aai09知识发现跟数据挖掘1高级人工智能史忠植资料

合集下载

《高级人工智能》第九章知识发现和数据挖掘(2)PPT课件

《高级人工智能》第九章知识发现和数据挖掘(2)PPT课件
➢ 聚类:
根据数据的不同特征,将其划分为不同的类。无导师学习
2020/11/5
高级人工智能 史忠植
7
知识发现的任务(2)
➢ 相关性分析:
发现特征之间或数据之间的相互依赖关系 关联规则
➢ 偏差分析:
基本思想是寻找观察结果与参照量之间的有意义的差别。通 过发现异常, 可以引起人们对特殊情况的加倍注意。
2020/11/级人工智能 史忠植
6
知识发现的任务(1)
➢ 数据总结:
对数据进行总结与概括。传统的最简单的数据总结方法是计 算出数据库的各个字段上的求和值、平均值、方差值等统计 值,或者用直方图、饼状图等图形方式表示。
➢ 分类:
根据分类模型对数据集合分类。分类属于有导师学习,一般 需要有一个训练样本数据集作为输入。
➢ 神经计算:
神经网络是指一类新的计算模型,它是模仿人脑神经网络的 结构和某些工作机制而建立的一种计算模型。常用的模型: ✓ Hopfield网 ✓ 多层感知机 ✓ 自组织特征映射 ✓ 反传网络
➢ 可视化:
2020/11/5
高级人工智能 史忠植
11
KDD的技术难点
➢ 动态变化的数据 ➢ 噪声 ➢ 数据不完整 ➢ 冗余信息 ➢ 数据稀疏 ➢ 超大数据量
2020/11/5
高级人工智能 史忠植
15
关联规则的相关概念(2)
➢支持度
物品集A的支持度:称物品集A具有大小为s的支持度, 如果D中有s%的事务支持物品集X P(A)
1000个顾客购物,其中200个顾客购买了面包,
支持度就是20%(200/1000)。
关联规则A→B的支持度:关联规则A→B在事务数据 库W中具有大小为s的支持度,如果物品集A∪B的支持 度为s

【免费下载】高级人工智能 史忠植

【免费下载】高级人工智能    史忠植

编号:8106高级人工智能ADVANCED ARTIFICIAL INTELLIGENCE类型:AB学时/学分:60/3, 机时:20预修课程数理逻辑、人工智能原理教学目的和要求(1) 了解人工智能前沿研究领域(2) 了解人工智能最新研究成果(3) 掌握基本思想和关键技术(4) 培养人工智能研究能力内容提要和简要目录本课讲授和讨论人工智能前沿研究领域的主要思想和关键技术。

主要内容有非单调逻辑、自动推理、机器学习、分布式人工智能、人工思维、人工生命、大规模并行人工智能等。

简要目录第一章绪论1.1 人工智能的认知问题1.2 思维的层次模型1.3 符号智能1.4 人工智能的发展概况1.5 人工智能的研究方法1.5.1 认知学派1.5.2 逻辑学派1.5.3 行为学派1.6 自动推理1.7 机器学习1.8 分布式人工智能1.9 人工思维模型1.10 知识系统第二章人工智能逻辑2.1 逻辑-----重要的形式工具2.1.1 逻辑程序设计2.1.2 关于知识的表示与推理2.2 非单调逻辑2.3 默认逻辑2.4 限定逻辑2.5 自认知逻辑2.5.1 Moore系统${\cal L}_{B}$2.5.2 $\cal O \cal L$ 逻辑2.5.3 标准型定理2.5.4 $\diamondsuit-$ 记号以及稳定扩张的一种判定过程2.6 真值维护系统2.7 情景演算的逻辑基础2.7.1 刻划情景演算的多类逻辑$\bf LR$2.7.2 $\bf LR$中的基本动作理论2.7.3 多类逻辑$\bf LR$的改进第三章约束推理3.1 概述3.2 回溯法3.3 约束传播3.4 约束传播在树搜索中的作用3.5 智能回溯与真值维护3.6 变量例示次序与赋值次序3.7 局部修正搜索法3.8 基于图的回跳法3.9 基于影响的回跳法3.10 约束关系运算的处理3.10.1 恒等关系的单元共享策略3.10.2 区间传播3.10.3 不等式图3.10.4 不等式推理3.11 约束推理系统COPS第四章定性推理4.1 概述4.2 定性推理的基本方法4.3 定性模型推理4.4 定性进程推理4.5 定性仿真推理4.5.1 定性状态转换4.5.2 QSIM算法4.6 代数方法4.7 几何空间定性推理4.7.1 空间逻辑4.7.2 空间时间关系描述4.7.3 空间和时间逻辑的应用4.7.4 Randell算法第五章基于范例推理5.1 概述5.2 基于范例学习的一般过程5.3 范例的表示5.3.1 语义记忆单元5.3.2 记忆网5.4 基于记忆网的范例检索5.4.1 检索问题5.4.2 语义记忆单元和范例检索5.4.3 检索信息集与源范例的对应5.4.4 单概念的范例检索算法AS5.4.5 多概念的范例检索算法AM5.5 相似性关系5.5.1 语义相似性5.5.2 结构相似性5.5.3 目标特征5.5.4 个体相似性5.5.5 相似性计算5.5.6 优选过程5.5.7 约束满足理论5.6 范例复用5.6.1 类比映射5.6.2 类比转换5.7 范例保存5.8 基于范例的规划设计程序5.9 范例库维护5.10 基于范例推理的洪水预报系统FOREZ 第六章归纳学习6.1 概述6.2 归纳学习的逻辑基础6.2.1 归纳学习的一般模式6.2.2 概念获取的条件6.2.3 问题背景知识6.2.4 选择型和构造型泛化规则6.3 偏置变换6.4 变型空间方法6.4.1 消除候选元素算法6.4.2 两种改进算法6.5 AQ归纳学习算法6.6 产生与测试方法6.7 决策树学习6.7.1 CLS学习算法6.7.2 ID3学习算法6.7.3 ID4学习算法6.7.4 ID5学习算法6.8 归纳学习的计算理论6.8.1 Gold学习理论6.8.2 模型推理系统6.8.3 Valiant 学习理论第七章类比学习7.1 什么是类比学习7.2 类比的形式定义7.3 基于抽象的有用类比推理7.4 转换类比7.4.1 手段--目的分析的问题求解模型 7.4.2 类比求解问题计算模型7.4.3 问题求解状态变换7.4.4 转换类比学习系统7.4.5 类比学习的泛化规则7.5 派生类比7.6 因果关系型类比学习7.6.1 类比匹配技术与相似性度量概述 7.6.2 知识表示7.6.3 类比匹配7.6.4 抽取问题的特征7.6.5 相似度的计算方法7.6.6 最佳对应关系匹配7.7 联想类比学习7.7.1 联想类比7.7.2 联想类比条件7.8 约束满足类比7.8.1 三类约束7.8.2 约束满足理论7.8.3 ACME 第八章解释学习8.1 概述8.2 解释学习模型8.3 解释泛化学习方法8.3.1 基本原理8.3.2 解释与泛化交替进行8.4 全局取代解释泛化方法8.5 解释特化学习方法8.6 解释泛化的逻辑程序8.6.1 工作原理8.6.2 元解释器8.6.3 实验例子8.7 基于知识块的SOAR系统8.8 可操作性标准8.8.1 PRODIGY 的效用问题8.8.2 SOAR系统的可操作性8.8.3 MRS-EBG的可操作性8.8.4 META-LEX的处理方法8.9 不完全领域知识下的解释学习8.9.1 不完全领域知识8.9.2 逆归结方法8.9.3 基于深层知识方法第九章知识发现和数据开采9.1 概述9.2 数据驱动知识发现------BACON 9.3 模型躯动知识发现------COPER 9.4 理论驱动式发现方法9.4.1 知识表示9.4.2 学习实现9.4.3 学习发现9.5 概念聚类9.5.1 概念内聚9.5.2 聚类方法9.6 数据开采9.7 数据开采的数学工具------粗糙集 9.7.1 粗糙集理论9.7.2 粗糙分类9.7.3 渔网算法9.8 广义粗糙集9.9 基于粗糙集的数据约简9.10 以数据仓库为基础的数据开采9.10.1 数据仓库9.10.2 联想规则发现算法9.11 知识发现工具KDT9.11.1 系统结构9.11.2 知识发现算法第十章分布式人工智能10.1 概述10.2 分布式问题求解10.2.1 分布式问题求解系统分类10.2.2 分布式问题求解过程10.3 主体10.4 主体理论10.4.1 理性主体10.4.2 BDI主体模型10.4.3 RAO逻辑框架10.4.4 关于对别人进行推理的一个模式---换位推理 10.4.5 动作理论10.4.6 次协调机制的引进10.5 主体结构10.5.1 反应主体10.5.2 认知主体10.5.3 复合式主体10.6 主体通信10.6.1 KQML10.6.2 主体通信语言SACL10.6.3 SACL语法结构10.6.4 SACL保留关键字10.7 主体的协调与协作10.7.1 计算生态学10.7.2 基于对策论的协调与协作10.7.3 协商10.8 多主体处理环境MAPE10.8.1 主体的逻辑结构10.8.2 主体虚拟层10.8.3 主体逻辑层10.8.4 主体概念层10.8.5 多主体系统的总体结构10.8.6 主体创建10.8.7 多主体系统构建第十一章进化计算11.1 概述11.2 进化系统理论的形式模型11.3 达尔文进化算法11.4 分类器系统11.5 桶链算法11.6 遗传算法11.6.1 遗传算法的主要步骤11.6.2 表示模式11.6.3 杂交操作11.6.4 变异操作11.6.5 反转操作11.7 并行遗传算法11.8 分类器系统 Boole11.9 规则发现系统11.10 进化策略11.11 进化程序设计第十二章人工生命12.1 引言12.2 研究人工生命的原因12.3 人工生命的探索12.4 人工生命模型12.5 人工生命的研究方法和战略12.6 计算机生命12.7 细胞自动机12.8 形态形成理论12.9 混沌理论四、教材1. 史忠植:高级人工智能, 科学出版社,1998五、参考书六、教学方式课堂讲授和讨论七、考查方式课程设计 40%闭卷考试 60%撰写人:史忠植。

史忠植 高级人工智能(中科院)第二章

史忠植 高级人工智能(中科院)第二章
2012-03-08 史忠植 逻辑基础 9
可靠性和完备性
可靠性(reliable)
一个逻辑是可靠的,如果它的证明保持真假值, 即在任何解释I下,如果I是Ψ 的模型,且ϕ可由Ψ推导 出,则I也是ϕ的一个模型。即,一个逻辑是可靠的, 如果对任何语句集合Ψ和语句ϕ , Ψ ⊢ϕ蕴涵Ψ ⊨ϕ 。
完备性(complete)
2012-03-08 史忠植 逻辑基础 8

释(语义)
语言的解释是在某个论域(domain)中定义非逻辑 符号。语句的语义是在解释下定义出语言L的真假值。 如果I是L的一个解释,且ϕ在I中为真,则记为 I ⊨ϕ ,称作I满足ϕ ,或者I 是ϕ的一个模型。 类似地,给定一个语句Ψ和一个语句ϕ ,如果对 每个解释I ,有I ⊨Ψ 蕴含I ⊨ϕ ,换言之,如果I 是Ψ 的一个模型则I也是ϕ的一个模型,则记为Ψ ⊨ϕ ,我 们称ϕ为Ψ的一个逻辑结果。
2012-03-08
史忠植 逻辑基础
15
逻辑程序设计

消解原理(归结原理) Horn逻辑 Prolog逻辑程序设计语言
2012-03-08
史忠植 逻辑基础
16
归结原理
P,P → Q Q
P , ¬P ∨ Q Q
例: C2 = P∨Q C1 = ¬P∨Q∨R 则C1与C2归结后的结果为:Q∨R 若子句集S能导出空子句⊓(有否证),则称S 是不可满足的。 反证法: S ⊢ A iff S ∪ ¬A ⊢ ⊓
史忠植 逻辑基础
22
Prolog语言的基本文法
Prolog语言的最基本语言成分是项(term),一个 项或者是常量,或者是变量,或者是一个结构。 • 常量:是指对象和对象之间的特定关系的名;
整数,如0,22,1586等; 原子,如John,student,likes,sister-of

人工智能(六)知识发现与数据挖掘ppt课件

人工智能(六)知识发现与数据挖掘ppt课件
人工智能 Artificial Intelligence
北京信息科技大学计算机学院 李宝安
精选ppt课件
1
知识发现与数据挖掘
精选ppt课件
2
数据库技术和计算机网络已经成为当前计 算机应用中的两个最重要的基础领域,触及到 人类生活的各个方面。目前,全世界数据库和 因特网中的数据总量正以极快的速度增长。虽 然简单的数据查询或统计可以满足某些低层次 的需求,但人们更为需要的是从大量数据资源 中挖掘出对各类决策有指导意义的一般知识。 数据的急剧膨胀和时效性、复杂性远远超过了 人们的手工处理能力,人们迫切需要高性能的 自动化数据分析工具,以高速、全面、深入、 有效地加工数据。
B
8.67
3.571 2.427 21.038 51.06
C
14.00
7.155
1.957 7.395
53.61
D
24.67 16.889 1.418 36.459 53.89
精选ppt课件
13
BACON4调用上述的启发式,寻到了D和P的单调趋势 关系,即P随D增大而增大,但相应的斜率项不是常数, 而是随D的增加而减少。这又导致BACON4定义D2/P, 此项的值也不是常数,但随D/P减少而增加,结果系统 考虑项D3/P2,这个值接近常数(系统给出了一个允许 的误差范围如7.5%)。BACON4根据这结果就归纳出 该定律了。 一旦一个推理项定义后,它和直接观察的变量就 没有区别了。例如,理想气体定律例中,趋势探测器 会首先确定如PV这样的推理项,并进而确定如PV/T那样 的推理项。也可以发现这些推理项所取值之间的关系, 又从中重新派生出新的推理项,导致对直接观察的变 量更为复杂的描述如PV/nT。BACON4递归地应用相同 的启发式逐步生成更复杂的高层次描述,这种推理能 力使系统具备相当强大的搜索经验定律的功能。

高级人工智能

高级人工智能
20
VOLUME(p1,v1)
2013-7-14
DENSITY(p1,d1)
VOLUME(x,v1) DENSITY(x,d1) LESS(v1*d1,5) ISA(y,ENDTABLE) 高级人工智能-解释学习 史忠植
解释与泛化交替进行
1. 问题的逻辑描述 • 逻辑的表示方法使EBG的语义更为清楚,为学 习提供了方便的语言环境 2. 产生解释结构 • 从目标开始反向推理,分解目标。应用规则时, 同时将规则应用到变量化的目标概念上,这样 就同时生成了解释结构和泛化的解释结构 3. 生成控制规则 • 将泛化的解释结构的所有叶结点的合取作为前 件,以定点的目标概念为后件,略去解释结构 的中间部件,生成泛化的产生式规则。
1986年DeJong 和Mooney提出全局取代解释泛化Explanation
Generalization using Global Substitutions, 缩写EGGS) 方法 1987年卡耐基-梅隆大学的Minton 和 Carbonell提出解释特化 (Explanation-Based Specialization,简写EBS)学习方法
2013-7-14 高级人工智能-解释学习 史忠植 27
泛化三角表
INROOM( ROBOT, p2 ) GOTHRU( p3 , p2 , p5 ) CONNECTS( p3 , p2 , p5 )
INROOM( p6 , p5 )
INROOM( ROBOT, p5 ) PUSHTHRU( p6 , p8 , p5 , p9 )
高级人工智能-解释学习 史忠植 2
9.1 概述
基于解释的学习: 一种从单个观察中抽象出通用规则的方法
目标是下次可以快速地解决类似的问题

高级人工智能

高级人工智能
memory ← Update-Memory(memory,percept) action ← Choose-Best-Action(memory) memory ← Update-Memory(memory,action) return action
2019/11/5
史忠植 高级人工智能
38
主体的分类
execute(I);
get-new-external-events();
drop-successful-attitudes(B,G,I);
drop-impossible-attitudes(B,G,I);
until quit
2019/11/5
史忠植 高级人工智能
32
动作理论
情景演算是描述动作的主要的形式框架。 在情景演算中引入了状态和动作的概念, 并利用两条逻辑公理来描述动作与状态 的关系。一条公理描述一个动作在满足 什么条件的状态之下可能发生,另外一 条描述在一个状态之下某个动作发生以 后当前状态如何改变。
所以,智能主体的研究应该是人工智能的核心问题。斯坦福
大学计算机科学系的 Hayes-Roth在IJCAI'95的特邀报告中谈到:
“智能的计算机主体既是人工智能最初的目标,也是人工智能
最201终9/11的/5 目标。”
史忠植 高级人工智能
13
多主体系统
关于主体的研究不仅受到了人工智能研究人 员的关注,也吸引了数据通信、人机界面 设计、机器人、并行工程等各领域的研究 人员的兴趣。有人认为:“基于主体的计 算(Agent-Based Computing, 简称ABC)
2019/11/5
史忠植 高级人工智能
20
任务分解
合同网络 动态层次控制 自然分解, 固定分配 部分全局规划

人工智能之智能科学高级人工智能史忠植

人工智能之智能科学高级人工智能史忠植

统的有效控制,提高了生产效率和安全性。
史忠植对人工智能发展的贡献
推动人工智能技术进步
培养优秀人才
史忠植教授在人工智能领域的研究成 果不仅提高了技术水平,还为该领域 的发展提供了新的思路和方法。
史忠植教授在人工智能领域培养了一 大批优秀人才,这些人才在国内外学 术界和工业界都取得了杰出成就。
促进人工智能应用普及
史忠植教授的研究成果在实际应用中 取得了显著效果,推动了人工智能技 术的普及和应用。
史忠植对智能科学的推动与影响
引领智能科学研究方向
史忠植教授的研究成果为智能科学的发展指明了方向,引领了该领域的研究潮流。
促进智能科学与多学科交叉融合
史忠植教授的研究成果将智能科学与计算机科学、控制科学、心理学等学科进行了深度融 合,推动了多学科交叉研究的进展。
自主智能系统
具备自主感知、决策、执行和学习能力,能 够独立完成复杂任务的系统。
智能机器人
结合传感器、控制器和执行器等硬件设备, 实现人机交互和自主行动的机器人系统。
04
史忠植的贡献与影响
史忠植的主要研究成果
01
提出基于知识的智能系统框架
史忠植教授在人工智能领域最早提出基于知识的智能系统框架,将知识
专家系统
利用专家知识和推理规则进行问题求 解的系统,能够提供专业领域的咨询 和服务。
知识工程
研究如何获取、表示、存储、检索和 应用知识的科学,是人工智能领域的 重要分支。
人工神经网络与深度学习
人工神经网络
模拟生物神经网络结构和功能的计算模型,通过训练不断优化网络参数,实现复杂的数据处理和模式识别。
获取、推理、学习和问题求解等智能活动统一于一体,为后续的智能系

数据挖掘知识点总结

数据挖掘知识点总结

数据挖掘知识点总结数据挖掘是现代信息技术的一个重要分支,在数据科学、人工智能、商业智能等领域都有着重要的应用和意义。

数据挖掘是从大量的数据中提取隐藏在其中的有用信息和知识的过程。

通过数据挖掘,可以发现数据中的规律、模式、趋势和关联性,为企业决策、市场营销、产品研发等提供有力的支持。

数据挖掘涉及的知识点非常广泛,包括数据预处理、特征选择、模型建立、模型评估等方面。

本文将对数据挖掘的相关知识点进行总结,包括其基本概念、方法、工具等方面。

一、数据挖掘的基本概念1. 数据挖掘的定义数据挖掘是从大量的数据中发现潜在的、先前未知的有用信息和知识的过程。

数据挖掘技术可以帮助人们从数据中找到可靠的、较严谨的、可解释的、普遍适用的模式,这些模式可以应用到现实世界的决策中去。

2. 数据挖掘的应用领域数据挖掘技术可以应用到许多领域,包括商业、金融、医疗、交通、环境等。

在商业领域,数据挖掘可以帮助企业发现内在规律,提高销售、服务质量和市场竞争力;在金融领域,数据挖掘可以帮助银行、保险公司和证券公司识别欺诈行为和风险,提高风险管理和效率;在医疗领域,数据挖掘可以帮助医疗机构发现潜在的危险因素、疾病的规律、潜在的患者群等。

3. 数据挖掘的基本任务数据挖掘的基本任务包括分类、聚类、关联规则挖掘、异常检测等。

其中,分类是把数据分成不同的类别,聚类是发现数据中的相似的组,关联规则挖掘是找出数据之间的相关性,异常检测是识别不符合全局模式的个体。

二、数据挖掘的方法1. 数据预处理数据预处理是数据挖掘工作的第一步,它包括数据清洗、数据集成、数据变换和数据规约等过程。

数据清洗是指处理数据中的错误、缺失、重复、不一致等问题,数据集成是指将不同数据源的数据集成到一起,数据变换是指将原始数据转换为更适合挖掘的形式,数据规约是指减少数据量,同时保持数据集的特征和信息。

2. 特征选择特征选择是指选择最相关、最有效的特征子集,以便构建更好的模型。

特征选择有助于减少数据维度、提高模型训练和预测效率、降低过拟合风险。

知识发现和数据挖掘-史忠植PPT课件

知识发现和数据挖掘-史忠植PPT课件

聚类
将相似的数据点聚集在一起,形 成不同的数据群组。
关联规则挖掘
发现数据集中的关联规则,用于 推荐和关联营销等。
深度学习
利用神经网络等算法对数据进行 深入分析和挖掘。
序列挖掘
发现数据中的序列模式,用于预 测未来的事件和行为。
时间序列预测
利用时间序列数据预测未来的趋 势和行为。
03
数据预处理
数据清洗
知识发现和数据挖掘史忠植ppt课件
目录 CONTENT
• 引言 • 知识发现和数据挖掘的基本概念 • 数据预处理 • 关联规则挖掘 • 分类和预测 • 聚类分析 • 总结与展望
01
引言
研究背景
随着大数据时代的来临,数据量 呈爆炸式增长,如何从海量数据 中提取有价值的信息成为亟待解
决的问题。
传统的数据处理和分析方法难以 应对大规模、复杂的数据,需要 新的技术和方法来挖掘数据的潜
研究不足与展望
第一季度
第二季度
第三季度
第四季度
隐私保护
随着数据挖掘的广泛应 用,如何有效地保护用 户隐私成为了一个亟待 解决的问题。未来的研 究需要更加重视隐私保 护技术的研究和应用。
可解释性
目前许多复杂的数据挖 掘模型往往缺乏可解释 性,使得用户难以理解 模型的决策依据。未来 研究需要努力提高模型 的解释性,以增强用户
数据挖掘
数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不 知道的、但又是潜在有用的信息和知识的过程。
知识发现的过程
数据清洗
去除重复数据、对缺失数据进行填充、异常值处理等。
数据集成
将多个数据源的数据进行整合,形成一个统一的数据 集。

aai09知识发现和数据挖掘1高级人工智能史忠植

aai09知识发现和数据挖掘1高级人工智能史忠植

2019/11/13
高级人工智能 史忠植
25
2019/11/13
高级人工智能 史忠植
26
2019/11/13
高级人工智能 史忠植
27
2019/11/13
高级人工智能 史忠植
28
2019/11/13
高级人工智能 史忠植
29
关联规则发现注意的问题
充分理解数据 目标明确 数据准备工作要做好 选取适当的最小的支持度和可信度 很好地理解关联规则
第九章 知识发现和数据挖掘
数据库中知识发现
史忠植 中科院计算所
2019/11/13
高级人工智能 史忠植
1
知识发现 关联规则 数据仓库 知识发现工具
2019/11/13
高级人工智能 史忠植
2
知识发现
知识发现是指从数据集中抽取和精炼新的模式。 范围非常广泛:经济、工业、农业、军事、社会 数据的形态多样化:数字、符号、图形、图像、声音 数据组织各不相同:结构化、半结构化和非结构 发现的知识可以表示成各种形式
2019/11/13
高级人工智能 史忠植
30
关联规则发现使用步骤
连接数据,做数据准备 给定最小支持度和最小可信度,利用知识发 现工具提供的算法发现关联规则 可视化显示、理解、评估关联规则
2019/11/13
高级人工智能 史忠植
31
关联规则在保险业务中的应用
最小支持度1%,最小可信度为50%
成的,内容相对稳定的、不同时间的数据集合,用以 支持经营管理中的决策制定过程。
2019/11/13
高级人工智能 史忠植
37
数据仓库的特征(1)
数据仓库中的数据是面向主题的

勇攀高峰无止境,智能科学路漫漫

勇攀高峰无止境,智能科学路漫漫

勇攀高峰无止境,智能科学路漫漫---记史忠植研究员人类从磨擦起火把机械能转变为热能,瓦特发明蒸汽机, 又把热能转变为机械能,这是人类历史上两次最伟大的创举,创造了人类前文明史。

智能革命实现智能的转换与利用,人把自己的智能赋予机器,转换为机器智能,并放大人的智能。

智能机将引起智能革命,开创人类后文明史。

人工智能领域的研究是从1956年正式开始的,"智能",字面意思是采集(特别是果实)、收集、汇集,并由此进行选择,形成一个东西。

INTELEGERE是从中进行选择,进而理解、领悟和认识。

从几个世纪前,人们已对机器操作的复杂性与自身的某些智能活动进行直观联系。

随着时代的进步,在此领域的研究已从知识工程到智能信息处理,从智能信息处理到智能科学的研究,一直不断飞越。

随着科技的进步,人类的不断摸索,进入21世纪,人工智能又掀起了他新的篇章!而有突出贡献的不得不提起中国人工智能开拓者之一--史忠植!史忠植是中国科学院计算技术研究所研究员,IEEE(美国电气和电子工程师协会)高级会员、AAAI(国际人工智能协会)和ACM(美国计算机协会)会员、中国人工智能学会会士、国际信息处理联合会(IFIP)人工智能技术委员会(TC12)委员、IFIP人工智能学会机器学习和数据挖掘工作组主席、中国人工智能学会副理事长、博士生导师。

曾多次赴荷兰、澳大利亚、加拿大、新加坡、香港等地讲学。

负责完成多项国家重点科技攻关项目、国家973、国家863高技术的智能计算机系统项目、国家自然科学基金等项目。

曾获国家科技进步二等奖、中国科学院科技进步二等奖、中国科学院科技进步特等奖。

世界科技出版社智能科学系列丛书(Series on Intelligence Science)主编。

Informatics、International Journal of Computational Intelligence Systems、计算机学报、计算机研究与发展等杂志的编委。

高级人工智能AdvancedArtificialIntelligence

高级人工智能AdvancedArtificialIntelligence
分类:
根据分类模型对数据集合分类。分类属于有导师学习,一般 需要有一个训练样本数据集作为输入。
聚类:
根据数据的不同特征,将其划分为不同的类。无导师学习
2019/7/25
史忠植 高级人工智能
38
知识发现的任务(2)
相关性分析:
发现特征之间或数据之间的相互依赖关系 关联规则
偏差分析:
基本思想是寻找观察结果与参照量之间的有意义的差别。通 过发现异常, 可以引起人们对特殊情况的加倍注意。
输入
比较器
操作模块
解法栈
知识库 操作表解法库
检验模块
2019/7/25
转换类比学习系统框图
史忠植 高级人工智能
输出
30
第八章 解释学习
2019/7/25
史忠植 高级人工智能
31
8.2 解释学习模型
概念描述空间
概念空间
例子空间
D1
不可操作的
C1
可操作
D2
I1 I2
I3
解释学习的空间描述
2019/7/25
2019/7/25
没有描述
G S
训练例子
史忠植 高级人工智能
更一般
更特殊
24
ID3 算法
(1)选择给定训练实例的随机子集(称为 窗口)。
(2)重复 (a) 形成一条规则解释当前窗口。 (b) 从其余实例中寻找该规则的例外。 (c) 由当前窗口和规则例外生成新的窗
口。 直到该规则没有例外为止。
2019/7/25
建模:
构造描述一种活动或状态的数学模型
2019/7/25
史忠植 高级人工智能
39
关联规则的相关概念(2)

数据挖掘与知识发现讲稿概述

数据挖掘与知识发现讲稿概述

前期基础课程:数据库、人工智能参考书:《知识发现》,清华大学出版社,史忠植编,2004第1章概述随着信息社会和知识经济时代的来临,信息正以前所未有的速度膨胀。

面对浩如烟海的信息资源,人类的自然智能越来越显得难于驾驭。

如何用人造的智能去模仿和扩展人类的自然智能,实现信息的智能化处理,是信息社会和知识经济所面临的一个重大课题。

人工智能作为一门研究机器(计算机)智能的学科,其目的是要用人工的方法和技术,研制智能机器或智能系统,来模仿、延伸和拓展人的智能。

因此,人工智能是人类迈向信息、迎接知识经济挑战所必须具备的一项核心技术。

难怪有人把人工智能同原子能技术、空间技术一起称为20世纪的三大尖端科技成就。

但人工智能系统较率低,不能应用于实际。

随着计算机、Internet的普及,以及数据库(DB)技术的迅速发展和数据库管理系统(DBMS)的广泛应用,导致许多领域积累了海量数据(如,从普通的超市业务数据、信用卡记录数据、电话呼叫清单、政府统计数据到不太普通的天体图像、分子数据库和医疗记录等)。

现有的DB技术大多可高效地实现数据查询、统计和维护等管理功能,但却无法发现数据中存在的关联和规则,无法根据现有的数据预测未来的发展趋势。

数据库中存在着大量数据,却缺乏从这些数据中自动、高效地获取知识的手段,出现了“数据丰富,知识贫乏”的现象。

此外,在数据操纵方面:信息的提取及其相关处理技术却远远落后。

为此,针对庞大的数据库及其中的海量数据信息源,仅依靠传统的数据检索机制和统计分析方法已远不能满足需要。

需求是发展之母,数据管理系统(DBMS)和人工智能中机器学习两种技术的发展和结合,促成了在数据库中发现知识这一新技术的诞生,即基于数据库知识发现(Knowledge Discovery in Database,KDD)及其核心技术---数据挖掘产生并迅速发展起来。

它的出现为自动和智能地把海量数据转化成有用的信息和知识提供了手段。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
100个顾客购买了面包级人工智能 史忠植
16
关联规则的相关概念(3)
可信度
设W中支持物品集A的事务中,有c%的事务同时也 支持物品集B,c%称为关联规则A→B的可信度。
P(B|A) 1000个顾客购物,200个顾客购买了面包,其中140个 买了黄油,则可信度是70%(140/200)。
神经计算:
神经网络是指一类新的计算模型,它是模仿人脑神经网络的 结构和某些工作机制而建立的一种计算模型。常用的模型: Hopfield网 多层感知机 自组织特征映射 反传网络
可视化:
2019/9/20
高级人工智能 史忠植
11
KDD的技术难点
动态变化的数据 噪声 数据不完整 冗余信息 数据稀疏 超大数据量
年代初 粗糙集(Rough Set) Pawlak 80年代初
2019/9/20
高级人工智能 史忠植
9
知识发现的方法(2)
机器学习:
规则归纳:AQ算法 决策树:ID3、C4.5 范例推理:CBR 遗传算法:GA 贝叶斯信念网络
2019/9/20
高级人工智能 史忠植
10
知识发现的方法(3)
2019/9/20
高级人工智能 史忠植
4
不同的术语名称
知识发现是一门来自不同领域的研究者关注的交 叉性学科,因此导致了很多不同的术语名称。
知识发现:人工智能和机器学习界。
数据挖掘(data mining):
统计界、数据分析、数据库和管理信息系统界
知识抽取 (information extraction)、 信息发现 (information discovery)、 智能数据分析 (intelligent data analysis)、 探索式数据分析 (exploratory data analysis) 信息收获 (information harvesting) 数据考古 (data archeology)
聚类:
根据数据的不同特征,将其划分为不同的类。无导师学习
2019/9/20
高级人工智能 史忠植
7
知识发现的任务(2)
相关性分析:
发现特征之间或数据之间的相互依赖关系 关联规则
偏差分析:
基本思想是寻找观察结果与参照量之间的有意义的差别。通 过发现异常, 可以引起人们对特殊情况的加倍注意。
2019/9/20
高级人工智能 史忠植
17
关联规则的相关概念(4)
最小支持度minsup
用户规定的关联规则必须满足的最小支持度。
最小可信度minconf
用户规定的关联规则必须满足的最小可信度。
2019/9/20
高级人工智能 史忠植
14
关联规则的相关概念(1)
设R={I1,I2……Im}是一组物品集,W是一组事务集。W 中的每个事务T是一组物品,TR。 假设有一个物品集A,一个事务T,如果AT,则称事 务T支持物品集A。 关联规则是如下形式的一种蕴含:A→B,其中A、B是 两组物品,AI,BI,且A∩B=。
规则、科学规律、方程或概念网。
2019/9/20
高级人工智能 史忠植
3
数据库知识发现
目前, 关系型数据库技术成熟、应用广泛。 因此, 数据库知识发现(Knowledge Discovery in Databases KDD)的研究非常活跃。
该术语于1989年出现,Fayyad定义为 “KDD是从数据集中识别出有效的、新颖的、 潜在有用的,以及最终可理解的模式的非平凡 过程”
2019/9/20
高级人工智能 史忠植
15
关联规则的相关概念(2)
支持度
物品集A的支持度:称物品集A具有大小为s的支持度, 如果D中有s%的事务支持物品集X P(A)
1000个顾客购物,其中200个顾客购买了面包,
支持度就是20%(200/1000)。
关联规则A→B的支持度:关联规则A→B在事务数据 库W中具有大小为s的支持度,如果物品集A∪B的支持 度为s
2019/9/20
高级人工智能 史忠植
13
关联规则的表示
关联规则的形式如 “在购买面包顾客中,有70%的人 同时也买了黄油”,可以表示成:面包→黄油。 用于关联规则发现的主要对象是事务型数据库,其中 针对的应用则是售货数据,也称货篮数据。一个事务 一般由如下几个部分组成:事务处理时间 ,一组顾客 购买的物品,有时也有顾客标识号(如信用卡号)。
2019/9/20
高级人工智能 史忠植
5
2019/9/20
高级人工智能 史忠植
6
知识发现的任务(1)
数据总结:
对数据进行总结与概括。传统的最简单的数据总结方法是计 算出数据库的各个字段上的求和值、平均值、方差值等统计 值,或者用直方图、饼状图等图形方式表示。
分类:
根据分类模型对数据集合分类。分类属于有导师学习,一般 需要有一个训练样本数据集作为输入。
2019/9/20
高级人工智能 史忠植
12
关联规则
属于知识发现任务中的相关性分析
由于条形码技术的发展,零售部门可以利用前端收款 机收集存储大量的售货数据。因此,如果对这些历史 事务数据进行分析,则可对顾客的购买行为提供极有 价值的信息。例如,可以帮助如何摆放货架上的商品 (如把顾客经常同时买的商品放在一起),帮助如何规 划市场(怎样相互搭配进货)。
建模:
构造描述一种活动或状态的数学模型
2019/9/20
高级人工智能 史忠植
8
知识发现的方法(1)
统计方法:
传统方法: 回归分析、判别分析、聚类分析、探索性分析
模糊集(fuzzy set) Zadeh 1965 支持向量机(Support Vector Machine) Vapnik 90
第九章 知识发现和数据挖掘
数据库中知识发现
史忠植 中科院计算所
2019/9/20
高级人工智能 史忠植
1
知识发现 关联规则 数据仓库 知识发现工具
2019/9/20
高级人工智能 史忠植
2
知识发现
知识发现是指从数据集中抽取和精炼新的模式。 范围非常广泛:经济、工业、农业、军事、社会 数据的形态多样化:数字、符号、图形、图像、声音 数据组织各不相同:结构化、半结构化和非结构 发现的知识可以表示成各种形式
相关文档
最新文档