小学四年级奥数题精选乘法原理章节2
四年级上册奥数乘法原理全国通用共张2
4.某沿海城市管辖7个县,这7个县的位置如右图.现用红、黑、 绿、蓝、紫五种颜色给右图染色,要求任意相邻的两个县染不同 颜色,共有多少种不同的染色方法?
解题思路:
第5步:给E染色,有( )种不同的染色方法。 5×4×3×3=180(种) 如下图,A,B,C,D,E五个区域分别用红、黄、蓝、白、黑五种颜色中的某一种染色,要使每一个区域染不同的颜色,共有多少种不同的染色方法? 根据乘法原理,共有不同的染色方法 用5种不同颜色的笔来写“好好学习”这几个字,相邻的字颜色不同,共有多少种写法?(4级) 第5步:给E染色,有( )种不同的染色方法。 如图,地图上有A,B,C,D四个国家,现用五种颜色给地图染色,要使相邻国家的颜色不相同,有多少种不同染色方法? 第1步——对字母“I”染色,此时有5种颜色可以选择; “IMO”是国际数学奥林匹克的缩写,把这3个字母用3种不同颜色来写,现有5种不同颜色的笔,问共有多少种不同的写法? 答案:灰的,红的已经熟了 如下图,A,B,C,D,E五个区域分别用红、黄、蓝、白、黑五种颜色中的某一种染色,要使每一个区域染不同的颜色,共有多少种不同的染色方法? 第3步:给C染色,有( )种不同的染色方法; 第3步:给C染色,有( )种不同的染色方法; 5×4×3×3=180(种) 第1步:先给A染色,有( )种不同的染色方法; 5×4×3×2×1=120(种) “IMO”是国际数学奥林匹克的缩写,把这3个字母用3种不同颜色来写,现有5种不同颜色的笔,问共有多少种不同的写法? 第5步:给E染色,有( )种不同的染色方法。 第4步:给D染色,有( )种不同的染色方法; 第1步:先给A染色,有( )种不同的染色方法; 将染色这一过程分为依次给A,B,C,D,E染色( )步。 根据乘法原理,共有不同的染色方法 第4步:给D染色,有( )种不同的染色方法;
内蒙古锡林郭勒盟小学数学小学奥数系列7-2乘法原理(二)
内蒙古锡林郭勒盟小学数学小学奥数系列7-2乘法原理(二)姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共30题;共143分)1. (10分)小刘有2种牙膏和3把牙刷,每次1把牙刷配一种牙膏,有几种不同的配法?请写具体方法来.2. (10分)按下表给出的词造句,每句必须包括一个人、一个交通工具,以及一个目的地,请问可以造出多少个不同的句子?3. (10分) 1到60这60个自然数中,选取两个数,使它们的乘积是被5除余2的偶数,问,一共有多少种选法?4. (5分) 10个人围成一圈,从中选出三个人,其中恰有两人相邻,共有多少种不同选法?5. (10分)七位数的各位数字之和为60 ,这样的七位数一共有多少个?6. (5分)五位同学扮成奥运会吉祥物福娃贝贝、晶晶、欢欢、迎迎和妮妮,排成一排表演节目.如果贝贝和妮妮不相邻,共有多少种不同的排法?7. (1分)小明要买一本数学课外书和一本语文课外书.在书店里他发现4种数学课外书、5种语文课外可供选用.他有________种不同的选择方法?8. (5分)用5种不同颜色的笔来写“智康教育”这几个字,相邻的字颜色不同,共有多少种写法?9. (5分)用6种不同的颜色来涂正方体的六个面,使得不同的面涂上不同的颜色一共有多少种涂色的方法?(将正方体任意旋转之后仍然不同的涂色方法才被认为是相同的)10. (5分)北京到广州之间有10个站,其中只有两个站是大站(不包括北京、广州),从大站出发的车辆可以配卧铺,那么铁路局要准备多少种不同的卧铺车票?11. (1分)配成一套衣服,有________种不同的搭配方法?12. (1分)看图回答________次13. (1分)(2010·邯郸) 六个同学排成一排照相,共有________种不同的排法。
14. (1分)在下图的每个区域内涂上、、、四种颜色之一,使得每个圆里面恰有四种颜色,则一共有________种不同的染色方法.15. (5分)如图,地图上有A,B,C,D四个国家,现用五种颜色给地图染色,要使相邻国家的颜色不相同,有多少种不同染色方法?16. (5分)如图,一张地图上有五个国家,,,,,现在要求用四种不同的颜色区分不同国家,要求相邻的国家不能使用同一种颜色,不同的国家可以使用同—种颜色,那么这幅地图有多少着色方法?17. (5分)如图:将一张纸作如下操作,一、用横线将纸划为相等的两块,二、用竖线将下边的区块划为相等的两块,三、用横线将最右下方的区块分为相等的两块,四、用竖线将最右下方的区块划为相等的两块……,如此进行8步操作,问:如果用四种颜色对这一图形进行染色,要求相邻区块颜色不同,应该有多少种不同的染色方法?18. (5分)地图上有A,B,C,D四个国家(如下图),现有红、黄、蓝三种颜色给地图染色,使相邻国家的颜色不同,但不是每种颜色都必须要用,问有多少种染色方法?19. (5分)如图,有一张地图上有五个国家,现在要用四种颜色对这一幅地图进行染色,使相邻的国家所染的颜色不同,不相邻的国家的颜色可以相同.那么一共可以有多少种染色方法?20. (5分)某沿海城市管辖7个县,这7个县的位置如右图.现用红、黑、绿、蓝、紫五种颜色给右图染色,要求任意相邻的两个县染不同颜色,共有多少种不同的染色方法?21. (5分)“数学”这个词的英文单词是“MATH”.用红、黄、蓝、绿、紫五种颜色去分别给字母染色,每个字母染的颜色都不一样.这些颜色一共可以染出多少种不同搭配方式?22. (5分)用红、橙、黄、绿、蓝5种颜色中的1种,或2种,或3种,或4种,分别涂在正四面体各个面上,一个面不能用两色,也无一个面不涂色的,问共有几种不同涂色方式?23. (1分)如图立体图形是由8个小正方体搭成的,将这个立体图形的表面涂上蓝色.其中,只有1个面是蓝色的小正方体有________个;只有2个面是蓝色的小正方体有________个;只有3个面是蓝色的小正方体有________个;只有4个面是蓝色的小正方体有________个;只有5个面是蓝色的小正方体有________个.24. (5分)在下图中,一只甲虫要从点沿着线段爬到点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?25. (5分)奥苏旺大陆上的居民使用的文字非常独特,他们文字的每个单词都由个字母、、、、组成,并且所有的单词都有着如下的规律,⑴字母不打头,⑵单词中每个字母后边必然紧跟着字母,⑶ 和不会出现在同一个字母之中,那么由四个字母构成的单词一共有多少种?26. (1分)从到这个自然数中有________个数的各位数字之和能被4整除.27. (10分)在下图中,一只蚂蚁要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只蚂蚁最多有几种不同走法?28. (5分)题库中有三种类型的题目,数量分别为30道、40道和45道,每次考试要从三种类型的题目中各取一道组成一张试卷.问:由该题库共可组成多少种不同的试卷?29. (5分)小丸子有许多套服装,帽子的数量为5顶、上衣有10件,裤子有8条,还有皮鞋6双,每次出行要从几种服装中各取一个搭配.问:共可组成多少种不同的搭配(帽子可以选择戴与不戴)?30. (1分)给布娃娃穿衣服,一共有________种穿法?参考答案一、 (共30题;共143分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、21-1、22-1、23-1、24-1、25-1、26-1、27-1、28-1、29-1、30-1、。
小学四年级奥数教程-乘法原理
进阶练习题
总结词
强化乘法原理的应用
详细描述
通过较为复杂的乘法原理题目,引导学生运用乘法原理解决实际问题,培养 学生的数学思维和解决问题的能力。
高阶练习题
总结词
拓展思维和提高难度
详细描述
通过一些高难度的乘法原理题目,挑战学生的数学思维和逻辑推理能力,提高学 生对数学的兴趣和自信心。
THANKS
感谢观看
计算方法
将n进行组合,然后将m进行排列,最后计算组合数
利用乘法原理计算概率
概率公式
$P(A) = (n(A) / n(S))$
计算方法
将A事件发生的可能性n(A)与总事件数n(S)相除,得到概率P(A)
04
乘法原理在奥数中的应用
利用乘法原理解决奥数问题
涉及乘法原理的数学问题
这类问题通常涉及到分类和分步计数原理的运用,比如排列组合、概率统计等。
乘法原理的重要性
基础知识
乘法原理是概率论和统计学中的基础知识,是理解和分析数据的重要工具之 一。
实际应用
乘法原理在各个领域都有广泛的应用,如生物学、医学、社会科学、工程技 术和金融等。
乘法原理的应用
数据分析
乘法原理可以用来分析数据, 评估两个或多个因素之间的相 互作用,从而更好地理解数据
的分布和特征。
解决方法
通过将问题分解成多个步骤,每个步骤分别解决,最后再合并得到答案。
利用乘法原理解决复杂组合问题
涉及乘法原理的组合问题
这类问题需要运用到乘法原理和组合数学的知识,比如将一 排物品取出若干个的组合数等。
解决方法
通过运用乘法原理计算组合数的公式来解决,注意要分清是 有序还是无序的组合。
利用乘法原理解决概率问题
小学四年级奥数教程乘法原理
《小学四年级奥数教程乘法原理》2023-10-28contents •乘法原理概述•乘法原理基础•乘法原理进阶•乘法原理的应用•乘法原理的练习题与解析目录01乘法原理概述乘法原理定义乘法原理是关于两个或两个以上整数相乘的原理,即任何整数都可以表示为其他整数的和与倍数的乘积。
乘法原理公式乘法原理的公式为a×b=a×(b+n)−n,其中a、b和n均为整数,且n为任意整数。
什么是乘法原理基础数学知识乘法原理是小学数学中的基础知识,对于理解乘法的本质和解决乘法问题具有重要意义。
数学思维的培养学习乘法原理有助于培养学生的数学思维能力和逻辑推理能力,为后续学习更复杂的数学知识和解决实际问题打下基础。
乘法原理的重要性在古代数学中,乘法原理已经得到广泛应用。
例如,在古埃及和古希腊的数学文献中,都有关于乘法原理的记载和应用。
古代数学中的乘法原理在现代数学中,乘法原理不仅是基础数学知识之一,还在其他数学分支和实际应用领域发挥着重要作用。
现代数学中的乘法原理乘法原理的历史与发展02乘法原理基础如果有一个数 a 和另一个数 b 相乘,那么它们的乘积就是 a × b。
乘法原理定义乘法原理是关于乘法的数学原理,它描述了两个或多个数相乘的结果和如何进行这些乘法运算。
乘法原理公式乘法原理的公式与定义VS乘法结合律将三个数相乘,可以任意组合,它们的乘积不变。
例如:(a × b)× c = a × (b × c)。
乘法交换律交换两个数的位置,它们的乘积不变。
例如:a × b = b × a。
分配律将一个数与另一个数的和相乘,等于分别将这两个数相乘再求和。
例如:a × (b + c) = a × b+ a × c。
乘法原理的运算规则在购物时,如果一个商品的价格是 a 元,购买 b 个,那么总价就是 a × b 元。
四年级奥数:加乘原理(二)
四年级奥数:加乘原理(二)现有红、黄、蓝三种颜色的小旗各一面,用它们挂在旗杆上作信号(顺序不同时表示的信号也不同),总共可以做出多少种不同信号? 【解析】做出的信号可以按照挂出的小旗面数分成三类: ①只有一面旗做信号,这样做出的信号有3种;熟练掌握加法与乘法原理,懂得用标数法、枚举法去解决问题,掌握常见的计数方法,在运用加乘原理解决综合性问题时,懂得分类讨论中结合分步分析,在分步分析中结合分类讨论;明确知道哪些是分类,哪些是分步.并了解与加、乘原理相关的常见题型:数论类问题、染色问题、图形组合和其解题的常用思路,从而达到真正的运用自如.名师点题例1知识概述⑴加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和.⑵乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积.⑶在很多题目中,加法原理和乘法原理都不是单独出现的,这就需要我们能够熟练的运用好这两大原理,综合分析,正确作出分类和分步.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.乘法原理运用的范围:这件事要分几个彼此互不影响....的独立步骤....来完成,这几步是完成这件任务缺一不可的.....,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”.②用二面小旗做信号,由乘法原理,做出的信号有3×2=6种. ③用三面小旗做信号,由乘法原理,做出的信号有3×2×1=6种. 根据加法原理,总共可以做出3+6+6=15种不同的信号.用1,2,3,4四个数字,请问:可组成多少个数字不重复的自然数?【解析】 一位数:4个; 两位数:4×3=12(个); 三位数:4×3×2=24(个); 四位数:4×3×2×1=24(个) 共4+12+24+24=64(个).3、直线a,b 上分别有5个点和4个点,以这些点为顶点可以画出多少个三角形?【解析】 5×6+4×10=70(个)画三角形需要在一条线上找1个点,另一条线上找2个点,本题分为两种情况:⑴在a 线上找一个点,有5种选取法,在b 线上找两个点,有4326⨯÷=种,根据乘法原理,一共有:5630⨯=个三角形;⑵在b 线上找一个点,有4种选取法,在a 线上找两个点,有54210⨯÷=种,根据乘法原理,一共有:41040⨯=个三角形;根据加法原理,一共可以画出:304070+=个三角形【巩固拓展】1、如图,从甲地道乙地有三条路,从乙地到丁地有三条路,从甲地到丙地有两条路,从丙地到丁地有四条路,请问,从甲地到丁地有多少种不同的走法?【解析】3×3+2×4=17(种)2、甲、乙、丙三个组,甲组6人,乙组5人,丙组4人,现每组各选1人一起参加活动,一共有()选法;如果三组共同推选一个代表,有()种选法.【解析】各选1人,甲组选1人有6种方法,乙组选1人有5种,丙组有4种,所以一共有6×5×4=120种共同推选1人时:有6+5+4=15种3、用0,1,2,3、4、5可以组成多少个没有重复数字的三位偶数?【解析】个位数字,只有0、2、4三种可能.如果个位是0,有5×4=20(个)如果是个位是2、4,有2×4×4=32(个)所以,共有20+32=52(个)(小机灵杯精选考题)由35个单位小正方形组成的长方形中,如图所示有2个★,问包含2个★在内的由小正方形组成的长方形(含正方形)一共有几个?【解析】横向数:4个方块的有1个, 6个方块的有2个, 8个方块的有3个10个方块的有3个, 12个方块的有2个,14个方块的有1个共计:1+2+3+3+2+1=12个纵向数层数:包含两个五角星的有1+2+2+1=6层共计12×6=72(个)【巩固拓展】在下图所示的线段中,至少包含“A”和“B”中一个的线段有多少条.A B【解析】包含A的线段的左端点在A的左边有2个选1个,右端点在A的右边有6个点选1人,因此包含A的线段有2×6=12条.例1同理包含B的有3×5=15条同时包含A和B的有2×3=6条所以至少包含A和B一个的线段有12+15-6=21条如果从3本不同的语文书、4本不同的数学书、5本不同的外语书中选取2本不同学科的书阅读,那么共有多少种不同的选择?【解析】分三种情况:第一种,语文书+数学书,3×4=12;第二种,语文书+外语书,3×5=15;第三种,数学书+外语书,4×5=20.共12+15+20=47(种).【巩固拓展】某件工作需要钳工2人和电工2人共同完成.现有钳工3人、电工3人,另有1人钳工、电工都会.从7人中挑选4人完成这项工作,共有多少种方法?【解析】分三种情况:第一种,两个钳工+两个电工,3×3=9;第二种,两个钳工+1个电工+1个钳工、电工都会的,3×3=9;第三种,两个电工+1个钳工+1个钳工、电工都会的,3×3=9.共9+9+9=27(种).某信号兵用红,黄,蓝,绿四面旗中的三面从上到下挂在旗杆上的三个位置表示信号.每次可挂一面,二面或三面,并且不同的顺序,表示不同的信号.一共可以表示出多少种不同的信号?【解析】由于每次可挂一面、二面或三面旗子,我们可以根据旗杆上旗子的面数分三类考虑:第二类第一类第一类,可以从四种颜色中任选一种,有4种表示法;第二类,要分两步完成:第一步,第一面旗子可以从四种颜色中选一种,有4种选法;第二步,第二面旗子可从剩下的三种中选一种,有3种选法.根据乘法原理,共有4312⨯=种表示法;第三类,要分三步完成:第一步,第一面旗子可以从四种颜色中选一种,有4种选法;第二步,第二面旗子可从剩下的三种中选一种,有3种选法;第三步,第三面旗子可从剩下的两种颜色中选一种,有2种选法.根据乘法原理,共有43224⨯⨯=种表示法.根据加法原理,一共可以表示出4122440++=种不同的信号.【巩固拓展】五面五种颜色的小旗,任意取出一面、两面或三面排成一行表示各种信号,问:共可以表示多少种不同的信号?【解析】分3种情况:⑴取出一面,有5种信号;⑵取出两面:可以表示5420⨯=种信号;⑶取出三面:可以表示:54360⨯⨯=种信号;由加法原理,一共可以表示:5206085++=种信号.有两个骰子,每个骰子的六个面分别有1、2、3、4、5、6个点.随意掷这两个骰子,向上一面点数之和为偶数的情形有多少种?【解析】方法一:要使两个骰子的点数之和为偶数,只要这两个点数的奇偶性相同,可以分为两步:第一步第一个骰子随意掷有6种可能的点数;第二步当第一个骰子的点数确定了以后,第二个骰子的点数只能是与第一个骰子的点数相同奇偶性的3种可能的点数.根据乘法原理,向上一面的点数之和为偶数的情形有6318⨯=(种).方法二:要使两个骰子点数之和为偶数,只要这两个点数的奇偶性相同,所以,可以分为两类:第一类:两个数字同为奇数.有339⨯=(种)不同的情形.第二类:两个数字同为偶数.类似第一类,也有339⨯=(种)不同的情形.根据加法原理,向上一面点数之和为偶数的情形共有9918+=(种).方法三:随意掷两个骰子,总共有6636⨯=(种)不同的情形.因为两个骰子点数之和为奇数与偶数的可能性是一样的,所以,点数之和为偶数的情形有36218÷=(种).【巩固拓展】有两个一样大的骰子,每个骰子的六个面上分别标有数字1、2、3、4、5、6.将两个骰子放到桌面上,向上的一面数字之和为奇数的有多少种情形?【解析】要使两个数字之和为奇数,只要这两个数字的奇偶性不同,即这两个数字一个为奇数,另一个为偶数,由于放两个正方体可认为是一个一个地放.放第一个正方体时,出现奇数有三种可能,即1,3,5;放第二个正方体,出现偶数也有三种可能,由乘法原理,这时共有339⨯=种不同的情形.例1某条铁路线上,包括起点和终点在内原来共有7个车站,现在新增了3个车站,铁路上两站之间往返的车票不一样,那么,这样需要增加多少种不同的车票? 【解析】1、新站为起点,旧站为终点有3×7=21张,2、旧站为起点,新站为终点有7×3=21张,3、起点、终点均为新站有3×2=6张, 以上共有21+21+6=48张 .如下图,八面体有12条棱,6个顶点.一只蚂蚁从顶点A 出发,沿棱爬行,要求恰好经过每一个顶点一次.问共有多少种不同的走法?FE DCBA【解析】走完6个顶点,有5个步骤,可分为两大类:①第二次走C 点:就是意味着从A 点出发,我们要先走F ,D ,E ,B 中间的一点,再经过C 点,但之后只能走D ,B 点,最后选择后面两点.有412118⨯⨯⨯⨯=种(从F 到C 的话,是不能到E 的); ②第二次不走C :有4222132⨯⨯⨯⨯=种(同理,F 不能到E );共计:83240+=种.(第10届中环杯四年级初赛)小池塘中有6片荷叶,如图所示,一只青蛙在荷叶A 上,想要跳到荷叶F 上,可以通过BCDE 任意一片或两片跳到荷叶F 上,也可以直接跳到荷叶F 上,但跳过的荷叶不能再跳.它一共有( )例3例2种不同的跳法.【解析】根据题意,分成三类情况:1、中间只通过一片荷叶,有4种情况;2、中间通过两片荷叶,有4×3=12种情况;3、直接跳到F 上,有1中情况. 所以一共有4+12+1=17种情况.将图中的○分别涂成红色、黄色或绿色,要求有线段相连的两个相邻○涂不同的颜色,共有多少种不同涂法?DC B A【解析】如右上图,当A ,B ,C ,D 的颜色确定后,大正方形四个角上的○的颜色就确定了,所以只需求A ,B ,C ,D 有多少种不同涂法.按先A ,再B ,D ,后C 的顺序涂色.按---A B D C 的顺序涂颜色:A 有3种颜色可选;当B ,D 取相同的颜色时,有2种颜色可选,此时C 也有2种颜色可选,不同的涂法有32212⨯⨯=种;当B ,D 取不同的颜色时,B 有2种颜色可选,D 仅剩1种颜色可选,此时C 也只有1种颜色可选(与A 相同),不同的涂法有32116⨯⨯⨯=(种). 所以,根据加法原理,共有12618+=种不同的涂法.(小机灵杯精选考题)用1-9九个数码组成若干个数,每个数码只能用一次,使其和为99.共有几种不同的组数方法【解析】首先确定,组成的这些数只能是一位数和两位数,1+2+3+4+5+6+7+8+9=45 99-45=54而每一个数,放在十位上后,其数值应该是其在个位上的10倍,即增加9倍 所以十位上的数字之和是54/9=6若只有1个两位数,则十位上是6,个位有8种可能性,此时个数为8种 若有两个两位数,此时十位上是4和2或5和1,此时个数为7×6×2=84个 若有三个两位数,此时十位上只能是1、2、3,此时个数为6×5×4=120个 所以共有8+84+120=212个(走进美妙数学花园少年数学邀请赛)如图,将1,2,3,4,5分别填入图中15 的格子中,要求填在黑格里的数比它旁边的两个数都大.共有 种不同的填法.【解析】因为要求“填在黑格里的数比它旁边的两个数都大”,所以填入黑格中的数不能够太小,否则就不满足条件.通过枚举法可知填入黑格里的数只有两类:第一类,填在黑格里的数是5和4;第二类,填在黑格里的数是5和3.接下来就根据这两类进行计数:第一类,填在黑格里的数是5和4时,分为以下几步:第一步,第一个黑格可从5和4中任选一个,有2种选法;第二步,第二个黑格可从5和4中剩下的一个数选择,只有1种选法;第三步,第一个白格可从1,2,3中任意选一个,有3种选法.第四步,第二个白格从1,2,3剩下的两个数中任选一个,有2种选法;第五步,最后一个白格只有1种选法.根据乘法原理,一共有(21)(321)12⨯⨯⨯⨯=种.第二类,填在黑格里的数是5和3时,黑格中有两种填法,此时白格也有两种填法,根据乘法原理,不同的填法有224⨯=种.所以,根据加法原理,不同的填法共有12416+=种.1、从北京到广州可以选择直达的飞机和火车,也可以选择中途在上海或者武汉作停留,已知北京到上海、武汉和上海、武汉到广州除了有飞机和火车两种交通方式外还有汽车.问,从北京到广州一共有多少种交通方式供选择?【解析】从北京转道上海到广州一共有339⨯=⨯=种方法,从北京转道武汉到广州一共也有339种方法供选择,从北京直接去广州有2种方法,所以一共有99220++=种方法.2、有3所学校共订300份中国少年报,每所学校订了至少98份,至多102份.问:一共有多少种不同的订法?【解析】一共有三种可能:98+100+102,3×2×1=6(种)99+100+101,3×2×1=6(种)100+100+100,1种99+99+102,3×1=3(种)共有6+6+1+3=15种.3、(第9届中环杯初赛)数图形,下图是由20个小正方形拼成的图形,其中共有多少个长方形?要求写出关键解题推理过程.【解析】左边4行4列有长方形:(5×4÷2)×(5×4÷2)=100个下边2行6列有长方形:(3×2÷2)×(7×6÷2)=63个左下2行4列有长方形:(3×2÷2)×(5×4÷2)=20个所以共有长方形:100+63-20=143个4、直线a,b上分别有4个点和2个点,以这些点为顶点可以画出多少个三角形?【解析】画三角形需要在一条线上找1个点,另一条线上找2个点,本题分为两种情况:⑴在a线上找一个点,有4种选取法,在b线上找两个点,有1种,根据乘法原理,一共有:⨯=个三角形;414⑵在b线上找一个点,有2种选取法,在a线上找两个点,有4326⨯÷=种,根据乘法原理,一共有:2612⨯=个三角形;根据加法原理,一共可以画出:41216+=个三角形.5、(2008年清华附中考题)小红和小明举行象棋比赛,按比赛规定,谁先胜头两局谁赢,如果没有胜头两局,谁先胜三局谁赢.共有种可能的情况.【解析】小红和小明如果有谁胜了头两局,则胜者赢,此时共2种情况;如果没有人胜头两局,即头两局中两人各胜一局,则最少再进行两局、最多再进行三局,必有一人胜三局,如果只需再进行两局,则这两局的胜者为同一人,对此共有224⨯=种情况;如果还需进行三局,则后三局中有一人胜两局,另一人只胜一局,且这一局不能为最后一局,只能为第三局或第四局,此时共有2228⨯⨯=种情况,所以共有24814++=种情况.6、如右图,有A,B,C,D四个区域,现用四种颜色给区域染色,要求相邻区域的颜色不同,每个区域染一色.有多少种染色方法?ADBC【解析】A有4种颜色可选,然后分类:第一类:B,D取相同的颜色.有3种颜色可染,此时D也有3种颜色可选.根据乘法原理,不同的染法有43336⨯⨯=(种);第二类:当B,D取不同的颜色时,B有3种颜色可染,C有2种颜色可染,此时D也有2种颜色可染.根据乘法原理,不同的染法有432248⨯⨯⨯=(种).根据加法原理,共有364884+=(种)染色方法.。
小学四年级奥数-乘法原理共24页
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
小学四年级奥数-乘法原理
61、辍学如磨刀之石,不见其损,日 有所亏 。 62、奇文共欣赞,疑义相与析。
63、暧暧远人村,依依墟里烟,狗吠 深巷中 ,鸡鸣 桑树颠 。 64、一生复能几,倏如流电惊。 65、少无适俗韵,性本爱丘山。
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
小学四年级奥数教程-乘法原理共24页文档
15、机会表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
Thank you
小学四年级奥数教程-乘法原 理
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)
四年级奥数系列乘法原理
C
B
A
第20页/共25页
乘法原理 <作业3>
有6种不同颜色的笔,来写“学习改变命运”这六个字,要求相邻字的颜色 不能相同,有多少种不同的方法?
第21页/共25页
乘法原理 <作业4> “数学”这个词的英文单词是“MATH”。用红、黄、蓝、绿、紫五种颜色去分别给 字母染色,每个字母染的颜色都不一样。这些颜色一共可以染出多少种不同搭配方式?
第22页/共25页
乘法原理 <作业5> 甲组有6人,乙组有8人,丙组有9人。从三个组中各选一人参加会议,共有多少种 不同选法?
第23页/共25页
乘法原理 <作业6> 用数字0,1,2,3,4可以组成多少个:
⑴ 三位数? ⑵ 没有重复数字的三位数?
第24页/共25页
感谢您的观看!
第25页/共25页
第13页/共25页
乘法原理 练一练 要从五年级六个班中评选出学习,体育,卫生先进集体各一个,有多少种
不同的评选结果?
第14页/共25页
乘法原理
例八
四角号码字典,用4个数码表示一个汉字.小王自编一个“密码本”,用3个数 码(可取重复数字),例如,用“011”表示汉字“车”.请问小王的“密码 本”上最多能表示多少个不同的 汉字?
第6页/共25页
乘法原理
例四
如下图,A、B、C、D、E 五个区域分别用红、黄、蓝、白、黑 五种颜色中的某一种染色,要使相邻的区域染不同的颜色,共有 多少种不同的染色方法?
第7页/共25页
乘法原理
练一练
用四种颜色给右图的五块区域染色,要求每块区域染一种颜色,相邻的 区域染不同的颜色。问:共有多少种不同的染色方法?
浙江省衢州市小学数学小学奥数系列7-2乘法原理(二)
浙江省衢州市小学数学小学奥数系列7-2乘法原理(二)姓名:________ 班级:________ 成绩:________亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!一、 (共30题;共143分)1. (10分)用0~9这十个数字可组成多少个无重复数字的四位数.2. (10分)“数学”这个词的英文单词是“MATH”.用红、黄、蓝、绿、紫五种颜色去分别给字母染色,每个字母染的颜色都不一样.这些颜色一共可以染出多少种不同搭配方式?3. (10分)小丸子有许多套服装,帽子的数量为5顶、上衣有10件,裤子有8条,还有皮鞋6双,每次出行要从几种服装中各取一个搭配.问:共可组成多少种不同的搭配(帽子可以选择戴与不戴)?4. (5分) 1到60这60个自然数中,选取两个数,使它们的乘积是被5除余2的偶数,问,一共有多少种选法?5. (10分)北京到广州之间有10个站,其中只有两个站是大站(不包括北京、广州),从大站出发的车辆可以配卧铺,那么铁路局要准备多少种不同的卧铺车票?6. (5分)按下表给出的词造句,每句必须包括一个人、一个交通工具,以及一个目的地,请问可以造出多少个不同的句子?7. (1分)聪聪从家到姥姥家,然后去水上乐园,有________种乘车方法?8. (5分)北京到上海之间一共有6个站,车站应该准备多少种不同的车票?(往返车票算不同的两种)9. (5分)在下图中,一只蚂蚁要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只蚂蚁最多有几种不同走法?10. (5分)聪聪给同学们安排了4项秋游内容.11. (1分)(2010·邯郸) 六个同学排成一排照相,共有________种不同的排法。
12. (1分)从到这个自然数中有________个数的各位数字之和能被4整除.13. (1分)每人选一种主食和一种菜,共有________种搭配方法?________种14. (1分)在下图的每个区域内涂上、、、四种颜色之一,使得每个圆里面恰有四种颜色,则一共有________种不同的染色方法.15. (5分)如图,地图上有A,B,C,D四个国家,现用五种颜色给地图染色,要使相邻国家的颜色不相同,有多少种不同染色方法?16. (5分)如图,一张地图上有五个国家,,,,,现在要求用四种不同的颜色区分不同国家,要求相邻的国家不能使用同一种颜色,不同的国家可以使用同—种颜色,那么这幅地图有多少着色方法?17. (5分)如图:将一张纸作如下操作,一、用横线将纸划为相等的两块,二、用竖线将下边的区块划为相等的两块,三、用横线将最右下方的区块分为相等的两块,四、用竖线将最右下方的区块划为相等的两块……,如此进行8步操作,问:如果用四种颜色对这一图形进行染色,要求相邻区块颜色不同,应该有多少种不同的染色方法?18. (5分)将图中的○分别涂成红色、黄色或绿色,要求有线段相连的两个相邻○涂不同的颜色,共有多少种不同涂法?19. (5分)如图,有一张地图上有五个国家,现在要用四种颜色对这一幅地图进行染色,使相邻的国家所染的颜色不同,不相邻的国家的颜色可以相同.那么一共可以有多少种染色方法?20. (5分)某沿海城市管辖7个县,这7个县的位置如右图.现用红、黑、绿、蓝、紫五种颜色给右图染色,要求任意相邻的两个县染不同颜色,共有多少种不同的染色方法?21. (5分) 5条直线两两相交,没有两条直线平行,没有任何三条直线通过同一个点,以这5条直线的交点为顶点能构成几个三角形?22. (5分) 10个人围成一圈,从中选出三个人,其中恰有两人相邻,共有多少种不同选法?23. (1分)如图立体图形是由8个小正方体搭成的,将这个立体图形的表面涂上蓝色.其中,只有1个面是蓝色的小正方体有________个;只有2个面是蓝色的小正方体有________个;只有3个面是蓝色的小正方体有________个;只有4个面是蓝色的小正方体有________个;只有5个面是蓝色的小正方体有________个.24. (5分)用红、橙、黄、绿、蓝5种颜色中的1种,或2种,或3种,或4种,分别涂在正四面体各个面上,一个面不能用两色,也无一个面不涂色的,问共有几种不同涂色方式?25. (5分)一条线段上除了两个端点还有6个点,那么这段线段上可以有多少条线段?26. (1分)组数游戏.能组成________个两位数.27. (10分)在一个圆周上均匀分布10个点,以这些点为顶点,可以画出多少不同的钝角三角形?(补充知识:由直径和圆周上的一点构成的三角形一定是直角三角形,其中直径的边所对的角是直角,所以如果圆周上三点在同一段半圆周上,则这三点构成钝角三角形).28. (5分)一个自然数,如果它顺着看和倒过来看都是一样的,那么称这个数为“回文数”.例如1331,7,202都是回文数,而220则不是回文数.问:从一位到六位的回文数一共有多少个?其中的第1996个数是多少?29. (5分)五位同学扮成奥运会吉祥物福娃贝贝、晶晶、欢欢、迎迎和妮妮,排成一排表演节目.如果贝贝和妮妮不相邻,共有多少种不同的排法?30. (1分)先选择策略,再解决问题.某商店有两种电话机,一种是按键的,一种是转盘的.每种电话机又有红、黄、绿3种颜色.每种颜色的电话机又有方、圆两种形状.一共有________种款式的电话机可供顾客选择?参考答案一、 (共30题;共143分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、21-1、22-1、23-1、24-1、25-1、26-1、27-1、28-1、29-1、30-1、第11 页共11 页。
四年级奥数第六讲——乘法原理与加法原理(学生用)(2)(2021年整理)
四年级奥数第六讲——乘法原理与加法原理(学生用)(2)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(四年级奥数第六讲——乘法原理与加法原理(学生用)(2)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为四年级奥数第六讲——乘法原理与加法原理(学生用)(2)(word版可编辑修改)的全部内容。
远辉教育奥数班第六讲——乘法原理与加法原理主讲人:杨老师学生:四年级电话:62379828一、学习要点:Ⅰ乘法原理在日常生活中常常会遇到这样一些问题,就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法,要知道完成这件事一共有多少种方法,就用我们将讨论的乘法原理来解决.例如某人要从北京到大连拿一份资料,之后再到天津开会.其中,他从北京到大连可以乘长途汽车、火车或飞机,而他从大连到天津却只想乘船.那么,他从北京经大连到天津共有多少种不同的走法?分析这个问题发现,某人从北京到天津要分两步走.第一步是从北京到大连,可以有三种走法,即:第二步是从大连到天津,只选择乘船这一种走法,所以他从北京到天津共有下面的三种走法:注意到 3×1=3.如果此人到大连后,可以乘船或飞机到天津,那么他从北京到天津则有以下的走法:共有六种走法,注意到3×2=6.在上面讨论问题的过程中,我们把所有可能的办法一一列举出来.这种方法叫穷举法.穷举法对于讨论方法数不太多的问题是很有效的.在上面的例子中,完成一件事要分两个步骤.由穷举法得到的结论看到,用第一步所有的可能方法数乘以第二步所有的可能方法数,就是完成这件事所有的方法数.一般地,如果完成一件事需要n个步骤,其中,做第一步有m1种不同的方法,做第二步有m2种不同的方法,…,做第n步有mn种不同的方法,那么,完成这件事一共有N=m1×m2×…×mn种不同的方法.这就是乘法原理.Ⅱ加法原理生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用我们将讨论的加法原理来解决.例如某人从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,此人去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.一般地,如果完成一件事有k类方法,第一类方法中有m1种不同做法,第二类方法中有m2种不同做法,…,第k类方法中有mk种不同的做法,则完成这件事共有N=m1+m2+…+mk种不同的方法.这就是加法原理.二、典例剖析:Ⅰ乘法原理例1 某人到食堂去买饭,主食有三种,副食有五种,他主食和副食各买一种,共有多少种不同的买法?例2 右图中有7个点和十条线段,一只甲虫要从A点沿着线段爬到B点,要求任何线段和点不得重复经过.问:这只甲虫最多有几种不同的走法?例3 书架上有6本不同的外语书,4本不同的语文书,从中任取外语、语文书各一本,有多少种不同的取法?例4 王英、赵明、李刚三人约好每人报名参加学校运动会的跳远、跳高、100米跑、200米跑四项中的一项比赛,问:报名的结果会出现多少种不同的情形?例5由数字0、1、2、3组成三位数,问:①可组成多少个不相等的三位数?②可组成多少个没有重复数字的三位数?例6 由数字1、2、3、4、5、6共可组成多少个没有重复数字的四位奇数?例7 右图中共有16个方格,要把A、B、C、D四个不同的棋子放在方格里,并使每行每列只能出现一个棋子.问:共有多少种不同的放法?例8 现有一角的人民币4张,贰角的人民币2张,壹元的人民币3张,如果从中至少取一张,至多取9张,那么,共可以配成多少种不同的钱数?Ⅱ加法原理例1 学校组织读书活动,要求每个同学读一本书.小明到图书馆借书时,图书馆有不同的外语书150本,不同的科技书200本,不同的小说100本.那么,小明借一本书可以有多少种不同的选法?例2一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不相同.问:①从两个口袋内任取一个小球,有多少种不同的取法?②从两个口袋内各取一个小球,有多少种不同的取法?例3 如右图,从甲地到乙地有4条路可走,从乙地到丙地有2条路可走,从甲地到丙地有3条路可走.那么,从甲地到丙地共有多少种走法?例4 如下页图,一只小甲虫要从A点出发沿着线段爬到B点,要求任何点和线段不可重复经过.问:这只甲虫有多少种不同的走法?例5 有两个相同的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6.将两个正方体放到桌面上,向上的一面数字之和为偶数的有多少种情形?例6 从1到500的所有自然数中,不含有数字4的自然数有多少个?例7如下页左图,要从A点沿线段走到B,要求每一步都是向右、向上或者向斜上方.问有多少种不同的走法?模拟测试1.某罪犯要从甲地途经乙地和丙地逃到丁地,现在知道从甲地到乙地有3条路可以走,从乙地到丙地有2条路可以走,从丙地到丁地有4条路可以走.问,罪犯共有多少种逃走的方法?2.如右图,在三条平行线上分别有一个点,四个点,三个点(且不在同一条直线上的三个点不共线).在每条直线上各取一个点,可以画出一个三角形.问:一共可以画出多少个这样的三角形?2.在自然数中,用两位数做被减数,用一位数做减数.共可以组成多少个不同的减法算式?3.一个篮球队,五名队员A、B、C、D、E,由于某种原因,C不能做中锋,而其余四人可以分配到五个位置的任何一个上.问:共有多少种不同的站位方法?5.由数字1、2、3、4、5、6、7、8可组成多少个①三位数?②三位偶数?③没有重复数字的三位偶数?④百位为8的没有重复数字的三位数?⑤百位为8的没有重复数字的三位偶数?6.某市的电话号码是六位数的,首位不能是0,其余各位数上可以是0~9中的任何一个,并且不同位上的数字可以重复.那么,这个城市最多可容纳多少部电话机?7.如右图,从甲地到乙地有三条路,从乙地到丙地有三条路,从甲地到丁地有两条路,从丁地到丙地有四条路,问:从甲地到丙地共有多少种走法?8.书架上有6本不同的画报和7本不同的书,从中最多拿两本(不能不拿),有多少种不同的拿法?9.如下图中,沿线段从点A走最短的路线到B,各有多少种走法?10.在1~1000的自然数中,一共有多少个数字0?11.在1~500的自然数中,不含数字0和1的数有多少个?12.十把钥匙开十把锁,但不知道哪把钥匙开哪把锁,问:最多试开多少次,就能把锁和钥匙配起来?。
吉林省吉林市数学小学奥数系列7-2乘法原理(二)
吉林省吉林市数学小学奥数系列7-2乘法原理(二)姓名:________ 班级:________ 成绩:________亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!一、 (共30题;共143分)1. (10分)直线a,b上分别有5个点和4个点,以这些点为顶点可以画出多少个四边形?2. (10分)按下表给出的词造句,每句必须包括一个人、一个交通工具,以及一个目的地,请问可以造出多少个不同的句子?3. (10分)在下图中,一只蚂蚁要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只蚂蚁最多有几种不同走法?4. (5分)“数学”这个词的英文单词是“MATH”.用红、黄、蓝、绿、紫五种颜色去分别给字母染色,每个字母染的颜色都不一样.这些颜色一共可以染出多少种不同搭配方式?5. (10分)用5种不同颜色的笔来写“智康教育”这几个字,相邻的字颜色不同,共有多少种写法?6. (5分)在下图中,一只甲虫要从点沿着线段爬到点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?7. (1分)配成一套衣服,有________种不同的搭配方法?8. (5分)奥苏旺大陆上的居民使用的文字非常独特,他们文字的每个单词都由个字母、、、、组成,并且所有的单词都有着如下的规律,⑴字母不打头,⑵单词中每个字母后边必然紧跟着字母,⑶ 和不会出现在同一个字母之中,那么由四个字母构成的单词一共有多少种?9. (5分)北京到上海之间一共有6个站,车站应该准备多少种不同的车票?(往返车票算不同的两种)10. (5分)一个自然数,如果它顺着看和倒过来看都是一样的,那么称这个数为“回文数”.例如1331,7,202都是回文数,而220则不是回文数.问:从一位到六位的回文数一共有多少个?其中的第1996个数是多少?11. (1分)(2010·邯郸) 六个同学排成一排照相,共有________种不同的排法。
吉林省吉林市小学数学小学奥数系列7-2乘法原理(二)
吉林省吉林市小学数学小学奥数系列7-2乘法原理(二)姓名:________ 班级:________ 成绩:________亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!一、 (共30题;共143分)1. (10分)小刘有2种牙膏和3把牙刷,每次1把牙刷配一种牙膏,有几种不同的配法?请写具体方法来.2. (10分)在下图中,一只甲虫要从点沿着线段爬到点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?3. (10分) 5条直线两两相交,没有两条直线平行,没有任何三条直线通过同一个点,以这5条直线的交点为顶点能构成几个三角形?4. (5分)北京到广州之间有10个站,其中只有两个站是大站(不包括北京、广州),从大站出发的车辆可以配卧铺,那么铁路局要准备多少种不同的卧铺车票?5. (10分)某次大连与庄河路线的火车,一共有6个停车点,铁路局要为这条路线准备多少种不同的车票?6. (5分)用红、橙、黄、绿、蓝5种颜色中的1种,或2种,或3种,或4种,分别涂在正四面体各个面上,一个面不能用两色,也无一个面不涂色的,问共有几种不同涂色方式?7. (1分)想一想,如果在他们中每次选三人排在一起照相,有________种不同的排法?8. (5分)小丸子有许多套服装,帽子的数量为5顶、上衣有10件,裤子有8条,还有皮鞋6双,每次出行要从几种服装中各取一个搭配.问:共可组成多少种不同的搭配(帽子可以选择戴与不戴)?9. (5分)在一个圆周上均匀分布10个点,以这些点为顶点,可以画出多少不同的钝角三角形?(补充知识:由直径和圆周上的一点构成的三角形一定是直角三角形,其中直径的边所对的角是直角,所以如果圆周上三点在同一段半圆周上,则这三点构成钝角三角形).10. (5分)七位数的各位数字之和为60 ,这样的七位数一共有多少个?11. (1分)看图回答________次12. (1分)小明要买一本数学课外书和一本语文课外书.在书店里他发现4种数学课外书、5种语文课外可供选用.他有________种不同的选择方法?13. (1分)快乐的秋游.一辆车恰好能坐一个班的同学,有________种坐法.14. (1分)在下图的每个区域内涂上、、、四种颜色之一,使得每个圆里面恰有四种颜色,则一共有________种不同的染色方法.15. (5分)如图,地图上有A,B,C,D四个国家,现用五种颜色给地图染色,要使相邻国家的颜色不相同,有多少种不同染色方法?16. (5分)如图,一张地图上有五个国家,,,,,现在要求用四种不同的颜色区分不同国家,要求相邻的国家不能使用同一种颜色,不同的国家可以使用同—种颜色,那么这幅地图有多少着色方法?17. (5分)如图:将一张纸作如下操作,一、用横线将纸划为相等的两块,二、用竖线将下边的区块划为相等的两块,三、用横线将最右下方的区块分为相等的两块,四、用竖线将最右下方的区块划为相等的两块……,如此进行8步操作,问:如果用四种颜色对这一图形进行染色,要求相邻区块颜色不同,应该有多少种不同的染色方法?18. (5分)如果有红、黄、蓝、绿四种颜色给例题中的地图染色,使相邻国家的颜色不同,但不是每种颜色都必须要用,问有多少种染色方法?19. (5分)如图,有一张地图上有五个国家,现在要用四种颜色对这一幅地图进行染色,使相邻的国家所染的颜色不同,不相邻的国家的颜色可以相同.那么一共可以有多少种染色方法?20. (5分)某沿海城市管辖7个县,这7个县的位置如右图.现用红、黑、绿、蓝、紫五种颜色给右图染色,要求任意相邻的两个县染不同颜色,共有多少种不同的染色方法?21. (5分)按下表给出的词造句,每句必须包括一个人、一个交通工具,以及一个目的地,请问可以造出多少个不同的句子?22. (5分)在下图中,一只甲虫要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?23. (1分)如图立体图形是由8个小正方体搭成的,将这个立体图形的表面涂上蓝色.其中,只有1个面是蓝色的小正方体有________个;只有2个面是蓝色的小正方体有________个;只有3个面是蓝色的小正方体有________个;只有4个面是蓝色的小正方体有________个;只有5个面是蓝色的小正方体有________个.24. (5分) 10个人围成一圈,从中选出三个人,其中恰有两人相邻,共有多少种不同选法?25. (5分)“IMO”是国际数学奥林匹克的缩写,把这3个字母用3种不同颜色来写,现有5种不同颜色的笔,问共有多少种不同的写法?26. (1分)聪聪从家到姥姥家,然后去水上乐园,有________种乘车方法?27. (10分)有6种不同颜色的笔,来写“学习改变命运”这六个字,要求相邻字的颜色不能相同,有多少种不同的方法?28. (5分)一条线段上除了两个端点还有6个点,那么这段线段上可以有多少条线段?29. (5分)用红、黄、蓝三种颜色对一个正方体进行染色使相邻面颜色不同一共有多少种方法?如果有红、黄、蓝、绿四种颜色对正方体进行染色使相邻面颜色不同一共有多少种方法?如果有五种颜色去染又有多少种?(注:正方体不能翻转和旋转)30. (1分)先选择策略,再解决问题.某商店有两种电话机,一种是按键的,一种是转盘的.每种电话机又有红、黄、绿3种颜色.每种颜色的电话机又有方、圆两种形状.一共有________种款式的电话机可供顾客选择?参考答案一、 (共30题;共143分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、21-1、22-1、23-1、24-1、25-1、26-1、27-1、28-1、29-1、30-1、第11 页共11 页。
精品四年级奥数a第四章 乘法原理(二)
=180+240 =420(种) 答:一共有 420 种不同的染色方法。
(4a) 第二章 加法原理
【热身演练 】
3、将 3 封信投到 4 个不罔的信箱里,一共有多 少种不罔的投法?
(4a) 第二章 加法原理
例 4:先后掷一枚殷子两次,两次出现的数字之和为偶 数的情况有多少种?
第二类两数都是偶数.同理,两数都是偶数的也有 3×3=9 种情况。
最后根据加法原理,将两次出现的数字之和为偶数的情况相加即可。 解:3×3+3×3 =9+9 =18(种)
答:先后掷一枚殷子两次,两次出现的数字之和为偶数的情况有 18 种。
(4a) 第二章 加法原理
【热身演练 】
4、
用五种颜色给左图 A、B、C、
(4a) 第二章 加法原理
小朋友们,今天学习怎样, 知识点掌握了没有?
(4a) 第二章 加法原理
D、E 的五个区域染色,每个区域染一种颜色,相
邻的区域染不同颜色。 问:共有多少种不同的
染法?
(】
5、用 1、2、3、4 这四个数字和小数点一共 可以组成多少个不同的小数?
(4a) 第二章 加法原理
【热身演练 】
6、100 把钥匙对应 100 把锁,但钥匙放乱了。 ① 最多要试多少次才可以让所有的钥匙找到相应的锁?
解:2×3+4=10(种) 答:从甲村到达丙村共有 10 种不同的走法。
(4a) 第二章 加法原理
【热身演练 】
2、从 0、1、2、3、4、5、6 七个数字当中任 选 4 个数字组成一个 4 位数,一共可以 组成多少 个不罔的四位数?
(4a) 第二章 加法原理
小学四年级奥数教程-乘法原理
综合练习题
• 总结词:综合运用知识、提升解题能力 • 求一个三位数与一个两位数的乘积 • 123×45 • 456×78 • 789×90 • 求一个三位数分别乘以两个两位数的积之和 • 123×25+456×37 • 456×48+789×59 • 789×68+123×79
05
答案与解析
基础练习题答案与解析
综合练习题答案与解析
总结词:综合运用
详细描述:综合练习题是在基础练习题和进阶练习题的基础上,将多个知识点和 难点融合在一起,这些题目的答案与解析,可以帮助学生综合运用乘法原理,提 高解题能力和思维水平,为更高难度的学习做好准备。
THANK YOU.
多位数乘法
总结词
分位数相乘,化繁为简
详细描述
将多位数拆分成若干个一位数和十位数等,分别与另一个数相乘,然后将结 果相加。例如,计算31 × 4时,可将其拆分为30 × 4+1 × 4=120+4=124。
乘法的结合律和分配律
总结词
灵活运用,提升计算能力
详细描述
结合律指的是将几个数相乘时,可以随意改变它们的 顺序,只要不改变它们的运算符号和个数。例如,(2 × 3) × 4=2 × (3 × 4)=6 × 4=24。分配律指的是将 一个数分别分配到若干个数的和或差中,可以分别进 行运算。例如,2 × (3+4)=2 × 3+2 × 4=6+8=14。
乘法原理的作用
简化计算
乘法原理可以用来简化计算,将多个乘积的运算转化为一个 简单的乘法运算。
优化算法
乘法原理还可以用来优化算法,将复杂的计算过程转化为简 单的乘法运算,提高计算效率。
乘法原理的分类
四年级上奥数第17讲 乘法原理(二)
四秋第17讲加乘原理(二)一、教学目标完成一件事,这个事情可以分成n个必不可少的步骤,第1步有A种不同的方法,第二步有B种不同的方法,……,第n步有N种不同的方法.那么完成这件事情一共有A×B×……×N种不同的方法,这就是乘法原理.运用乘法原理时,一般优先满足有特殊要求的步骤,在解题时要细心、耐心、有条理地分析问题。
二、例题精选【例1】甲、乙、丙、丁四人要住进A、B、C、D四个房间。
每个房间只住一个人。
甲只住A或B房间,丙不住D 房间,那么这四个人共有多少种房间的住法?【巩固1】一名老师和甲、乙、丙、丁4名获奖学生排成一排照相留念,若老师不排在两端,甲不站在中间,则共有多少种不同的排法?【例2】甲、乙、丙、丁、戊驾驶A、B、C、D、E五辆不同型号的汽车,请计算:只有甲能开汽车A,乙不会开汽车B,则有多少种不同的安排方案?【巩固2】甲、乙、丙、丁、戊驾驶A、B、C、D、E五辆不同型号的飞机,会开A的只有甲和乙,会开E的只有甲、乙、丙,则有多少种不同的安排方案?【例3】一个三位数,如果它的每一位数字都不小于另一个三位数对应数位上的数字,就称它“吃掉”另一个三位数。
例如,532吃掉311,123吃掉123。
但是726与267相互都不被吃掉。
问:能吃掉678的三位数共有多少个?【巩固3】在非零自然数中,用两位数作被减数,用一位数作减数,共可以组成多少个不同的减法算式?.【例4】由数字0、1、2、3、4、5共可以组成多少个没有重复数字的三位偶数?【巩固4】由数字0、1、2、3组成三位数,问:可以组成多少个没有重复数字的自然数?【例5】从1到500的所有自然数中,不含有数字4的自然数有多少个?【巩固5】1—300的自然数中,不含有数字3的自然数共有多少个?【例6】如图所示是一个阶梯形方格表,在方格中放入5枚相同的棋子,使得每行、每列中都只有1枚棋子,这样的放法共有多少种?三、回家作业【作业1】设a△b=a×a—2×b。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学四年级奥数题:乘法原理一:何为乘法原理(路线问题分析:树状图)二:乘法原理的相关经典题型1、 如下图由火柴组成的一个图形,一只蚂蚁由A 点顺着火柴走到B 点,一支火柴只能经过一次,问一共有几种走法?2、 课桌上有两个盒子,第一个盒子里装着标有1、2、3、4、5、6的6个同样大小的球,第二个盒子里装着7、8、9、0的4个同样大小的球,现分别从第一个盒子和第二个盒子分别抓出一个球;问题一:若第一个盒子里面的球放在十位上,第二个盒子的球放在个位上,共有几个数字?问题二:若第二个盒子里面的球放在十位上,第一个盒子里面的球放在个位上,共有几个数字?3、 好老师培训中心近期将举办一场户外比赛,共有跳绳、跳远、打乒乓球和游泳4个项目,学校的小花同学、小红同学和张三同学三位同学准备报名参加,若每个项目不限制人数,则报名结果有几种情况?4、 由数字0、1、2、3组成三位数,则:可组成多少个不相等的三位数?可组成多少没有重复数字的三位数?5、 由数字1、2、3、4、5、6、7可以组成多少个没有重复数字的四位奇数?可以组成多少个没有重复数字的四位偶数?6、 用1元、2元和5元的3种面值的纸币(每张纸币没有限制张数)组成10元钱,有多少种方法?AB四年级奥数题:速算与巧算(一)1.【试题】计算9+99+999+9999+999992【试题】计算199999+19999+1999+199+193【试题】计算(2+4+6+…+996+998+1000)--(1+3+5+…+995+997+999) 4【试题】计算9999×2222+3333×33345.【试题】56×3+56×27+56×96-56×57+566.【试题】计算98766×98768-98765×98769四年级奥数题:年龄问题1、父亲45岁,儿子23岁。
问几年前父亲年龄是儿子的2倍?2、李老师的年龄比刘红的2倍多8岁,李老师10年前的年龄和王刚8年后的年龄相等。
问李老师和王刚各多少岁?3、姐妹两人三年后年龄之和为27岁,妹妹现在的年龄恰好等于姐姐年龄的一半,求姐妹二人年龄各为多少。
4、小象问大象妈妈:“妈妈,我长到您现在这么大时,你有多少岁了?”妈妈回答说:“我有28岁了”。
小象又问:“您像我这么大时,我有几岁呢?”妈妈回答:“你才1岁。
”问大象妈妈有多少岁了?5、大熊猫的年龄是小熊猫的3倍,再过4年,大熊猫的年龄与小熊猫年龄的和为28岁。
问大、小熊猫各几岁?6、15年前父亲年龄是儿子的7倍,10年后,父亲年龄是儿子的2倍。
求父亲、儿子各多少岁。
7、王涛的爷爷比奶奶大2岁,爸爸比妈妈大2岁,全家五口人共200岁。
已知爷爷年龄是王涛的5倍,爸爸年龄在四年前是王涛的4倍,问王涛全家人各是多少岁?四年级奥数题:牛吃草问题解析历史起源:英国数学家牛顿(1642—1727)说过:“在学习科学的时候,题目比规则还有用些”因此在他的著作中,每当阐述理论时,总是把许多实例放在一起。
在牛顿的《普遍的算术》一书中,有一个关于求牛和头数的题目,人们称之为牛顿的牛吃草问题。
主要类型:1、求时间2、求头数除了总结这两种类型问题相应的解法,在实践中还要有培养运用“牛吃草问题”的解题思想解决实际问题的能力。
基本思路:①在求出“每天新生长的草量”和“原有草量”后,已知头数求时间时,我们用“原有草量÷每天实际减少的草量(即头数与每日生长量的差)”求出天数。
②已知天数求只数时,同样需要先求出“每天新生长的草量”和“原有草量”。
③根据(“原有草量”+若干天里新生草量)÷天数”,求出只数。
基本公式:解决牛吃草问题常用到四个基本公式,分别是∶(1)草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度第一种:一般解法“有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。
如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。
”一般解法:把一头牛一天所吃的牧草看作1,那么就有:(1)27头牛6天所吃的牧草为:27×6=162 (这162包括牧场原有的草和6天新长的草。
)(2)23头牛9天所吃的牧草为:23×9=207 (这207包括牧场原有的草和9天新长的草。
)(3)1天新长的草为:(207-162)÷(9-6)=15(4)牧场上原有的草为:27×6-15×6=72(5)每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:72÷(21-15)=72÷6=12(天)所以养21头牛,12天才能把牧场上的草吃尽。
第二种:公式解法有一片牧场,草每天都匀速生长(草每天增长量相等),如果放牧24头牛,则6天吃完牧草,如果放牧21头牛,则8天吃完牧草,假设每头牛吃草的量是相等的。
(1)如果放牧16头牛,几天可以吃完牧草?(2)要使牧草永远吃不完,最多可放多少头牛?解答:1) 草的生长速度:(21×8-24×6)÷(8-6)=12(份)原有草量:21×8-12×8=72(份)16头牛可吃:72÷(16-12)=18(天)2) 要使牧草永远吃不完,则每天吃的份数不能多于草每天的生长份数所以最多只能放12头牛。
小学四年级奥数题及答案和题目分析一、按规律填数。
1)64,48,40,36,34,( )2)8,15,10,13,12,11,( )3)1、4、5、8、9、()、13、()、()4)2、4、5、10、11、()、()5)5,9,13,17,21,( ),( )二、等差数列1.在等差数列3,12,21,30,39,48,…中912是第几个数?2.求1至100内所有不能被5或9整除的整数和3.把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?4.把从1开始的所有奇数进行分组,其中每组的第一个数都等于此组中所有数的个数,如(1),(3、5、7),(9、11、13、15、17、19、21、23、25),(27、29、……79),(81、……),求第5组中所有数的和三、平均数问题1.已知9个数的平均数是72,去掉一个数后,余下的数平均数为78,去掉的数是______ .2.某班有40名学生,期中数学考试,有两名同学因故缺考,这时班级平均分为89分,缺考的同学补考各得99分,这个班级中考平均分是_______ .3.今年前5个月,小明每月平均存钱4.2元,从6月起他每月储蓄6元,那么从哪个月起小明的平均储蓄超过5元?4.A、B、C、D四个数,每次去掉一个数,将其余下的三个数求平均数,这样计算了4次,得到下面4个数.23, 26, 30, 33A、B、C、D 4个数的平均数是多少?5 A、B、C、D4个数,每次去掉一个数,将其余3个数求平均数,这样计算了4次得到下面4个数23、26、30、33,A、B、C、D4个数的和是。
四、加减乘除的简便运算1)100-98+96-94+92-90+……+8-6+4-2=()2)1976+1977+……2000-1975-1976-……-1999=()3)26×99 =()4)67×12+67×35+67×52+67=()5)(14+28+39)×(28+39+15)-(14+28+39+15)×(28+39)五、数阵图1、△、□、〇分别代表三个不同的数,并且;△+△+△=〇+〇;〇+〇+〇+〇=□+□+□;△+〇+〇+□=60求:△= 〇= □=2.将九个连续自然数填入3行3列的九个空格中,使每一横行及每一竖列的三个数之和都等于60.3.将从1开始的九个连续奇数填入3行3列的九个空格中,使每一横行、每一竖列及两条对角线上的三个数之和都相等.4 用1至9这9个数编制一个三阶幻方,写出所有可能的结果。
所谓幻方是指在正方形的方格表的每个方格内填入不同的数,使得每行、每列和两条对角线上的各数之和相等;而阶数是指每行、每列所包含的方格的数。
六、和差倍问题1.果园里一共种340棵桃树和杏树,其中桃树的棵数比杏树的3倍多20棵,两种树各种了多少棵?2.一个长方形,周长是30厘米,长是宽的2倍,求这个长方形的面积。
3.甲、乙两个数,如果甲数加上320就等于乙数了.如果乙数加上460就等于甲数的3倍,两个数各是多少?4.有两块同样长的布,第一块卖出25米,第二块卖出14米,剩下的布第二块是第一块的2倍,求每块布原有多少米?5.果园里有桃树和梨树共150棵,桃树比梨树多20棵,两种果树各有多少棵?6.甲、乙两桶油共重30千克,如果把甲桶中6千克油倒入乙桶,那么两桶油重量相等,问甲、乙两桶原有多少油?七、年龄问题1.兄弟俩今年的年龄和是30岁,当哥哥像弟弟现在这样大时,弟弟的年龄恰好是哥哥年龄的一半,哥哥今年几岁?2.母女的年龄和是64岁,女儿年龄的3倍比母亲大8岁,求母女二人的年龄各是多少岁?3.哥哥今年比小丽大12岁,8年前哥哥的年龄是小丽的4倍,今年二人各几岁?4.爷爷今年72岁,孙子今年12岁,几年后爷爷的年龄是孙子的5倍?几年前爷爷的年龄是孙子的13倍?八、假设问题1、有42个同学参加植树,男生平均每人种3棵,女生平均每人种2棵,男生比女生多种56棵.男、女生各多少人?2.某小学举行一次数学竞赛,共15道题,每做对一题得8分,每做错一题倒扣4分,小明共得了72分,他做对了多少道题?3.一张试卷有25道题,答对一题得4分,答错或不答均倒扣1分,某同学共得60分,他答对了多少道题?4.小华解答数学判断题,答对一题给4分,答错一题要倒扣4分,她答了20个判断题,结果只得了56分,她答错了多少道题?5. 育才小学五年级举行数学竞赛,共10道题,每做对一道题得8分,错一题倒扣5分,张小灵最终得分为41分,她做对了多少道题?和差倍果园里有梨树、桃树、核桃树共526棵,梨树比桃树的2倍多24棵,核桃树比桃树少18棵.求梨树、桃树及核桃树各有多少棵?1、在□中填入适当的数字,使乘法竖式成立。
2、在□中填入适当的数字,使除法竖式成立。
1、天天带了一些苹果和梨到敬老院慰问。
每次从篮里取出2个梨和4个苹果送给老人,最后当梨正好分完时,还剩下27个苹果。