通用版201X年中考数学总复习题型集训9_网格作图课件
中考数学专题复习网格问题课件
第一页,共25页。
网格是学生从小就熟悉的图形,在网格中研究格点图 形,具有很强的可操作性,这和新课程的理念相符合,因此 它也成为近几年新课程中考的热点问题.
格点图形问题常见的题型有:
一、考查坐标平面内的点及有序实数对是一一对应的.
二、在网格中运用勾股定理进行计算. 三、分类讨论思想在格点问题中的运用.
第二十二页,共25页。
【例19】在边长为l的正方形网格中,按下列方式得到“L”形图形 第1个“L”形图形的周长是8,第2个“L”形图形的周长是12, 则第n个“L”形图形的周长是_________
图1
图2
[解析] 把图1中“L”形图形的边平移,成为图2中的形状,周长没有 变化,规律尽在不言中.第n个“L”形图形的周长是4(n+1).
A. 1 ; 22
B. 1; C. 4
1; 7
D. 1. 8
图1
图2
[解析] 题目中的图2是对思维的干扰,如果直接提问“图1中小正方形的
面积是大正方形面积的几分之几”,问题就变得简单明了.在图1中可
以体会到,小正方形的面积等于两个斜边为3的等腰直角三角形的面积
之和,计算得小正方形的面积等于
9
因此小正方形的面积是大正方形面积的 1
前后图形的面积相等,有
x 2 5 ,解得 x . 由5 此可知新正方形的
边长等于两个小正方形组成的矩形对角线的长.于是,画出如图2所示的分
割线,拼出如图3所示的新正方形.
图1
图2
图3
图4
图5
请你参考小东同学的做法,解决如下问题:
现有10个边长为1的正方形,排列形式如图4,请把它们分割后拼接成一 个新的正方形.要求:在图4中画出分割线,并在图5的正方形网格图(图 中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.
2024年中考数学复习重难点题型训练—网格作图(含答案解析)
2024年中考数学复习重难点题型训练—网格作图(含答案解析)类型一平移1.如图,在9×7的小正方形网格中,△ABC的顶点A,B,C在网格的格点上.将△ABC 向左平移3个单位,再向上平移3个单位得到△A′B′C′.再将△ABC按一定规律依次旋转:第1次,将△ABC绕点B顺时针旋转90°得到△A1BC1;第2次,将△A1BC1绕点A1顺时针旋转90°得到△A1B1C2;第3次,将△A1B1C2绕点C2顺时针旋转90°得到△A2B2C2;第4次,将△A2B2C2绕点B2顺时针旋转90°得到△A3B2C3,依次旋转下去.(1)在网格中画出△A′B′C′和△A2B2C2;(2)请直接写出至少在第几次旋转后所得的三角形刚好为△A′B′C′.【答案】解:(1)△A′B′C′和△A2B2C2的图象如图所示.(2)通过画图可知,△ABC至少在第8次旋转后得到△A′B′C′.2.已知梯形ABCD,请使用无刻度直尺画图.(1)在图①中画一个与梯形ABCD面积相等,且以CD为边的三角形;(2)在图②中画一个与梯形ABCD面积相等,且以AB为边的平行四边形.【解析】(1)如解图①所示,△CDE即为所求.(2)如解图②所示,▱ABFG即为所求.3.如图,在边上为1个单位长度的小正方形网格中:(1)画出△ABC向上平移6个单位长度,再向右平移5个单位长度后的△A1B1C1;(2)以点B为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2;(3)求△CC1C2的面积.【答案】(1)如图所示:;(2)如图所示:;(3)如图所示:△CC1C2的面积=12×3×6=9.【考点定位】:作图-位似变换;作图-平移变换.属基础题.【试题解析】解:(1)根据平移的性质画出图形即可;(2)根据位似的性质画出图形即可;(3)根据三角形的面积公式求出即可.;△CC1C2的面积=12×3×6=9.【命题意图】本题主要考查位似变换与平移变换,得出变换后的对应点的位置是解题的关键.【方法、技巧、规律】网格问题就是在网格中研究格点问题,这类问题现在在中考中比较常见,成为中考中的热点问题,具有很强的操作性,考查的类型问题有:点与有序数对的一一对应问题、平移问题、旋转问题、轴对称问题、勾股定理问题、分类思想的运用等. 4.△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.将△ABC向左平移3个单位长度,再向下平移2个单位长度得到△A1B1C1.(1)写出△ABC的顶点坐标;(2)请在图中画出△A1B1C1.【答案】(1)A(1,0),B(0,-1),C(2,-2);(2)参见解析.【解析】(1)由观察得知:A(1,0),B(0,-1),C(2,-2);(2)将A,B,C三点坐标横坐标分别减3,纵坐标分别减2得A1(-2,-2),B1(-3,-3),C1(-1,-4).三点连线即可.如下图:5.作图题:(1)把△ABC向右平移5个方格;CBA(2)绕点B的对应点顺时针方向旋转90°CBA【答案】见解析【解析】(1)如图所示:(2)如图所示:6.如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(-3,4),B(-4,2),C(-2,1),且△A1B1C1与△ABC关于原点O成中心对称.(1)画出△A 1B 1C 1,并写出A 1的坐标;(2)P (a ,b )是△ABC 的AC 边上一点,△ABC 经平移后点P 的对称点P′(a+3,b+1),请画出平移后的△A 2B 2C 2.【答案】(1)作图见解析,A 1的坐标是(3,-4);(2)作图见解析.【解析】(1)如图所示:A 1的坐标是(3,-4);(2)△A 2B 2C 2是所求的三角形.类型二旋转7.(2021·湖北黄石·中考真题)如图,ABC 的三个顶点都在方格纸的格点上,其中A 点的坐标是()1,0-,现将ABC 绕A 点按逆时针方向旋转90︒,则旋转后点C 的坐标是()A .()2,3-B .()2,3-C .()2,2-D .()3,2-【答案】B【分析】在网格中绘制出CA 旋转后的图形,得到点C 旋转后对应点.【解析】如图,绘制出CA 绕点A 逆时针旋转90°的图形,由图可得:点C 对应点C '的坐标为(-2,3).故选B .【点睛】本题考查旋转,需要注意题干中要求顺时针旋转还是逆时针旋转.8.如图,已知O 是坐标原点,B 、C 两点的坐标分别为(3,-1),(2,1),将△BOC 绕点O 逆时针旋转90度,得到△B 1OC 1,画出△B 1OC 1,并写出B 、C 两点的对应点B 1、C 1的坐标,【解析】解:如图,△B1OC1为所作,点B1,C1的坐标分别为(1,3),(-1,2).9.在平面直角坐标系中,点A的坐标是(0,3),点B在x轴上,将△AOB绕点A逆时针旋转90°得到△AEF,点O、B的对应点分别是点E、F.(1)若点B的坐标是(﹣4,0),请在图中画出△AEF,并写出点E、F的坐标.(2)当点F落在x轴的上方时,试写出一个符合条件的点B的坐标.【答案】(1)E(3,3),F(3,﹣1);(2)答案不唯一,如:(﹣2,0).【解析】(1)∵△AOB绕点A逆时针旋转90°后得到△AEF,∴AO⊥AE,AB⊥AF,BO⊥EF,AO=AE,AB=AF,BO=EF,∴△AEF在图中表示为:∵AO⊥AE,AO=AE,∴点E的坐标是(3,3),∵EF=OB=4,∴点F的坐标是(3,﹣1);(2)∵点F落在x轴的上方,∴EF<AO,又∵EF=OB,∴OB<AO,AO=3,∴OB<3,∴一个符合条件的点B的坐标是:答案不唯一,如:(﹣2,0).10.方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点C的坐标为(-3,-1).(1)试作出△ABC以C为旋转中心,沿逆时针方向旋转90°后的图形△A1B1C;(2)以原点O为对称中心,再画出与△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标.【解析】解:根据旋转中心为点C,旋转方向为逆时针,旋转角度为90°,所作图形如下:.(2)所作图形如下:结合图形可得点C2坐标为(3,1).11.如图,在平面直角坐标系中,有一Rt△ABC,且点A(-1,3),B(-3,-1),C(-3,3),已知△A1AC1是由△ABC旋转得到的.(1)旋转中心的坐标是________,旋转角的度数是________.(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°,180°的三角形.(3)设Rt△ABC的两直角边BC=a,AC=b,斜边AB=c,利用变换前后所形成的图案证明勾股定理.【解析】(1)O(0,0),90°.(2)如解图.(3)由旋转可知,四边形CC 1C 2C 3和四边形AA 1A 2B 都是正方形.∵S 正方形CC 1C 2C 3=S 正方形AA 1A 2B +4S △ABC ,∴(a +b)2=c 2+4×12ab ,即a 2+2ab +b 2=c 2+2ab ,∴a 2+b 2=c 2.12.在如图所示的直角坐标系中,解答下列问题:(1)分别写出A 、B 两点的坐标;(2)将△ABC 绕点A 顺时针旋转90°,画出旋转后的△AB 1C 1.【解析】解:(1)由点A 、B 在坐标系中的位置可知:A (2,0),B (-1,-4);(2)如图所示:13.如图,已知△ABC的三个顶点的坐标分别为A(3,3),B(-1,0),C(4,0).(1)经过平移,可使△ABC的顶点A与坐标原点O重合,请直接写出此时点C的对应点C1坐标;(不必画出平移后的三角形)(2)将△ABC绕点B逆时针旋转90°,得到△A′BC′,画出△A′BC′并写出A′点的坐标;(3)以点A为位似中心放大△ABC,得到△AB2C2,使放大前后的面积之比为1∶4,请你在网格内画出△AB2C2.【答案】解:(1)∵经过平移,可使△ABC的顶点A与坐标原点O重合,∴A点向下平移3个单位再向左平移3个单位,故C1坐标为(1,-3).(2)如图所示,△A′BC′即为所求,A′点的坐标为(-4,4).(3)如图所示,△AB2C2即为所示.14.如图,已知坐标平面内的三个点A(3,5),B(3,1),O(0,0),把△ABO向下平移3个单位,再向右平移2个单位后得到△DEF.(1)直接写出A,B,O三个对应点D、E、F的坐标;(2)画出将△AOB绕O点逆时针方向旋转90∘后得到的△A'OB';(3)求△DEF的面积.【解析】解:(1)点D、E、F的坐标分别为(5,2)、(5,-2)、(2,-3).(2)如图,△A'OB'即为所求作.(3)△DEF的面积=12×4×3=6.15.在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出与△ABC成轴对称且与△ABC有公共边的格点三角形(画出一个即可);(2)将图2中的△ABC绕着点C按顺时针方向旋转90°,画出经旋转后的三角形.【解析】解:(1)如图所示;(2)如图所示.16.如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1.(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.(3)判断△A2B2C2是否可由△AB1C1绕某点M旋转得到;若是,请画出旋转中心M,并直接写出旋转中心M的坐标.【解析】解:(1)如图所示,△AB1C1即为所求.(2)如图所示,△A2B2C2即为所求.(3)如图所示,△A2B2C2可由△AB1C1绕点M,顺时针旋转90°得到,其中点M坐标为(0,-1).17.如图,在平面直角坐标系中,点A,B,C的坐标分别为(-1,3),(-4,1),(-2,1),△A1B1C1与△ABC关于原点O成中心对称,△A2B2C2是由△ABC绕着原点O顺时针旋转90°后得到的.(1)画出△A1B1C1,并写出点A的对称点A1的坐标;(2)画出△A2B2C2,并写出点A的对称点A2的坐标;(3)求出点B到达点B2的路径长度.【解析】解:(1)如图,△A1B1C1为所作,A1(1,-3);(2)如图,△A2B2C2为所作,A2(3,1);(3)∵OB=42+12=17,∴B到达点B2的路径长度.18.下面是小明关于“对称与旋转的关系”的探究过程,请你补充完整.(1)三角形在平面直角坐标系中的位置如图1所示,简称G ,G 关于y 轴的对称图形为1G ,关于x 轴的对称图形为2G .则将图形1G 绕____点顺时针旋转____度,可以得到图形2G .(2)在图2中分别画出....G 关于y 轴和直线1y x =+的对称图形1G ,2G .将图形1G 绕____点(用坐标表示)顺时针旋转______度,可以得到图形2G .(3)综上,如图3,直线1:22l y x =-+和2:l y x =所夹锐角为α,如果图形G 关于直线1l 的对称图形为1G ,关于直线2l 的对称图形为2G ,那么将图形1G 绕____点(用坐标表示)顺时针旋转_____度(用α表示),可以得到图形2G .【答案】(1)O ,180;(2)图见解析,()0,1,90;(3)22,33⎛⎫ ⎪⎝⎭,2α【分析】(1)根据图形可以直接得到答案;(2)根据题意画出图形,观察图形,利用图形旋转的性质得到结论;(3)从(1)(2)问的结论中得到解题的规律,求出两个函数的交点坐标,即可得出答案.【解析】解:(1)由图象可得,图形1G 与图形2G 关于原点成中心对称,则将图形1G 绕O 点顺时针旋转180度,可以得到图形2G ;故答案为:O ,180;(2)1G ,2G 如图;由图形可得,将图形1G 绕()0,1点(用坐标表示)顺时针旋转90度,可以得到图形2G ,故答案为:()0,1,90;(3)∵当G 关于y 轴的对称图形为1G ,关于x 轴的对称图形为2G 时,1G 与2G 关于原点(0,0)对称,即图形1G 绕O 点顺时针旋转180度,可以得到图形2G ;当G 关于y 轴和直线1y x =+的对称图形1G ,2G 时,图形1G 绕()0,1点(用坐标表示)顺时针旋转90度,可以得到图形2G ,点(0,1)为直线1y x =+与y 轴的交点,90度角为直线1y x =+与y 轴夹角的两倍;又∵直线1:22l y x =-+和2:l y x =的交点为22,33⎛⎫ ⎪⎝⎭,夹角为α,∴当直线1:22l y x =-+和2:l y x =所夹锐角为α,图形G 关于直线1l 的对称图形为1G ,关于直线2l 的对称图形为2G ,那么将图形1G 绕22,33⎛⎫ ⎪⎝⎭点(用坐标表示)顺时针旋转2α度(用α表示),可以得到图形2G .故答案为:22,33⎛⎫ ⎪⎝⎭,2α.【点睛】本题主要考查了图形的对称性与旋转的性质,关键在于根据题意正确的画出图形,得出规律.类型三对称19.如图,在边长为1个单位长度的小正方形格中,给出了△ABC(顶点是格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.【答案】(1)如图:△A1B1C1即为所求.(2)如图:△A2B2C2即为所求.20.在如图所示的方格纸中,每个小正方形的边长都是1,△ABC和△A1B1C1成中心对称.(1)请在图中画出对称中心O;(2)在图中画出将△A1B1C1沿直线DE平移5格得到的△A2B2C2;(3)要使△A2B2C2与△CC1C2重合,需将△A2B2C2绕点C2顺时针旋转,则至少要旋转________度.【答案】(1)如图:点O即为所求.(2)如图:△A2B2C2即为所求.(3)9021.如图,在正方形网格中,△ABC 各顶点都在格点上,点A 、C 的坐标分别为(-5,1)、(-1,4),结合所给的平面直角坐标系,解答下列问题:(1)画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)画出△ABC 关于原点O 对称的△A 2B 2C 2;(3)点C 1的坐标是________;点C 2的坐标是________;过C ,C 1,C 2三点的圆的圆弧的长是________(保留π).【答案】(1)如图:△A 1B 1C 1即为所求.(2)如图:△A 2B 2C 2即为所求.(3)(1,4)(1,-4)17π22.(2022年陕西中考)如图,ABC ∆的顶点坐标分别为(2,3)A -,(3,0)B -,(1,1)C --.将ABC ∆平移后得到△A B C ''',且点A 的对应点是(2,3)A ',点B 、C 的对应点分别是B '、C '.(1)点A 、A '之间的距离是;(2)请在图中画出△A B C '''.【解答】解:(1)(2,3)--=。
第32课时 几何(网格、尺规)作图 课件 2025年中考数学一轮总复习
∴BF=④ ,∴BF=BA.
解:(1)如答案图所
示,BF即为所求作.(答案图)
∠BFC=∠D
CD
90°
6
考点三 尺规作图的综合运用例4 在学习了平行四边形的相关知识
后,小虹进行了拓展性研究.她发现,如
果作平行四边形一条对角线的垂直平分
线,那么这条垂直平分线在该四边形内
部的线段被这条对角线平分.其解决问题
的思路为通过证明对应线段所在两个三
角形全等即可得出结论.请根据她的思路完成以下作图和填空:
用直尺和圆规作平行四边形ABCD的对
求作.
(3)求△ABC的面积.
[答案] 解:(3)
S△ABC=4×3-
×1×3- ×4×1-
×2×3=5.5.
例2 (2024·安徽)如图,在由边长为1
个单位长度的小正方形组成的网格中建
立平面直角坐标系xOy,格点(网格线
的交点)A,B,C,D的坐标分别为
(7,8),(2,8),(10,4),
(5,4).
(1)以点D为旋转中心,将△ABC旋转
180°得到△A1B1C1,画出△A1B1C1;
[答案] 解:
(1)如图,
△A1B1C1即为所
求作.
(2)直接写出以B,C1,B1,C为顶点
的四边形的面积;
[答案] 解:(2)易知DB=DB1,DC=
DC1,∴四边形BC1B1C是平行四边形,∴ =2 =2× ×10×4
基本作图
图示
作法
经过一点作已知直线的垂线
过直线外一点作已知直线的垂线
①任意取一点K,使点K和点C在AB的两侧;②以点C为圆心,CK长为半径作弧,交AB于点D,E;③分别以点D,E为圆心,大于 DE的长为半径作弧,两弧相交于点F;④作直线CF,直线CF就是所求作的垂线
2020年中考数学复习题型集训(9)——网格作图
2020年中考数学复习精选练习题型集训(9)——网格作图杭州温州宁波绍兴嘉兴、舟山湖州台州金华衢州2018年第20题第20题第20题8分8分8分2019年第20题第20题第20题第20题第19题8分8分8分8分6分1.(2019·衢州)如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出线段CD,使CD⊥CB,其中D 是格点.(2)在图2中画出平行四边形ABEC,其中E是格点.解:(1)线段CD即为所求;(2)平行四边形ABEC即为所求.2.(2019·温州)如图,在7×5的方格纸ABCD中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A,B,C,D重合.(1)在图1中画一个格点△EFG,使点E,F,G分别落在边AB,BC,CD上,且∠EFG=90°.(2)在图2中画一个格点四边形MNPQ,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且MP =NQ.解:(1)满足条件的△EFG,如图1,2所示.(2)满足条件的四边形MNPQ如图所示.3.(2019·嘉兴)在6×6的方格纸中,点A,B,C 都在格点上,按要求画图:(1)在图1中找一个格点D,使以点A,B,C,D 为顶点的四边形是平行四边形;(2)在图2中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法).解:(1)由勾股定理得:CD=AB=CD′= 5 ,BD=AC=BD″=13 ,AD′=BC=AD″=10 ;画出图形如图1所示;(2)如图2所示.4.(2019·宁波)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:(1)使得6个阴影小等边三角形组成一个轴对称图形.(2)使得6个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)解:(1)如图1所示:6个阴影小等边三角形组成一个轴对称图形;(2)如图2所示:6个阴影小等边三角形组成一个中心对称图形.5.(2019·金华)如图,在7×6的方格中,△ABC 的顶点均在格点上.试按要求画出线段EF(E,F均为格点),各画出一条即可.解:如图:从图中可得到AC边的中点在格点上设为E,过E作AB的平行线即可在格点上找到F,则EG平分BC;EC= 5 ,EF= 5 ,FC=10 ,借助勾股定理确定F点,则EF⊥AC;借助圆规作AB的垂直平分线即可;。
(通用版)201x年中考数学总复习 题型集训(9)—网格作图
.
解:(1)如图①所示: (2)如图②所示:
.
3.(2018·枣庄)如图,在 4×4 的方格纸中,△ ABC 的三个 顶点都在格点上.
(1)在图 1 中,画出一个与△ ABC 成中心对称的格点三角 形;
(2)在图 2 中,画出一个与△ ABC 成轴对称且与△ ABC 有 公共边的格点三角形;
(3)在图 3 中,画出△ ABC 绕着点 C 按顺时针方向旋转 90° 后的三角形.
.
解:(1)如图所示,△ DCE 为所求作; (2)如图所示,△ACD 为所求作; (3)如图所示,△ ECD 为所求作.
.
.
1.(2018·金华)如图,在 6×6 的网格中,每个小正方形的边 长为 1,点 A 在格点(小正方形的顶点)上.试在各网格中画出 顶点在格点上,面积为 6,且符合相应条件的图形.
.
解:符合条件的图形如图所示:
.
2.(2018·温州)如图,P,Q 是方格纸中的两格点,请按要 求画出以 PQ 为对角线的格点四边形.
.
专题8.3创新作图---在网格线中作图-中考数学二轮复习必会几何模型剖析(全国通用)
两点确定一条直线
②画线:_________________________________________;
按要求构造三角形、四边形等
③构图:_________________________________________.
创新作图的常用的作图技巧有:
目录
01
利用平移作平行线
02
利用旋转作垂线
知识要点
【例2-1】如图,在5×7的正方形网格中,△ABC是格点三角形,请
仅用无刻度直尺完成以下作图.
(1)在图1中作出△ABC中AB边上的高;
(2)在图2中作出△ABC的重心
A
E
C
B
图1 ∴CE即为所求
A
F
C
B
图2 ∴点F即为所求
典例精讲
利用旋转作垂线
考点4-2
【例2-2】如图所示的是六个完全相同的小长方形拼成的一个大
04
利用相似等分线段
精讲精练
典例精讲
利用轴对称找最值
考点4-3
【例3-1】如图,在正方形网格中,△ABC的三个顶点在格点上.请
仅用无刻度的直尺按下列要求画图.
(1)在图1中,画出△ABC边AB上的高CD;
(2)在图2中,已知△ABC内部的点P也在格点上,点M,N分别在边AC,
BC上,请画出周长最小的△PMN.
∴EG即为所求
配套训练
在网格线中作图
查漏补缺
4.如图,在6×6的正方形网格中,等腰△ABC的顶点A,B在格点上,
顶角∠A=36º,请仅用无刻度直尺完成以下作图.
(1)在图1中,作△ABC的中线CD;
(2)在图2中,作△ABC的角平分线BE.
A
初三尺规作图和网格作图专题
九年级数学网格作图1、如图,将△ABC 放在每个小正方形的边长为l 的网格中,点A ,B ,C 均落在格点上.(1)△ABC 的面积等于 ;(2)请在如图所示的网格中,用无刻度的直尺,过点A 画一条直线,交BC 于点D ,使△ABD 的面积等于△ADC 面积的2倍,写出画法并简要说明理由.2、如图,在每个小正方形的边长为1的网格中,点C B A ,,均在格点上.(1)AB 的长等于 ;(2)在ABC ∆的内部有一点P ,满足3:2:1::=∆∆∆PCA PBC PAB S S S ,请在如图所示的网格中,用无刻度的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明)3、如图,在每个小正方形的边长为1的网格中,A ,E 为格点,B ,F 为小正方形边的中点,C 为AE ,BF 的延长线的交点.(Ⅰ)AE 的长等于 ;(Ⅱ)若点P 在线段AC 上,点Q 在线段BC 上,且满足AP=PQ=QB ,请在如图所示的网格中,用无刻度的直尺,画出线段PQ ,并简要说明点P ,Q 的位置是如何找到的(不要求证明).4、引例:若正方形有两个相邻顶点在三角形的同一条边上,其余两个顶点分别在三角形的另两条边上,则正方形称为三角形该边上的内接正方形,△ABC 中,设BC=a ,AC=b ,AB=c ,各边上的高分别记为a h ,b h ,c h ,各边上的内接正方形的边长分别记为a x ,b x ,c x .(1)模拟探究:如图,正方形EFGH 为△ABC 的BC 边上的内接正方形,求证:111a a a h x +=;(2)特殊应用:若∠BAC=90°,b x =c x =2,求11b c +的值;(3)拓展延伸:若△ABC 为锐角三角形,b <c ,请判断b x 与c x 的大小,并说明理由.5、如图,将△ABC 放在每个小正方形的边长为1的网格中,点A 、B 、C均落在格点上.(Ⅰ)△ABC 的面积等于(Ⅱ)若四边形DEFG 是△ABC 中所能包含的面积最大的正方形,请你在如图所示的网格中,用直尺和三角尺画出该正方形,并简要说明画图方法(不要求证明)6、如图,将三角形ABC 放在每个小正方形的边长为1的网格中,点A ,点B ,点C ,点P 均落在格点上.(1)计算三角形ABC 的周长等于 .(2)请在给定的网格内作三角形ABC 的内接矩形EFGH ,使得点E ,H分别在边AB ,AC 上,点F ,G 在边BC 上,且使矩形EFGH 的周长等于线段BP 长度的2倍,并简要说明你的作图方法(不要求证明)7、如图将△ABC 放在每个小正方形的边长为1的网格中,点A ,点B ,点C 均落在格点上.(Ⅰ)计算AC 2+BC 2的值等于 ;(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出一个以AB 为一边的矩形,使该矩形的面积等于AC 2+BC 2,并简要说明画图方法(不要求证明)如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
精选
2
1.(2018·金华)如图,在 6×6 的网格中,每个小正方形的边 长为 1,点 A 在格点(小正方形的顶点)上.试在各网格中画出 顶点在格点上,面积为 6,且符合相应条件的图形.
精选
3
解:符合条件的图形如图所示:
精选
4Leabharlann 2.(2018·温州)如图,P,Q 是方格纸中的两格点,请按要
(2)如图所示,△ACD 为所求作;
(3)如图所示,△ ECD 为所求作.
精选
8
求画出以 PQ 为对角线的格点四边形. (1)在图 1 中画出一个面积最小的▱PAQB. (2)在图 2 中画出一个四边形 PCQD,使其是轴对称图形
而不是中心对称图形,且另一条对角线 CD 由线段 PQ 以某一 格点为旋转中心旋转得到.
精选
5
解:(1)如图①所示: (2)如图②所示:
精选
6
3.(2018·枣庄)如图,在 4×4 的方格纸中,△ ABC 的三个
顶点都在格点上. (1)在图 1 中,画出一个与△ ABC 成中心对称的格点三角
形; (2)在图 2 中,画出一个与△ ABC 成轴对称且与△ ABC 有
公共边的格点三角形; (3)在图 3 中,画出△ ABC 绕着点 C 按顺时针方向旋转 90°
后的三角形.
精选
7
解:(1)如图所示,△ DCE 为所求作;