枚均匀的骰子,每一种点数出现的概率都是,所以每投6次,一定会出现一次“l点”D.投掷一枚均匀的骰子前默念几次“出现6点”,投掷结果“出现6点”的可能性就会加大【答案】A.【解析】试题分析:选项A、投掷一枚均匀的硬币,正、背面朝上的几率相等,都是,故本选项正确;选项B、投掷一枚图钉,钉尖朝上、朝下的概率不一样,故本选项错误;选项C、根据概率的定义,可知本选项错误;选项D、投掷结果出现6点的概率一定,不会受主观原因改变,故本选项错误;故选A.考点:概率的意义.【题文】如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A. B. C. D.【答案】D.试题分析:选项A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;选项B 、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;选项C、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;选项D、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.故选D.考点:相似三角形的判定.【题文】如图,⊙O的半径为2,点O到直线l距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为()A. B. C.2 D.3【答案】A.【解析】试题分析:过点O作直线l的垂线,垂足为P,过P作⊙O的切线PQ,切点为Q,连接OQ,此时PQ为最小,∴OP=3,OQ=2,∵PQ切⊙O于点Q,∴∠OQP=90°,由勾股定理得:PQ= =,则PQ的最小值为,故选A.考点:切线的性质.【题文】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,下列结论:①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,其中,正确的个数有()A. 1B. 2C. 3D. 4【解析】试题分析:如图所示:图象与x轴有两个交点,则b2﹣4ac>0,故①错误;∵图象开口向上,∴a >0,∵对称轴在y轴右侧,∴a,b异号,∴b<0,∵图象与y轴交于x轴下方,∴c<0,∴abc>0,故②正确;当x=﹣1时,a﹣b+c>0,故此选项错误;∵二次函数y=ax2+bx+c的顶点坐标纵坐标为:﹣2,∴关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等l【答案】<.【解析】试题分析:由题意,得比例函数的图象上,且x1<x2<0,则yl<y2,考点:反比例函数图象上点的坐标特征.【题文】将抛物线y=x2﹣4x﹣4向左平移4个单位,再向上平移3个单位,得到抛物线的函数表达式是.【答案】y=(x+2)2﹣5.【解析】试题分析:由“左加右减”的原则可知,将抛物线y=x2﹣4x﹣4向左平移4个单位所得直线的解析式为:y=(x﹣2+4)2﹣8=(x+2)2﹣8;由“上加下减”的原则可知,将抛物线y=(x+2)2﹣8向上平移3个单位所得抛物线的解析式为:y=(x+2)2﹣5.考点:二次函数图象与几何变换.【题文】如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是.【答案】.【解析】试题分析:画树状图得:∵共有12种等可能的结果,现任意闭合其中两个开关,则小灯泡发光的有6种情况,∴小灯泡发光的概率为:.考点:列表法与树状图法.【题文】如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m,已知小军、小珠的身高分别为1.8m,1.5m,则路灯的高为 m.【答案】3m.【解析】试题分析:如图,∵CD∥AB∥MN,∴△ABE∽△CDE,△ABF∽△MNF,∴,即,解得:AB=3m,答:路灯的高为3m.考点:中心投影.【题文】如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是.【答案】.【解析】试题分析:如图,连接OM交AB于点C,连接OA、OB,由题意知,OM⊥AB,且OC=MC=,在RT△AOC中,∵OA=1,OC=,∴cos∠AOC= =,AC= =∴∠AOC=60°,AB=2AC=,∴∠AOB=2∠AOC=120°,则S弓形ABM=S扇形OAB﹣S△AOB=﹣××=,S阴影=S半圆﹣2S弓形ABM=π×12﹣2()=.考点:扇形面积的计算;翻折变换(折叠问题).【题文】如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,点D是BC边上一动点,连结AD,将△ACD沿AD 折叠,点C落在点C′,连结C′D交AB于点E,连结BC′.当△BC′D是直角三角形时,DE的长为_____.【答案】.【解析】试题分析:如图1所示;点E与点C′重合时.在Rt△ABC中,BC==4.由翻折的性质可知;AE=AC=3、DC=DE.则EB=2.设DC=ED=x,则BD=4﹣x.在Rt△DBE中,DE2+BE2=DB2,即x2+22=(4﹣x)2.解得:x=.∴DE=.如图2所示:∠EDB=90时.由翻折的性质可知:AC=AC′,∠C=∠C′=90°.∵∠C=∠C′=∠CDC′=90°,∴四边形ACDC′为矩形.又∵AC=AC′,∴四边形ACDC′为正方形.∴CD=AC=3.∴DB=BC﹣DC=4﹣3=1.∵DE∥AC,∴△BDE∽△BCA.∴,即.解得:DE=.点D在CB上运动,∠DBC′<90°,故∠DBC′不可能为直角.考点:翻折变换(折叠问题).【题文】先化简,再求值:(a﹣)÷(),其中a满足a2﹣3a+2=0.【答案】原式=a,由a2﹣3a+2=0,得a=1或a=2,当a=1时,a﹣1=0,使得原分式无意义,当a=2,原式=2.【解析】试题分析:先化简题目中的式子,然后根据a2﹣3a+2=0可得a的值,注意a的值要使得原分式有意义,本题得以解决.试题解析:(a﹣)÷()====a,由a2﹣3a+2=0,得a=1或a=2,∵当a=1时,a﹣1=0,使得原分式无意义,∴a=2,原式=2.考点:分式的化简求值.【题文】如图,⊙O的直径为AB,点C在圆周上(异于A,B),AD⊥CD.(1)若BC=3,AB=5,求AC的值;(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.【答案】(1) AC=4;(2)详见解析.【解析】试题分析:(1)首先根据直径所对的圆周角为直角得到直角三角形,然后利用勾股定理求得AC的长即可;(2)连接OC,证OC⊥CD即可;利用角平分线的性质和等边对等角,可证得∠OCA=∠CAD,即可得到OC∥A D ,由于AD⊥CD,那么OC⊥CD,由此得证.试题解析:(1)解:∵AB是⊙O直径,C在⊙O上,∴∠ACB=90°,又∵BC=3,AB=5,∴由勾股定理得AC=4;(2)证明:连接OC∵AC是∠DAB的角平分线,∴∠DAC=∠BAC,又∵AD⊥DC,∴∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴∠DCA=∠CBA,又∵OA=OC,∴∠OAC=∠OCA,∵∠OAC+∠OBC=90°,∴∠OCA+∠ACD=∠OCD=90°,∴DC是⊙O的切线.考点:切线的判定.【题文】杜甫实验学校准备在操场边建一个面积为600平方米的长方形劳动实践基地.(1)求实践基地的长y(米)关于宽x(米)的函数表达式;(2)由于受场地限制,实践基地的宽不能超过20米,请结合实际画出函数的图象;(3)当实践基地的宽是l5米时,实践基地的长是多少米?【答案】(1) y=;(2)图见解析;(3)当实践基地的宽是15米时,实践基地的长为40米.【解析】试题分析:(1)根据矩形的面积=长×宽,列出y与x的函数表达式即可;(2)根据自变量的取值范围作出图象即可;(3)把x=15代入计算求出y的值,即可得到结果.试题解析:(1)由长方形面积为2000平方米,得到xy=600,即y=;(2)图象如图所示:(3)当x=15(米)时,y= =40(米),则当实践基地的宽是15米时,实践基地的长为40米.考点:反比例函数的应用.【题文】如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,直接写出点A1、B1的坐标;(2)求在旋转过程中,△ABC所扫过的面积.【答案】(1)图见解析,A1的坐标为(﹣1,4),点B1的坐标为(1,4);(2)+3.【解析】试题分析:(1)根据旋转中心方向及角度找出点A、B的对应点A1、B1的位置,然后顺次连接即可,根据A、B的坐标建立坐标系,据此写出点A1、B1的坐标;(2)利用勾股定理求出AC的长,根据△ABC扫过的面积等于扇形CAA1的面积与△ABC的面积和,然后列式进行计算即可.试题解析:(1)所求作△A1B1C如图所示:由A(4,3)、B(4,1)可建立如图所示坐标系,则点A1的坐标为(﹣1,4),点B1的坐标为(1,4);(2)∵AC=,∠ACA1=90°∴在旋转过程中,△ABC所扫过的面积为:S扇形CAA1+S△ABC= +×3×2= +3.考点:作图-旋转变换;扇形面积的计算.【题文】阅读对话,解答问题:(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值;(2)求在(a,b)中使关于x的一元二次方程x2﹣ax+2b=0有实数根的概率.【答案】(1)详见解析;(2) .【解析】试题分析:(1)用列表法易得(a,b)所有情况;(2)看使关于x的一元二次方程x2﹣ax+2b=0有实数根的情况占总情况的多少即可.试题解析:(1)(a,b)对应的表格为:ab1231(1,1)(1,2)(1,3)2(2,1)(2,2)(2,3)3(3,1)(3,2)(3,3)4(4,1)(4,2)(4,3)(2)∵方程x2﹣ax+2b=0有实数根,∴△=a2﹣8b≥0.∴使a2﹣8b≥0的(a,b)有(3,1),(4,1),(4,2),∴P(△≥0)=.考点:列表法与树状图法;根的判别式.【题文】巩义长寿山景区门票价格为50元,在今年红叶节期问,为吸引游客,推出了如下优惠活动:如果人数不超过25人,门票按原价销售,如果人数超过25人,每超过1人,所购买的门票均降低1元,但人均门票不低于35元,某单位组织员工去长寿山看红叶,共支付门票费用1350元,请问该单位这次共有多少名员工去长寿山看红叶?【答案】该单位这次共有30名员工去长寿山看红叶.【解析】试题分析:设该单位这次共有x名员工去长寿山看红叶,根据每超过1人,人均旅游费用降低1元,且共支付给旅行社旅游费用1350元,可列出方程求解,根据人均旅游费用不得低于35元,判断解是否合理.试题解析:设该单位这次共有x名员工去长寿山看红叶,则人均费用是[50﹣(x﹣25)]元由题意得[50﹣(x﹣25)]x=1350,整理得x2﹣75x+1350=0,解得x1=45,x2=30.当x=45时,人均门票价格为50﹣(x﹣25)=30<35,不合题意,应舍去.当x=30时,人均旅游费用为50﹣(x﹣25)=45>35,符合题意.答:该单位这次共有30名员工去长寿山看红叶.考点:一元二次方程的应用.【题文】如图,在矩形ABCD中,E为CD的中点,F为BE上的一点,连结CF并延长交AB于点M,MN⊥CM 交射线AD于点N.(1)当F为BE中点时,求证:AM=CE;(2)若 =2,求的值;(3)若=n,当n为何值时,MN∥BE?【答案】(1)详见解析;(2)3;(3)n=4.【解析】试题分析:(1)如图1,易证△BMF≌△ECF,则有BM=EC,然后根据E为CD的中点及AB=DC就可得到AM=EC ;(2)如图2,设MB=a,易证△ECF∽△BMF,根据相似三角形的性质可得EC=2a,由此可得AB=4a,AM=3a,BC=AD=2a.易证△AMN∽△BCM,根据相似三角形的性质即可得到AN= a,从而可得ND=AD﹣AN=a,就可求出的值;(3)如图3,设MB=a,同(2)可得BC=2a,CE=na.由MN∥BE,MN⊥MC可得∠EFC=∠HMC=90°,从而可证到△MBC∽△BCE,然后根据相l∴AD=BC,AB=DC,∠A=∠ABC=∠BCD=90°,AB∥DC,∴△ECF∽△BMF,∴=2,∴EC=2a,∴AB=CD=2CE=4a,AM=AB﹣MB=3a.∵=2,∴BC=AD=2a.∵MN⊥MC,∴∠CMN=90°,∴∠AMN+∠BMC=90°.∵∠A=90°,∴∠ANM+∠AMN=90°,∴∠BMC=∠ANM,∴△AMN∽△BCM,∴,∴,∴AN=a,ND=AD﹣AN=2a﹣a=a,∴=3;(3)当=n时,如图3,设MB=a,同(2)可得BC=2a,CE=na.∵MN∥BE,MN⊥MC,∴∠EFC=∠HMC=90°,∴∠FCB+∠FBC=90°.∵∠MBC=90°,∴∠BMC+∠FCB=90°,∴∠BMC=∠FBC.∵∠MBC=∠BCE=90°,∴△MBC∽△BCE,∴,∴,∴n=4.考点:相似形综合题;全等三角形的判定与性质;矩形的性质.【题文】如图1,地面BD上两根等长立柱AB,CD之间悬挂一根近似成抛物线y= x2﹣x+3的绳子.(1)求绳子最低点离地面的距离;(2)因实际需要,在离AB为3米的位置处用一根立柱MN撑起绳子(如图2),使左边抛物线F1的最低点距MN为1米,离地面1.8米,求MN的长;(3)将立柱MN的长度提升为3米,通过调整MN的位置,使抛l试题解析:(1)∵a=>0,∴抛物线顶点为最低点,∵y=x2﹣x+3=(x﹣4)2+,∴绳子最低点离地面的距离为:m;(2)由(1)可知,对称轴为x=4,则BD=8,令x=0得y=3,∴A(0,3),C(8,3),由题意可得:抛物线F1的顶点坐标为:(2,1.8),设F1的解析式为:y=a(x﹣2)2+1.8,将(0,3)代入得:4a+1.8=3,解得:a=0.3,∴抛物线F1为:y=0.3(x﹣2)2+1.8,当x=3时,y=0.3×1+1.8=2.1,∴MN的长度为:2.1m;(3)∵MN=DC=3,∴根据抛物线的对称性可知抛物线F2的顶点在ND的垂直平分线上,∴抛物线F2的顶点坐标为:(m+4,k),∴抛物线F2的解析式为:y=(x﹣m﹣4)2+k,把C(8,3)代入得:(8﹣m﹣4)2+k=3,解得:k=﹣(4﹣m)2+3,∴k=﹣(m﹣8)2+3,∴k是关于m的二次函数,又∵由已知m<8,在对称轴的左侧,∴k随m的增大而增大,∴当k=2时,﹣(m﹣8)2+3=2,解得:m1=4,m2=12(不符合题意,舍去),当k=2.5时,﹣(m﹣8)2+3=2.5,解得:m1=8﹣2,m2=8+2(不符合题意,舍去),∴m的取值范围是:4≤m≤8﹣2.考点:二次函数的应用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年河南省郑州市数学模拟试卷(一)注意事项:
1.本试卷共6页,三个大题,23小题,满分120分,考试时间100分钟.
2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答题填写在答题卡上,答在
试卷上的答案无效.
一、选择题:本大题共10小题,每小题3分,在每小题给出的四个选项中,只有一个选项是符合题目要求的.
1.
下列各数中:
2
,1
2017
,-π
-0.101 001 000 1,无理数有()
A.2个B.3个C.4个D.5个
2.下图几何体的俯视图是()
A
.B

C
.D

3.截止2017年底,我省机动车保有量达到2 350万辆,位居全国第三,按照
我省人口计算,平均每五人就有一辆车,请问2 350万用科学记数法表示为()
A.0.235×108B.23.5×107C.2.35×107D.2.35×10 4.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生
进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:
则下列叙述正确的是( ) A .这些运动员成绩的众数是5 B .这些运动员成绩的中位数是2.30 C .这些运动员的平均成绩是2.25
D .这些运动员成绩的方差是
0.072 5
5. 如图,在平行四边形ABCD 中,用直尺和圆规
作∠BAD 的平分线AG 交BC 于点E ,若BF =6,
AB =5,则AE 的长为( ) A .4 B .6 C .7
D .8
6. 下列各式计算错误的是( )
A .a 2b -3ab 2=-2ab
B .(-x 3)2=x 6
C .(-a )5 ÷a 3=-a 2
D .a 2·a 3=a 5
7. 不等式组21
31x x +⎧⎨-<-⎩
≥中的两个不等式的解集在同一个数轴上表示正确的是
( )
A .
B

C

D

8. 如图,已知点A ,B 分别是反比例函数k y x =
(x <0),1
y x
=(x >0)的图象上的点,且∠AOB =90°,tan ∠BAO =1
2,则k 的值为( ) A .2
B .
-2 C .4
D .-4
第8题图 第9题图 第10题图
9. 如图,在菱形ABCD 中,AB =16,∠B =60°,P 是AB 上一点,BP =10,Q
F
E
D
C
B
A
A'
Q
P
D
C
B
A
G
F E
D C
B
A
是CD边上一动点,将四边形APQD沿直线PQ折叠,A的对应点A′.当CA′的长度最小时,则CQ的长为()
A.10 B.12 C.13 D.14
10.如图,已知边长为4的正方形ABCD,E是BC边上一动点(与B,C不重
合),连接AE,将AE绕点E顺时针旋转90°得到线段EF,连接FC,设BE=x,△ECF的面积为y,下列图象中,能大致表示y与x的函数关系的是()
A.
B

C.
D
二、填空题:本大题共5小题,每小题3
分.
11.0
(3.14)2cos45
-π+︒=______________.
12.在一个不透明的盒子中装有12个白球,若干个黄球,它们除了颜色不同外,
其余均相同,若从中随机摸出一个球是黄球的概率是1
3
,则黄球的个数为_______.
13.已知抛物线y=ax2+bx+c(a>0)过A(-2,0),O(0,0),B(-3,y1),C(3,
y2)四点,则y1与y2的大小关系是___________.
14.如图,Rt△ABC中,∠ACB=90°,∠A=30°,BC=6,D,E分别是AB,AC
边的中点,将△ABC绕点B顺时针旋转60°到△A′BC′的位置,则整个旋转过程中线段DE所扫过部分的面积(即图中阴影部分面积)为___________.
C'
A
15. 在矩形ABCD 中,AB =6,BC =12,点E 在边BC 上,且BE =2CE ,将矩形
沿过点E 的直线折叠,点C ,D 的对应点分别为C ′,D ′,折痕与边AD 交于点F ,当点B ,C ′,D ′恰好在同一直线上时,AF 的长为___________. 三、解答题:解答应写出文字说明、证明过程或演算步骤.
16. (8分)先化简,再求值:2212
()211
a a a a a a +÷--+-,其中a 是方程2x 2+x -3=0
的解.
17. (9分)“美丽郑州”是我们的共同愿景,空气质量备受人们关注.我市某
空气质量检测站点检测了该区域每天的空气质量情况,统计了2017年9月份至12月份若干天的空气质量情况,并绘制了如下两幅不完整的统计图.
各类空气质量天数条形统计图
类型
污染
污染
各类空气天数扇形统计图
轻度污染
请根据图中信息,解答下列问题:
(1)统计图共统计了__________天的空气质量情况;
(2)请将条形统计图补充完整;空气质量为“优”所在扇形的圆心角度数是__________;
(3)环保兴趣小组4名同学(甲、乙、丙、丁),随即选择两名同学去空气质量检测站点参观,请用列表或树状图的方式判断恰好甲、乙两名同学被选中的概率是多少?
18.(9分)如图,在△ABD中,AB=AD,以AB为直径的⊙F交BD于点C,
交AD于点E,CG是⊙F的切线,CG交AD于点G.
(1)求证:CG⊥AD.
(2)填空:①若△BDA的面积为56,则△BCF的面积为________;
②当∠GCD的度数为_________时,四边形EFCD是菱形.
19. (9分)如图,一次函数122y x =-+的图象与反比例函数k
y x
=的图象交于
C ,
D 两点,与x ,y 轴交于B ,A 两点,过C 作C
E ⊥x 轴,垂足为E ,已知OE =2.
(1)直接写出点B 的坐标(______,______),求反比例函数的解析式; (2)求△OCD 的面积;
(3)根据图象,直接写出122k
x x
-+≥
20. (9分)如图,在南北方向的海岸线MN 上,有A ,B 两艘巡逻船,现均收
到故障船C 的求救信号.已知A ,B 两船相距1)海里,船C 在船A 的北偏东60°方向上,船C 在船B 的东南方向上,MN 上有一观测点D ,测得船C 正好在观测点D 的南偏东75°方向上.
(1)分别求出A 与C ,A 与D 之间的距离AC 和AD (若结果有根号,请保留根号).
(2)已知据观测点D 处75海里范围内有暗礁.若巡逻船A 沿直线AC 去
营救船C
≈1.41
≈1.73)
60°75°45°N M
D C
B A
21. (10分)某学校为改进学校教室空气质量,决定引进一批空气净化器,已
知有A ,B 两种型号可供选择,学校要求每台空气净化器必须多配备一套滤芯以便及时更换.已知每套滤芯的价格为200元,若购买20台A 型和15台B 型净化器共花费80 000元;购买10台A 型净化器比购买5台B 型净化器多花费10 000元;
(1)求两种净化器的价格各多少元?
(2)若学校购买两种空气净化器共40台,且A 型净化器的数量不多于B 型净化器数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.
22.(10分)【问题提出】如图1,△ABC中,AB=AC,点D在AB上,过点
D作DE∥BC,交AC于E,连接CD,F,G,H分别是线段CD,DE,BC 的中点,则线段FG,FH的数量关系是_____________(直接写出结论).【类比探究】将图1中的△ADE绕点A旋转到如图2位置,上述结论还成立吗?若成立,请给出证明;若不成立,请说明理由.
【拓展延伸】如图3,在Rt △ABC 中,∠C =90°,AC =5,BC =12,点E 在
BC 上,且BE
,过点E 作ED ⊥AB ,垂足为D ,将△BDE 绕点B 顺时针旋转,连接AE ,取AE 的中点F ,连接DF .当AE 与AC 垂直时,线段
DF 的长度为_____________(直接写出结果).
A
B C
D
E
F
G
H 图1
A
B
C
D
E
F
G
H 图2
图3
23. (11分)如图1,在平面直角坐标系中,抛物线y =ax 2+bx +c 过原点O 和
B (-4,4),且对称轴为直线32
x =-.
(1)求抛物线的函数表达式;
(2)D是直线OB下方抛物线上的一动点,连接OD,BD,在点D运动过程中,当△OBD面积最大时,求点D的坐标和△OBD的最大面积;(3)如图2,若点P为平面内一点,点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,直接写出满足△POD∽△NOB的点P坐标.

1。

THANKS !!!
致力为企业和个人提供合同协议,策划案计划书,学习课件等等
打造全网一站式需求
欢迎您的下载,资料仅供参考
-可编辑修改-。

相关文档
最新文档