2018年普通高等学校招生全国统一考试仿真卷理科数学(九)(解析版)
2018年普通高等学校招生全国统一考试仿真卷 理科数学(十)学生版
绝密 ★ 启用前2018年普通高等学校招生全国统一考试仿真卷理科数学(十)本试题卷共2页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.[2018·珠海一中]已知集合(){}22,|,2M x y x y x y =+=为实数,且,(){},|,2N x y x y x y =+=为实数,且,则M N 的元素个数为( )A .0B .1C .2D .32.[2018·马鞍山期末]已知甲、乙两组数据的茎叶图如图所示,若它们的中位数相同,则甲组数据的平均数为( )A .30B .31C .32D .333.[2018·湖南联考]已知双曲线方程为2212015x y -=,则该双曲线的渐近线方程为( )班级 姓名 准考证号 考场号 座位号A .34y x =±B .43y x =±C .2y x =±D .3y x =±4.[2018·茂名联考]如图所示,黑色部分和白色部分图形是由曲线1y x =,1y x=-,y x =,y x =-及圆构成的.在圆内随机取一点,则此点取自黑色部分的概率是( )A .14B .18C .π4D .π85.[2018·烟台期末]已知等差数列{}n a 的前n 项和为n S ,且233215S S -=,则数列{}n a 的公差为( ) A .3B .4-C .5-D .66.[2018·耀华中学]设α与β均为锐角,且1cos 7α=,sin()αβ+=,则cos β的值为( ) A .7198B .12C .7198或12 D .7198或59987.[2018·陆川县中学]设函数()()22()2ln 2f x x a x a =-+-,其中0x >,a R ∈,存在0x 使得()045f x ≤成立,则实数a 的值是( ) A .15B .25C .12D .18.[2018·太原模拟]某空间几何体的三视图如图所示,则该几何体的体积是( )A .43 B .83C .2D .49.[2018·淄博模拟]南宋时期的数学家秦九韶独立发现的计算三角形面积的“三斜求积术”,与著名的海伦公式等价,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减小,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即S =.现有周长为且))sin :sin :sin 11A B C =的ABC △,则其面积为( )A .4B .2C .4D .210.[2018·南平质检]已知数列{}n b 满足11b =,2b =该数列的前23项的和为( ) A .4194B .4195C .2046D .204711.[2018·天一大联考]过点()3,0P -作直线()220ax a b y b +++=(a ,b 不同时为零)的垂线,垂足为M ,点()2,3N ,则MN 的取值范围是( )A .0,5⎡⎣B .5⎡⎤⎣⎦C .5,5⎡+⎣D .5⎡⎣12.[2018·宜昌调研]定义:如果函数()f x 的导函数为()f x ',在区间[],a b 上存在1x ,()212x a x x b <<<使得()()()1f b f a f x b a -'=-,()()()2f b f a f x b a-'=-,则称()f x 为区间[],a b 上的"双中值函数".已知函数()32132m g x x x =-是[]0,2上的"双中值函数",则实数m 的取值范围是( )A .48,33⎡⎤⎢⎥⎣⎦B .48,33⎛⎫ ⎪⎝⎭C .4,3⎛⎫+∞ ⎪⎝⎭D .(),-∞+∞第Ⅱ卷本卷包括必考题和选考题两部分。
2018高考数学全国卷含答案解析
从而 ,故MA,MB的倾斜角互补,所以 .
综上, .
20.(12分)
解:(1)20件产品中恰有2件不合格品的概率为 .因此
.
令 ,得 .当 时, ;当 时, .
所以 的最大值点为 .
(2)由(1)知, .
(i)令 表示余下的180件产品中的不合格品件数,依题意知 , ,即 .
所以 .
(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.若 , 满足约束条件 ,则 的最大值为_____________.
14.记 为数列 的前 项和.若 ,则 _____________.
15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)
建设前经济收入构成比例建设后经济收入构成比例
则下面结论中不正确的是
A.新农村建设后,种植收入减少
B.新农村建设后,其他收入增加了一倍以上
C.新农村建设后,养殖收入增加了一倍
D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
4.记 为等差数列 的前 项和.若 , ,则
A. B. C. D.
解:(1)在 中,由正弦定理得 .
由题设知, ,所以 .
由题设知, ,所以 .
(2)由题设及(1)知, .
在 中,由余弦定理得
.
所以 .
18.(12分)
解:(1)由已知可得,BF⊥PF,BF⊥EF,所以BF⊥平面PEF.
又 平面ABFD,所以平面PEF⊥平面ABFD.
(2)作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD.
普通高等学校2018届高三招生全国统一考试仿真卷(九)数学(文)试题含答案
绝密 ★ 启用前2018年普通高等学校招生全国统一考试仿真卷文科数学(九)本试题卷共2页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}A x y ==,{}B x x a =≥,若A B A =,则实数a 的取值范围是( ) A .(],3-∞-B .(),3-∞-C .(],0-∞D .[)3,+∞2.已知1i +是关于x 的方程220ax bx ++=(a ,b ∈R )的一个根,则a b +=( ) A .1-B .1C .3-D .33.已知焦点在x轴上的双曲线的焦距为,则双曲线的方程为( )A .2212x y -=B .2212y x -= C .2212x y -=D .2212y x -=级 姓名 准考证号 考场号 座位号卷只装订不密封4.函数sin 21cos xy x=+的部分图象大致为( )A .B .C .D .5.已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )A .33cmB .35cmC .34cmD .36cm6.按照程序框图(如图所示)执行,第3个输出的数是( )开始输出A结束是否1A =1S =5?S ≤2A A =+1S S =+A .6B .5C .4D .37.两个单位向量a ,b 的夹角为120︒,则2+=a b ( )A .2B .3CD8.已知函数()sin cos f x a x b x =+(x ∈R ),若0x x =是函数()f x 的一条对称轴,且0tan 2x =,则()a b ,所在的直线为( ) A .20x y -=B .20x y +=C .20x y -=D .20x y +=9.我国古代数学名著《九章算术》中,有已知长方形面积求一边的算法,其方法的前两步为:第一步:构造数列1,12,13,14, (1). ①第二步:将数列①的各项乘以n ,得数列(记为)1a ,2a ,3a ,…,n a . 则12231n n a a a a a a -+++等于( )A .()1n n -B .()21n -C .2nD .()1n n +10.已知台风中心位于城市A 东偏北α(α为锐角)度的150公里处,以v 公里/小时沿正西方向快速移动,25.小时后到达距城市A 西偏北β(β为锐角)度的200公里处,若3cos cos 4αβ=,则v =( )A .60B .80C .100D .12511.已知双曲线()222210,0x y a b a b-=>>与抛物线()220y px p =>有相同的焦点F ,且双曲线的一条渐近线与抛物线的准线交于点()3M t -,,2MF =,则双曲线的离心率为( )A .2B .3C .2D 12.已知函数()f x 是定义在R 上的奇函数,其导函数为()f x ',若对任意的正实数x ,都有()()20xf x f x '+>恒成立,且1f =,则使22x f x <()成立的实数x 的集合为( )A .(()2-∞+∞,,B .(C.(-∞D.)+∞第Ⅱ卷卷包括必考题和选考题两部分。
2018年普通高等学校招生全国统一考试仿真卷理科综合(九)解析版知识讲解
2018年普通高等学校招生全国统一考试仿真卷理科综合(九)解析版2018年普通高等学校招生全国统一考试仿真卷理科综合能力测试(九)本试卷共16页,38题(含选考题)。
全卷满分300分。
考试用时150分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
可能用到的相对原子质量:H 1 C 12 N 14 O 16 Na 23 Cl 35.5 Fe 56第Ⅰ卷一、选择题:本大题共13小题,每小题6分。
在每小题给出的四个选项中,只有一项是符合题目要 求的。
1. 细胞是生物体的结构和功能的基本单位,下列有关细胞结构与功能的叙述中班级 姓名 准考证号 考场号 座位号错误的是A. 核糖体上合成的物质一般不作为携带遗传信息的物质B. 线粒体内膜蛋白质的种类与含量均比其外膜的高C. 吞噬细胞的溶酶体能合成多种水解酶,这与其功能相适应D. 神经元内突触小泡的形成与高尔基体密切相关【答案】C【解析】核糖体上合成的物质是蛋白质,不具有携带遗传信息的功能,A正确;线粒体内膜向内折叠形成的脊是有氧呼吸第三阶段发生的场所,故线粒体内膜蛋白质的种类与含量均比其外膜的高,B正确;吞噬细胞的溶酶体内含有多种水解酶,这些水解酶是在核糖体合成的,C错误;神经元内突触小泡来自于高尔基体的出芽,D正确。
2018年普通高等学校招生全国统一考试仿真卷 理科数学(九)学生版
绝密 ★ 启用前 2017年普通高等学校招生全国统一考试仿真卷 理科数学(九) 本试题卷共2页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★ 注意事项: 1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.[2017怀仁一中]如果复数21i z =-+,则( ) A .z 的共轭复数为1i + B .z 的实部为1 C .2z = D .z 的虚部为1- 2.[2017临川一中]已知全集U =R ,集合{}2|60A x x x =--≤,(4)|0(1)x B x x ⎧⎫-=⎨⎬+⎩⎭≤,那么集合()U A C B = ( ) A .[24)-, B .(13]-, C .[21]--, D .[13]-, 3.[2017皖南八校]某校为了解1000名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取40名同学进行检查,将学生从1~1000进行编号,现已知第18组抽取的号码为443,则第一组用简单随机抽样抽取的号码为( )A .16B .17C .18D .194.[2017重庆一中]已知F 是抛物线2:2C y x =的焦点,点(),P x y 在抛物线C 上,且1x =,则PF =( ) A .98 B .32 C .178 D .52 5.[2017重庆一诊]函数1sin y x x =-的图象大致是( ) A . B . C . D . 6.[2017天水一中]若不等式组1,3,220x y x y λ⎧⎪⎨⎪-+-⎩≤≤≥表示的平面区域经过所有四个象限,则实数λ的取值范围是( ) A .(,4)-∞ B .[]1,2 C .[]2,4 D .(2,)+∞ 7.[2017汕头模拟]假设你家订了一份牛奶,送奶人在早上6:30~7:30之间随机地把牛奶送到你家,而你在早上7:00~8:00之间随机离家上学,则你在离家前能收到牛奶的概率是( ) A .81 B .85 C .21 D .87 8.[2017郑州一中]我们可以用随机模拟的方法估计π的值,如图程序框图表示其基本步骤(函数RAND 是产生随机数的函数,它能随机产生()01,内的任何一个实数).若输出的结果为521,则由此可估计π的近似值为( ) 班级姓名准考证号考场号座位号此卷只装订不密封A .3.119B .3.126C .3.132D .3.1519.[2017抚州七校]将函数()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭的图像向左平移π12个单位,再向上平移1个单位,得到()g x 的图像.若()()129g x g x =,且[]12,2π,2πx x ∈-,则122x x -的最大值为( )A .49π12B .35π6C .25π6 D .17π410.[2017长郡中学]三棱锥S ABC -及其三视图中的正视图和侧视图如图所示,则该三棱锥S ABC -的外接球的表面积为( )A .32πB .112π3 C .28π3 D .64π311.[2017南阳一中]过椭圆C :22221(0)x y a b a b +=>>的左顶点A 且斜率为k 的直线交椭圆C 于另一点B ,且点B 在x 轴上的射影恰好为右焦点2F ,若1132k <<,则椭圆C 的离心率的取值范围是( )A .1(0,)2 B .2(,1)3 C .12(,)23 D .12(0,)(,1)2312.[2017雅礼中学]已知实数b a ,满足225ln 0a a b --=,c ∈R ,则22)()(c b c a ++-的最小值为( ) A .21 B .22 C .223 D .29 第Ⅱ卷 本卷包括必考题和选考题两部分。
2018全国高考数学必刷模拟卷(九)含答案(PDF版)
345+! %&'( & )'$( 6% +!óô.õ</! ! !" $?a* ©¿Q5 If6 /!ì? "&+ $=
ö÷øù'úùàm|ûüýþ"
! !
a $\£/w,
"6!! %)'+ "# +"
! ! "" A?©¿Q* If+ /!äg/vC$=1
xg!y% *:& /ò : 3ì? ):$!y% (:& 8xz!y$!! 2~V A/+Byì!">m!
/#*D &-/ Ü#? -&--/#*+ &-/, °+ -&--/, *Ü-`
[(!$ZêB *$B 5+ ¿
".
" (
#EU
"&( %
(&%( $+ V2!!, )# $2 '2"(( $2 '5"1+#*V2
!!*$Ø!*#Ø!
7!,! /0 z U Ç]*,!
'l/`!i_$»4füo8
!
! !!"
íÎ6ðW/!m¯aYabc$> ç *$:$(/C+? 5$#$%!$$! *¿
Õ & 'a
! ! !
*+2
槡2 '3 "%
,+2
槡2 )3 "%
Hüd£e)!À©²" B.ÊÛ?
!
!!"
! !
2018年高考全国一卷理科数学答案及解析
2018年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有12小题,每小题5分,共60分。
1、设z=,则|z|=A 、0B 、C 、1D 、【答案】C【解析】由题可得i z =+=2i )i -(,所以|z|=1【考点定位】复数2、已知集合A={x|x 2-x-2>0},则A =A 、{x|-1<x<2}B 、{x|-1x 2}C 、{x|x<-1}∪{x|x>2}D 、{x|x -1}∪{x|x 2} 【答案】B【解析】由题可得C R A={x|x 2-x-2≤0},所以{x|-1x 2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。
B 、新农村建设后,其他收入增加了一倍以上。
C 、新农村建设后,养殖收入增加了一倍。
D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。
【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%,【考点定位】简单统计4、记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=A、-12B、-10C、10D、12【答案】B【解析】3*(a1+a1+d+a1+2d)=(a1+a1+d) (a1+a1+d+a1+2d+a1+3d),整理得:2d+3a1=0; d=-3 ∴a5=2+(5-1)*(-3)=-10【考点定位】等差数列求和5、设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为:A、y=-2xB、y=-xC、y=2xD、y=x【答案】D【解析】f(x)为奇函数,有f(x)+f(-x)=0整理得:f(x)+f(-x)=2*(a-1)x2=0 ∴a=1f(x)=x3+x求导f‘(x)=3x2+1f‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC中,AD为BC边上的中线,E为AD的中点,则=A、--B、--C、-+D、-【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB-AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处。
黑龙江省2018年普通高等学校招生全国统一考试仿真模拟(九)数学(理)答案
2 2 所以 VH = 4 -2 =2 3,
该 几 何 体 是 底 面 为 直 角 三 角 形, 4. B㊀ 由三 视 图 知 , ( , 如图 ) 高为 5 的 三 棱 柱 截 去 一 个 三 棱 锥 后 剩 余 的 部 分
( ) 输出的是2 由4 1 0. B㊀ 输入x, 2 x-1 -1=4 x-3, x
故选 D. ʑ q 为真 ������ q 为假 .
1 2. D㊀f( x) = k x 关于直线y=e对称的函数为 h( x) , 由题 意 知 h2 e 与 g( x) =2 l nx+2 e 在 xɪ , 即方程 e ] 上 有 交 点, [1 e
2018年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)
2018年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)=()A.i B.C.D.2.(5分)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A.9B.8C.5D.43.(5分)函数f(x)=的图象大致为()A.B.C.D.4.(5分)已知向量,满足||=1,=﹣1,则•(2)=()A.4B.3C.2D.05.(5分)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x6.(5分)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4B.C.D.27.(5分)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1B.i=i+2C.i=i+3D.i=i+48.(5分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.B.C.D.9.(5分)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()A.B.CD.10.(5分)若f(x)=cosx﹣sinx在[﹣a,a]是减函数,则a的最大值是()A.B.C.D.π11.(5分)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50B.0C.2D.5012.(5分)已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A 且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
2018年普通高等学校招生全国统一考试仿真卷 理科数学(十)学生版
绝密 ★ 启用前2018年普通高等学校招生全国统一考试仿真卷理科数学(十)本试题卷共2页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.[2018·珠海一中]已知集合(){}22,|,2M x y x y x y =+=为实数,且,(){},|,2N x y x y x y =+=为实数,且,则M N 的元素个数为( )A .0B .1C .2D .32.[2018·马鞍山期末]已知甲、乙两组数据的茎叶图如图所示,若它们的中位数相同,则甲组数据的平均数为( )A .30B .31C .32D .333.[2018·湖南联考]已知双曲线方程为2212015x y -=,则该双曲线的渐近线方程为( )班级 姓名 准考证号 考场号 座位号A .34y x =±B .43y x =±C .2y x =±D .3y x =±4.[2018·茂名联考]如图所示,黑色部分和白色部分图形是由曲线1y x =,1y x=-,y x =,y x =-及圆构成的.在圆内随机取一点,则此点取自黑色部分的概率是( )A .14B .18C .π4D .π85.[2018·烟台期末]已知等差数列{}n a 的前n 项和为n S ,且233215S S -=,则数列{}n a 的公差为( ) A .3B .4-C .5-D .66.[2018·耀华中学]设α与β均为锐角,且1cos 7α=,sin()14αβ+=,则cos β的值为( ) A .7198B .12C .7198或12 D .7198或59987.[2018·陆川县中学]设函数()()22()2ln 2f x x a x a =-+-,其中0x >,a R ∈,存在0x 使得()045f x ≤成立,则实数a 的值是( ) A .15B .25C .12D .18.[2018·太原模拟]某空间几何体的三视图如图所示,则该几何体的体积是( )A .43 B .83C .2D .49.[2018·淄博模拟]南宋时期的数学家秦九韶独立发现的计算三角形面积的“三斜求积术”,与著名的海伦公式等价,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减小,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即S =.现有周长为且))sin :sin :sin 11A B C =的ABC △,则其面积为( )A B .C D .10.[2018·南平质检]已知数列{}n b 满足11b =,2b =该数列的前23项的和为( ) A .4194B .4195C .2046D .204711.[2018·天一大联考]过点()3,0P -作直线()220ax a b y b +++=(a ,b 不同时为零)的垂线,垂足为M ,点()2,3N ,则 )A B C D 12.[2018·宜昌调研]定义:如果函数()f x 的导函数为()f x ',在区间[],a b 上存在1x ,()212x a x x b <<<使得()()()1f b f a f x b a -'=-,()()()2f b f a f x b a-'=-,则称()f x 为区间[],a b 上的"双中值函数".已知函数()32132m g x x x =-是[]0,2上的"双中值函数",则实数m 的取值范围是( )A .48,33⎡⎤⎢⎥⎣⎦B .48,33⎛⎫ ⎪⎝⎭C .4,3⎛⎫+∞ ⎪⎝⎭D .(),-∞+∞第Ⅱ卷本卷包括必考题和选考题两部分。
2018全国一卷理科数学高考真题及答案
2018年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设1i2i 1iz -=++,则||z = A .0B .12C .1D .22.已知集合{}220A x x x =-->,则A =RA .{}12x x -<<B .{}12x x -≤≤ C .}{}{|1|2x x x x <->D .}{}{|1|2x x x x ≤-≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。
为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例 则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则=5a A .12-B .10-C .10D .125.设函数32()(1)f x x a x ax =+-+。
若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .172B .52C .3D .28.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅= A .5B .6C .7D .89.已知函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是 A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 311.已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若OMN △为直角三角形,则|MN |= A .32B .3C .23D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为A 33B 23C 32D 3二、填空题:本题共4小题,每小题5分,共20分。
黑龙江省2018年普通高等学校招生全国统一考试仿真模拟(九)数学(理)
绝密 启用前普通高等学校招生全国统一考试仿真模拟(九)理科数学本试卷共8页,24题(含选考题).全卷满分150分.考试用时150分钟.祝考试顺利注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.其中第Ⅱ卷第(22)题~第(24)题为选考题,其它题为必考题.2.答题前,考生务必将密封线内项目填写清楚.考生作答时,请将答案答在答题卡上.必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷㊁草稿纸上答题无效.3.做选考题时,考生须按照题目要求作答,并用2B铅笔在答题纸上把所选题号的题目涂黑.4.考试结束后,将本试题和答题纸一并交回.第Ⅰ卷(选择题,共60分)一㊁选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2017 太原市一模)已知全集U={0,1,2,3,4,5,6},集合A={0,1,3},集合B={2,6},则(∁U A)ɘ(∁U B)为(㊀㊀) A.{5,6}㊀㊀㊀㊀㊀㊀㊀㊀B.{4,5}㊀㊀㊀㊀㊀㊀㊀㊀C.{0,3}㊀㊀㊀㊀㊀㊀㊀㊀D.{2,6}2.(2017 武汉市调研)已知复数z=3+2i2-3i,则z的共轭复数z=(㊀㊀) A.1B.-1C.i D.-i3.c o s160ʎs i n10ʎ-s i n20ʎc o s10ʎ=(㊀㊀) A.-32B.32C.-12D.124.某几何体的三视图如图所示,则该几何体的表面积为(㊀㊀)A.54B.60C.66D.725.(2017 商丘市三模)某地高三理科学生有15000名,在一次调研测试中,数学成绩ξ服从正态分布N(100,σ2),已知P(80<ξɤ100)=0.35,若按成绩分层抽样的方式取100份试卷进行分析,则从120分以上的试卷中抽取(㊀㊀) A.5份B.10份C.15份D.20份数学试卷(九)㊀㊀第1页(共8页)6.已知命题p :若奇函数y =f (x )(x ɪR )满足f (x +2)=f (x ),则f (6)=0;命题q :不等式l o g 122x -1>-1的解集为{x |x <2},则下列结论错误的是(㊀㊀)A.p ɡq 真B .p ᶱq 真C .( p )ɡq 假D.( p )ɡ( q )真7.已知点P 是抛物线x 2=4y 上的动点,点P 在x 轴上的射影是Q ,点A 的坐标是(8,7),则|P A |+|P Q |的最小值为(㊀㊀)A.7B .8C .9D.108.已知平面向量a ,b ,c 满足a a =a b =b c =1,a c =2,则|a +b +c |的取值范围为(㊀㊀)A.[0,+ɕ)B .[22,+ɕ)C .[23,+ɕ)D.[4,+ɕ)9.如图是正三棱锥V GA B C 的正视图㊁侧视图和俯视图,则其侧视图的面积是(㊀㊀)A.4B .5C .6D.710.(2017 甘肃省二诊)如图是某算法的程序框图,若任意输入[3,19]中的实数x ,则输出的x 大于41的概率为(㊀㊀)A.817B .12C .917D.91611.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,c 是半焦距,P 是双曲线上异于顶点的点,满足c t a n øP F 1F 2=a t a n øP F 2F 1,则双曲线的离心率e 的取值范围是(㊀㊀)A.(1,1+2)B .(2,1+2)C .(1+2,1+3)D.(1+2,+ɕ)12.(2017 福建省质检)已知函数f (x )=k x ,g (x )=2l n x +2e 1e ɤx ɤe 2æèçöø÷,若f (x )与g (x )的图象上分别存在点M ,N ,使得M ,N 关于直线y =e 对称,则实数k 的取值范围是(㊀㊀)A.-4e 2,+ɕéëêêöø÷B .-2e ,-4e 2éëêêùûúúC .-4e 2,2e éëêêùûúúD.-2e,2e []数学试卷(九)㊀㊀第2页(共8页)第Ⅱ卷(非选择题,共90分)㊀㊀本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答,第22题~第24题为选考题,考生根据要求做答.二㊁填空题(本大题共4小题,每小题5分,共20分.把答案填在答题纸上)13.(2017 南京市二模)已知函数f (x )=12x +1,㊀㊀x ɤ0,-(x -1)2,x >0,ìîíïïïï则不等式f (x )ȡ-1的解集是㊀㊀㊀㊀.14.已知实数x ,y 满足1ɤx +y ɤ2,x ȡ0,y ȡ0,ìîíïïïï则z =2x +y 的最大值为㊀㊀㊀㊀.15.广铁集团针对今年春运客流量进行数据整理,调查广州南站从2月4日到2月8日的客流量,根据所得数据画出了五天中每日客流量的频率分布图如图所示.为了更详细的分析不同时间的客流人群,按日期用分层抽样的方法抽样,若从2月7日这个日期抽取了40人,则一共抽取的人数为㊀㊀㊀㊀.16.在әA B C 中,a ,b ,c 分别是角A ,B ,C 的对边,已知a 2+c 2=a c +b 2,b =3,且a ȡc ,则2a -c 的最小值是㊀㊀㊀㊀.三㊁解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)已知数列{a n }为等差数列,a 2=3,a 4=7;数列{b n }为公比为q (q >1)的等比数列,且满足集合{b 1,b 2,b 3}={1,2,4}.(1)求数列{a n },{b n }的通项公式;(2)求数列{a n +b n }的前n 项和S n .18.(本小题满分12分)(2017 青岛市一模)如图,在四棱锥P GA B C D 中,P A ʅ平面A B C D ,A C ʅA D ,A B ʅB C ,øB C A =45ʎ,A P =A D =A C =2,E 为PA 的中点.(1)设面P A B ɘ面P C D =l ,求证:C D ʊl ;(2)求二面角B GC E GD 的余弦值.数学试卷(九)㊀㊀第3页(共8页)19.(本小题满分12分)(2017 长春市三模)某校甲㊁乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮训练,每人投10次,投中的次数统计如下表:学生1号2号3号4号5号甲班65798乙班48977(1)从统计数据看,甲㊁乙两个班哪个班成绩更稳定(用数学特征说明);(2)若把上表数据作为学生投篮命中率,规定两个班级的1号和2号同学分别代表自己的班级参加比赛,每人投篮一次,将甲㊁乙两个班两名同学投中的次数之和分别记作X 和Y ,试求X 和Y 的分布列和数学期望.20.(本小题满分12分)已知椭圆x 2a 2+y 2b2=1(a >b >0)的离心率为12,且经过点P 1,32æèçöø÷,过它的两个焦点分别为F 1,F 2分别作直线l 1与l 2,l 1交椭圆于A ,B 两点,l 2交椭圆于C ,D 两点,且l 1ʅl 2.(1)求椭圆的标准方程;(2)求四边形A C B D 的面积S 的取值范围.21.(本小题满分12分)已知函数g (x )=a x 3+x 2+x (a 为实数).(1)试讨论函数g (x )的单调性;(2)若对∀x ɪ(0,+ɕ)恒有g (x )ɤl n x +1x ,求实数a 的取值范围.请考生在第22㊁23两题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.22.(本小题满分10分)选修4-4:坐标系与参数方程将圆x 2+y2=1每一点的横坐标保持不变,纵坐标变为原来的2倍,得到曲线C .(1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1㊁P 2,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求线段P 1P 2的中点且与l 垂直的直线的极坐标方程.23.(本小题满分10分)选修4-5:不等式选讲已知定义在R 上的函数f (x )=|x +1|+|x -2|的最小值为m .(1)求m 的值;(2)若a ,b ,c 是实数,且满足a +b +c =m ,求证:a 2+b 2+c 2ȡ3.数学试卷(九)㊀㊀第4页(共8页)。
普通高等学校2018届高三招生全国统一考试仿真卷(九)数学(理)试题含答案
绝密 ★ 启用前2018年普通高等学校招生全国统一考试仿真卷理科数学(九)本试题卷共2页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}A x y ==,{}B x x a =≥,若A B A =,则实数a 的取值范围是( ) A .(],3-∞-B .(),3-∞-C .(],0-∞D .[)3,+∞2.已知1i +是关于x 的方程220ax bx ++=(a ,b ∈R )的一个根,则a b +=( ) A .1-B .1C .3-D .33.已知焦点在x轴上的双曲线的焦距为,则双曲线的方程为( )A .2212x y -=B .2212y x -= C .2212x y -=D .2212y x -=级 姓名 准考证号 考场号 座位号卷只装订不密封4.函数sin 21cos xy x=+的部分图象大致为( )A .B .C .D .5.已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )A .33cmB .35cmC .34cmD .36cm6.按照程序框图(如图所示)执行,第3个输出的数是( )开始输出A结束是否1A =1S =5?S ≤2A A =+1S S =+A .6B .5C .4D .37.设向量a ,b 满足2=a ,1=b ,且()⊥+b a b ,则向量b 在向量2+a b 方向上的投影为( ) A .1B .1-C .12-D .128.将函数()2sin 26f x x π⎛⎫=+ ⎪⎝⎭的图象向左平移12π个单位,再向下平移1个单位,得到()g x 的图象,若()()129g x g x =,且[]1222x x ∈-ππ,,,则122x x -的最大值为( ) A .5512πB .5312πC .256πD .174π9.我国古代数学名著《九章算术》中,有已知长方形面积求一边的算法,其方法的前两步为:第一步:构造数列1,12,13,14, (1). ①第二步:将数列①的各项乘以n ,得数列(记为)1a ,2a ,3a ,…,n a . 则12231n n a a a a a a -+++等于( )A .()1n n -B .()21n -C .2nD .()1n n +10.在ABC △中,内角A ,B ,C 的对边分别是a ,b ,c ,若3sin 24B π⎛⎫+= ⎪⎝⎭,且2a c +=,则ABC △周长的取值范围是( ) A .(]2,3B .[)3,4C .(]4,5D .[)5,611.已知双曲线()222210,0x y a b a b-=>>与抛物线()220y px p =>有相同的焦点F ,且双曲线的一条渐近线与抛物线的准线交于点()3M t -,,MF =,则双曲线的离心率为( )A .2B C D 12.若对于函数()()2ln 1f x x x =++图象上任意一点处的切线1l ,在函数()sin cos g x a x x x =-的图象上总存在一条切线2l ,使得12l l ⊥,则实数a 的取值范围为( )A.1⎤⎥⎣⎦B.1⎡-⎢⎣⎦C.21⎛⎡⎤--∞+∞⎢⎥ ⎝⎦⎣⎦, D .(][)11-∞-+∞,,第Ⅱ卷卷包括必考题和选考题两部分。
2018年普通高等学校招生全国统一考试理科数学试题(1、2、3卷)参考答案
2502018年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学参考答案 第Ⅰ卷(选择题 60分)一、选择题(共60分) 1-12 CBABD ABDCA BA第Ⅱ卷(非选择题 90分)二、填空题(共20分)13.6 14.63- 15.16 16.2-三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17─21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(本小题满分12分) 解:(1)在ABD ∆中,由正弦定理得sin sin BD ABA ADB=∠∠. 由题设知,52sin 45sin ADB=︒∠,∴sin =5ADB ∠.由题设知,90ADB ∠<︒,∴cos ADB ∠==.(2)由题设及(1)知,cos sin 5BDC ADB ∠=∠=. 在BCD ∆中,由余弦定理得2222cos BC BD DC BD DC BDC=+-⋅∠25825255=+-⨯⨯=.∴5BC =.18.(本小题满分12分) 解:(1)由已知可得,BF ⊥PF ,BF ⊥EF ,∴BF ⊥平面PEF .又BF ⊂平面ABFD , ∴平面PEF ⊥平面ABFD . (2)作PH ⊥EF ,垂足为H . 由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF 的方向为y 轴正方向,BF 为单位长,建立如图所示的空间直角坐标系H −xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,∴PE.又PF =1,EF =2,∴PE ⊥PF .可得3,22PH EH ==,且3(0,0,0),(0,0,1,,0)22H P D -,3(1,22DP =.3(0,0,)2HP =为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则3sin 4HP DP HP DPθ⋅==⋅. ∴DP 与平面ABFD所成角的正弦值为4. 19.(本小题满分12分) 解:(1)由已知得(1,0)F ,l 的方程为x =1. 由已知可得,点A的坐标为(1,)2或(1,2-. ∴AM 的方程为20x -=或20x --=.(2)当l 与x 轴重合时, 0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,∴OMA OMB ∠=∠.251当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,且11(,)A x y ,22(,)B x y,则12x x MA ,MB 的斜率之和为121222MA MB y yk k x x +=+--. 由1122,y kx k y kx k =-=-得 []()()12121223()422MA MB k x x x x k k x x -+++=--.将(1)(0)y k x k =-≠代入2212x y +=得 2222(21)4220k x k x k +-+-=. ∴22121222422=,2121k k x x x x k k -+=++,∴[]121223()4k x x x x -++3332441284021k k k k k k --++==+. 从而0MA MB k k +=,∴MA ,MB 的倾斜角互补, ∴OMA OMB ∠=∠. 综上,OMA OMB ∠=∠. 20.(本小题满分12分) 解:(1)20件产品中恰有2件不合格品的概率为221820()(1)f p C p p =-,且 21821720()[2(1)18(1)]f p C p p p p '=---217202(110)(1)C p p p =--.令()0f p '=,得0.1p =. 当(0,0.1)p ∈时,()0f p '>; 当(0.1,1)p ∈时,()0f p '<. ∴()f p 的最大值点为0.1p =. (2)由(1)知,0.1p =.(i )令Y 表示余下的180件产品中的不合格品件数,依题意知(180,0.1)Y B ,202254025X Y Y =⨯+=+.∴(4025)4025490EX E Y EY =+=+=.(ii )如果对余下的产品作检验,则这一箱产品所需要的检验费为400元. 由于400EX >,∴应该对余下的产品作检验. 21.(本小题满分12分)解:(1)()f x 的定义域为(0,)+∞,且22211()1a x ax f x x x x -+'=--+=-.(i )若2a ≤,则()0f x '≤,当且仅当2,1a x ==时,()0f x '=, ∴()f x 在(0,)+∞单调递减.(ii )若2a >,令()0f x '=得,2a x -=或2a x +=.当2a a x ⎛⎛⎫+∈+∞⎪ ⎪⎝⎭⎝⎭时,()0f x '<;当x∈⎝⎭时,()0f x '>. ∴()f x 在⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭单调递减,在⎝⎭单调递增.(2)由(1)知,()f x 存在两个极值点时,当且仅当2a >.由于()f x 的两个极值点12,x x 满足21=0x a x -+,∴121x x =,不妨设12x x <,则21x >. 1212()()f x f x x x --121212ln ln 11x x a x x x x -=--+-1212ln ln 2x x a x x -=-+-2522222ln 21x ax x -=-+-,∴1212()()2f x f x a x x -<--等价于 22212ln 0x x x -+<. 设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减,又(1)=0g ,从而当(1,)x ∈+∞时,()0g x <. ∴22212ln 0x x x -+<,即 1212()()2f x f x a x x -<--.(二)选考题:22. (本小题满分10分)[选修4—4:坐标系与参数方程]解:(1)由cos ,sin x y ρθρθ==得2C 的直角坐标方程为22(1)4x y ++=. (2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线.记y 轴右边的射线为1l ,y 轴左边的射线为2l .由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点.当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为2,2=,解得43k =-或0k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点.当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为2,2=,故0k =或43k =. 经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点. 综上,所求1C 的方程为423y x =-+.23.(本小题满分10分) [选修4—5:不等式选讲] 解:(1)当1a =时,()11f x x x =+--,即2(1),()2(11),2(1).x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩∴不等式()1f x >的解集为1,2⎛⎫+∞⎪⎝⎭. (2)当(0,1)x ∈时11x ax x +-->成立等价于当(0,1)x ∈时1ax -<1成立. 若0a ≤,则当(0,1)x ∈时1ax -≥1; 若a >0,1ax -<1的解集为20x a<<,∴21a≥,∴02a <≤. 综上,a 的取值范围为(]0,2.2532018年普通高等学校招生全国统一考试(全国卷Ⅱ)理科数学参考答案 第Ⅰ卷(选择题 60分)一、选择题(共60分) 1-12 DABBA ABCCA CD第Ⅱ卷(非选择题 90分)二、填空题(共20分) 13.2y x = 14.9 15.12-16.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17─21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(本小题满分12分)解:(1)设{a n }的公差为d ,由题意得3a 1+3d =–15. 由a 1=–7得d =2.∴{a n }的通项公式为a n =2n –9.(2)由(1)得S n =n 2–8n =(n –4)2–16.∴当n =4时,S n 取得最小值,最小值为–16.18.(本小题满分12分)解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为 =–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为 =99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠. 理由如下:(i )从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y =–30.4+13.5t 上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型=99+17.5t 可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii )从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠. 以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分. 19.(本小题满分12分)解:(1)由已知得(1,0)F ,l 的方程为为(1)(0)y k x k =-≠. 设11(,)A x y ,22(,)B x y .由2(1),4y k x y x =-⎧⎨=⎩得22222(2)0k x k x k -++=. ∴ 216160k ∆=+>,212224=k x x k++. ∴AB AF BF =+212244(1)(+1)=k x x k +=++.由题设知2244=8k k+,解得k =–1(舍去),k =1.∴l 的方程为y =x –1.(2)由(1)得AB 的中点坐标为(3,2),∴AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+. 设所求圆的圆心坐标为(x 0,y 0),则00220005,(1)(1)16,2y x y x x =-+⎧⎪⎨-++=+⎪⎩ 解得003,2x y =⎧⎨=⎩或0011,6.x y =⎧⎨=-⎩∴所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=. 20.(本小题满分12分) 解:(1)∵4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且OP =254连结OB .因为2AB BC AC ==,所以ABC ∆为等腰直角三角形,且OB AC ⊥,122OB AC ==.由222OP OB PB +=知OP OB ⊥. 由OP OB ⊥,OP AC ⊥知 OP ⊥平面ABC .(2)如图,以O 为坐标原点,OB 的方向为x 轴正方向,建立空间直角坐标系O xyz -.由已知得(0,0,0),(2,0,0),(0,2,0)O B A -,(0,2,0)C,(0,0,P ,(0,2,AP =.取平面P AC 的法向量(2,0,0)OB =. 设(,2,0)(02)M a a a -<≤,则(,4,0)AM a a =-.设平面P AM 的法向量为(,,)x y z m =.由0,0,AP AM ⎧⋅=⎪⎨⋅=⎪⎩m m即20,(4)0y ax a y ⎧+=⎪⎨+-=⎪⎩得,).y a x z a ⎧=⎪⎨-=⎪⎩可取),,)a a -m =.所以cos OB <>=m,由已知得cos 2OB <>=m,.=. 解得4a =或4a=-(舍去).∴4(,)333-m =.又∵(0,2,PC =-,∴3cos PC <>=m, ∴PC 与平面P AM 所成角的正弦值为4. 21.(本小题满分12分)解:(1)当a =1时,()1f x ≥等价于2(1)10x x e -+-≤.设函数2()(1)1xg x x e-=+-,则22()(21)(1)x x g x x x e x e --'=--+=--. 当1x ≠时,()0g x '<, ∴()g x 在(0,)+∞单调递减. 而(0)0g =,∴当0x ≥时,()0g x ≤,即()1f x ≥.(2)设函数2()1x h x ax e -=-.()f x 在(0,)+∞只有一个零点当且仅当()h x 在(0,)+∞只有一个零点.(i )当0a ≤时,()0h x >,()h x 没有零点;(ii )当a >0时,()(2)x h x ax x e -'=-.当(0,2)x ∈时,()0h x '<;当(2,)x ∈+∞时,()0h x '>.∴()h x 在(0,2)单调递减,在(2,)+∞单调递增.∴2(2)14h ae -=-是()h x 在[0,)+∞的最小值.①若(2)0h >,即214a e <,()h x 在255(0,)+∞没有零点;②若(2)0h =,即214a e =,()h x 在(0,)+∞只有一个零点;③若(2)0h <,即214a e >,由于(0)1h =,∴()h x 在(0,2)内有一个零点, 由(1)知,当0x >时,2x e x >,∴334221616(4)11()a a a a h a e e =-=-34161110(2)a a a>-=->.∴()h x 在(2,4)a 内有一个零点, ∴()h x 在(0,)+∞有两个零点.综上,()f x 在(0,)+∞只有一个零点时,214a e =.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.(本小题满分10分)[选修4-4:坐标系与参数方程] 解:(1)曲线C 的直角坐标方程为221416x y +=. 当cos 0α≠时,l 的直角坐标方程为 (tan )2tan y x αα=+-. 当cos 0α=时,l 的直角坐标方程为x =1. (2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程22(13cos )4(2cos t αα+++ sin )80t α-=.①∵曲线C 截直线所得线段的中点(1,2)在C 内,∴方程①有两个解12,t t ,且1224(2cos sin )13cos t t ααα++=-+. 由参数t 的几何意义得120t t +=.∴2cos sin 0αα+=,于是直线的斜率tan 2k α==-. 22.(本小题满分10分) [选修4—5:不等式选讲] 解:(1)当a =1时,24(1),()2(12),26(2).x x f x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩当1x ≤-时,由()240f x x =+≥得2x ≥-,即21x -≤≤-;当12x -<≤时,()20f x =>; 当2x >时,由()260f x x =-+≥得 3x ≤,即23x <≤. 综上可得()0f x ≥的解集为[]2,3-. (2)()1f x ≤等价于24x a x ++-≥. 而22x a x a ++-≥+,且当x=2时等号成立.∴()1f x ≤等价于24a +≥. 由24a +≥可得6a ≤-或2a ≥. ∴a 的取值范围是(][),62,-∞-+∞.2562018年普通高等学校招生全国统一考试(全国卷Ⅲ)理科数学参考答案 第Ⅰ卷(选择题 60分)一、选择题(共60分) 1-12 CDABC ADBCB CB第Ⅱ卷(非选择题 90分)二、填空题(共20分) 13.1214.3- 15.3 16.2 (一)必考题:共60分. 一、选择题(本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有一项符合) 1.C解:∵{}[)101,A x x =-≥=+∞,{}012B =,,, ∴ {}1,2AB =,∴选C .2.D解:∵()()212223i i i i i i +-=-+-=+, ∴选D . 3.A解:选A . 4.B解:由已知条件,得2217cos 212sin 1239αα⎛⎫=-=-= ⎪⎝⎭,∴选B .5.C解:由已知条件,得 251031552()2rr r r r r r T C x C x x --+⎛⎫== ⎪⎝⎭,令1034r -=,解得2r =, x 4的系数为22552240rr C C ==, ∴选C .6.A解:由已知条件,得(2,0),(0,2)A B --,∴||AB == 圆22(2)2x y -+=的圆心为(2,0),∴圆心到直线20x y ++=的距离为= ∴点P 到直线20x y ++=的距离的取值范围为d ≤≤+d ≤≤,∴1||[2,6]2ABP S AB d ∆=⋅∈.∴选A . 7.D解:令0x =,得2y =,∴A,B 不能选. 令321424()02y x x x x '=-+=-->,得2x <-或02x <<,即函数在0⎛ ⎝⎭内单调递增, ∴选D . 8.B解:由已知条件知,X ~B (10,p ),且 10p (1-p )=2.4,解得p =0.6或p =0.4. 又由P (X=4)< P (X=6)得,即4466641010(1)(1)C p p C p p -<-,0.5p >,∴p =0.6. ∴选B . 9.C解:由已知条件,得2222cos 44ABC a b c ab CS ∆+-==cos 1sin 22ab C ab C ==,即tan 1C =,∴4C π=.∴选C . 10.B解:如图,ABC ∆为等边三角形,点O 为,,,A B C D 外接球的球心,E 为ABC ∆的重心,点F 为边BC 的中点.当点D 在EO 的延长上,即DE ⊥面ABC 时,三棱锥D ABC -体积取得最大值.V =,5分,.1=2,x,且196π.257258当366x πππ≤+≤时有1个零点,3,629x x πππ+==;当326x πππ<+≤时有1个零点,343,629x x πππ+==; 当192366x πππ<+≤时有1个零点,573=,629x x πππ+=. ∴零点个数为3,∴填3. 16.2解:由已知条件知,抛物线C 的焦点为(1,0)F . 设22121212(,),(,)()44y yA yB y y y ≠,则由A ,F ,B 三点共线,得221221(1)(1)44y y y y -=-,∴12=4y y -. ∵∠AMB =90º,∴221212(1,1)(1,1)44y y MA MB y y ⋅=+-⋅+-,221212(1)(1)(1)(1)44y y y y =+++-⋅-2121(2)04y y =+-=, ∴12=2y y +.∴212221124244y y k y y y y -===+-,∴填2. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17─21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. 17.(本小题满分12分) 解:(1)设数列{}n a 的公比为q ,则由534a a =,得2534a q a ==,解得2q =±. ∴12n n a -=或1(2)n n a -=-.(2)由(1)知,122112nn n S -==--或1(2)1[1(2)]123n n n S +-==--+,∴2163mm S =-=或1[1(2)]633m m S =--=(舍), ∴6m =.18.(本小题满分12分) 解:(1)第一种生产方式的平均数为184X =,第二种生产方式平均数为274.7X =,∴12X X >,∴第一种生产方式完成任务的平均时间大于第二种,即第二种生产方式的效率更高. (2)由茎叶图数据得到中位数80m =,∴列联表为(3)()()()()()22n ad bc K a b c d a c b d -=++++,()24015155510 6.63520202020⨯-⨯==>⨯⨯⨯,∴有99%的把握认为两种生产方式的效率有差异. 19.(本小题满分12分) 解:(1)由已知条件知,在正方形ABCD 中,AD CD ⊥.∵正方形ABCD ⊥半圆面CMD ,平面ABCD 半圆面CMD CD =, ∴AD ⊥半圆面CMD .∵CM 在平面CMD 内,∴AD CM ⊥,即CM AD ⊥.259OM (0,0,1)(0,-1,0)0)又∵M 是CD 上异于C ,D 的点, ∴CM MD ⊥.又∵AD DM D =, ∴CM ⊥平面AMD , ∵CM 在平面BMC 内,∴平面AMD ⊥平面(2)由条件知,2ABC S ∆=是常数, ∴当点M 到平面ABCD 的距离.最大,即点M 为弧CD 的中点时,三棱锥M – ABC 体积最大.如图,以CD 中点O 为原点,过点O 且平行于AD 的直线为x 轴,OC ,OM 所在直线为y ,Z 轴建立空间直角坐标系O-xyz ,则由已知条件知,相关点的坐标为 A(2,-1,0),B(2,1,0),M(0,0,1) ,且(0,2,0)AB =,(2,1,1)MA =--.由(1)知,平面MCD 的法向量为(1,0,0)=m .令平面MXB 的法向量为(,,)x y z =n ,则(,,)(0,2,0)=20,(,,)(2,1,1)20AB x y z y MA x y z x y z ⎧⋅=⋅=⎪⎨⋅=⋅--=--=⎪⎩,n n 即0,2y z x ==, ∴取(1,0,2)=n.∴cos ,⋅<>==⋅m nm n m n ,∴sin ,5<>=m n ,即面MAB 与MCD 所成二面角的正弦值.为5.20.(本小题满分12分)解:(1)设直线l 的方程为y kx t =+,则由22,143y kx t x y =+⎧⎪⎨+=⎪⎩消去y ,得222(43)84120k x ktx t +++-=,①由22226416(43)(3)0k t k t ∆=-+->,得2243t k <+.②设1122(,),(,)A x y B x y ,则12,x x 是方程①的两个根,且122843ktx x k -+=+,121226()243ty y k x x t k +=++=+. ∵线段AB 的中点为()()10M m m >,, ∴1228243ktx x k -+==+,121226()2243ty y k x x t m k +=++==+. ∵0m >,∴0t >,0k <,且2434k t k+=-.③由②③得22243434k k k ⎛⎫+-<+ ⎪⎝⎭,解得12k >或12k <-.∵0k <,∴12k <-.(2)∵点()()10M m m >,是线段AB 的中点,且FP FA FB ++=0,∴2FP FM +=0,即2FP FM =-.④ 由已知条件知,()()10M m m >,,()10F ,.令(,)P x y ,则由④得:(1,)2(0,)x y m -=-,即1,2x y m ==-, ∴P 的坐标为(1,2)m -.由于点P 在椭圆上,得214143m +=,解得26034m =或34m =-(舍去),且3(1,)2P -.又222211221,14343x y x y +=+=, ∴两式相减,得2112211234y y x xx x y y -+=--+. 又12123=2,22x x y y m ++==,∴21122112314y y x xk x x y y -+==-=--+, 243744k t k +=-=,∴直线l 的方程为74y x =-+. 将71,4k t =-=代入方程①,得 2285610x x -+=,解得121,11414x x =-=+,1233414414y y =+=-.∴3(2FA x ==+, 32FP =,3(2FB x == ∴=2FA FB FP +,即,,FA FP FB 成等差数列,且该数列的公差28d =±. 另解:(1)设1122(,),(,)A x y B x y ,则222211221,14343x y x y +=+=, 两式相减,得2112211234y y x xk x x y y -+==--+. ∵线段AB 的中点为()()10M m m >,, ∴122x x +=,122y y m +=,34k m=-. 由点()()10M m m >,在椭圆内得21143m +<,即302m <<. ∴12k <-.(2)由题设知(1,0)F .令(,)P x y ,则由FP FA FB ++=0得1122(1,)(1,)(1,)(0,0)x y x y x y -+-+-=,∴1212=3(),()x x x y y y -+=-+. 由得=1,2x y m =-<0. ∴P 的坐标为(1,2)m -.由于点P 在椭圆上,得214143m +=,解得34m =或34m =-(舍去),且3(1,)2P -,且32FP =. (FA x =122x=-,同理222xFB =-.∴12=2222x xFA FB +-+-124322x xFP +=-==,即,,FA FP FB 成等差数列.把34m =代入34k m =-得1k =-,且3(1,)4M∴直线l 的方程为74y x =-+. 把直线方程与椭圆方程联立,消去y 得:2285610x x -+=,于是有121212,28x x x x +==.设成等差数列的公差为d ,则26121122d FB FA x x =-=-==, d =±21.(本小题满分12分)解:由条件知,函数()f x 的定义域为(1,)-+∞.(1)若0a =,则函数()(2)ln(1)2f x x x x =++-,且1()ln(1)11f x x x'=++-+, 2211()1(1)(1)xf x x x x ''=-=+++. ∴(0)0f =,(0)0f '=,(0)0f ''=. ∴当10x -<<时,()0f x ''<,∴当10x -<<时,()f x '单调递减. ∴()(0)0f x f ''>=,∴当10x -<<时,()f x 单调递增, ∴()(0)0f x f <=,即()0f x <. 当x > 0时,()0f x ''>,∴当x > 0时, ()f x '单调递增.∴()(0)0f x f ''>=,∴当x > 0时,()f x 单调递增, ∴()(0)0f x f >=,即()0f x >. 综上可得,当10x -<<时,()f x <0; 当x > 0时,()0f x >. (2)(i )若0a ≥,由(1)知,当x >0时,()(2)ln(1)20(0)f x x x x f ≥++->=,这与x=0是()f x 的极大值点矛盾.(ii )若0a <,设函数2()()2f x g x x ax =++22ln(1)2xx x ax =+-++. 由于当min x ⎧⎪<⎨⎪⎩时,220x ax ++>, ∴()g x 与()f x 符号相同. 又(0)(0)0g f ==,∴0x =是()f x 的极大值点当且仅当0x =是()g x 的极大值点.22212(2)2(12)()12x ax x ax g x x x ax ++-+'=-+++() 22222(461)(1)(2)x a x ax a x x ax +++=+++. 如果610a +>,则当6104a x a+<<-,且m i n 1,x ⎧⎪<⎨⎪⎩时,()0g x '>,∴0x =不是()g x 的极大值点.如果610a +<,则22461=0a x ax a +++存在根10x <.∴当1(,0)x x ∈,且m in 1,x ⎧⎪<⎨⎪⎩时,()0g x '<,∴0x =不是()g x 的极大值点. 如果61=0a +,则322(24)()(1)(612)x x g x x x x -'=+--.当(1,0)x ∈-时,()0g x '>; 当(0,1)x ∈时,()0g x '<. ∴0x =是()g x 的极大值点,从而0x =是()f x 的极大值点.综上,16a =-.(二)选考题:共10分,请考生在第22、23题中任选一题作答。
2018年全国卷理科数学真题及答案
一.选择题(共12小题)1.设z=+2i,则|z|=()A.0B.C.1D.【解答】解:z=+2i=+2i=﹣i+2i=i,则|z|=1.故选:C.2.已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}【解答】解:集合A={x|x2﹣x﹣2>0},可得A={x|x<﹣1或x>2},则:∁R A={x|﹣1≤x≤2}.故选:B.3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【解答】解:设建设前经济收入为a,建设后经济收入为2a.A项,种植收入37%×2a﹣60%a=14%a>0,故建设后,种植收入增加,故A项错误.B项,建设后,其他收入为5%×2a=10%a,建设前,其他收入为4%a,故10%a÷4%a=2.5>2,故B项正确.C项,建设后,养殖收入为30%×2a=60%a,建设前,养殖收入为30%a,故60%a÷30%a=2,故C项正确.D项,建设后,养殖收入与第三产业收入总和为(30%+28%)×2a=58%×2a,经济收入为2a,故(58%×2a)÷2a=58%>50%,故D项正确.因为是选择不正确的一项,故选:A.4.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12B.﹣10C.10D.12【解答】解:∵S n为等差数列{a n}的前n项和,3S3=S2+S4,a1=2,∴=a1+a1+d+4a1+d,把a1=2,代入得d=﹣3∴a5=2+4×(﹣3)=﹣10.故选:B.5.设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x【解答】解:函数f(x)=x3+(a﹣1)x2+ax,若f(x)为奇函数,f(﹣x)=﹣f(x),﹣x3+(a﹣1)x2﹣ax=﹣(x3+(a﹣1)x2+ax)=﹣x3﹣(a﹣1)x2﹣ax.所以:(a﹣1)x2=﹣(a﹣1)x2可得a=1,所以函数f(x)=x3+x,可得f′(x)=3x2+1,曲线y=f(x)在点(0,0)处的切线的斜率为:1,则曲线y=f(x)在点(0,0)处的切线方程为:y=x.故选:D.6.在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+【解答】解:在△ABC中,AD为BC边上的中线,E为AD的中点,=﹣=﹣=﹣×(+)=﹣,故选:A.7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.2【解答】解:由题意可知几何体是圆柱,底面周长16,高为:2,直观图以及侧面展开图如图:圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:=2.故选:B.8.设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5B.6C.7D.8【解答】解:抛物线C:y2=4x的焦点为F(1,0),过点(﹣2,0)且斜率为的直线为:3y=2x+4,联立直线与抛物线C:y2=4x,消去x可得:y2﹣6y+8=0,解得y1=2,y2=4,不妨M(1,2),N(4,4),,.则•=(0,2)•(3,4)=8.故选:D.9.已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a 的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)【解答】解:由g(x)=0得f(x)=﹣x﹣a,作出函数f(x)和y=﹣x﹣a的图象如图:当直线y=﹣x﹣a的截距﹣a≤1,即a≥﹣1时,两个函数的图象都有2个交点,即函数g(x)存在2个零点,故实数a的取值范围是[﹣1,+∞),故选:C.10.如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3【解答】解:如图:设BC=2r1,AB=2r2,AC=2r3,∴r12=r22+r32,∴SⅠ=×4r2r3=2r2r3,SⅢ=×πr12﹣2r2r3,SⅡ=×πr32+×πr22﹣SⅢ=×πr32+×πr22﹣×πr12+2r2r3=2r2r3,∴SⅠ=SⅡ,∴P1=P2,故选:A.11.已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3C.2D.4【解答】解:双曲线C:﹣y2=1的渐近线方程为:y=,渐近线的夹角为:60°,不妨设过F(2,0)的直线为:y=,则:解得M(,),解得:N(),则|MN|==3.故选:B.12.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.【解答】解:正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图:所示的正六边形平行的平面,并且正六边形时,α截此正方体所得截面面积的最大,此时正六边形的边长,α截此正方体所得截面最大值为:6×=.故选:A.二、填空题(4题)13.若x,y满足约束条件,则z=3x+2y的最大值为6.【解答】解:作出不等式组对应的平面区域如图:由z=3x+2y得y=﹣x+z,平移直线y=﹣x+z,由图象知当直线y=﹣x+z经过点A(2,0)时,直线的截距最大,此时z最大,最大值为z=3×2=6,故答案为:614.记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=﹣63.【解答】解:S n为数列{a n}的前n项和,S n=2a n+1,①当n=1时,a1=2a1+1,解得a1=﹣1,当n≥2时,S n﹣1=2a n﹣1+1,②,由①﹣②可得a n=2a n﹣2a n﹣1,∴a n=2a n﹣1,∴{a n}是以﹣1为首项,以2为公比的等比数列,∴S6==﹣63,故答案为:﹣6315.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有16种.(用数字填写答案)【解答】解:方法一:直接法,1女2男,有C21C42=12,2女1男,有C22C41=4根据分类计数原理可得,共有12+4=16种,方法二,间接法:C63﹣C43=20﹣4=16种,故答案为:1616.已知函数f(x)=2sin x+sin2x,则f(x)的最小值是.【解答】解:由题意可得T=2π是f(x)=2sin x+sin2x的一个周期,故只需考虑f(x)=2sin x+sin2x在[0,2π)上的值域,先来求该函数在[0,2π)上的极值点,求导数可得f′(x)=2cos x+2cos2x=2cos x+2(2cos2x﹣1)=2(2cos x﹣1)(cos x+1),令f′(x)=0可解得cos x=或cos x=﹣1,可得此时x=,π或;∴y=2sin x+sin2x的最小值只能在点x=,π或和边界点x=0中取到,计算可得f()=,f(π)=0,f()=﹣,f(0)=0,∴函数的最小值为﹣,故答案为:.三.解答题(共5小题)17.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.18.如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC 折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.【解答】(1)证明:由题意,点E、F分别是AD、BC的中点,则,,由于四边形ABCD为正方形,所以EF⊥BC.由于PF⊥BF,EF∩PF=F,则BF⊥平面PEF.又因为BF⊂平面ABFD,所以:平面PEF⊥平面ABFD.(2)在平面PEF中,过P作PH⊥EF于点H,连接DH,由于EF为面ABCD和面PEF的交线,PH⊥EF,则PH⊥面ABFD,故PH⊥DH.在三棱锥P﹣DEF中,可以利用等体积法求PH,因为DE∥BF且PF⊥BF,所以PF⊥DE,又因为△PDF≌△CDF,所以∠FPD=∠FCD=90°,所以PF⊥PD,由于DE∩PD=D,则PF⊥平面PDE,故V F﹣PDE=,因为BF∥DA且BF⊥面PEF,所以DA⊥面PEF,所以DE⊥EP.设正方形边长为2a,则PD=2a,DE=a在△PDE中,,所以,故V F﹣PDE=,又因为,所以PH==,所以在△PHD中,sin∠PDH==,即∠PDH为DP与平面ABFD所成角的正弦值为:.19.设椭圆C:+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:∠OMA=∠OMB.【解答】解:(1)c==1,∴F(1,0),∵l与x轴垂直,∴x=1,由,解得或,∴A(1.),或(1,﹣),∴直线AM的方程为y=﹣x+,y=x﹣,证明:(2)当l与x轴重合时,∠OMA=∠OMB=0°,当l与x轴垂直时,OM为AB的垂直平分线,∴∠OMA=∠OMB,当l与x轴不重合也不垂直时,设l的方程为y=k(x﹣1),k≠0,A(x1,y1),B(x2,y2),则x1<,x2<,直线MA,MB的斜率之和为k MA,k MB之和为k MA+k MB=+,由y1=kx1﹣k,y2=kx2﹣k得k MA+k MB=,将y=k(x﹣1)代入+y2=1可得(2k2+1)x2﹣4k2x+2k2﹣2=0,∴x1+x2=,x1x2=,∴2kx1x2﹣3k(x1+x2)+4k=(4k3﹣4k﹣12k3+8k3+4k)=0从而k MA+k MB=0,故MA,MB的倾斜角互补,∴∠OMA=∠OMB,综上∠OMA=∠OMB.20.某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;(ⅱ)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【解答】解:(1)记20件产品中恰有2件不合格品的概率为f(p),则f(p)=,∴=,令f′(p)=0,得p=0.1,当p∈(0,0.1)时,f′(p)>0,当p∈(0.1,1)时,f′(p)<0,∴f(p)的最大值点p0=0.1.(2)(i)由(1)知p=0.1,令Y表示余下的180件产品中的不合格品数,依题意知Y~B(180,0.1),X=20×2+25Y,即X=40+25Y,∴E(X)=E(40+25Y)=40+25E(Y)=40+25×180×0.1=490.(ii)如果对余下的产品作检验,由这一箱产品所需要的检验费为400元,∵E(X)=490>400,∴应该对余下的产品进行检验.21.已知函数f(x)=﹣x+alnx.(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,证明:<a﹣2.【解答】解:(1)函数的定义域为(0,+∞),函数的导数f′(x)=﹣﹣1+=﹣,设g(x)=x2﹣ax+1,当a≤0时,g(x)>0恒成立,即f′(x)<0恒成立,此时函数f(x)在(0,+∞)上是减函数,当a>0时,判别式△=a2﹣4,①当0<a≤2时,△≤0,即g(x)≥0,即f′(x)≤0恒成立,此时函数f(x)在(0,+∞)上是减函数,②当a>2时,x,f′(x),f(x)的变化如下表:x(0,)(,)(,+∞)f′(x)﹣0+0﹣f(x)递减递增递减综上当a≤2时,f(x)在(0,+∞)上是减函数,当a>2时,在(0,),和(,+∞)上是减函数,则(,)上是增函数.(2)由(1)知a>2,0<x1<1<x2,x1x2=1,则f(x1)﹣f(x2)=(x2﹣x1)(1+)+a(lnx1﹣lnx2)=2(x2﹣x1)+a(lnx1﹣lnx2),则=﹣2+,则问题转为证明<1即可,即证明lnx1﹣lnx2>x1﹣x2,则lnx1﹣ln>x1﹣,即lnx1+lnx1>x1﹣,即证2lnx1>x1﹣在(0,1)上恒成立,设h(x)=2lnx﹣x +,(0<x<1),其中h(1)=0,求导得h′(x )=﹣1﹣=﹣=﹣<0,则h(x)在(0,1)上单调递减,∴h(x)>h(1),即2lnx﹣x+>0,故2lnx>x﹣,则<a﹣2成立.(2)另解:注意到f()=x﹣﹣alnx=﹣f(x),即f(x)+f()=0,由韦达定理得x1x2=1,x1+x2=a>2,得0<x1<1<x2,x1=,可得f(x2)+f()=0,即f(x1)+f(x2)=0,要证<a﹣2,只要证<a﹣2,即证2alnx2﹣ax2+<0,(x2>1),构造函数h(x)=2alnx﹣ax+,(x>1),h′(x)=≤0,∴h(x)在(1,+∞)上单调递减,∴h(x)<h(1)=0,∴2alnx﹣ax+<0成立,即2alnx2﹣ax2+<0,(x2>1)成立.即<a﹣2成立.四、选做题22.在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.(1)求C2的直角坐标方程;(2)若C1与C2有且仅有三个公共点,求C1的方程.【解答】解:(1)曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.转换为直角坐标方程为:x2+y2+2x﹣3=0,转换为标准式为:(x+1)2+y2=4.(2)由于曲线C1的方程为y=k|x|+2,则:该射线关于y轴对称,且恒过定点(0,2).由于该射线与曲线C2的极坐标有且仅有三个公共点.所以:必有一直线相切,一直线相交.则:圆心到直线y=kx+2的距离等于半径2.故:,或解得:k=或0,当k=0时,不符合条件,故舍去,同理解得:k=或0经检验,直线与曲线C2.有两个交点.故C1的方程为:.23.已知f(x)=|x+1|﹣|ax﹣1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.【解答】解:(1)当a=1时,f(x)=|x+1|﹣|x﹣1|=,由f(x)>1,∴或,解得x>,故不等式f(x)>1的解集为(,+∞),(2)当x∈(0,1)时不等式f(x)>x成立,∴|x+1|﹣|ax﹣1|﹣x>0,即x+1﹣|ax﹣1|﹣x>0,即|ax﹣1|<1,∴﹣1<ax﹣1<1,∴0<ax<2,∵x∈(0,1),∴a>0,∴0<x<,∴a<∵>2,∴0<a≤2,故a的取值范围为(0,2].。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年普通高等学校招生全国统一考试仿真卷理科数学(九)(解析版)本试题卷共2页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.[2018·哈市附中]已知集合{}A x y ==,{}B x x a =≥,若A B A =,则实数a 的取值范围是( ) A .(],3-∞- B .(),3-∞- C .(],0-∞ D .[)3,+∞【答案】A【解析】由已知得[]3,3A =-,由AB A =,则A B ⊆,又[),B a =+∞,所以3a ≤-.故选A .2.[2018·南阳期末]已知1i +是关于x 的方程220ax bx ++=(a ,b ∈R )的一个根,则a b +=( ) A .1- B .1 C .3- D .3【答案】A【解析】由是关于的方程(a ,b ∈R )的一个根,()()21i 1i 20a b ++++=,即()()()2i 1i 22i 20a b a bb +++=+++=,得2020a b b +=+=⎧⎨⎩,解得12a b ==-⎧⎨⎩,则1a b +=-.故选A .3.[2018·曲靖一中]已知焦点在轴上的双曲线的焦距为)A .2212x y -=B .2212y x -= C .2212x y -=D .2212y x -=【答案】B1i +x 220ax bx ++=x【解析】c =b =1a =,∴双曲线的方程为2212y x -=,故选:B . 4.[2018·茂名联考]函数sin 21cos xy x=+的部分图象大致为( )A .B .C .D .【答案】A【解析】因为函数为奇函数,所以其图象关于原点成中心对称,所以选项C ,D错误;又当0,2x π⎛⎫∈ ⎪⎝⎭时,sin 201cos x y x =>+,所以选项B 错.本题选择A 选项. 5.[2018·凌源一模]已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )A .33cmB .35cmC .34cmD .36cm【答案】B【解析】几何体如图,体积为211221121522⎛⎫⨯-⨯⨯-⨯⨯= ⎪⎝⎭,选B .6.[2018·朝阳一模]按照程序框图(如图所示)执行,第3个输出的数是( )A .6B .5C .4D .3【答案】B【解析】第一次输出1A =,第二次输出123A =+=,第三次输出325A =+=,选B .7.[2018·江西联考]设向量,满足2=a ,1=b ,且()⊥+b a b ,则向量在向量2+a b 方向上的投影为( ) A .1 B .1-C .12-D .12【答案】D【解析】∵()⊥+b a b ,∴()20+=+=b a b a b b ,∴21⋅=-=-a b b . ∴()2221⋅+=⋅+=b a b a b b ,22+==a b .设向量b 和向量的夹角为θ,则向量b 在向量方向上的投影为()()221cos 222θ⋅+⋅+=⋅==+⋅+b a b b a b b b a bb a b.故选D . 开始输出A结束是否1A =1S =5?S ≤2A A =+1S S =+a b b 2+a b 2+a b8.[2018·定州中学]将函数()2sin 26f x x π⎛⎫=+ ⎪⎝⎭的图象向左平移12π个单位,再向下平移1个单位,得到()g x 的图象,若()()129g x g x =,且[]1222x x ∈-ππ,,,则122x x -的最大值为( ) A .5512πB .5312πC .256πD .174π【答案】A 【解析】函数()2s i n 26fx x π⎛⎫=+⎪⎝⎭的图象向左平移12π个单位,可得2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象,再向下平移1个单位,得到()2sin 213g x x π⎛⎫=+- ⎪⎝⎭的图象,若()()129g x g x =,且[]122,2x x ∈-ππ,,则()()123g x g x ==-, 则2232x k ππ+=-+π,k ∈Ζ, 即512x k π=-+π,k ∈Z ,,得1217571912121212x x ππππ⎧⎫∈--⎨⎬⎩⎭,,,,, 当11912x π=,21712x π=-时,122x x -取最大值5512π,故选A . 9.[2018·西安期末]我国古代数学名著《九章算术》中,有已知长方形面积求一边的算法,其方法的前两步为: 第一步:构造数列1,12,13,14,…,1n. ① 第二步:将数列①的各项乘以n ,得数列(记为)1a ,2a ,3a ,…,n a . 则12231n n a a a a a a -+++等于( ) A .()1n n - B .()21n -C .2nD .()1n n +【答案】A【解析】∵k n a k =.当2n ≥[]1222x x ∈-ππ,,∴212231n n a a a a a a n ++⋯+=﹣211n n ⎛⎫=- ⎪⎝⎭()1n n =﹣.故选:A .10.[2018·邢台二中]在ABC △中,内角A ,B ,C 的对边分别是a ,b ,c ,若3sin 242B π⎛⎫+=⎪⎝⎭,且2a c +=,则ABC △周长的取值范围是( ) A .(]2,3 B .[)3,4C .(]4,5D .[)5,6【答案】B【解析】由0B π<<2a c +=, ∴由余弦定理可得,()22222cos 243b a c ac B a c ac ac ac =+-=+--=-,∵2a c += 当且仅当a c =时取等号,∴01ac ≤<,则330ac -≤-<,则214b ≤<,即12b ≤<.∴ABC △周长[)234L a b c b =++=+∈,.故选B .11.[2018·抚州联考]已知双曲线()222210,0x y a b a b-=>>与抛物线()220y px p =>有相同的焦点F ,且双曲线的一条渐近线与抛物线的准线交于点()3M t -,,2MF =,则双曲线的离心率为( )A .2B C D 【答案】C【解析】由题意可知,抛物线220y px p =>()的焦点坐标为02p F (,),准线方程为2p x =-,由M 在抛物线的准线上,则32p-=-,则6p =,则焦点坐标为30F (,),所以MF ==,则294t =,解得32t =±,双曲线的渐近线方程是b y x a =±,将M 代入渐近线的方程332ba =⨯,即12b a =,则双曲线的离心率为2c e a ===,故选C .12.[2018·长郡中学]若对于函数()()2ln 1f x x x =++图象上任意一点处的切线1l ,在函数()sin cos g x a x x x =-的图象上总存在一条切线2l ,使得12l l ⊥,则实数a 的取值范围为( )A .1⎤⎥⎣⎦B .1⎡-⎢⎣⎦C .21⎛⎡⎤--∞+∞ ⎢⎥ ⎝⎦⎣⎦,D .(][)11-∞-+∞,,【答案】D 【解析】设切线1l 的斜率为1k ,则()()1112212211k f x x x x x '==+=++-≥++,当且仅当12x =-时等号成立.设切线2l 的斜率为2k ,则()2c o s 21k g x a x '==-,由于总存在2l ,使得12l l ⊥,即总存在2k ,使得121k k =-,故2110k k ⎡⎫=-∈⎪⎢⎪⎣⎭,显然0a ≠,且211k a a ⎡⎤∈---⎣⎦,.则:011a a ⎡⎫⎡⎤⊆---⎪⎢⎣⎦⎪⎣⎭,,即:10112a a -≥--≤-⎧⎪⎨⎪⎩,解得:112a a ⎧≥≥⎪⎨⎪⎩, 据此有:1a ≥.即实数a 的取值范围为(][)11-∞-+∞,,.本题选择D 选项. 第Ⅱ卷本卷包括必考题和选考题两部分。
第(13)~(21)题为必考题,每个试题考生都必须作答。
第(22)~(23)题为选考题,考生根据要求作答。
二、填空题:本大题共4小题,每小题5分。
13.[2018·耀华中学]已知等差数列{}n a 满足:12a =,且1a ,2a ,5a 成等比数列,则数列{}n a 的通项公式为_______. 【答案】2n a =或42n a n =-【解析】等差数列{}n a 满足:12a =,且1a ,2a ,5a 成等比数列,设公差为d , 所以2215a a a =,有:()()22224d d +=+,解得0d =或4.所以2n a =或42n a n =-. 故答案为:2n a =或42n a n =-.14.[2018·陆川县中学]若满足条件020x y x y y a -≥+-≤≥⎧⎪⎨⎪⎩的整点(),x y 恰有9个,其中整点是指横、纵坐标都是整数的点,则整数a 的值为________. 【答案】1- 【解析】作出满足条件的平面区域如图所示,要使整点个数为9个,即()00,,()10,,()20,,()11,,()11--,,()01-,,()11-,,()21-,,()31-,,整数a 的值为1-,故填1-. 15.[2018·珠海二中]已知正方形的四个顶点()()()()1,11,11,11,1A B C D ----、、、分别在曲线2y x =和1y =上,如图所示,若将一个质点随机投入正方形ABCD 中,则质点落在图中阴影区域的概率是______.【答案】83π24+ 【解析】2y x =与AB1y =化简得()2211y x ++=,则1y =与CD 相交的阴影面积为半圆,16.[2018·南昌一模]在底面是边长为6的正方形的四棱锥P ABCD -中,点P 在底面的射影H 为正方形ABCD 的中心,异面直线PB 与AD 所成角的正切值为53,则四棱锥P ABCD -的内切球与外接球的半径之比为___________.【答案】617【解析】由题意,四棱锥P ABCD -为正四棱锥,PA PB PC PD ===,如图所示:因为AD BC ∥,所以异面直线PB 与AD 所成的角为PBC ∠,取BC 中点E ,则5tan 3PE PBC BE ∠==.∴5PE =,∵132EH AB ==,∴4HP =, ∴四棱锥的表面积165466962S =⨯⨯⨯+⨯=,四棱锥的体积为1664483V =⨯⨯⨯=,∴四棱锥的内切球半径332V r S ==,设四棱锥外接球的球心为O ,外接球的半径为R ,则OP O A =,∴()(2224R R -+=,∴174R =,∴617r R =,故答案为617. 三、解答题:解答应写出文字说明、证明过程或演算步骤。