rfc2472.IP Version 6 over PPP

合集下载

IPv6 演进技术要求 基于 IPv6 段路由(SRv6)的 IP 承载网络-最新国标

IPv6 演进技术要求 基于 IPv6 段路由(SRv6)的 IP 承载网络-最新国标

IPv6演进技术要求第2部分:基于IPv6段路由(SRv6)的IP承载网络1 范围本文件规定了基于SRv6的IP承载网络总体架构、基于SRv6的设备层技术要求及基于SRv6的管控层技术要求。

本文件适用于支持SRv6的IP承载网络。

2 规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。

其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

IETF RFC2493 IPv6规范中的通用报文隧道(Generic Packet Tunneling in IPv6 Specification)IETF RFC4659 IPv6 VPN场景中的BGP-MPLS IP虚拟私有网络扩展(BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN)IETF RFC5549 通告带有IPv6下一跳地址的IPv4网络层可达性信息(Advertising IPv4 Network Layer Reachability Information with an IPv6 Next Hop)IETF RFC6437 IPv6流标签规范(IPv6 Flow Label Specification)IETF RFC6514 MPLS/BGP IP VPN中提供组播服务的BGP编码与处理(BGP Encodings and Procedures for Multicast in MPLS/BGP IP VPNs)IETF RFC7432 基于BGP MPLS的EVPN(BGP MPLS-Based Ethernet VPN)IETF RFC7606 改进的BGP更新消息的错误处理(Revised Error Handling for BGP UPDATE Messages)IETF RFC8200 互联网协议第六版规范(Internet Protocol, Version 6 (IPv6) Specification)IETF RFC8402 分段路由架构(Segment Routing Architecure)IETF RFC8754 IPv6段路由报头(IPv6 Segment Routing Header)IETF RFC8986 SRv6网络编程(Segment Routing over IPv6 (SRv6) Network Programming)IETF RFC9252 基于SRv6的BGP overlay业务(BGP Overlay Services Based on Segment Routing over IPv6 (SRv6))IETF RFC9352 支持SRv6的ISIS扩展(IS-IS Extensions to Support Segment Routing over the IPv6 Data Plane)GB/T XXXXX IPv6演进技术要求第4部分:基于IPv6段路由(SRv6)的网络编程GB/T XXXXX IPv6演进技术要求第7部分:基于IPv6段路由(SRv6)的业务链GB/T XXXXX IPv6演进技术要求第8部分:基于IPv6段路由(SRv6)的报文头压缩GB/T XXXXX IPv6演进技术要求第9部分:基于IPv6段路由(SRv6)的网络故障保护3 术语、定义和缩略语3.1 术语和定义下列术语和定义适用于本文件。

《计算机网络(第7版)谢希仁著》第三章数据链路层要点及习题总结

《计算机网络(第7版)谢希仁著》第三章数据链路层要点及习题总结

《计算机⽹络(第7版)谢希仁著》第三章数据链路层要点及习题总结1.数据链路层的三个基本问题:封装成帧,透明传输,差错检测2.点对点信道的数据链路层 (1)链路和数据链路 链路(物理链路):链路(link)就是从⼀个结点到相邻结点的⼀段物理线路(有线或⽆线〉,⽽中间没有任何其他的交换结点 数据链路(逻辑链路):为当需要在⼀条线路上传送数据时,除了必须有⼀条物理线路外,还必须有⼀些必要的通信协议来控制这些数据的传输,换⽽⾔之,数据链路=链路+通信协议 (2)早期的数据通信协议叫通信规程 (3)数据链路层的协议数据单元-------帧 (4)封装成帧:封装成帧(framing)就是在⼀段数据的前后分别添加⾸部和尾部,这样就构成了⼀个帧。

⼀个帧的帧长等于帧的数据部分长度加上帧⾸部和帧尾部的长度。

⾸部和尾部的⼀个重要作⽤就是进⾏帧定界(即确定帧的界限),为了提⾼帧的传输效率,应当使帧的数据部分长度尽可能地⼤于⾸部和尾部的长度。

但是,每⼀种链路层协议都规定了所能传送的帧的数据部分长度上限⼀⼀最⼤传送单元 MTU (Maximum Transfer Unit),当数据是由可打印的 ASCII 码组成的⽂本⽂件时,帧定界可以使⽤特殊的帧定界符(如SOH和EOT)。

SOH:Start Of Header EOT:End Of Transmission (5)透明传输:所传输的数据中的任何 8 ⽐特的组合⼀定不允许和⽤作帧定界的控制字符的⽐特编码⼀样,⽆论什么样的⽐特组合的数据,都能够按照原样没有差错地通过这个数据链路层。

发送端的数据链路层在数据中出现控制字符 “SOH”或“EOT”的前⾯插⼊⼀个转义字符“ESC”(其⼗六进制编码是 1B,⼆进制是 00011011 )。

⽽在接收端的数据链路层在把数据送往⽹络层之前删除这个插⼊的转义字符。

这种⽅法称为字节填充或字符填充。

如果转义字符也出现在数据当中,那么解决⽅法仍然是在转义字符的前⾯插⼊⼀个转义字符。

中移动家庭网关终端技术规范v3.0.0

中移动家庭网关终端技术规范v3.0.0

中国移动通信企业标准QB-╳╳-╳╳╳-╳╳╳╳家庭网关终端技术规范T e c h n i c a l S p e c i f i c a t i o n f o r H o m e G a t e w a y版本号:3.0.0╳╳╳╳-╳╳-╳╳发布╳╳╳╳-╳╳-╳╳实施目录1. 范围 (1)2. 规范性引用文件 (1)3. 术语、定义和缩略语 (5)4. 设备总体定义 (9)4.1.设备在网络中的位置 (9)4.2.接口定义 (10)4.3.设备类型 (10)5. 接入型家庭网关 (11)5.1.接口要求 (11)5.1.1. 网络侧接口 (11)5.1.1.1. 网络侧接口描述 (11)5.1.1.2. 网络侧以太网接口要求 (12)5.1.1.3. PON接口要求 (12)5.1.1.4. TD-SCDMA接口要求 (12)5.1.1.5. TD-LTE接口要求 (12)5.1.2. 用户侧接口 (12)5.1.2.1. 用户侧以太网接口要求 (12)5.1.2.2. WLAN接口 (12)5.1.2.3. USB接口(可选) (12)5.2.功能要求 (13)5.2.1. 数据通信要求 (13)5.2.1.1. IP协议要求 (13)5.2.1.2. 数据转发功能要求 (13)5.2.1.3. DNS功能要求 (14)5.2.1.4. IPv4地址管理及拨号管理功能要求 (14)5.2.1.5. IPv6地址管理及拨号管理功能要求 (16)5.2.1.6. IPv4 NAT要求 (16)5.2.1.7. ALG要求 (17)5.2.1.8. 组播要求 (17)5.2.1.9. 其他功能要求 (17)5.2.2. 安全要求 (17)5.2.2.1. 防火墙 (17)5.2.2.2. 登陆WEB页面的安全要求 (17)5.2.2.3. 设备安全性 (18)5.2.3. QoS 要求 (18)5.2.4. VLAN功能要求 (19)5.2.5. USB扩展及管理(可选) (19)5.2.6. 设备发现要求 (19)5.2.6.1. UPnP (19)5.2.6.2. DLNA(可选) (19)5.2.7.1. 支持WLAN的开启和禁用 (20)5.2.7.2. 基本要求 (20)5.2.7.3. 多SSID要求 (20)5.2.7.4. WLAN安全要求 (20)5.2.7.5. WLAN QoS要求 (21)5.2.7.6. WPS要求 (21)5.2.8. 基本应用要求 (22)5.2.8.1. WLAN共享 (22)5.2.8.2. 家庭存储(可选) (23)5.3.性能要求 (23)5.3.1. 路由转发性能要求 (23)5.3.1.1. 吞吐量 (23)5.3.1.2. 地址学习 (23)5.3.1.3. 缓存大小 (23)5.3.1.4. 连接数量要求 (24)5.3.2. WLAN无线性能要求 (24)5.3.2.1. WLAN吞吐量性能要求 (24)5.3.2.2. WLAN覆盖性能要求 (24)5.3.2.3. WLAN接收灵敏度要求 (24)5.4.管理和维护要求 (24)5.4.1. 本地管理和配置要求 (24)5.4.1.1. 本地管理基本要求 (24)5.4.1.2. 用户分级管理 (25)5.4.1.3. 系统信息管理 (25)5.4.1.4. 基本配置 (25)5.4.1.5. 高级配置 (26)5.4.1.6. 设备管理 (27)5.4.1.7. 网络诊断 (27)5.4.1.8. 设备认证注册功能 (27)5.4.2. 远程管理要求 (29)5.4.2.1. 远程管理基本要求 (30)5.4.2.2. 远程参数配置和性能监测 (30)5.4.2.3. 远程故障诊断功能 (30)5.4.2.4. 设备告警功能 (30)5.4.2.5. 远程链路维持功能 (31)5.4.2.6. 软件远程管理 (31)5.4.2.7. 业务部署和控制 (31)5.4.2.8. PON上行家庭网关远程管理实现方式 (31)5.4.3. 日志功能要求 (32)5.5.预配置要求 (33)5.5.1. 预配置要求 (33)5.6.硬件要求 (34)5.6.1. 基本要求 (34)5.6.3. 硬件基本框图示例 (34)5.7.软件要求 (34)5.7.1. 基本要求 (34)5.7.2. 软件基本架构 (35)5.7.3. 软件接口要求 (35)5.7.4. 用户登录要求 (36)5.7.5. 系统升级要求 (36)5.8.配置界面要求 (36)5.8.1. 配置界面要求 (36)5.8.2. 配置界面用户权限要求 (36)5.9.设备标识要求 (38)5.10.外观及附件要求 (39)5.10.1. 运营商Logo要求 (39)5.10.2. 设备标签要求 (39)5.10.3. 网关指示灯要求 (40)5.10.4. 开关与按键要求 (41)5.10.5. 设备面板标识要求 (41)5.10.6. 设备接口要求 (41)5.10.7. 附件要求 (41)5.11.运行环境要求 (42)5.11.1. 供电要求 (42)5.11.2. 环境要求 (42)5.11.3. 抗电磁干扰能力 (42)5.11.4. 设备本身产生的电磁干扰要求 (42)5.11.5. 过压过流保护 (42)5.12.认证要求 (43)6. 接入型家庭网关支持物联网功能 (43)6.1.接入型家庭网关支持宜居通的功能要求(内置433M模块) (43)6.1.1. 433M模块要求 (43)6.1.2. 外围设备要求 (43)6.1.3. 业务功能描述 (43)6.1.3.1. 安防功能要求 (44)6.1.3.2. 家电控制功能 (44)6.1.4. 接入型家庭网关配置界面要求 (45)6.1.4.1.配置界面要求 (45)6.1.4.2. 配置界面用户权限要求 (46)6.2.接入型家庭网关支持基于低功耗W I F I的物联网功能要求 (48)6.2.1. 设备接入功能要求 (48)6.2.1.1. WiFi接入 (48)6.2.1.1.1. 接入型家庭网关要求 (48)6.2.1.1.2. 外设要求 (49)6.2.1.2. DHCP流程要求 (49)7. 宽带应用型家庭网关 (49)7.1.类型描述 (49)7.2.分体机接入设备要求 (49)7.3.分体机应用设备(机顶盒)要求 (50)7.3.1. 硬件要求 (50)7.3.1.1. 硬件、接口及按键要求 (50)7.3.1.2. 遥控器要求及参考设计 (53)7.3.1.3. 电源要求 (53)7.3.1.4. 配件要求 (53)7.3.1.5. 设备标识要求 (53)7.3.2. 网络侧接口要求 (54)7.3.3. 业务功能要求 (54)7.3.3.1. 互联网电视应用 (54)7.3.3.2. 多屏互动功能 (54)7.3.3.2.1. 概述 (54)7.3.3.2.2. 镜像功能 (54)7.3.3.2.3. 分享功能 (55)7.3.3.3. 家庭高清视频通话(可选) (55)7.3.3.4. 家庭卡拉OK功能(可选) (56)7.3.3.5. 语音交互功能 (56)7.3.4. 软件要求 (56)7.3.4.1. 操作系统要求 (56)7.3.4.2. 软件协议要求 (57)7.3.4.3. 编码及解码能力要求 (57)7.3.4.3.1. 编解码能力要求 (57)7.3.4.3.2. 音视频播放质量要求 (58)7.3.4.4. 屏幕管理要求 (58)7.3.4.5. 防刷机要求 (58)7.3.5. 管理要求 (59)7.3.5.1. 操作管理 (59)7.3.5.2. 软件管理 (60)7.3.5.3. 文件管理 (60)7.3.5.4. 配置管理 (60)7.3.6. 其他要求 (61)7.3.6.1. 供电要求 (61)7.3.6.2. 环境要求 (61)7.3.6.3. 噪声要求 (62)7.4.一体机设备要求 (62)7.4.1. 网络侧接口要求 (62)7.4.2. 网络接入功能要求 (62)7.4.3. 业务功能要求 (62)7.4.4. 软件要求 (62)7.4.5. 管理要求 (62)7.4.6. 硬件要求 (62)7.4.7. 其他要求 (62)7.4.7.1. 供电要求 (62)7.4.7.2. 环境要求 (63)7.4.7.3. 噪声要求 (63)8. 编制历史 (63)附录A省公司代码 (64)附录B设备故障消息(标准性附录) (65)B.1 告警编号规则 (65)B.2 设备告警信息列表 (66)附录C WIMO协议说明 (67)C.1设备类型和功能流程 (67)C.2网络连接 (68)C.3设备连接 (69)C.4媒体格式要求 (70)C.4.1视频编解码流程 (70)C.4.2 M-JPEG视频编解码方案 (70)C.4.3 H.264视频编解码方案 (70)C.4.4 音频编解码流程 (70)附录D手机遥控接口说明 .............................................................................. 错误!未定义书签。

学习网络常用的RFC文档的名称

学习网络常用的RFC文档的名称

学习网络常用的RFC文档的名称双语RFC --RFC中英文对照版rfc1050中文版-远程过程调用协议规范rfc1055中文版-在串行线路上传输IP数据报的非标准协议rfc1057中文版-RFC:远程过程调用协议说明第二版rfc1058中文版-路由信息协议(Routing Information Protocol)rfc1073中文版-RFC1073 Telnet窗口尺寸选项rfc1075中文版-远距离矢量多播选路协议rfc1088中文版-在NetBIOS网络上传输IP数据报的标准rfc1090中文版-SMTP在X.25上rfc1091中文版-TELNET终端类型选项rfc1094中文版-RFC1094 网络文件系统协议rfc1096中文版-Telnet X显示定位选项rfc1097中文版-Telnet潜意识-信息选项rfc1112中文版-主机扩展用于IP多点传送rfc1113中文版-Internet电子邮件保密增强:Part1-消息编码和鉴别过程rfc1132中文版-802.2分组在IPX网络上传输的标准rfc1144中文版-低速串行链路上的TCP/IP头部压缩rfc1155中文版-基于TCP/IP网络的管理结构和标记rfc1191中文版-RFC1191 路径MTU发现rfc1332中文版-RFC1332 端对端协议网间协议控制协议(IPCP)rfc1333中文版-PPP 链路质量监控rfc1334中文版-PPP 身份验证协议rfc1387中文版-RIP(版本2)协议分析rfc1388中文版-RIP协议版本2rfc1433中文版-直接ARPrfc1445中文版-SNMPv2的管理模型rfc1582中文版-扩展RIP以支持按需链路rfc1618中文版-ISDN上的PPP(点对点)协议rfc1661中文版-RFC1661 PPP协议rfc1723中文版-路由信息协议(版本2)rfc1738中文版-统一资源定位器(URL)rfc1769中文版-简单网络时间协议( SNTP)rfc1771中文版-边界网关协议版本4(BGP-4)rfc1827中文版-IP封装安全载荷(ESP)rfc1883中文版-Internet协议,版本6(IPv6)说明书rfc1939中文版-POP3协议rfc1945中文版-超文本传输协议 -- HTTP/1.0rfc1994中文版-PPP挑战握手认证协议(CHAP)rfc1997中文版-RFC1997 BGP团体属性rfc2002中文版-IP移动性支持rfc204中文版-利用报路rfc2105中文版-Cisco 系统的标签交换体系结构纵览rfc2281中文版-Cisco热备份路由协议()rfc2283中文版-BGP-4的多协议扩展rfc2326中文版-实时流协议(RTSP)rfc2328中文版-OSPF版本2rfc2516中文版-在以太网上传输PPP的方法(PPPoE)rfc2526中文版-IPv6保留的子网任意传送地址rfc2547中文版-BGP/MPLS VPNsrfc2616中文版-超文本传输协议——HTTP/1.1rfc2702中文版-基于MPLS的流量工程要求rfc2706中文版-RFC2706—电子商务域名标准rfc2756中文版-超文本缓存协议(HTCP/0.0)rfc2764中文版-IP VPN的框架体系rfc2773中文版-使用KEA和SKIPJACK加密rfc2774中文版-HTTP扩展框架rfc2781中文版-UTF-16, 一种ISO 10646的编码方式rfc2784中文版-通用路由封装rfc2793中文版-用于文本交谈的RTP负载rfc2796中文版-BGP路由反射rfc2917中文版-核心 MPLSIP VPN 体系结构rfc2918中文版-BGP-4(边界网关协议)的路由刷新功能rfc2923中文版-TCP的路径MTU发现问题rfc3003中文版-Audio/mpeg 媒体类型rfc3005中文版-IETF 讨论列表许可证rfc3007中文版-安全的域名系统动态更新rfc3018中文版-统一内存空间协议规范rfc3022中文版-传统IP网络地址转换(传统NAT)rfc3032中文版-RFC3032 MPLS标记栈编码rfc3033中文版-用于Internet协议的信息域和协议标识符在Q.2941类属标识符和Q.2957 User-to-user信令中的分配rfc3034中文版-标签转换在帧中继网络说明书中的使用rfc3037中文版-RFC3037 标记分配协议的适用范围(RFC3037 LDP Applicability)rfc3058中文版-IDEA加密算法在CMS上的使用rfc3059中文版-服务定位协议的属性列表扩展rfc3061中文版-对象标识符的一种URN姓名空间rfc3062中文版-LDAP口令修改扩展操作rfc3063中文版-MPLS(多协议标签交换)环路预防机制rfc3066中文版-语言鉴定标签rfc3067中文版-事件对象描述和转换格式要求rfc3069中文版-VLAN聚合实现IP地址有效分配rfc3070中文版-基于帧中继的第二层隧道协议rfc3072中文版-结构化数据交换格式rfc3074中文版-DHCP 负载平衡算法rfc3078中文版-RFC3078微软点到点加密(MPPE)协议rfc3081中文版-将区块扩展交换协议(BEEP)核心映射到传输控制协议(TCP)rfc3083中文版-遵循DOCSIS的Cable Modem和CMTS的PBI 的管理信息数据库rfc3085中文版-新闻型标记语言(NewsML)资源的URN名字空间rfc3090中文版-域名系统在区域状况下的安全扩展声明rfc3091中文版-Pi数字生成协议rfc3093中文版-防火墙增强协议rfc3550中文版-RTP:实时应用程序传输协议rfc457中文版-TIPUGrfc697中文版-FTP的CWD命令rfc698中文版-TELNET扩展ASCII选项rfc775中文版-面向目录的 FTP 命令rfc779中文版-TELNET的SEND-LOCATION选项rfc792中文版-RFC792- Internet控制信息协议(ICMP)rfc821中文版-RFC821 简单邮件传输协议(SMTP)rfc826中文版-以太网地址转换协议或转换网络协议地址为48比特以太网地址用于在以太网硬件上传输rfc854中文版-TELNET协议规范rfc855中文版-TELNET选项规范rfc856中文版-RFC856 TELNET二进制传输rfc857中文版-RFC 857 TELNET ECHO选项rfc858中文版-RFC 858 TELNET SUPPRESS GO AHEAD选项rfc859中文版-RFC 859 TELNET的STATUS选项rfc860中文版-RFC 860 TELNET TIMING MARK选项rfc861中文版-RFC 861 TELNET扩展选项-LISTrfc862中文版-RFC 862 Echo 协议rfc868中文版-RFC868 时间协议rfc894中文版-IP 数据包通过以太网网络传输标准rfc903中文版-反向地址转换协议rfc930中文版-Telnet终端类型选项(RFC930——T elnet Terminal Type Option)rfc932中文版-子网地址分配方案rfc937中文版-邮局协议 (版本2)rfc948中文版-IP数据报通过IEEE802.3网络传输的两种方法rfc949中文版-FTP 未公开的独特命令rfc951中文版-引导协议(BOOTP)rfc962中文版-TCP-4 的最初rfc974中文版-邮件路由与域名系统rfc975中文版-自治联邦。

中移动家庭网关终端技术规范v

中移动家庭网关终端技术规范v

中国移动通信企业标准 家庭网关终端技术规范版本号:3.0.0 中国移动通信集团公司 发布╳╳╳╳-╳╳-╳╳发布 ╳╳╳╳-╳╳-╳╳实施 QB-╳╳-╳╳╳-╳╳╳╳T e c h n i c a l S p e c if i c a t i o n f o r H o m e G a t e w a y目录1. 范围 ................................................................................................................................................2. 规范性引用文件 .............................................................................................................................3. 术语、定义和缩略语 .....................................................................................................................4. 设备总体定义.................................................................................................................................4.1.设备在网络中的位置 ..................................................................................................................4.2.接口定义 ......................................................................................................................................4.3.设备类型 ......................................................................................................................................5. 接入型家庭网关 .............................................................................................................................5.1.接口要求 ......................................................................................................................................网络侧接口......................................................................................................................................网络侧接口描述..........................................................................................................................................网络侧以太网接口要求..............................................................................................................................接口要求 .......................................................................................................................................................接口要求 .......................................................................................................................................................接口要求 .......................................................................................................................................................用户侧接口......................................................................................................................................用户侧以太网接口要求..............................................................................................................................接口 ...............................................................................................................................................................接口(可选)................................................................................................................................................5.2.功能要求 ......................................................................................................................................数据通信要求..................................................................................................................................协议要求 .......................................................................................................................................................数据转发功能要求......................................................................................................................................功能要求 .......................................................................................................................................................地址管理及拨号管理功能要求....................................................................................................................地址管理及拨号管理功能要求....................................................................................................................要求 ...............................................................................................................................................................要求 ...............................................................................................................................................................组播要求 .....................................................................................................................................................其他功能要求..............................................................................................................................................安全要求..........................................................................................................................................防火墙 .........................................................................................................................................................登陆WEB页面的安全要求..........................................................................................................................设备安全性 .................................................................................................................................................要求....................................................................................................................................................功能要求............................................................................................................................................扩展及管理(可选)........................................................................................................................设备发现要求.........................................................................................................................................................................................................................................................................................................(可选) .......................................................................................................................................................支持WLAN的开启和禁用............................................................................................................................基本要求 .....................................................................................................................................................多SSID要求................................................................................................................................................安全要求 .......................................................................................................................................................5要求 ............................................................................................................................................................要求 ...............................................................................................................................................................基本应用要求................................................................................................................................... WLAN共享 ..................................................................................................................................................家庭存储(可选)......................................................................................................................................5.3.性能要求 ......................................................................................................................................路由转发性能要求..........................................................................................................................吞吐量 .........................................................................................................................................................地址学习 .....................................................................................................................................................缓存大小 (23)连接数量要求.............................................................................................................................................. 无线性能要求....................................................................................................................................吞吐量性能要求 (23)覆盖性能要求................................................................................................................................................接收灵敏度要求............................................................................................................................................5.4.管理和维护要求 (24)本地管理和配置要求......................................................................................................................本地管理基本要求......................................................................................................................................用户分级管理 (24)系统信息管理..............................................................................................................................................基本配置 .....................................................................................................................................................高级配置 .....................................................................................................................................................设备管理 .....................................................................................................................................................网络诊断 .....................................................................................................................................................设备认证注册功能......................................................................................................................................远程管理要求..................................................................................................................................远程管理基本要求......................................................................................................................................远程参数配置和性能监测..........................................................................................................................远程故障诊断功能......................................................................................................................................设备告警功能..............................................................................................................................................远程链路维持功能......................................................................................................................................软件远程管理..............................................................................................................................................业务部署和控制..........................................................................................................................................上行家庭网关远程管理实现方式 ................................................................................................................日志功能要求..................................................................................................................................5.5.预配置要求 ..................................................................................................................................预配置要求......................................................................................................................................5.6.硬件要求 ......................................................................................................................................基本要求..........................................................................................................................................硬件基本框图示例..........................................................................................................................5.7.软件要求 ......................................................................................................................................基本要求..........................................................................................................................................软件基本架构................................................................................................. 错误!未定义书签。

Cisco 5500 系列无线控制器产品手册说明书

Cisco 5500 系列无线控制器产品手册说明书

产品手册Cisco 5500 系列无线控制器Cisco ®5500 系列无线控制器是一款高度可扩展的灵活平台,能够在大中型企业和园区环境中,为关键任务无线网络提供系统级服务。

5500 系列专门采用了独特设计,支持 802.11n 的性能下的最大可扩展性,通过射频的监控和保护能力提供延长的正常工作时间,并且可以同时管理 500 个接入点;它具有卓越的性能,可以提供可靠的视频流和长话级音质;它还具有增强的故障恢复功能,能在要求最严格的环境中提供一致的移动体验。

最大限度提高性能和可扩展性● 支持多达 500 个接入点和 7000 个客户端。

● 经过优化的 802.11n 性能,能够提供相当于 802.11a/g 网络九倍的性能。

● 延长的正常运行时间,每个控制器能同时配置和管理 500 个接入点 增强的移动性和服务● 范围更大的移动域,可以同时关联更多客户端。

● 速度更快的射频资源管理 (RRM) 更新,可在用户漫游时提供不间断的网络接入。

● 智能射频控制平面,可以自行配置、修复和优化。

● 高效漫游功能可提升应用性能,例如长话级音质、一致的视频流及数据备份。

许可灵活性与投资保护● 可以根据需要,逐步添加附加接入点容量许可。

OfficeExtend 解决方案● 安全、简便、经济高效的移动远程办公人员解决方案。

● 每个控制器支持多达 500 个远程接入点。

● 通过支持统一通信无线电话,节约手机费用。

全面的有线/无线安全性● 在接入点和控制器之间提供全面的 CAPWAP 加密。

● 支持检测恶意接入点和拒绝服务攻击。

● 管理帧保护功能可以检测恶意用户,并向网络管理员发出警报。

企业无线网状网● 动态无线网状网支持在室内和室外为难以布线的区域提供网络连接。

支持环保● 支持自适应功率管理,可以在非高峰时段关闭接入点无线电设备,以减少功耗。

● OfficeExtend 解决方案通过减少通勤时间和节省汽油、驾驶里程和保险成本,可降低成本和支持环保最佳实践。

陕西广电家庭网关总体技术要求完整版

陕西广电家庭网关总体技术要求完整版

陕西广电家庭网关总体技术要求HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】陕西广电网络家庭网关总体技术要求目录前言本标准是陕西广电网络家庭网关系列技术标准之一,该系列标准的结构及名称预计如下:1)陕西广电网络家庭网关总体技术要求2)陕西广电网络家庭网关与终端配置管理系统接口技术要求3)家庭网关管理系统技术规范本标准是根据陕西广电网络业务开展的实际情况而制定的,主要用于规范家庭网关的设备形态、接口、功能、管理、安全、性能、运行环境、设备软硬件和用户界面等内容。

随着陕西广电网络家庭网关技术标准体系的发展完善,还将制订后续的相关标准。

陕西广电网络家庭网关总体技术要求1.范围本标准规定了家庭网关的设备形态、接口、功能、管理、安全、性能、运行环境、设备软硬件、基本应用和用户界面等要求。

本标准适用于陕西广电网络中使用的家庭网关设备e+-B、e+-C和e+-D。

2.规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。

不注日期的引用文件,其最新版本适用于本标准。

ITU-T 吉比特无源光网络(GPON):总体要求ITU-T 吉比特无源光网络(GPON):物理媒质相关(PMD)层要求ITU-T 吉比特无源光网络(GPON):传输汇聚(TC)层要求ITU-T 吉比特无源光网络(GPON):ONT管理控制接口(OMCI)要求RFC 2131 动态主机配置协议(DHCP)RFC 2132 DHCP选项及BOOTP供应商扩展RFC 2327 SDP: Session Description ProtocolRFC 2373 IP Version 6 Addressing ArchitectureRFC 2460 Internet Protocol, Version 6 (IPv6) SpecificationRFC 2462 IPv6 Stateless Address AutoconfigurationRFC 2472 IP Version 6 over PPPRFC 2516 以太网上传送PPP协议(PPPoE)RFC 2617 HTTP Authentication: Basic and Digest AccessAuthenticationRFC 2663 IP Network Address Translator (NAT) Terminology andConsiderationsRFC 3261 SIP: Session Initiation ProtocolRFC 3262 Reliability of Provisional Responses in the Session InitiationProtocol (SIP)RFC 3263 Session Initiation Protocol (SIP): Locating SIP Servers RFC 3264 An Offer-Answer Model with the Session Description Protocol(SDP)RFC 3311 The Session Initiation Protocol (SIP) UPDATE MethodRFC 3312 Integration of Resource Management and Session Initiation Protocol (SIP)RFC 3315 Dynamic Host Configuration Protocol for IPv6 (DHCPv6) RFC 3325 Private Extensions to the Session Initiation Protocol (SIP) forAsserted Identity within Trusted NetworksRFC 3326 The Reason Header Field for Session Initiation Protocol (SIP)RFC 3361 Dynamic Host Configuration Protocol (DHCP-for-IPv4)Option for Session Initiation Protocol (SIP) Servers RFC 3428 Session Initiation Protocol (SIP) Extension for InstantMessagingRFC 3489 STUN - Simple Traversal of User Datagram Protocol (UDP)Through Network Address Translators (NATs)RFC 3515 The Session Initiation Protocol (SIP) Refer MethodRFC 3550 RTP: A Transport Protocol for Real-Time Applications RFC 3633 IPv6 Prefix Options for Dynamic Host Configuration Protocol(DHCP) version 6RFC 3646 DNS Configuration options for Dynamic Host Configuration Protocol for IPv6 (DHCPv6)RFC 3925 Vendor-Identifying Vendor Options for Dynamic HostConfiguration Protocol version 4 (DHCPv4)RFC 3960 Early Media and Ringing Tone Generation in the SessionInitiation Protocol (SIP)RFC 4028 Session Timers in the Session Initiation Protocol (SIP) RFC 4730 A Session Initiation Protocol (SIP) Event Package for KeyPress Stimulus (KPML)RFC 4861 Neighbor Discovery for IP version 6 (IPv6)RFC 4862 IPv6 Stateless Address AutoconfigurationRFC 5072 IP Version 6 over PPPRFC 6334 Dynamic Host Configuration Protocol for IPv6 (DHCPv6)Option for Dual-Stack LiteIEEE CSMA/CD访问方式和物理层规范IEEE 无线局域网媒质访问控制层及物理层标准IEEE 媒体访问控制(MAC)网桥TR-069 CPE WAN Management ProtocolTR-098 Gateway Device Version Data Model for TR-069TR-104 Provisioning Parameters for VoIP CPEUPnP IGD 通用即插即用标准(综合网关设备)3.缩略语4.设备总体定义1.1设备在网络中的位置家庭网关是家庭网络和外部网络的接口单元。

DHCPv6技术概述

DHCPv6技术概述

IPv6协议具有地址空间巨大的特点,但同时长达128比特的IPv6地址又要求高效合理的地址自动分配和管理策略。

IPv6无状态地址配置协议[RFC2462] 是目前广泛采用的IPv6地址自动配置方式。

配置了该协议的主机只需相邻路由器开启IPv6路由公告功能,即可以根据公告报文包含的前缀信息自动配置本机地址。

但无状态地址配置方案中路由器并不记录所连接的IPv6主机的具体地址信息,可管理性差。

而且当前无状态地址配置方式不能使IPv6主机获取DNS服务器的地址和域名等配置信息,在可用性上有一定缺陷。

对于互联网服务提供商(ISP)来说,也没有相关的规范指明如何向路由器自动分配IPv6前缀,所以在部署IPv6网络时,只能采用手动配置的方法为路由交换设备配置IPv6地址。

DHCPv6是动态主机配置协议(DHCP)的IPv6版本,协议基本规范由RFC3315定义。

相对于IPv6无状态地址自动配置协议,DHCPv6属于一种有状态地址自动配置协议。

在有状态地址配置过程中,DHCPv6服务器分配一个完整的IPv6地址给主机,并提供DNS服务器地址和域名等其它配置信息,这中间可能通过中继代理转交DHCPv6报文,而且最终服务器能把分配的IPv6地址和客户端的绑定关系记录在案,从而增强了网络的可管理性。

DHCPv6服务器也能提供无状态DHCPv6服务,即DHCPv6服务器不分配IPv6地址,仅需向主机提供DNS服务器地址和域名等其它配置信息,主机IPv6地址仍然通过路由器公告方式自动生成,这样配合使用就弥补了IPv6无状态地址自动配置的缺陷。

DHCPv6协议还提供了DHCPv6前缀代理的扩展功能,上游路由器可以自动为下游路由器分派地址前缀,从而实现了层次化网络环境中IPv6地址的自动规划,解决互联网提供商(ISP)的IPv6网络部署问题。

缩写和术语DHCPv6(Dynamic Host Configuration Protocol Version 6):DHCP(动态主机配置协议)是一种向客户端节点自动分配地址以及其它配置参数的协议。

中国电信“我的e家”技术规范-e家终端(e8)(V30)XXXX11

中国电信“我的e家”技术规范-e家终端(e8)(V30)XXXX11

中国电信“我的e家”技术规范―e家终端(e8)Technical standard for China Telecom “One Home” Service- Home Gateway (e8)(V3.0)2009-XX-XX发布2009-XX-XX实施目录前言 (IVIV)1 范围 (55)2 规范性引用文件 (55)3 缩略语 (77)4 设备总体定义 (88)4.1 设备在网络中的位置 (88)4.2 接口定义 (88)4.3 设备形态 (99)5 物理接口要求 (99)5.1 网络侧接口要求 (99)5.2 用户侧接口要求 (99)6 功能要求 (1010)6.1 网络协议及数据转发功能要求 (1010)6.2 WLAN AP功能要求 (1313)6.3 设备发现功能要求 (1515)6.4 业务发现和控制功能要求 (1515)6.5 VoIP语音功能处理要求 (1616)7 安全要求 (2323)7.1 网络访问的安全性 (2323)7.2 用户侧接口安全性 (2424)7.3 登录安全性 (2424)7.4 设备安全性 (2525)8 管理和维护要求............................ 错误!未定义书签。

错误!未定义书签。

8.1 基本要求................................ 错误!未定义书签。

错误!未定义书签。

8.2 本地管理和配置要求...................... 错误!未定义书签。

错误!未定义书签。

8.3 TR069远程管理和配置要求 ................ 错误!未定义书签。

错误!未定义书签。

8.4 OAM远程管理和配置要求 .................. 错误!未定义书签。

错误!未定义书签。

9 性能要求.................................. 错误!未定义书签。

错误!未定义书签。

rfc中常用的测试协议

rfc中常用的测试协议

rfc中常用的测试协议引言在计算机网络领域中,为了确保网络协议的正确性和稳定性,测试协议起到了至关重要的作用。

RFC(Request for Comments)是一系列文件,用于描述互联网相关协议、过程和技术。

在RFC中,也包含了一些常用的测试协议,用于验证和评估网络协议的功能和性能。

本文将介绍RFC中常用的测试协议,并深入探讨其原理和应用。

二级标题1:PING协议三级标题1.1:概述PING协议是一种常用的网络测试协议,用于测试主机之间的连通性。

它基于ICMP (Internet Control Message Protocol)协议,通过发送ICMP Echo Request报文并等待目标主机的ICMP Echo Reply报文来判断目标主机是否可达。

三级标题1.2:工作原理PING协议的工作原理如下: 1. 发送方主机生成一个ICMP Echo Request报文,并将目标主机的IP地址作为目的地。

2. 发送方主机将报文发送到网络中。

3.中间路由器收到报文后,将报文转发到下一跳路由器。

4. 目标主机收到ICMP Echo Request报文后,生成一个ICMP Echo Reply报文,并将其发送回发送方主机。

5. 发送方主机收到ICMP Echo Reply报文后,通过比较报文中的标识符和序列号等字段,判断目标主机是否可达。

三级标题1.3:应用场景PING协议在网络中的应用非常广泛,常用于以下场景: - 测试主机之间的连通性,判断网络是否正常工作。

- 测试网络延迟,通过计算ICMP Echo Request报文的往返时间来评估网络质量。

- 排查网络故障,通过检查ICMP Echo Reply报文中的错误码来定位故障原因。

二级标题2:Traceroute协议三级标题2.1:概述Traceroute协议用于跟踪数据包从源主机到目标主机经过的路径。

它通过发送一系列的UDP报文,并在每个报文中设置不同的TTL(Time to Live)值来实现。

网络协议RFC文档版本号

网络协议RFC文档版本号

1.表格表1 协议列表说明:●Vxworks中网络协议基本与4.4BSD网络兼容,但增强了实时性和某些特性。

●Vxworks支持的网络协议如下,但并没有指明版本号:应用层:NFS FTP TFTP DHCP SNTP TELNET MIB-II HTTP;传输层:TCP UDP;网络层:IP IP多播CIDR RIP OSPF ICMP ARP IGMP;链路层:Ethernet PPP SLIP CSLIP。

各个版本之间差别不是很大,基本的功能都是相同的。

2.各个网络协议的部分RFC标准RFC1122, 标准RFC3168, RFC6093, RFC6528均为建议标准RFC2228, RFC2640, 建议标准RFC2773, 实验性EXPERIMENTALRFC3659, RFC5797建议标准RFC1782, RFC1783, RFC1784, 建议标准RFC1785, INFORMATIONALRFC2347, RFC2348, RFC2349DRAFT STANDARDRFC1349建议标准RFC950, 标准协议RFC4884建议标准RFC5227, RFC5494建议标准RFC1957, international RFC2449, RFC6186建议标准RFC5506, RFC5761, RFC6051, RFC6222建议标准(14)RSTPRFC3265, RFC3853, RFC4320, RFC4916,RFC5393, RFC5621, RFC5626, RFC5630 , RFC5922, RFC5954, RFC6026, RFC6141建议标准RFC4822HTTPS不应与在RFC 2660中定义的安全超文本传输协议(S-HTTP)相混RFC5785建议标准。

PPPoE交流

PPPoE交流

额外话题
用户名该怎么设定呢?? username username@isp ……
3.PPPoE协议
概述
PPPoE包括发现阶段和会话阶段 发现阶段:以太网类型0x8863 会话阶段:以太网类型0x8864
以太网 vs PPPoE
TCP/UDP… IP PPP PPPoE Ethernet
PPPoE帧格式
版本:4比特,当前值1 类型:4比特,当前值1 代码:8比特,报文类型 会话ID:16比特,服务器给客户端分配的会话唯一标识符 长度:16比特,PPPoE报文净符合的长度 净荷:可变长度,PPPoE报文数据
PPPoETag
PPPoE选项采用TLV编码 类型:16比特,标识选项类型 长度:16比特,标识数据长度 类型 数据:可变长度 0x0000
6 Req-sent
1 6 Irc,str/4 Scr/6 Tlf/3p Sca/8 Scn/6 Irc/7 Irc,scr/6 Sta/6 6 Scj/6 6 Tlf/3 6
UP Down Open Close TO+ TORCR+ RCRRCA RCN RTR RTA RUC RXJ+ RXJ-
3 Stopped
Tls/1 3r 2 Isrc,src,sra/8 Irc,scr,scn/6 Sta/3 Sta/3 Sta/3 3 Scj/3 3 Tlf/3 3
4 5 Closing Stopping
0 5r 4 Str/4 Tlf/2 4 4 4 4 Sta/4 Rlf/2 Scj/4 4 Tlf/2 4 1 5r 4 Str/5 Tlf/3 5 5 5 5 Sta/5 Tlf/3 Scj/5 5 Tlf/3 5
注释 选项结束标记 服务名,表示网络给用户提供的 服务 访问集中器的名字。用户可以根 据AC名字选择AC 主机唯一标识。唯一匹配用户的 发送和接收数据 用户防止DOS攻击 厂商标识符 中继会话ID。将PPPoE会话中继 到另外的AC 当请求的服务不被接收时,包含 该标记 AC出现错误

IPv6标准及进展

IPv6标准及进展

IPv6标准及进展摘要:本文首先对IETF的组织机构和工作流程进行介绍,然后梳理了与IPv6相关的RFC和Internet-Draft,介绍了业界对现有标准的支持程度和运营商基于这些标准采取的演进方式。

Abstract: IETF's organizational structure and work processes are introduced firstly, and then a summary of IPv6 related RFCs and Internet-Drafts is given, at last introduced the industry's supporting status for existing standards and ISP’s evolution method based on these standards.关键词:IETF, RFC, Internet-Draft, IPv6,过渡Keyword: IETF, RFC, Internet-Draft, IPv6, Transition作者:胡捷,中国电信股份有限公司北京研究院,高级工程师王茜,中国电信股份有限公司北京研究院,基础网络研究室主任陈运清,中国电信股份有限公司北京研究院,网络业务部副部长赵慧玲,中国电信股份有限公司北京研究院,副院长互联网已经成为事实上的电信网络载体,IPv6作为下一代互联网协议栈,将逐步取代IPv4已经成为共识。

在电信领域目前的ITU-T,BBF,IEEE及IETF等几大国际标准组织中,IETF对IPv6标准化进展起到的推动作用最大。

IETF虽然不是互联网的唯一标准化组织,但却是互联网基础技术和底层协议的最初创建者和维护者。

所以本文的内容主要围绕IETF相关标准进展来论述。

IETF的正式文件为RFC,但[RFC1796] (Huitema, C., Postel, J., and S. Crocker, “Not All RFCs are Standards,” April1995.)已经明确说明:不是所有RFC都是标准。

IPv6基本技术介绍

IPv6基本技术介绍
升级 设备 新增 设备
N
Cisco 3750 Cisco 3750
双栈 三层交换机
负载均衡器 (Alteon AD3) Cisco 2950 交换机
CDN (双栈业务平台)

门户 认证 接口 应用 湖南 江苏 门户 认证 接口 应用

VOD

VOD
业务实现:新建/升级VNET承载网络支持双栈。初期门户服务器双栈,其他服务器IPv4 单栈,VNET基本平台识别和处理双栈用户及ICP 属性,实现双栈接入流程。后期随着 业务发展逐步升级各类应用服务器。无锡升级 CDN业务平台支持双栈访问。 网络改造:长沙由于VNET承载网络不支持双栈升级,新增双栈汇聚交换机和接入交换 机。无锡升级汇聚交换机和负载均衡器支持双栈;CDN服务器群支持双栈,通过新增汇 22 聚交换机接入IPv4和IPv6网络。 xcf

IP地址:IPv6地址无格式限制
BR
2001:0:1:1::1
IPv4服务器 骨干网 (IPv4) 城域网 (双栈) BR
BRAS/SR
NAT64-GW
纯IPv6 接入
IPv6 /Port IPv6 流量 2001:0:0:1::1 /TCP 10000 IPv4 流量
DNS-ALG
IPv4/Port
IPV6地址架构标准(RFC1884,RFC2373,RFC3513,RFC4212) 协议转换标准(RFC1933,RFC2893,RFC4212)
3
xcf
核心技术
4
xcf
核心技术-技术特征
5
xcf
核心技术-地址格式
6
xcf
核心技术-地址格式
7
xcf
核心技术-地址格式

IPv6全球单播地址的分配情况统计

IPv6全球单播地址的分配情况统计

IPv6全球单播地址的分配情况统计[摘要]本文介绍了IPv6地址管理与分配策略,详细分析了全球IPv6地址分配情况,并对IPv6应用做了介绍。

[关键词] IPv6 地址管理地址分配策略地址分配情况1.引言IPv6是“Internet Protocol Version 6”的缩写,也被称作“下一代互联网协议”。

IPv6地址空间是128位,具有地址数目为2128个。

庞大的地址,其分配和管理都具有一定的难度,RFC2373规定了IPv6地址管理是分级管理,大大降低了IPv6地址管理的难度;RFC3177阐述了IPv6地址的分配策略,给IPv6地址的分配指出了一个明确的方向。

目前各RIR分配的主要是IPv6全球单播地址,根据RFC3177的分配原则,全球在2006年9月1日之前分配出去的IPv6地址块为1553个。

随着IPv6地址块的分配与应用,全球将进入IPv6时代。

2.各级IPv6地址分配机构IPv6地址空间的分配按照下图的等级结构在全球进行管理和规划。

国际因特网地址分配委员会IANA(Internet Assigned Numbers Authority),负责全球的IPv4和IPv6的地址分配和管理。

在国际因特网地址分配委员会下面是地域性因特地址注册机构RIR(Regional Internet Registry),国际因特网地址分配委员会把全球划分为亚太网络咨询中心APNIC、美国网络地址注册管理组织ARIN、欧洲网络控制中心RIPE NCC、拉丁美洲及加勒比网络咨询中心LACNIC和非洲网络咨询中心AFRINIC五大注册管理机构。

区域性因特地址注册机构主要任务是在各自的管理区域中管理和规划地址空间,目前IANA分别将2001:0200::/23、2001:0400::/23和2001:0600::/23分配给亚太、美国和欧洲三个区域性地址注册机构。

在区域性地址注册机构RIR下面是本地因特注册机构LIR(Local Internet Registry),本地因特注册机构LIR负责将地址分配给最终的网络用户。

RFC解析

RFC解析

RFC(Request For Comments)-意即“请求注解”,包含了关于Internet的几乎所有重要的文字资料。

如果你想成为网络方面的专家,那么RFC无疑是最重要也是最经常需要用到的资料之一,所以RFC享有网络知识圣经之美誉。

通常,当某家机构或团体开发出了一套标准或提出对某种标准的设想,想要征询外界的意见时,就会在Internet上发放一份RFC,对这一问题感兴趣的人可以阅读该RFC并提出自己的意见;绝大部分网络标准的指定都是以RFC的形式开始,经过大量的论证和修改过程,由主要的标准化组织所指定的,但在RFC中所收录的文件并不都是正在使用或为大家所公认的,也有很大一部分只在某个局部领域被使用或并没有被采用,一份RFC具体处于什么状态都在文件中作了明确的标识。

截止到2001年中期,公布的RFC大约有3000余篇,以下是几个较为稳定的RFC链接,以及几个重要的标准化组织的网站链接>>> RFC的官方站点,可以检查RFC最及时的更新情况最重要的Internet组织之一http://sunsite.dk RFC查询非常强大(可以以FTP登录下载全部RFC文档)http://www.iso.ch ISO-国际标准化组织 IEEE-电气与电子工程师协会 ANSI-美国国家标准化组织http://www.itu.int ITU-国际电信同盟下面的程序连接到的服务器,只要键入想查看的RFC的完整编号,就可以访问该文档;如果你还不是太清楚每个RFC描述的内容,可以先在本站下载RFC的目录文件压缩包>>> rfcindex.zip (141KB)RFC文档下载推荐RFC英文站点://rfcs/RFC分类检索:以下根据RFC被公布时的状态把RFC索引划分成几类:Standards(标准)Draft Standards(草案标准)Proposed Standards(提案标准)OTHER RFCS(其他RFC)Experimental(实验性的)Informational(知识性的)Historic(历史性的)Early RFCs (before IETF standards track早期的,在IETF标准化之前)RFC SUB-SERIES(RFC子集)Standards (标准,STD)Best Current Practice (最优当前实现,BCP)For Your Information (FYI)RFC文档阅读(中文):RFC 1-100RFC 101-700RFC 701-1000RFC 1001-1500RFC 1501-2000RFC 2001-2500RFC 2501-3000RFC 3001-3039Supported Internet RFCs and DraftsRFC文档下载(英文):[RFC1-500](950K)[RFC501-1000](3544K)[RFC1001-1500](13454K)[RFC1501-2000](8494K) [RFC2001-2500](7565K)[RFC2501-3000](9517K)[RFC3001-latest](1187K)常见协议RFC对应表协议层次协议缩写协议英文全称协议中文名RFCApplication LayerCOPS Common Open Policy Service 公共开放策略服务RFC 2748FANP Flow Attribute Notification Protocol 流属性通知协议RFC 2129Finger User Information Protocol 用户信息协议RFC 1194,1196,1228FTP File Transfer Protocol 文件传输协议RFC 959HTTP Hypertext Transfer Protocol 超文本传输协议RFC 1945,2616IMAP4 Internet Message Access Protocol version 4 因特网信息访问协议第四版RFC 1730IMPP Instant Messaging and Presence Protocol 即时信息表示协议RFC 3861IRC Internet Relay Chat Protocol Internet在线聊天协议RFC 1459ISAKMP Internet Security Association and Key Management Protocol ? Interne安全连接和密钥管理协议RFC 2048DNS Domain Name System 域名系统RFC 4343DHCP Dynamic Host Configuration Protocol 动态主机配置协议RFC 2131BOOTP Bootstrap Protocol 引导协议RFC 951NTP Network Time Protocol 网络时间协议RFC 958NNTP Network News Transfer Protocol 网络新闻传输协议RFC 977POP3 Post Office Protocol version 3 邮局协议第三版RFC 1939Radius Remote Authentication Dial In User Service 远程用户拨号认证服务协议RFC 2138RLOGIN Remote Login 远程登陆协议RFC 1258,1282RTSP Real-time Streaming Protocol 实时流协议RFC 2326SCTP Stream Control Transmision Protocol 流控制传输协议RFC 2960S-HTTP Secure Hypertext Transfer Protocol 安全超文本传输协议RFC 2660SLP Service Location Protocol 服务定位协议RFC 2165SMTP Simple Mail Transfer Protocol 简单邮件传输协议RFC 821,2821ICP Internet Cache Protocol Internet缓存协议RFC 2186SNMP Simple Network Management Protocol 简单网络管理协议RFC 1157SOCKS Socket Secure 安全套接字协议RFC 1928TACACS Terminal Access Controller Access Control System 终端访问控制器访问控制系统协议RFC 1492TELNET TCP/IP Terminal Emulation Protocol TCP/IP终端仿真协议RFC 854TFTP Trivial File Transfer Protocol 简单文件传输协议RFC 1350X-Window X Window X Window RFC 1198Presentation LayerNBSSN NetBIOS Session Service NetBIOS会话服务协议RFC 1001LPP LightWight Presentation Protocol 轻量级表示协议RFC 1085Session LayerTLS Transport Layer Security 传输层安全协议RFC 2246LDAP Lightweight Directory Access Protocol 轻量级目录访问协议RFC 1777RPC Remote Procedure Call protocol 远程过程调用协议RFC 1050,1057,1831Transport LayerMobile IP Mobile IP Protocol 移动IP协议RFC 2002RUDP Reliable User Datagram Protocol 可靠的用户数据报协议RFC 908,1151TALI Transport Adapter Layer Interface 传输适配层接口协议RFC 3094TCP Transmission Control Protocol 传输控制协议RFC 793UDP User Datagram Protocol 用户数据报协议RFC 768Van Jacobson compressed TCP 压缩TCP协议RFC 1144XOT X.25 over TCP 基于TCP之上的X.25协议RFC 1613Network LayerEGP Exterior Gateway Protocol 外部网关协议RFC 827OSPF Open Shortest Path First 开放最短路径优先协议RFC 2178,2328DVMRP Distance Vector Multicast Routing Protocol 距离矢量组播路由协议RFC 1075ICMP Internet Control Message Protocol version 4 Internet控制信息协议RFC 792ICMPv6 Internet Control Message Protocol version 6 Internet控制信息协议第6版RFC 1885,2463 IGMP Internet Group Management Protocol Internet组管理协议RFC 1112, 2236,3376IP Internet Protocol version 4 互联网协议RFC 791NHRP Next Hop Resolution Protocol 下一跳解析协议RFC 2332IPv6 Internet Protocol version 6 互联网协议第6版RFC 1883,2460MOSPF Mulitcast Open Shortest Path First 组播开放最短路径优先协议RFC 1585PGM Pragamatic General Mulitcast Protocol 实际通用组播协议RFC 3208PIM-SM Protocol Independent Multicast-Sparse Mode 稀疏模式独立组播协议RFC 2362 PIM-DM Protocol Independent Multicast-Dense Mode 密集模式独立组播协议RFC 3973 SLIP Serial Line IP 串行线路IP协议RFC 1055MARS Multicast Address Resolution Server 组播地址解析服务器协议RFC 2022RIP2 Routing Information Protocol version 2 路由信息协议第2版RFC 2453RIPng for IPv6 Routing Information Protocol for IPv6 IPv6路由信息协议RFC 2080 RSVP Resource-Reservation Protocol 资源预留协议RFC 2205,2750VRRP Virtual Router Redundancy Protocol 虚拟路由器冗余协议RFC 2338,3768AH Authentication Header Protocol 认证头协议RFC 2402ESP Encapsulating Security Payload 安全封装有效载荷协议RFC 2406Data Link LayerARP Address Resolution Protocol 地址解析协议RFC 826RARP Reverse Address Resolution Protocol 逆向地址解析协议RFC 903IARP Inverse Address Resolution Protocol 逆向地址解析协议RFC 2390DCAP Data Link Switching Client Access Protocol 数据转接客户访问协议RFC 2114 MPLS Multi-Protocol Label Switching 多协议标签交换协议RFC 3031,3032ATMP Ascend Tunnel Management Protocol 接入隧道管理协议RFC 2107L2F The Layer 2 Forwarding Protocol 第二层转发协议RFC 2341L2TP Layer 2 Tunneling Protocol 第二层隧道协议RFC 2661PPTP Point to Point Tunneling Protocol 点对点隧道协议RFC 2637常见RFC名称RFC1 主机软件RFC2 主机软件RFC3 文档规范RFC4 网络时间表RFC6 与Bob Kahn 会话RFC10 文档规范RFC13 零文本长度的EOF信息RFC16 M.I.TRFC18 IMP-IMP和主机-主机控制联接RFC19 可用来降低有限交换节点阻塞的两条协议性的建议RFC20 用于网络交换的ASCII 格式RFC21 网络会议RFC22 主机-主机控制信息格式RFC23 多重传送的调节信息RFC24 文档规范RFC25 不使用高的连接号RFC27 文档规范RFC28 时间标准RFC29 响应RFC 28RFC30 文档规范RFC32 关于SRI所提议的实时时钟的一些想法RFC34 关于ARC时钟的一些初步记录摘要RFC35 网络会议RFC36 协议注解RFC37 网络会议结尾等RFC38 NWG/RFC 36 网络协议的注解RFC40 关于未来协议的更多注解RFC41 IMP-IMP 通讯信息RFC42 信息数据类型RFC43 被提议的会议RFC45 关于未来协议的更多注解RFC53 官方协议机构RFC58 逻辑信息同步RFC60 简单的NCP 协议RFC63 迟来的网络会议报告RFC66 NIC - 第三级别的想法和其它噪音RFC69 提议改变主机/IMP 规范来消除标记RFC71 输入错误后的再分配RFC72 建议改变网络协议延期执行RFC73 响应NWG/RFC 67RFC75 网络会议RFC78 NCP状态报告:UCSB/RANDRFC79 圆木协议错误RFC81 涉及信息的请求RFC84 NWG/RFC的1-80列表RFC85 网络工作组会议RFC90 CCN 作为一种网络服务中心RFC99 网络会议RFC101 对1971年2月17日伊利诺斯州的Urbana的网络工作组会议的注释RFC102 主机-主机协议故障清除委员会的说明RFC103 中断键的执行RFC104 连接191RFC105 通过UCSB 进行远程登录和远程输出返回的网络说明书RFC106 用户/服务器站点协议的网络主机问卷RFC107 主机-主机协议故障清除委员会的说明RFC108 1971年2月17-19日在Urbana 举行的NWG 会议的人员列表RFC124 在RFC 107 中有印刷错误RFC132 RFC 107 的排版错误RFC148 RFC 123 的注释RFC149 最好的铺设计划RFC154 风格显示RFC156 伊利诺斯州站点的状态: 响应RFC 116RFC179 连接的数字分配RFC185 NIC 分发手册RFC188 数据管理会议公告RFC198 站点证明-林肯实验室360/67RFC204 利用报路RFC218 改变IMP 状态报告设备RFC228 澄清RFC232 网络图形会议延缓RFC245 预定网络工作组会议RFC246 网络图形会议RFC256 IMPSYS 变更通知RFC276 NIC过程RFC285 网络图形RFC324 RJE 协议会议RFC335 新界面- IMP/360RFC348 放弃过程RFC404 文件迁移协议的注释RFC405 给TIP 用户的第二封信RFC456 UCSB 的数据重置服务RFC457 FTP 的服务器与服务器交互RFC496 IMP/TIP 内存更新时间表(修订版2)RFC516 丢失消息的检测RFC591 在NVT ASCII UCSB和在线系统之间的实验输入映象RFC621 “注意圣诞节的时候要把长袜挂在烟囱下面”RFC628 更深的数据语言的设计观念RFC634 最近的网络图RFC637 SU-DSL网络地址的更改RFC677 双重数据库的维护RFC692 对于IMP/HOST 协议的改动的注释(RFCS 687 AND 690) RFC697 FTP的CWD命令RFC698 Telnet扩展ASCII选项RFC763 角色邮箱RFC775 面向目录的FTP 命令RFC779 Telnet发送-位置选项RFC792 Internet 控制信息协议RFC797 位图文件格式RFC821 简单邮件传输协议RFC826 以太网地址转换协议或转换网络协议地址RFC827 Exterior 网关协议(EGP)RFC854 Telnet协议说明书RFC855 Telnet选项说明书RFC856 Telnet二进制传输RFC857 Telnet回声选项RFC858 Telnet抑制前进选项RFC859 Telnet状态选项RFC860 Telnet定时标记选项RFC861 Telnet扩展选项列表选项RFC862 回声协议RFC863 废除协议RFC864 字符产生协议RFC865 白天协议的引用RFC866 激活用户RFC867 白天协议RFC868 时间协议RFC872 局域网上的TCP协议RFC877 IP 数据包通过公共数据网络的传输标准RFC888 STUB Exterior Gateway ProtocolRFC890 外部网关协议执行表RFC894 IP 数据包通过以太网网络传输标准RFC895 IP 数据包通过试验性以太网网络的传输标准RFC896 在IPTCP internet网络中的拥塞控制RFC903 反向地址转换协议RFC911 BERKELEY UNIX 4.2下的EGP网关RFC917 因特网子网RFC918 邮局协议RFC925 多局域网地址解决RFC930 Telnet终端类型选项RFC932 子网地址分配方案RFC937 邮局协议( 版本2)RFC948 IP 数据包通过IEEE 802.3 网络传输的两种方法RFC949 FTP 未公开的独特命令RFC951 引导协议(BOOTP)RFC955 朝向一个处理过程应用的传输服务RFC962 TCP-4 的最初RFC968 “这是开动前的黑暗”RFC974 邮件路由与域名系统RFC975 自治联邦RFC976 UUCP 邮件互换格式标准RFC985 Internet 网关要求- 起草RFC988 主机扩展用于IP多点传送RFC1050 RPC远程步骤呼叫协议说明书RFC1055 在串行线路上传输IP数据报的非标准协议RFC1057 RPC远程步骤呼叫协议说明书版本2RFC1073 Telnet窗口大小选项RFC1075 远距离矢量多播选路协议RFC1088 IP 数据包传输通过NetBIOS网络的标准RFC1090 SMTP在X.25RFC1091 TelnetTELNET终端类型选项RFC1094 NFS网络文件系统协议说明书RFC1096 Telnet X 显示定位选项RFC1097 Telnet潜意识-信息选项RFC1112 主机扩展用于IP多点传送RFC1113 Internet电子邮件秘密增强第一部分- 信息加密和身份验证步骤RFC1131 OSPF规范RFC1132 802.2分组在IPX网络上传输的标准RFC1134 +PPP协议:关于在点到点链路上进行多协议包传送的建议RFC1142 OSI IS-IS 域内路由协议RFC1144 低速串行链路上的TCPIP头部压缩RFC1145 SNMPv2的管理模型RFC1155 基于TCPIP网络的管理结构和标记RFC1166 Internet数字RFC1180 TCPIP指南RFC1191 路径MTU探索RFC1215 为使用SNMP定义Trap的惯例RFC1239 试验管理系统库(MIB)到标准管理系统库(MIB)的重分配RFC1242 基准术语用于网络互连设备RFC1258 BSD 的远程登录RFC1287 未来的Internet 体系结构RFC1288 Finger用户信息协议RFC1298 基于IPX协议的SNMPRFC1321 MD5 信息-摘要算RFC1332 PPP Internet 协议控制协议(IPCP)RFC1333 PPP 链接质量监控RFC1355 网络中心数据库的保密和准确性问题RFC1365 一种IP地址扩展提议RFC1370 OSPF适用范围声明RFC1387 RIP(版本2)协议分析RFC1388 RIP协议版本2RFC1393 Traceroute使用IP选项RFC1397 在边界网关协议(Border Gateway Protocol)版本2RFC1408 Telnet环境选项RFC1413 鉴定协议RFC1414 身份识别管理系统库(MIB)RFC1418 SNMP优于OSIRFC1420 SNMP优于IPXRFC1426 SMTP服务扩展用于8bit-多用途网际邮件扩充协议(MIME)传输RFC1428 Internet邮件从Just-Send-8到8bit-SMTPMIME的转换RFC1433 直接ARPRFC1445 简单网络管理协议(SNMPv2)版本2的管理模式RFC1454 下一代IP提议的比较RFC1461 通过X.25多协议互连SNMP管理系统库(MIB)扩展RFC1469 通过令牌-环局域网的IP多点传送RFC1483 通过ATM适应层5的多协议封装RFC1558 LDAP研究过滤器的字符串表达RFC1571 Telnet环境选项互用性问题RFC1590 媒体类型注册过程RFC1591 域名系统的结构和授权RFC1597 私有Internet的地址分配RFC1605 SONET to Sonnet翻译RFC1606 用IP版本9的历史观RFC1611 DNS服务器MIB扩展RFC1612 DNS解析器MIB扩展RFC1618 ISDN上的PPP(点对点)协议RFC1628 UPS 管理信息基础RFC1633 Internet 体系结构中的综合服务概述RFC1635 怎样使用匿名FTPRFC1636 IAB工厂关于在Internet体系结构的安全报告-2月8-10号, 1994 RFC1643 以太网-类似界面类型的管理对象的定义RFC1658 字符流设备使用SMIv2管理对象的定义RFC1661 点对点协议(PPP)RFC1671 向IPng 过渡和其他考虑的白皮书RFC1690 Internet工程与计划组(IEPG)介绍RFC1691 康奈尔大学数字图书馆文档体系结构RFC1696 用SMIv2定义的调制解调器MIBRFC1713 DNS调试工具RFC1715 地址分配效率比率HRFC1723 路由信息协议(版本2)RFC1724 RIP 版本2 管理系统库(MIB) 扩展RFC1738 统一资源定位器(URL)RFC1752 推荐IP下一代协议RFC1769 简单网络时间协议(SNTP)RFC1771 边界网关协议版本4(BGP-4)RFC1776 地址是信息RFC1777 轻量级目录访问协议RFC1787 在多供应Internet上的软件路由RFC1796 不是所有RFCs是标准RFC1797 A级子网实验RFC1810 报告MD5性能RFC1818 最好最新的实践RFC1822 使用具备Photuris技术的指定IBM专利的权利的授予RFC1823 LDAP 应用程序界面RFC1827 IP 密码安全有效载荷(ESP)RFC1828 使用键控MD5进行IP鉴别RFC1860 IPv4变量长度子网表RFC1867 HTML中基于表单的文件上传RFC1869 SMTP服务扩展RFC1878 变量长度子网表格用于IPv4RFC1881 IPv6 地址分配管理RFC1883 Internet协议,版本6(IPv6)说明书RFC1886 DNS扩展支持IP版本6RFC1901 基于社区的SNMPv2介绍RFC1904 简单网络管理协议(SNMPv2)版本2的一致声明RFC1918 个人Internets的地址分配RFC1928 SOCKS V5的用户名/密码鉴定RFC1930 自治系统(AS)创建,选择,和注册的指导方针RFC1939 邮局办公协议-版本3RFC1942 HTML表格RFC1945 超文本传输协议--HTTP/1.0RFC1956 在MIL域中注册RFC1957 邮局协议(POP3)执行的一些观察RFC1962 PPP压缩控制协议(CCP)RFC1977 PPP BSD 压缩协议RFC1979 PPP压缩协议RFC1981 IP 版本6的路径MTU探索RFC1982 序列号算法RFC1988 有条件地授予权利给特殊的HP专利于连接Internet工程特遣队的Internet-标准网络管理框架中RFC1993 PPP G和alf FZA 压缩协议RFC1994 PPP挑战握手身份验证协议(CHAP)RFC1997 BGP 组属性RFC1998 BGP 社区属性在多本地路由中的应用RFC2002 IP移动性支持RFC2003 在IP内封装IPRFC2004 IP最小封装RFC2005 IP移动性的适用性陈述RFC2011 SNMPv2 管理信息基础用于Internet 协议使用SMIv2RFC2012 SNMPv2 管理信息基础用于传输控制协议使用SMIv2RFC2013 有关采用SMIv2用户数据报协议的SNMPv2管理信息数据库RFC2015 多用途网际邮件扩充协议(MIME)安全具有相当好的保密性(PGP)RFC2021 远程网络监控管理信息基础版本2使用SMIv2RFC2025 简单公共密钥GSS-API机制(SPKM)RFC2040 RC5, RC5-CBC, RC5-CBC-Pad,和RC5-CTS算法RFC2042 注册新BGP属性类型RFC2046 多用途Internet邮件扩展(多用途网际邮件扩充协议(MIME))第二部分:媒体类型RFC2053 AM (美国)域RFC2078 通用安全服务应用接口(GSS-API)V2RFC2079 X.500 属性类型和对象类别去掌握统一资源定位器(URIs)的定义RFC2085 具有重放预防的HMAC-MD5 IP 身份验证RFC2088 IMAP4非同步字符RFC2095 简单挑战/回应的IMAP/POP授权扩展RFC2096 IP面向表格管理系统库(MIB)RFC2101 IPv4 今天地址行为RFC2104 HMAC:键入-散列法用于信息身份验证RFC2105 CCisco 系统的标签交换体系结构纵览RFC2113 IP路由器警告选项RFC2118 微软点对点压缩(MPPC)协议RFC2119 关键字用于使用在RFCs指出要求水平RFC2128 拨号控制MIB(SMIv2)RFC2144 CAST-128 加密算法RFC2147 TCP和UDP通过IPv6 JumbogramsRFC2198 多余音频数据的RTP有效载荷RFC2208 资源预留协议(RSVP)——版本1 适用性声明关于配置的一些指导RFC2212 有保证的质量服务说明书RFC2213 综合服务管理信息基础使用SMI版本2RFC2217 TelnetCom端口控制选项RFC2221 IMAP4 登陆参考RFC2228 FTP 安全扩展RFC2234 语法说明书的扩充BNF:ABNFRFC2236 Internet组管理协议,版本2RFC2241 Novell目录服务的DHCP选项RFC2245 匿名SASL机制RFC2260 可升级支持用于多目录多供应者的连通RFC2279 UTF-8,ISO 10646的一种转换格式RFC2281 Cisco热备份路由协议(HSRP)RFC2283 BGP-4的多协议扩展RFC2284 PPP可扩展认证协议RFC2289 一种一次性密码系统RFC2296 HTTP 远程变量选择算法--RVSA/1.0RFC2313 PKCS#1:RSA加密版本1.5RFC2330 IP 执行规则的管理RFC2343 应用于捆绑的MPEG的RTP有效载荷的格式RFC2344 移动IP反向隧道RFC2349 TFTP 休息间隔和传输大小选项RFC2367 PF_KEY键管理API,版本2RFC2372 处理Internet协议(TIP)-要求和补充信息RFC2373 IPv6寻址体系结构RFC2374 IPv6 可集聚全球单播地址格式RFC2379 RSVP通过ATM执行的指导方针RFC2384 POP URL 方案RFC2393 IP有效载荷压缩协议(IPComp)RFC2394 IP有效载荷压缩使用DEFLATERFC2401 Internet 协议的安全体系结构RFC2403 在ESP和AH中使用HMAC-MD5-96RFC2404 在ESP和AH中使用HMAC-SHA-1-96RFC2406 IP 封装安全有效载荷(ESP)RFC2407 Internet IP 用于解释ISAKMP的安全域RFC2408 Internet 安全关联和键管理协议(ISAKMP)RFC2409 Internet密钥交换(IKE)RFC2410 NULL加密算法及其在IPsec协议中的应用RFC2411 IP安全文件指南RFC2412 OAKLEY 键决定协议RFC2413 Dublin核心元数据用于资源发掘RFC2435 针对JPEG压缩视频的RTP荷载格式RFC2449 POP3 扩展机制RFC2451 ESP CBC-模式密码算法RFC2459 Internet X.509 公钥基础设施:证书和CRL简介RFC2460 Internet协议,版本6(IPv6)说明书RFC2463 针对因特网协议第六版(Ipv6)的因特网控制报文协议(ICMPv6)规范RFC2466 IP 版本6 管理信息基础:ICMPv6组RFC2471 IPv6检测地址分配RFC2474 IPv4与IPv6包头中差分服务字段(DS Field)的定义RFC2475 分类业务的体系结构RFC2492 IPv6 通过ATM网络RFC2495 有关DS1,E1,DS2,E2接口类型的管理部件的定义RFC2508 低速串行链路下IP/UDP/RTP数据包头的压缩RFC2511 Internet X.509认证请求消息格式RFC2516 在以太网上传输PPP的方法(PPPoE)RFC2526 IPv6保留的子网任意传送地址RFC2541 DNS 安全操作考虑RFC2547 BGP/MPLS VPNsRFC2554 SMTP服务认证扩展RFC2560 x.509因特网公钥基础设施在线证书状态协议——OCSPRFC2570 标准互联网络管理框架第三版介绍RFC2577 FTP 安全考虑RFC2581 TCP拥塞控制RFC2582 TCP的快速恢复算法NewReno修正RFC2585 Internet X.509 公共键底部结构操作协议: FTP和HTTPRFC2597 确定的面向PHB组RFC2598 面向加速PHBRFC2618 RADIUS 身份验证客户端管理系统库(MIB)RFC2629 用XML 写I-Ds 和RFC文档RFC2633 S/多用途网际邮件扩充协议(MIME) 版本3 信息说明书RFC2644 更改直接广播在路由器上的缺省值RFC2669 DOCSIS 电缆设备管理系统库(MIB)电缆设备管理信息基础用于DOCSIS 适应性电缆调制解调器和电缆调制解调器中断系统RFC2670 音频频率(RF)界面管理信息基础用于MCNS/DOCSIS适应性RF界面RFC2685 虚拟专用网标志符RFC2702 基于MPLS的流量工程要求RFC2706 ECML v1:电子商务字段名RFC2713 LDAP(轻型目录存取协议)目录中JAVATM对象的表征模式RFC2714 LDAP(轻型目录存取协议)目录中的CORBA对象参考方案RFC2731 Dublin核心元数据在HTML上的编码RFC2732 文本IPv6地址在URL上的格式RFC2733 RTP有效载荷格式用于普通正向错误更正RFC2736 RTP有效载荷格式说明书作者的指导方针RFC2754 RPS IANA的发布RFC2756 超文本缓存协议(HTCP/0.0)RFC2764 IP VPN的框架体系RFC2773 使用KEA和SKIPJACK加密RFC2774 HTTP 扩展框架RFC2781 UTF-16,ISO 10646的一种编码RFC2784 通用路由封装(GRE)RFC2788 网络服务监视MIBRFC2793 用于文本交谈的RTP负载RFC2796 BGP路由映象RFC2809 通过RADIUS的L2TP强制通道的执行RFC2810 Internet 延迟交谈:体系结构RFC2811 Internet延迟交谈:通道管理RFC2813 Internet 延迟交谈:服务器协议RFC2817 在HTTP/1.1中升级到TLSRFC2818 TLS之上的HTTPRFC2824 呼叫过程语言框架和要求RFC2825 复杂网络:I18N的发布,域名,和其它Internet协议RFC2829 LDAP的身份验证方法RFC2830 轻量级目录访问协议(v3): 传输层安全扩展RFC2833 用于DTMF数字信号、电话音和电话信号的RTP负载格式RFC2854 text/html 媒体类型RFC2855 IEEE 1394的DHCPRFC2861 TCP 拥塞窗口检验RFC2862 用于实时指针的RTP负载格式RFC2866 RADIUS(远程用户拨号认证系统)记帐协议RFC2867 RADIUS 账目管理修改用于通道协议支持RFC2868 RADIUS 属性用于协议支持RFC2869 RADIUS 扩展RFC2871 一个IP电话路由框架RFC2873 在Ipv4优先域中的TCP过程RFC2874 支持IPv6地址集合和重编号的DNS 扩展RFC2882 网络访问服务要求: 扩展范围实践RFC2887 可靠的多点传送设计空间用于大的数据传送RFC2889 基准方法论用于局域网交换设备RFC2890 GRE中Key和SequenceNumber扩展RFC2893 IPv6 主机和软件路由器转换机制RFC2898 PKCS #5: 基于密码的密码系统说明书版本2.0. BRFC2906 AAA 授权要求RFC2914 拥塞控制原理RFC2917 核心MPLS IP VPN 体系结构RFC2918 BGP-4(边界网关协议)的路由刷新功能RFC2920 SMTP 针对命令流水线的服务扩展RFC2923 TCP的路径MTU发现问题RFC2932 IPv4 多点传送路由管理系统库(MIB)RFC2935 Internet开放贸易协议(IOTP)HTTP 补充RFC2939 新DHCP选项和信息类型的定义步骤和IANA指导方针RFC2945 SRP身份验证和键交换系统RFC2946 Telnet 数据加密选项RFC2947 Telnet加密:DES3 64位密码回馈RFC2948 Telnet加密:DES3 64位输出回馈RFC2949 Telnet加密:CAST-128 64比特输出回馈RFC2950 Telnet加密:CAST-128 64比特密码回馈RFC2951 使用KEA和SKIPJACK进行TELNET身份验证RFC2952 Telnet加密:DES 64位密码回馈RFC2953 Telnet加密:DES 64比特输出回馈RFC2957 The 应用/whoispp-请求目录-类型RFC2958 The 应用/whoispp-回答目录-类型RFC2959 实时传输协议管理信息库RFC2964 超文本传输协议(HTTP)状态管理的应用RFC2971 Internet信息访问协议(IMAP4)的标识符扩展RFC2976 SIP信息方法RFC2983 有区别的协议和通道RFC2984 CAST-128密码算法在CMS中的使用RFC2987 字符集注册和语言媒体特征标签RFC2988 计算TCP重传时间的定时器RFC2991 多路径分发在Unicast上和多点传送下一路程段选择RFC2992 等值多-路径算法的分析RFC2994 MISTY1加密算法的描述RFC3001 对象标识符的URN名称空间RFC3003 audio/mpeg 媒体类型RFC3005 IETF 讨论列表许可证RFC3007 安全的域名系统动态更新RFC3009 奇偶向前纠错MIME类型的注册RFC3012 移动IP的询问/应答扩展机制RFC3014 提示日志管理系统库(MIB)RFC3016 用于MPEG-4视听流的RTP负载格式RFC3018 统一内存空间协议说明书RFC3019 IP 版本6 管理信息基础用于多点传送听众探索协议RFC3021 在Ipv4点对点连接中使用31位前缀RFC3022 传统IP网络地址转换(传统NAT)RFC3026 在ENUM上联络到IETF/ISOCRFC3028 滤网:一种邮件过滤语言RFC3029 Internet X.509 公共键下部构造数据有效性和认证服务协议RFC3032 MPLS标记栈编码RFC3033 信息域和协议标识符在Q.2941普通标识符和Q.2957用户对用户发送信号中的分配用于Internet 协议RFC3034 标签转换在帧中继网络说明书中的使用RFC3035 MPLS使用LD和ATM VC交换RFC3037 LDP 的适用性RFC3038 VCID提示通过ATM链接用于LDPRFC3040 Internet网复制和缓存分类法RFC3042 使用有限传输增强TCP的丢失恢复能力RFC3043 Network Solutions的个人网络名(PIN): 一种个人和组织的统一资源名域RFC3044 在ISSN-URN命名空间中用ISSN作为URNRFC3046 DHCP 中继代理信息选项RFC3048 可靠的多点传输建立阻止一对多大数据传送RFC3051 IP有效载荷压缩使用ITU-T V.44打包方法RFC3055 PINT服务体系结构管理信息基础.RFC3058 IDEA加密算法在CMS上的使用RFC3059 服务定位协议的属性列表扩展RFC3061 对象标识符的一种URN姓名空间RFC3062 LDAP口令修改扩展操作RFC3066 语言鉴定标签RFC3067 TERENA'S事件对象描述和转换格式要求RFC3069 VLAN聚合实现IP地址有效分配RFC3070 基于帧中继的第二层隧道协议RFC3072 结构化的数据改变格式(SDXF)RFC3074 DHC加载平衡算法RFC3078 微软点对点加密(MPPE)协议RFC3081 将区块扩展交换协议(BEEP)核心映射到传输控制协议(TCP)RFC3082 服务定位协议(SLP)的预研报告RFC3083 基线私人界面管理信息基础(MIB)用于兼容Cable Modems和Cable Modem 终端系统的DOCSISRFC3085 新闻型标记语言(NewsML)资源的URN名字空间RFC3090 域名系统在区域状况下的安全扩展声明RFC3091 改进数字产生协议RFC3093 防火墙增进协议(FEP)。

VPN的典型隧道协议

VPN的典型隧道协议

VPN的典型隧道协议隧道技术是一种通过使用互联网络的基础设施在网络之间传递数据的方式。

使用隧道传递的数据(或负载)可以是不同协议的数据桢(此字不正确)或包。

隧道协议将这些其它协议的数据桢或包重新封装在新的包头中发送。

新的包头提供了路由信息,从而使封装的负载数据能够通过互联网络传递.被封装的数据包在隧道的两个端点之间通过公共互联网络进行路由.被封装的数据包在公共互联网络上传递时所经过的逻辑路径称为隧道。

一旦到达网络终点,数据将被解包并转发到最终目的地。

注意隧道技术是指包括数据封装,传输和解包在内的全过程。

1、点对点隧道协议(PPTP)点对点隧道协议(PPTP,Point-to-point Tunneling Protocol)是一种用于让远程用户拨号连接到本地ISP,通过因特网安全远程访问公司网络资源的新型技术.PPTP对PPP协议本身并没有做任何修改,只是使用PPP拨号连接,然后获取这些PPP包,并把它们封装进GRE头中。

PPTP使用PPP协议的PAP或CHAP(MS-CHAP)进行认证,另外也支持Microsoft公司的点到点加密技术(MPPE)。

PPTP支持的是一种客户-LAN型隧道的VPN实现。

传统网络接入服务器(NAS)执行以下功能:它是PSTN或ISDN的本地接口,控制着外部的MODEM或终端适配器:它是PPP链路控制协议会话的逻辑终点;它是PPP认证协议的执行者;它为PPP多链路由协议进行信道汇聚管理;它是各种PPP网络控制协议的逻辑终点。

PPTP协议将上述功能分解成由两部分即PAC(PPTP接入集中器)和PNS(PPTP 网络服务器)来分别执行。

这样一来,拨号PPP链路的终点就延伸至PNS。

PPTP协议正是利用了“NAS功能的分解”这样的机制支持在因特网上的VPN实现。

ISP的NAS将执行PPTP协议中指定的PAC的功能。

而企业VPN中心服务器将执行PNS的功能,通过PPTP,远程拥护首先拨号到本地ISP的NAS,访问企业的网络和应用,而不再需要直接拨号至企业的网络,这样,由GRE将PPP报文封装成IP报文就可以在PAC-PNS 之间经由因特网传递,即在PAC和PNS之间为用户的PPP会话建立一条PPTP隧道。

RFC协议标准

RFC协议标准

标准参考文档链路层协议PPP(Point-to-Point Protocol):RFC 1332: The PPP Internet Protocol Control Protocol (IPCP)RFC 1334: PPP Authentication ProtocolsRFC 1552: The PPP Internetworking Packet Exchange Control Protocol (IPXCP) RFC 1570: PPP LCP Extensions(实现了其中的callback选项)RFC 1661: The Point-to-Point Protocol (PPP)RFC 1877: PPP Internet Protocol Control Protocol Extensions for Name Server AddressesRFC 1990: The PPP Multilink Protocol (MP)RFC 1994: PPP Challenge Handshake Authentication Protocol (CHAP)RFC 2509: IP Header Compression over PPPRFC 1962: The PPP Compression Control Protocol (CCP)RFC 1974: PPP Stac LZS Compression ProtocoldX25、LAPB(Link Access Protocol Balanced):RFC1613:Cisco Systems X.25 over TCP(XOT)RFC1598:PPP in X.25RFC1461:SNMP MIB extension for MultiProtocol Interconnect over X.25RFC1382: SNMP MIB Extension for the X.25 Packet LayerRFC1381: SNMP MIB Extension for X.25 LAPBRFC1356: Multiprotocol Interconnect on X.25 and ISDN in the Packet ModeRFC1236: IP to X.121 Address Mapping for DDNRFC1226: Internet Protocol Encapsulation of AX.25 FramesRFC1090: SMTP on X.25RFC1086: ISO-TP0 bridge between TCP and X.25RFC874: Critique of X.25RFC1236: IP to X.121 Address Mapping for DDNRFC1133: Routing between the NSFNET and the DDNCisco-HDLC:Cisco-HDLC是CISCO自己设计的一个协议,没有可参考的标准Frame Relay:RFC1294/1490: Multiprotocol Interconnect over Frame RelayRFC1293: Inverse Address Resolution Protocol(INARP)RFC1315: Management Information Base for Frame Relay DTEsITU-T Q933附录A:帧中继本地管理接口(LMI)协议ANSI T1.617附录D:帧中继本地管理接口(LMI)协议ISDN(Integrated Services Digital Network):ITU-T Q.931建议(网络层)ITU-T Q.921建议(链路层)IP层协议RFC791: Internet Protocol. (IP)RFC792: Internet Control Message Protocol (ICMP)RFC793: TRANSMISSION CONTROL PROTOCOL (TCP)RFC896: Congestion Control in IP/TCP InternetworksRFC768: User Datagram Protocol (UDP)RFC 826: An Ethernet Address Resolution Protocol (ARP)Socket: Unix标准路由协议RIP(Routing Information Protocol):RFC1058: Routing Information ProtocolRFC1723: RIP Version 2RFC2082: RIP-2 MD5 AuthenticationOSPF(Open Shortest Path First):RFC2328: OSPF Version 2RFC1793: Extending OSPF to Support Demand CircuitsIGRP(Interior Gateway Routing Protocol):IGRP协议无标准RFC,与CISCO保持兼容BGP(Border Gateway Protocol):RFC1771: A Border Gateway Protocol 4(BGP-4)RFC1772: Application of the Border Gateway Protocol in the Internet (BGP-4) RFC1965: Autonomous System Confederations for BGPRFC1966: BGP Route Reflection -- An alternative to full mesh IBGPRFC1997: BGP Community AttributeRFC2439: BGP Route Flap Damping网络安全RADIUS(Remote Authentication Dial In User Service):RFC2138: Remote Authentication Dial In User Service (RADIUS)RFC2139: RADIUS AccountingGRE(Generic Routing Encapsulation):RFC1701: Generic Roouting Encapsulation (老版本)RFC1702: Generic Routing Encapsulation over IPv4 networksRFC2784: Generic Roouting Encapsulation (新版本)RFC2667: IP Tunnel MIBIPSEC(IP Security):RFC1825: Security Architechure for the Internet Protocol (老版本)RFC2401: Security Architechure for the Internet Protocol (新版本)AH(Authentication Header)协议:RFC2402: IP Authentication HeaderRFC1321: The MD5 Message-Digest AlgorithmRFC2104: HMAC: Keyed-Hashing for Message AuthenticationRFC2085: IP Authentication with Replay PreventionRFC2403: The Use of HMAC-MD5-96 within ESP and AHRFC2404: The Use of HMAC-SHA-1-96 within ESP and AHESP(Encapsulating Security Payload):RFC2406: IP Encapsulating Security Payload (ESP)RFC2405: The ESP DES-CBC Cipher Algorithm With Explicit IVIKE(Internet Key Exchange):RFC2408:Internet Security Association and Key Management Protocol (ISAKMP) RFC2409:The Internet Key Exchange (IKE)RFC2407:The Internet IP Security Domain of Interpretation for ISAKMP (IPSEC DOI)L2TP(Layer 2 Tunnel Protocol):RFC2661:Layer 2 Tunnel ProtocolNAT(Network Address Translator):RFC1631:The IP Network Address Translator (NAT)RFC2663:IP Network Address Translator (NAT) Terminology and Considerations 网络管理SNMP(Simple Network Management Protocol):RFC 1157: Simple Network Management Protocol (SNMP)。

IPv6 over PPP-RFC5072(中文)

IPv6 over PPP-RFC5072(中文)

本文翻译者:weicq2000(weicq2000@,欢迎沟通,共同推进RFC标准中文化。

)Network Working Group S. Varada, Ed. Request for Comments: 5072 Transwitch Obsoletes: 2472 D. Haskins Category: Standards Track E. Allen2007年9月IPv6 over PPP本备忘录状态This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.摘要点对点协议(Point-to-Point Protocol, PPP)提供在点对点链路上封装网络层协议信息的标准方法。

PPP也定义可扩展的链路层协议(Link Control Protocol, LCP),以及提供一组建立和配置不同网络层协议的网络控制协议(Network Control Protocols, NCPs)。

本文件定义在PPP链路上发送IPv6分组的方法,建立和配置IPv6 over PPP的NCP,以及在PPP链路上形成IPv6链路本地地址的方法。

本文件也规定在为PPP链路配置的IPv6全球单播地址上执行重复地址检测(Duplicate Address Detection, DAD)的条件,该IPv6全球单播地址或者是通过有状态或者是通过无状态地址自动配置获得的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Network Working Group D. Haskin Request for Comments: 2472 E. Allen Obsoletes: 2023 Bay Networks, Inc. Category: Standards Track December 1998 IP Version 6 over PPPStatus of this MemoThis document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions forimprovements. Please refer to the current edition of the "InternetOfficial Protocol Standards" (STD 1) for the standardization stateand status of this protocol. Distribution of this memo is unlimited. Copyright NoticeCopyright (C) The Internet Society (1998). All Rights Reserved. AbstractThe Point-to-Point Protocol (PPP) [1] provides a standard method ofencapsulating Network Layer protocol information over point-to-point links. PPP also defines an extensible Link Control Protocol, andproposes a family of Network Control Protocols (NCPs) forestablishing and configuring different network-layer protocols.This document defines the method for transmission of IP Version 6 [2] packets over PPP links as well as the Network Control Protocol (NCP) for establishing and configuring the IPv6 over PPP. It also specifies the method of forming IPv6 link-local addresses on PPP links.Table of Contents1. Introduction (2)1.1. Specification of Requirements (2)2. Sending IPv6 Datagrams (2)3. A PPP Network Control Protocol for IPv6 (3)4. IPV6CP Configuration Options (4)4.1. Interface-Identifier (4)4.2. IPv6-Compression-Protocol (9)5. Stateless Autoconfiguration and Link-Local Addresses .. 106 Security Considerations (11)7 Acknowledgments (11)8 Changes from RFC-2023 (11)9 References (12)10 Authors’ Addresses (13)Haskin & Allen Standards Track [Page 1]11 Full Copyright Statement (14)1. IntroductionPPP has three main components:1) A method for encapsulating datagrams over serial links.2) A Link Control Protocol (LCP) for establishing, configuring, andtesting the data-link connection.3) A family of Network Control Protocols (NCPs) for establishing and configuring different network-layer protocols.In order to establish communications over a point-to-point link, each end of the PPP link must first send LCP packets to configure and test the data link. After the link has been established and optionalfacilities have been negotiated as needed by the LCP, PPP must sendNCP packets to choose and configure one or more network-layerprotocols. Once each of the chosen network-layer protocols has been configured, datagrams from each network-layer protocol can be sentover the link.In this document, the NCP for establishing and configuring the IPv6over PPP is referred as the IPv6 Control Protocol (IPV6CP).The link will remain configured for communications until explicit LCP or NCP packets close the link down, or until some external eventoccurs (power failure at the other end, carrier drop, etc.).1.1. Specification of RequirementsIn this document, several words are used to signify the requirements of the specification.The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT","SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [7].2. Sending IPv6 DatagramsBefore any IPv6 packets may be communicated, PPP MUST reach theNetwork-Layer Protocol phase, and the IPv6 Control Protocol MUSTreach the Opened state.Exactly one IPv6 packet is encapsulated in the Information field ofPPP Data Link Layer frames where the Protocol field indicates typehex 0057 (Internet Protocol Version 6).Haskin & Allen Standards Track [Page 2]The maximum length of an IPv6 packet transmitted over a PPP link isthe same as the maximum length of the Information field of a PPP data link layer frame. PPP links supporting IPv6 MUST allow theinformation field at least as large as the minimum link MTU sizerequired for IPv6 [2].3. A PPP Network Control Protocol for IPv6The IPv6 Control Protocol (IPV6CP) is responsible for configuring,enabling, and disabling the IPv6 protocol modules on both ends of the point-to-point link. IPV6CP uses the same packet exchange mechanism as the Link Control Protocol (LCP). IPV6CP packets may not beexchanged until PPP has reached the Network-Layer Protocol phase.IPV6CP packets received before this phase is reached should besilently discarded.The IPv6 Control Protocol is exactly the same as the Link ControlProtocol [1] with the following exceptions:Data Link Layer Protocol FieldExactly one IPV6CP packet is encapsulated in the Informationfield of PPP Data Link Layer frames where the Protocol fieldindicates type hex 8057 (IPv6 Control Protocol).Code fieldOnly Codes 1 through 7 (Configure-Request, Configure-Ack,Configure-Nak, Configure-Reject, Terminate-Request,Terminate-Ack and Code-Reject) are used. Other Codes shouldbe treated as unrecognized and should result in Code-Rejects. TimeoutsIPV6CP packets may not be exchanged until PPP has reached the Network-Layer Protocol phase. An implementation should beprepared to wait for Authentication and Link QualityDetermination to finish before timing out waiting for aConfigure-Ack or other response. It is suggested that animplementation give up only after user intervention or aconfigurable amount of time.Configuration Option TypesIPV6CP has a distinct set of Configuration Options.Haskin & Allen Standards Track [Page 3]4. IPV6CP Configuration OptionsIPV6CP Configuration Options allow negotiation of desirable IPv6parameters. IPV6CP uses the same Configuration Option format defined for LCP [1], with a separate set of Options. If a ConfigurationOption is not included in a Configure-Request packet, the defaultvalue for that Configuration Option is assumed.Up-to-date values of the IPV6CP Option Type field are specified inthe most recent "Assigned Numbers" RFC [4]. Current values areassigned as follows:1 Interface-Identifier2 IPv6-Compression-ProtocolThe only IPV6CP options defined in this document are Interface-Identifier and IPv6-Compression-Protocol. Any other IPV6CPconfiguration options that can be defined over time are to be defined in separate documents.4.1. Interface-IdentifierDescriptionThis Configuration Option provides a way to negotiate a unique 64- bit interface identifier to be used for the addressautoconfiguration [3] at the local end of the link (see section 5).A Configure-Request MUST contain exactly one instance of theInterface-Identifier option [1]. The interface identifier MUST be unique within the PPP link; i.e. upon completion of thenegotiation different Interface-Identifier values are to beselected for the ends of the PPP link. The interface identifierMAY also be unique over a broader scope.Before this Configuration Option is requested, an implementationchooses its tentative Interface-Identifier. The non-zero value ofthe tentative Interface-Identifier SHOULD be chosen such that thevalue is both unique to the link and, if possible, consistentlyreproducible across initializations of the IPV6CP finite statemachine (administrative Close and reOpen, reboots, etc). Therationale for preferring a consistently reproducible uniqueinterface identifier to a completely random interface identifier is to provide stability to global scope addresses that can be formedfrom the interface identifier.Assuming that interface identifier bits are numbered from 0 to 63in canonical bit order where the most significant bit is the bitnumber 0, the bit number 6 is the "u" bit (universal/local bit Haskin & Allen Standards Track [Page 4]in IEEE EUI-64 [5] terminology) which indicates whether or not the interface identifier is based on a globally unique IEEE identifier (EUI-48 or EUI-64 [5]) (see the case 1 below). It is set to one (1) if a globally unique IEEE identifier is used to derivethe interface identifier, and it is set to zero (0) otherwise.The following are methods for choosing the tentative InterfaceIdentifier in the preference order:1) If an IEEE global identifier (EUI-48 or EUI-64) isavailable anywhere on the node, it should be used to constructthe tentative Interface-Identifier due to its uniquenessproperties. When extracting an IEEE global identifier fromanother device on the node, care should be taken to that theextracted identifier is presented in canonical ordering [8].The only transformation from an EUI-64 identifier is to invertthe "u" bit (universal/local bit in IEEE EUI-64 terminology).For example, for a globally unique EUI-64 identifier of theform:most-significant least-significant bit bit |0 1|1 3|3 4|4 6| |0 5|6 1|2 7|8 3| +----------------+----------------+----------------+----------------+ |cccccc0gcccccccc|cccccccceeeeeeee|eeeeeeeeeeeeeeee|eeeeeeeeeeeeeeee| +----------------+----------------+----------------+----------------+ where "c" are the bits of the assigned company_id, "0" is thevalue of the universal/local bit to indicate global scope, "g"is group/individual bit, and "e" are the bits of the extensionidentifier,the IPv6 interface identifier would be of the form:most-significant least-significant bit bit |0 1|1 3|3 4|4 6| |0 5|6 1|2 7|8 3| +----------------+----------------+----------------+----------------+ |cccccc1gcccccccc|cccccccceeeeeeee|eeeeeeeeeeeeeeee|eeeeeeeeeeeeeeee| +----------------+----------------+----------------+----------------+ The only change is inverting the value of the universal/localbit.Haskin & Allen Standards Track [Page 5]In the case of a EUI-48 identifier, it is first converted to the EUI-64 format by inserting two bytes, with hexadecimal values of 0xFF and 0xFE, in the middle of the 48 bit MAC (between thecompany_id and extension-identifier portions of the EUI-48value). For example, for a globally unique 48 bit EUI-48identifier of the form:most-significant least-significantbit bit|0 1|1 3|3 4||0 5|6 1|2 7|+----------------+----------------+----------------+|cccccc0gcccccccc|cccccccceeeeeeee|eeeeeeeeeeeeeeee|+----------------+----------------+----------------+where "c" are the bits of the assigned company_id, "0" is thevalue of the universal/local bit to indicate global scope, "g"is group/individual bit, and "e" are the bits of the extensionidentifier, the IPv6 interface identifier would be of the form: most-significant least-significant bit bit |0 1|1 3|3 4|4 6| |0 5|6 1|2 7|8 3| +----------------+----------------+----------------+----------------+ |cccccc1gcccccccc|cccccccc11111111|11111110eeeeeeee|eeeeeeeeeeeeeeee| +----------------+----------------+----------------+----------------+ 2) If an IEEE global identifier is not available a different source of uniqueness should be used. Suggested sources of uniquenessinclude link-layer addresses, machine serial numbers, et cetera. In this case the "u" bit of the interface identifier MUST be set to zero (0).3) If a good source of uniqueness cannot be found, it isrecommended that a random number be generated. In this case the "u" bit of the interface identifier MUST be set to zero (0).Good sources [1] of uniqueness or randomness are required for theInterface-Identifier negotiation to succeed. If neither a uniquenumber or a random number can be generated it is recommended that a zero value be used for the Interface-Identifier transmitted in the Configure-Request. In this case the PPP peer may provide a validnon-zero Interface-Identifier in its response as described below.Note that if at least one of the PPP peers is able to generateseparate non-zero numbers for itself and its peer, the identifiernegotiation will succeed.Haskin & Allen Standards Track [Page 6]When a Configure-Request is received with the Interface-Identifier Configuration Option and the receiving peer implements this option, the received Interface-Identifier is compared with the Interface-Identifier of the last Configure-Request sent to the peer.Depending on the result of the comparison an implementation MUSTrespond in one of the following ways:If the two Interface-Identifiers are different but the receivedInterface-Identifier is zero, a Configure-Nak is sent with a non-zero Interface-Identifier value suggested for use by the remotepeer. Such a suggested Interface-Identifier MUST be different from the Interface-Identifier of the last Configure-Request sent to the peer. It is recommended that the value suggested be consistentlyreproducible across initializations of the IPV6CP finite statemachine (administrative Close and reOpen, reboots, etc). The "u"universal/local) bit of the suggested identifier MUST be set tozero (0) regardless of its source unless the globally unique EUI-48/EUI-64 derived identifier is provided for the exclusive use bythe remote peer.If the two Interface-Identifiers are different and the receivedInterface-Identifier is not zero, the Interface-Identifier MUST be acknowledged, i.e. a Configure-Ack is sent with the requestedInterface-Identifier, meaning that the responding peer agrees with the Interface-Identifier requested.If the two Interface-Identifiers are equal and are not zero, aConfigure-Nak MUST be sent specifying a different non-zeroInterface-Identifier value suggested for use by the remote peer.It is recommended that the value suggested be consistentlyreproducible across initializations of the IPV6CP finite statemachine (administrative Close and reOpen, reboots, etc). The "u"universal/local) bit of the suggested identifier MUST be set tozero (0) regardless of its source unless the globally unique EUI-48/EUI-64 derived identifier is provided for the exclusive use bythe remote peer.If the two Interface-Identifiers are equal to zero, the Interface- Identifiers negotiation MUST be terminated by transmitting theConfigure-Reject with the Interface-Identifier value set to zero.In this case a unique Interface-Identifier can not be negotiated.If a Configure-Request is received with the Interface-IdentifierConfiguration Option and the receiving peer does not implement this option, Configure-Rej is sent.Haskin & Allen Standards Track [Page 7]A new Configure-Request SHOULD NOT be sent to the peer until normal processing would cause it to be sent (that is, until a Configure-Nak is received or the Restart timer runs out).A new Configure-Request MUST NOT contain the Interface-Identifieroption if a valid Interface-Identifier Configure-Reject isreceived.Reception of a Configure-Nak with a suggested Interface-Identifier different from that of the last Configure-Nak sent to the peerindicates a unique Interface-Identifier. In this case a newConfigure-Request MUST be sent with the identifier value suggested in the last Configure-Nak from the peer. But if the receivedInterface-Identifier is equal to the one sent in the lastConfigure-Nak, a new Interface-Identifier MUST be chosen. In this case, a new Configure-Request SHOULD be sent with the new tentative Interface-Identifier. This sequence (transmit Configure-Request,receive Configure-Request, transmit Configure-Nak, receiveConfigure-Nak) might occur a few times, but it is extremelyunlikely to occur repeatedly. More likely, the Interface-Identifiers chosen at either end will quickly diverge, terminating the sequence.If negotiation of the Interface-Identifier is required, and thepeer did not provide the option in its Configure-Request, theoption SHOULD be appended to a Configure-Nak. The tentative value of the Interface-Identifier given must be acceptable as the remote Interface-Identifier; i.e. it should be different from theidentifier value selected for the local end of the PPP link. Thenext Configure-Request from the peer may include this option. Ifthe next Configure-Request does not include this option the peerMUST NOT send another Configure-Nak with this option included. It should assume that the peer’s implementation does not support this option.By default, an implementation SHOULD attempt to negotiate theInterface-Identifier for its end of the PPP connection.A summary of the Interface-Identifier Configuration Option format is shown below. The fields are transmitted from left to right.Haskin & Allen Standards Track [Page 8]0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| Type | Length | Interface-Identifier (MS Bytes)+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+Interface-Identifier (cont)+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+Interface-Identifier (LS Bytes) |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+Type1Length10Interface-IdentifierThe 64-bit Interface-Identifier which is very likely to be unique on the link or zero if a good source of uniqueness can not be found.DefaultIf no valid interface identifier can be successfully negotiated, no default Interface-Identifier value should be assumed. The procedures for recovering from such a case are unspecified. One approach is to manually configure the interface identifier of the interface.4.2. IPv6-Compression-ProtocolDescriptionThis Configuration Option provides a way to negotiate the use of aspecific IPv6 packet compression protocol. TheIPv6-Compression-Protocol Configuration Option is used to indicate the ability to receive compressed packets. Each end of the link mustseparately request this option if bi-directional compression isdesired. By default, compression is not enabled.IPv6 compression negotiated with this option is specific to IPv6datagrams and is not to be confused with compression resulting fromnegotiations via Compression Control Protocol (CCP), which potentially effect all datagrams.A summary of the IPv6-Compression-Protocol Configuration Option formatis shown below. The fields are transmitted from left to right.Haskin & Allen Standards Track [Page 9]0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| Type | Length | IPv6-Compression-Protocol |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| Data ...+-+-+-+-+Type2Length>= 4IPv6-Compression-ProtocolThe IPv6-Compression-Protocol field is two octets and indicatesthe compression protocol desired. Values for this field arealways the same as the PPP Data Link Layer Protocol field values for that same compression protocol.No IPv6-Compression-Protocol field values are currently assigned. Specific assignments will be made in documents that definespecific compression algorithms.DataThe Data field is zero or more octets and contains additionaldata as determined by the particular compression protocol.DefaultNo IPv6 compression protocol enabled.5. Stateless Autoconfiguration and Link-Local AddressesThe Interface Identifier of IPv6 unicast addresses [6] of a PPPinterface, SHOULD be negotiated in the IPV6CP phase of the PPPconnection setup (see section 4.1). If no valid Interface Identifier has been successfully negotiated, procedures for recovering from such a case are unspecified. One approach is to manually configure theInterface Identifier of the interface.As long as the Interface Identifier is negotiated in the IPV6CP phase of the PPP connection setup, it is redundant to perform duplicateaddress detection as a part of the IPv6 Stateless Autoconfiguration Haskin & Allen Standards Track [Page 10]protocol [3]. Therefore it is recommended that for PPP links withthe IPV6CP Interface-Identifier option enabled the default value ofthe DupAddrDetectTransmits autoconfiguration variable [3] be zero.Link-local addresses of PPP interfaces have the following format:| 10 bits | 54 bits | 64 bits |+----------+------------------------+-----------------------------+|1111111010| 0 | Interface Identifier |+----------+------------------------+-----------------------------+The most significant 10 bits of the address is the Link-Local prefix FE80::. 54 zero bits pad out the address between the Link-Localprefix and the Interface Identifier fields.6. Security ConsiderationsThe IPv6 Control Protocol extension to PPP can be used with alldefined PPP authentication and encryption mechanisms.7. AcknowledgmentsThis document borrows from the Magic-Number LCP option and as such is partially based on previous work done by the PPP working group.8. Changes from RFC-2023The following changes were made from RFC-2023 "IP Version 6 overPPP":- Changed to use "Interface Identifier" instead of the "InterfaceToken" term according to the terminology adopted in [6].- Increased the size of Interface Identifier to 64 bits according to the newly adopted IPv6 addressing architecture [6].- Added methods for selection of an interface identifier that isconsistently reproducible across initializations of the IPV6CPfinite state machine.- Added the interface identifier selection methods for generatingglobally unique interface identifier from an unique an IEEE global identifier when it is available anywhere on the node.- Changed to send a Configure-Nak instead a Configure-Ack in response to receiving a Configure-Request with a zero Interface-Identifiervalue.Haskin & Allen Standards Track [Page 11]- Replaced the value assignment of the IPv6-Compression-Protocolfield of the IPv6-Compression-Protocol Configuration option withthe text stating that no IPv6-Compression-Protocol field values are currently assigned and that specific assignments will be made indocuments that define specific compression algorithms.- Added new and updated references.- Minor text clarifications and improvements.9. References[1] Simpson, W., "The Point-to-Point Protocol", STD 51, RFC1661, July 1994.[2] Deering, S., and R. Hinden, Editors, "Internet Protocol, Version 6 (IPv6) Specification", RFC 2460, December 1998.[3] Thomson, S., and T. Narten, "IPv6 Stateless AddressAutoconfiguration", RFC 2462, December 1998.[4] Reynolds, J., and J. Postel, "Assigned Numbers", STD 2, RFC1700, October 1994. See also: /numbers.html [5] IEEE, "Guidelines for 64-bit Global Identifier (EUI-64)Registration Authority",/db/oui/tutorials/EUI64.html, March1997.[6] Hinden, R., and S. Deering, "IP Version 6 AddressingArchitecture", RFC 2373, July 1998.[7] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels," BCP 14, RFC 2119, March 1997.[8] Narten T., and C. Burton, "A Caution On The Canonical OrderingOf Link-Layer Addresses", RFC 2469, December 1998.Haskin & Allen Standards Track [Page 12]10. Authors’ AddressesDimitry HaskinBay Networks, Inc.600 Technology ParkBillerica, MA 01821EMail: dhaskin@Ed AllenBay Networks, Inc.600 Technology ParkBillerica, MA 01821EMail: eallen@Haskin & Allen Standards Track [Page 13]11. Full Copyright StatementCopyright (C) The Internet Society (1998). All Rights Reserved.This document and translations of it may be copied and furnished toothers, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, publishedand distributed, in whole or in part, without restriction of anykind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, thisdocument itself may not be modified in any way, such as by removingthe copyright notice or references to the Internet Society or otherInternet organizations, except as needed for the purpose ofdeveloping Internet standards in which case the procedures forcopyrights defined in the Internet Standards process must befollowed, or as required to translate it into languages other thanEnglish.The limited permissions granted above are perpetual and will not berevoked by the Internet Society or its successors or assigns.This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERINGTASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDINGBUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATIONHEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OFMERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.Haskin & Allen Standards Track [Page 14]。

相关文档
最新文档