地大《概率论与数理统计》在线作业二-0009

合集下载

地大《概率论与数理统计》在线作业二

地大《概率论与数理统计》在线作业二

地大《概率论与数理统计》在线作业二总分:100分已提交一、单选题共25题,100分14分某车队里有1000辆车参加保险,在一年里这些车发生事故的概率是0.3%,则这些车在一年里恰好有10辆发生事故的概率是()24分正态分布是()。

34分设随机变量X和Y独立,如果D(X)=4,D(Y)=5,则离散型随机变量Z=2X+3Y的方差是(44分产品为废品的概率为0.005,则10000件产品中废品数不大于70的概率为()。

关时间彼此无关则同时开着的灯数在6800与7200之间的概率为()64分一个螺丝钉重量是一个随机变量,期望值是1两,标准差是0.1两。

求一盒(100个)同型号螺丝钉的重量超过10.2斤的概率()。

74分10个产品中有7个正品,3个次品,按不放回抽样,依次抽取两个,已知第一个取到次品,则第二次取到次品的概率是()84分甲、乙、丙3部机床独立工作,由一个工人照管,某段时间内它们不需要工作照管的概率分别为0.9 0.8 及0.85。

则在这段时间内机床因无人照管而停工的概率为()。

袋中有5个白球,3个黑球。

从中任取两个球,则取出的两个球都是白球的概率为()。

104分如果两个随机变量X与Y独立,则()也独立分别等于0.1,0.2,0.4。

当大、中、小三块弹片打中装甲车时其打穿装甲车的概率分别为0.9,0.5,0.01今有一装甲车被一块炮弹弹片打穿(在上述距离),则装甲车是被大弹片打穿的概率是()某单位有200台电话机,每台电话机大约有5%的时间要使用外线电话,若每台电话机是否使用外线是相互独立的,该单位需要安装()条外线,才能以90%以上的概率保证每台电话机需要使用外线时而不被占用。

144分电话交换台有10条外线,若干台分机,在一段时间内,每台分机使用外线的概率为10%,则最多可装()台分机才能以90%的把握使外线畅通。

154分随机变量按其取值情况可分为()类的概率为()。

184分一批产品中有一、二、三等品、等外品及废品5种,相应的概率分别为0.7、0.1、0.1、0.06及0.04若其产值分别为6元、5.4元、5元、4元及0元。

地大14秋《概率论与数理统计》在线作业二答案

地大14秋《概率论与数理统计》在线作业二答案
D. d
?
正确答案:B
B.一般正态分布
C.二项分布
D.泊淞分布
?
正确答案:A
21. A. A
B. B
C.Байду номын сангаасC
D. D
?
正确答案:B
22. A. A
B. B
C. C
D. D
?
正确答案:D
23. A. A
B. B
C. C
D. D
?
正确答案:C
24. A. A
B. B
C. C
D. D
?
正确答案:A
25. A. a
B. b
C. c
地大《概率论与数理统计》在线作业二
一,单选题
1.如果两个随机变量X与Y独立,则( )也独立
A. g(X)与h(Y)
B. X与X+1
C. X与X+Y
D. Y与Y+1
?
正确答案:A
2.若随机变量X与Y不独立,则下面式子一定正确的是( )
A. EXY=EX*EY
B. D(X+Y)=DX+DY
C. Cov(X,Y)=0
C. C
D. D
?
正确答案:C
8. 10个产品中有7个正品,3个次品,按不放回抽样,依次抽取两个,已知第一个取到次品,则第二次取到次品的概率是( )
A. 1/15
B. 1/10
C. 2/9
D. 1/20
?
正确答案:C
9. A. A
B. B
C. C
D. D
?
正确答案:B
10. A. A
B. B
C. C
A.正面出现的次数为591次
B.正面出现的频率为0.5

概率论与数理统计第二章习题答案(PDF)

概率论与数理统计第二章习题答案(PDF)

第二章 随机变量及其分布习题2.11. 口袋中有5个球,编号为1, 2, 3, 4, 5.从中任取3只,以X 表示取出的3个球中的最大号码.(1)试求X 的分布列;(2)写出X 的分布函数,并作图. 解:样本点总数1012334535=××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,(1)X 的全部可能取值为3, 4, 5,且事件“X = 3”所含样本点个数为k 1 = 1,有1.0101}3{===X P , 事件“X = 4”所含样本点个数为31223232=××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,有3.0103}4{===X P , 事件“X = 5”所含样本点个数为61234243=××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,有6.0106}5{===X P , 故X 的分布列为6.03.01.0543P X;(2)因分布函数F (x ) = P {X ≤ x },分段点为x = 3, 4, 5,当x < 3时,F (x ) = P {X ≤ x } = P (∅) = 0,当3 ≤ x < 4时,F (x ) = P {X ≤ x } = P {X = 3} = 0.1,当4 ≤ x < 5时,F (x ) = P {X ≤ x } = P {X = 3} + P {X = 4} = 0.1 + 0.3 = 0.4,当x ≥ 5时,F (x ) = P {X ≤ x } = P {X = 3} + P {X = 4} + P {X = 5} = 0.1 + 0.3 + 0.6 = 1,故X 的分布函数⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=.5,1;54,4.0;43,1.0;3,0)(x x x x x F2. 一颗骰子抛两次,以X 表示两次中所得的最小点数.(1)试求X 的分布列; (2)写出X 的分布函数. 解:样本点总数n = 62 = 36,(1)X 的全部可能取值为1, 2, 3, 4, 5, 6,且事件“X = 1”所含样本点个数为k 1 = 62 − 52 = 11,有3611}1{==X P , 事件“X = 2”所含样本点个数为k 2 = 52 − 42 = 9,有369}2{==X P ,事件“X = 3”所含样本点个数为k 3 = 42 − 32 = 7,有367}3{==X P ,事件“X = 4”所含样本点个数为k 4 = 32 − 22 = 5,有365}4{==X P ,事件“X = 5”所含样本点个数为k 5 = 22 − 1 = 3,有363}5{==X P , 事件“X = 6”所含样本点个数为k 6 = 1,有361}6{==X P , 故X 的分布列为3613633653673693611654321PX ; (2)因分布函数F (x ) = P {X ≤ x },分段点为x = 1, 2, 3, 4, 5, 6,当x < 1时,F (x ) = P {X ≤ x } = P (∅) = 0,当1 ≤ x < 2时,3611}1{}{)(===≤=X P x X P x F , 当2 ≤ x < 3时,36203693611}2{}1{}{)(=+==+==≤=X P X P x X P x F , 当3 ≤ x < 4时,36273673693611}3{}2{}1{}{)(=++==+=+==≤=X P X P X P x X P x F ,当4 ≤ x < 5时,36323653673693611}{}{)(41=+++===≤=∑=k k X P x X P x F , 当5 ≤ x < 6时,36353633653673693611}{}{)(51=++++===≤=∑=k k X P x X P x F , 当x ≥ 6时,F (x ) = P {X ≤ x } = P (Ω) = 1,故X 的分布函数⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<≤<=.6,1;65,3635;54,3632;43,3627;32,3620;21,3611;1,0)(x x x x x x x x F 3. 口袋中有7个白球、3个黑球.(1)每次从中任取一个不放回,求首次取出白球的取球次数X 的概率分布列;(2)如果取出的是黑球则不放回,而另外放入一个白球,此时X 的概率分布列如何. 解:(1)X 的全部可能取值为1, 2, 3, 4,且107}1{==X P ,30797103}2{=×==X P ,12078792103}3{=××==X P , 1201778192103}4{=×××==X P , 故X 的概率分布列为120112073071074321PX ;(2)X 的全部可能取值仍为1, 2, 3, 4,且7.0107}1{===X P ,24.0108103}2{=×==X P ,054.0109102103}3{=××==X P , 006.01010101102103}4{=×××==X P ,故X 的概率分布列为006.0054.024.07.04321P X .4. 有3个盒子,第一个盒子装有1个白球、4个黑球;第二个盒子装有2个白球、3个黑球;第三个盒子装有3个白球、2个黑球.现任取一个盒子,从中任取3个球.以X 表示所取到的白球数. (1)试求X 的概率分布列;(2)取到的白球数不少于2个的概率是多少?解:设A 1 , A 2 , A 3分别表示“取到第一个、第二个、第三个盒子”,(1)X 的全部可能取值为0, 1, 2, 3,且P {X = 0} = P (A 1) P {X = 0 | A 1} + P (A 2) P {X = 0 | A 2} + P (A 3) P {X = 0 | A 3}610301304031353331353431=++=×+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛×+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛×=, P {X = 1} = P (A 1) P {X = 1 | A 1} + P (A 2) P {X = 1 | A 2} + P (A 3) P {X = 1 | A 3}2130330630635221331352312313524131=++=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛×+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛×+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛××=, P {X = 2} = P (A 1) P {X = 2 | A 1} + P (A 2) P {X = 2 | A 2} + P (A 3) P {X = 2 | A 3}10330630303512233135132231031=++=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛×+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛×+×=, P {X = 3} = P (A 1) P {X = 3 | A 1} + P (A 2) P {X = 3 | A 2} + P (A 3) P {X = 3 | A 3}30130100353331031031=++=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛×+×+×=, 故X 的概率分布列为30110321613210PX ; (2)所求概率为3130********}3{}2{}2{==+==+==≥X P X P X P . 5. 一批产品共有100件,其中10件是不合格品.根据验收规则,从中任取5件产品进行质量检验,假如5件中无不合格品,则这批产品被接受,否则就要重新对这批产品逐个检验. (1)试求5件产品中不合格品数X 的分布列; (2)需要对这批产品进行逐个检验的概率是多少?解:样本点总数7528752012345969798991005100=××××××××=⎟⎟⎠⎞⎜⎜⎝⎛=n , (1)X 的全部可能取值为0, 1, 2, 3, 4, 5,且事件“X = 0”所含样本点个数为439492681234586878889905900=××××××××=⎟⎟⎠⎞⎜⎜⎝⎛=k , 事件“X = 1”所含样本点个数为25551900123487888990104901101=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k , 事件“X = 2”所含样本点个数为5286600123888990129103902102=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,事件“X = 3”所含样本点个数为48060012899012389102903103=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,事件“X = 4”所含样本点个数为18900901234789101904104=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,事件“X = 5”所含样本点个数为252123456789105105=××××××××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,则583752.07528752043949268}0{===X P ,339391.07528752025551900}1{===X P ,070219.0752875205286600}2{===X P ,006384.075287520480600}3{===X P ,000251.07528752018900}4{===X P ,000003.075287520252}5{===X P ,故X 的分布列为000003.0000251.0006384.0070219.0339391.0583752.0543210P X ;(2)所求概率为P {X > 0} = 1 − P {X = 0} = 1 − 0.583752 = 0.416248. 6. 设随机变量X 的分布函数为⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<=.6,1;63,21;31,31;10,41;0,0)(x x x x x x F试求X 的概率分布列及P {X < 3},P {X ≤ 3},P {X > 1},P {X ≥ 1}. 解:X 的全部可能取值为其分布函数F (x ) 的分段点0, 1, 3, 6,且41041)00()0(}0{=−=−−==F F X P ,1214131)01()1(}1{=−=−−==F F X P , 613121)03()3(}3{=−=−−==F F X P ,21211)06()6(}6{=−=−−==F F X P ,故X 的概率分布列为2161121413210PX ; 且31)03(}3{=−=<F X P ;21)3(}3{==≤F X P ;32311)1(1}1{1}1{=−=−=≤−=>F X P X P ; 43411)01(1}1{1}1{=−=−−=<−=≥F X P X P .7. 设随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=.e ,1e;1,ln ;1,0)(x x x x x F试求P {X < 2},P {0 < X ≤ 3},P {2 < X < 2.5}.解:P {X < 2} = F (2 − 0) = ln 2;P {0 < X ≤ 3} = F (3) − F (0) = 1 − 0 = 1;P {2 < X < 2.5} = F (2.5 − 0) − F (2) = ln 2.5 − ln 2 = ln 1.25.8. 若P {X ≥ x 1} = 1 − α ,P {X ≤ x 2} = 1 − β ,其中x 1 < x 2 ,试求P {x 1 ≤ X ≤ x 2}.解:P {x 1 ≤ X ≤ x 2} = P {X ≤ x 2} − P {X < x 1} = P {X ≤ x 2} + P {X ≥ x 1} − 1 = 1 − β + 1 − α − 1 = 1 − α − β . 9. 从1, 2, 3, 4, 5五个数字中任取三个,按大小排列记为x 1 < x 2 < x 3 ,令X = x 2 ,试求(1)X 的分布函数;(2)P {X < 2}及P {X > 4}.解:样本点总数1012334535=××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,(1)X 的全部可能取值为2, 3, 4,且事件“X = 2”所含样本点个数为k 1 = 3,有3.0103}2{===X P , 事件“X = 3”所含样本点个数为k 2 = 2 × 2 = 4,有4.0104}3{===X P ,事件“X = 4”所含样本点个数为k 3 = 3,有3.0103}4{===X P ,因分布函数F (x ) = P {X ≤ x },分段点为x = 2, 3, 4, 当x < 2时,F (x ) = P {X ≤ x } = P (∅) = 0,当2 ≤ x < 3时,F (x ) = P {X ≤ x } = P {X = 2} = 0.3,当3 ≤ x < 4时,F (x ) = P {X ≤ x } = P {X = 2} + P {X = 3} = 0.3 +0.4 = 0.7, 当x ≥ 4时,F (x ) = P {X ≤ x } = P (Ω) = 1,故X 的分布函数⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=;4,1;43,7.0;32,3.0;2,0)(x x x x x F(2)P {X < 2} = P (∅) = 0,P {X > 4} = P (∅) = 0.10.设随机变量X 的密度函数为⎩⎨⎧≤≤−−=.,0;11|,|1)(其他x x x p试求X 的分布函数.解:分布函数F (x ) = P {X ≤ x },分段点为x = −1, 0, 1,当x < −1时,F (x ) = P {X ≤ x } = P (∅) = 0,当−1 ≤ x < 0时,21221122)](1[)()(22121++=⎟⎠⎞⎜⎝⎛+−−+=⎟⎟⎠⎞⎜⎜⎝⎛+=−−==−−∞−∫∫x x x x u u du u du u p x F xxx, 当0 ≤ x < 1时,xxxu u u u du u du u du u p x F 021200122)1()](1[)()(⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛+=−+−−==−−∞−∫∫∫21202211022++−=−⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎠⎞⎜⎝⎛+−−=x x x x , 当x ≥ 1时,F (x ) = P {X ≤ x } = P (Ω) = 1,故X 的分布函数⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤++−<≤−++−<=.1,1;10,212;01,212;1,0)(22x x x x x x x x x F11.如果X 的密度函数为⎪⎩⎪⎨⎧<≤−<≤=.,0;21,2;10,)(其他x x x x x p试求P {X ≤ 1.5}. 解:16132325.13021222)2()(}5.1{25.112125.11105.1=−⎟⎟⎠⎞⎜⎜⎝⎛−+−=⎟⎟⎠⎞⎜⎜⎝⎛−+=−+==≤∫∫∫∞−x x x dx x xdx dx x p X P . 12.设随机变量X 的密度函数为⎪⎩⎪⎨⎧>≤=.2π||,0;2π||,cos )(x x x A x p 试求(1)系数A ;(2)X 落在区间 (0, π /4) 内的概率. 解:(1)由密度函数正则性知122πsin 2πsinsin cos )(2π2π2π2π==⎟⎠⎞⎜⎝⎛−−===−−∞+∞−∫∫A A A xA xdx A dx x p , 故21=A ;(2)所求概率为4204πsin 21sin 21cos 21}4π0{4π04π=−===<<∫x xdx X P .13.设连续随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(2x x Ax x x F试求(1)系数A ;(2)X 落在区间 (0.3, 0.7) 内的概率; (3)X 的密度函数.解:(1)由连续随机变量分布函数的连续性知A A x F F F x =⋅==−==−→211)(lim )01()1(1,故A = 1; (2)所求概率为P {0.3 < X < 0.7} = F (0.7) − F (0.3) = 0.7 2 − 0.3 2 = 0.4;(3)密度函数p (x ) = F ′(x ),当x < 0时,F (x ) = 0,有p (x ) = F ′(x ) = 0,当0 ≤ x < 1时,F (x ) = x 2,有p (x ) = F ′(x ) = 2x , 当x ≥ 1时,F (x ) = 1,有p (x ) = F ′(x ) = 0,故X 的密度函数为⎩⎨⎧<≤=.,0;10,2)(其他x x x p 14.学生完成一道作业的时间X 是一个随机变量,单位为小时.它的密度函数为⎩⎨⎧≤≤+=.,0;5.00,)(2其他x x cx x p (1)确定常数c ;(2)写出X 的分布函数;(3)试求在20min 内完成一道作业的概率; (4)试求10min 以上完成一道作业的概率. 解:(1)由密度函数正则性知1812423)()(5.00235.002=+=⎟⎟⎠⎞⎜⎜⎝⎛+=+=∫∫∞+∞−c x x c dx x cx dx x p ,故c = 21; (2)分布函数F (x ) = P {X ≤ x },分段点为x = 0, 0.5,当x < 0时,F (x ) = P {X ≤ x } = P (∅) = 0,当0 ≤ x < 0.5时,2727)21()()(2302302x x u u du u u du u p x F xxx+=⎟⎟⎠⎞⎜⎜⎝⎛+=+==∫∫∞−,当x ≥ 0.5时,F (x ) = P {X ≤ x } = P (Ω) = 1,故X 的分布函数⎪⎪⎩⎪⎪⎨⎧≥<≤+<=;5.0,1;5.00,27;0,0)(23x x x x x x F(3)所求概率为5417181277312131731}316020{23=+=⎟⎠⎞⎜⎝⎛×+⎟⎠⎞⎜⎝⎛×=⎟⎠⎞⎜⎝⎛==≤F X P ;(4)所求概率为1081037212167161216171611}616010{23=−−=⎟⎠⎞⎜⎝⎛×−⎟⎠⎞⎜⎝⎛×−=⎟⎠⎞⎜⎝⎛−==≥F X P . 15.设随机变量X 和Y 同分布,X 的密度函数为⎪⎩⎪⎨⎧<<=.,0;20,83)(2其他x x x p 已知事件A = {X > a }和B = {Y > a }独立,且P (A ∪B ) = 3/4,求常数a . 解:由于事件A 和B 独立,且显然有P (A ) = P (B ),则43)]([)(2)()()()()()()()(2=−=−+=−+=A P A P B P A P B P A P AB P B P A P B A P ∪, 可得21)(=A P 或23)(=A P (舍去), 显然0 < a < 2,有218181d 83}{)(32322=−===>=∫a x x x a X P A P a a , 故34=a .16.设连续随机变量X 的密度函数p (x ) 是一个偶函数,F (x ) 为X 的分布函数,求证对任意实数a > 0,有(1)∫−=−=−adx x p a F a F 0)(5.0)(1)(;(2)P {| X | < a } = 2F (a ) − 1;(3)P {| X | > a } = 2[1 − F (a )]. 证:(1)因p (x ) 为偶函数,有∫∫+∞−∞−=a a dx x p dx x p )()(且5.0)(0=∫∞−dx x p ,则∫∫∫∫+=+==∞−∞−a aa dx x p dx x p dx x p dx x p a F 0)(5.0)()()()(,故∫∫∫∫−=−=−===−∞−+∞−∞−a aadx x p a F dx x p dx x p dx x p a F 0)(5.0)(1)(1)()()(;(2)P {| X | < a } = P {−a < X < a } = F (a ) − F (−a ) = F (a ) − [1 − F (a )] = 2 F (a ) − 1; (3)P {| X | > a } = 1 − P {| X | ≤ a } = 1 − P {| X | < a } = 1 − [2 F (a ) − 1] = 2 − 2 F (a ).习题2.21. 设离散型随机变量X 的分布列为3.03.04.0202P X −试求E (X ) 和E (3X + 5).解:E (X ) = (−2) × 0.4 + 0 × 0.3 + 2 × 0.3 = −0.2;E (3X + 5) = (−1) × 0.4 + 5 × 0.3 + 11 × 0.3 = 4.4. 2. 某服装店根据历年销售资料得知:一位顾客在商店中购买服装的件数X 的分布列为04.009.013.031.033.010.0543210P X试求顾客在商店平均购买服装件数.解:平均购买服装件数为E (X ) = 0 × 0.10 + 1 × 0.33 + 2 × 0.31 + 3 × 0.13 + 4 × 0.09 + 5 × 0.04 = 1.9. 3. 某地区一个月内发生重大交通事故数X 服从如下分布002.0006.0026.0087.0216.0362.0301.06543210P X试求该地区发生重大交通事故的月平均数. 解:月平均数E (X ) = 0 × 0.301 + 1 × 0.362 + 2 × 0.216 + 3 × 0.087 + 4 × 0.026 + 5 × 0.006 + 6 × 0.002 = 1.201. 4. 一海运货船的甲板上放着20个装有化学原料的圆桶,现已知其中有5桶被海水污染了.若从中随机抽取8桶,记X 为8桶中被污染的桶数,试求X 的分布列,并求E (X ).解:样本点总数125970820=⎟⎟⎠⎞⎜⎜⎝⎛=n ,X 的全部可能取值为0, 1, 2, 3, 4, 5,且事件“X = 0”所含样本点个数64358150=⎟⎟⎠⎞⎜⎜⎝⎛=k ,有0511.01259706435}0{===X P , 事件“X = 1”所含样本点个数32175715151=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,有2554.012597032175}1{===X P , 事件“X = 2”所含样本点个数50050615252=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,有3973.012597050050}2{===X P , 事件“X = 3”所含样本点个数30030515353=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,有2384.012597030030}3{===X P , 事件“X = 4”所含样本点个数6825415454=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,有0542.01259706825}4{===X P , 事件“X = 5”所含样本点个数455315555=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,有0036.0125970455}5{===X P , 故X 的分布列为0036.00542.02384.03973.02554.00511.0543210PX且E (X ) = 0 × 0.0511 + 1 × 0.2554 + 2 × 0.3973 + 3 × 0.2384 + 4 × 0.0542 + 5 × 0.0036 = 2. 5. 用天平称某种物品的质量(砝码仅允许放在一个盘中),现有三组砝码:(甲)1, 2, 2, 5, 10(g );(乙)1, 2, 3, 4, 10(g );(丙)1, 1, 2, 5, 10(g ),称重时只能使用一组砝码.问:当物品的质量为1g 、2g 、…、 10g 的概率是相同的,用哪一组砝码称重所用的平均砝码数最少? 解:设X 1 , X 2 , X 3分别表示使用甲、乙、丙组砝码称重时需要的砝码个数,当物品的质量为1g 、2g 、…、10g 时,有X 1 = 1、1、2、2、1、2、2、3、3、1,即P {X 1 = 1} = 0.4,P {X 1 = 2} = 0.4,P {X 1 = 3} = 0.2, X 2 = 1、1、1、1、2、2、2、3、3、1,即P {X 2 = 1} = 0.5,P {X 2 = 2} = 0.3,P {X 2 = 3} = 0.2, X 3 = 1、1、2、3、1、2、2、3、4、1,即P {X 3 = 1} = 0.4,P {X 3 = 2} = 0.3,P {X 3 = 3} = 0.2,P {X 3 = 4} = 0.1,则平均砝码数E (X 1 ) = 1 × 0.4 + 2 × 0.4 + 3 × 0.2 = 1.8,E (X 2 ) = 1 × 0.5 + 2 × 0.3 + 3 × 0.2 = 1.7, E (X 3 ) = 1 × 0.4 + 2 × 0.3 + 3 × 0.2 + 4 × 0.1 = 2, 故用乙组砝码称重所用的平均砝码数最少.6. 假设有十只同种电器元件,其中有两只不合格品.装配仪器时,从这批元件中任取一只,如是不合格品,则扔掉重新任取一只;如仍是不合格品,则扔掉再取一只,试求在取到合格品之前,已取出的不合格品只数的数学期望.解:设X 表示在取到合格品之前已取出的不合格品只数,X 的全部可能取值为0, 1, 2,则54108}0{===X P ,45898102}1{=×==X P ,4518891102}2{=××==X P , 故9245124581540)(=×+×+×=X E .7. 对一批产品进行检查,如查到第a 件全为合格品,就认为这批产品合格;若在前a 件中发现不合格品即停止检查,且认为这批产品不合格.设产品的数量很大,可以认为每次查到不合格品的概率都是p .问每批产品平均要查多少件?解:设X 表示检查一批产品要查的件数,X 的全部可能取值为1, 2, …, a – 1, a ,则P {X = 1} = p ,P {X = 2} = (1 – p )p ,…,P {X = a – 1} = (1 – p ) a − 2 p ,P {X = a } = (1 – p ) a − 1, 即E (X ) = 1 ⋅ p + 2 (1 – p ) p + … + (a – 1) (1 – p ) a − 2 p + a (1 – p ) a − 1,有(1 – p )E (X ) = 1 ⋅ (1 – p ) p + 2 (1 – p )2 p + … + (a – 2) (1 – p ) a − 2 p + (a – 1) (1 – p ) a − 1 p + a (1 – p ) a , 得E (X ) – (1 – p )E (X ) = p + (1 – p ) p + … + (1 – p ) a − 2 p + a (1 – p ) a − 1 – (a – 1) (1 – p ) a − 1 p – a (1 – p ) a ,即)]1()1([)1()1(1])1(1[)(11p a p a a p p p p X pE a a −−−−−+−−−−=−−= 1 – (1 – p ) a − 1 + (1 – p ) a − 1 ⋅ p = 1 – (1 – p ) a − 1 ⋅ (1 – p ) = 1 – (1 – p ) a ,故pp X E a)1(1)(−−=.8. 某厂推土机发生故障后的维修时间T 是一个随机变量(单位:h ),其密度函数为⎩⎨⎧≤>=−.0,0;0,e 02.0)(02.0t t t p t 试求平均维修时间. 解:平均维修时间5002.0e e e )e (e 02.0)(002.0002.0002.0002.0002.0=−=+−=−=⋅=+∞−∞+−∞+−∞+−∞+−∫∫∫tttt t dt t d t dt t T E .9. 某新产品在未来市场上的占有率X 是仅在区间 (0, 1) 上取值的随机变量,它的密度函数为⎩⎨⎧<<−=.,0;10,)1(4)(3其他x x x p 试求平均市场占有率.解:平均市场占有率∫∫−+−=−⋅=143213)412124()1(4)(dx x x x x dx x x X E5154342105432=⎟⎠⎞⎜⎝⎛−+−=x x x x .10.设随机变量X 的密度函数如下,试求E (2 X + 5).⎩⎨⎧≤>=−.0,0;0,e )(x x x p x 解:7e 25e 2e )52()e )(52(e )52()52(0=−=++−=−+=+=++∞−+∞−+∞−+∞−+∞−∫∫∫xx xx x dx x d x dx x X E .11.设随机变量X 的分布函数如下,试求E ( X ).⎪⎪⎪⎩⎪⎪⎪⎨⎧≥−<≤<=−−.1,e 211;10,21;0,2e )()1(21x x x x F x x解:因分布函数F (x ) 是连续函数,有X 为连续型,密度函数p (x ) = F ′(x ),当x < 0时,2e )()(xx F x p =′=,当0 < x < 1时,p (x ) = F ′(x ) = 0,当x > 1时,)1(21e 41)()(−−=′=x x F x p ,∫∫∞+−−∞−⎟⎠⎞⎜⎝⎛−⋅+⋅=1)1210][e 21)(e 21x x d x d x 则∫∫∫∫∫∞+−−∞−∞+−−∞−∞+∞−+=⋅+⋅==1)12101)1(210e 41e 21e 412e )()(dx x dx x dx x dx x dx x xp X E x x x x ,因1e 0e e )(e e 00000−=−=−⋅=⋅=∞−∞−∞−∞−∞−∫∫∫xx xx x dx x d x dx x , 6e42e2e2][e2e1)1211)1(211)1(211)1(211)1(21=−=+−=⋅−=+∞−−∞+−−+∞−−∞+−−∞+−−∫∫∫x x x x x dx x d x dx x ,故1641)1(21)(=×+−×=X E .12.某工程队完成某项工程的时间X (单位:月)是一个随机变量,它的分布列为1.02.03.04.013121110P X(1)试求该工程队完成此项工程的平均月数;(2)设该工程队所获利润为Y = 50(13 – X ),单位为万元.试求该工程队的平均利润; (3)若该工程队调整安排,完成该项工程的时间X (单位:月)的分布为1.04.05.0121110P X则其平均利润可增加多少?解:(1)平均月数E (X ) = 10 × 0.4 + 11 × 0.3 + 12 × 0.2 + 13 × 0.1 = 11.(2)平均利润为E (Y ) = E [50 (13 – X )] = 150 × 0.4 + 100 × 0.3 + 50 × 0.2 + 0 × 0.1 = 100(万元); (3)因E (Y 1) = E [50 (13 – X 1)] = 150 × 0.5 + 100 × 0.4 + 50 × 0.1 = 120,有E (Y 1) – E (Y ) = 20,故平均利润增加20万元.13.设随机变量X 的概率密度函数为⎪⎩⎪⎨⎧≤≤=.,0π;0,2cos 21)(其他x x x p 对X 独立重复观察4次,Y 表示观察值大于π /3的次数,求Y 2的数学期望.解:Y 的全部可能取值为0, 1, 2, 3, 4,因216πsin 2πsin2sin2cos 21}3π{π3ππ3π=−===>=∫x dx x X P p , 则161)1(}0{4=−==p Y P ,164)1(14}1{3=−⋅⎟⎟⎠⎞⎜⎜⎝⎛==p p Y P ,166)1(24}2{22=−⋅⎟⎟⎠⎞⎜⎜⎝⎛==p p Y P , 164)1(34}1{3=−⋅⎟⎟⎠⎞⎜⎜⎝⎛==p p Y P ,161}4{4===p Y P , 故5168016141643166216411610)(222222==×+×+×+×+×=Y E .14.设随机变量X 的密度函数为⎪⎩⎪⎨⎧<<=.,0;20,83)(2其他x x x p 试求21X 的数学期望. 解:438383112020222==⋅=⎟⎠⎞⎜⎝⎛∫∫dx dx x x X E .15.设X 为仅取非负整数的离散随机变量,若其数学期望存在,证明∑+∞=≥=1}{)(k k X P X E .证:)(}{}{}{}{11111X E n X nP n X P n X P k X P n n nk k kn k =======≥∑∑∑∑∑∑+∞=+∞==+∞=+∞=+∞=.16.设连续随机变量X 的分布函数为F (x ),且数学期望存在,证明∫∫∞−+∞−−=0)()](1[)(dx x F dx x F X E .证:设X 的密度函数为p (x ),有p (x ) = F ′(x ),故∫∫∫∫∞−∞−+∞+∞∞−+∞+−−−−=−−000)]([)()](1[)](1[)()](1[x F xd x xF x F xd x F x dx x F dx x F)()()()()(0)]([00000X E dx x xp dx x xp dx x xp dx x xp dx x p x ==+=+−−−=∫∫∫∫∫+∞∞−∞−+∞∞−+∞.习题2.31. 设随机变量X 满足E (X ) = Var (X ) = λ ,已知E [(X − 1) (X − 2)] = 1,试求λ . 解:因E (X ) = Var (X ) = λ ,有E (X 2) = Var (X ) + [E (X )]2 = λ + λ 2 ,则E [(X − 1) (X − 2)] = E (X 2 – 3X + 2) = E (X 2) – 3E (X ) + 2 = λ + λ 2 – 3λ + 2 = λ 2 – 2λ + 2 = 1, 得λ 2 – 2λ + 1 = 0,即 (λ – 1)2 = 0, 故λ = 1.2. 假设有10只同种电器元件,其中有两只不合格品.装配仪器时,从这批元件中任取一只,如是不合格品,则扔掉重新任取一只;如仍是不合格品,则扔掉再取一只,试求在取到合格品之前,已取出的不合格品数的方差.解:设X 表示在取到合格品之前已取出的不合格品只数,X 的全部可能取值为0, 1, 2,则54108}0{===X P ,45898102}1{=×==X P ,4518891102}2{=××==X P , 得9245124581540)(=×+×+×=X E ,且154451245124581540)(2222==×+×+×=X E , 故4058892154)]([)()Var(222=⎟⎠⎞⎜⎝⎛−=−=X E X E X . 3. 已知E (X ) = –2,E (X 2) = 5,求Var (1 – 3X ).解:因Var (X ) = E (X 2) – [E (X )]2 = 5 – (–2) 2 = 1,故Var (1 – 3X ) = (–3)2 Var (X ) = 9 × 1 = 9. 4. 设随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥−<≤<=−−.1,e 211;10,21;0,2e )()1(21x x x x F x x试求Var (X ).解:因分布函数F (x ) 是连续函数,有X 为连续型,密度函数p (x ) = F ′(x ),当x < 0时,2e )()(xx F x p =′=,当0 < x < 1时,p (x ) = F ′(x ) = 0, 当x > 1时,)1(21e 41)()(−−=′=x x F x p ,则∫∫∫∫∫∞+−−∞−∞+−−∞−∞+∞−+=⋅+⋅==1)12101)1(21e 41e 21e 412e )()(dx x dx x dx x dx x dx x xp X E x x x x ,因1e 0e e )(e e 00000−=−=−⋅=⋅=∞−∞−∞−∞−∞−∫∫∫xx xx x dx x d x dx x , 6e42e2e2][e2e1)1211)1(211)1(211)1(211)1(21=−=+−=⋅−=+∞−−∞+−−+∞−−∞+−−∞+−−∫∫∫x x x x x dx x d x dx x ,可得1641)1(21)(=×+−×=X E ,且∫∫∫∫∫∞+−−∞−∞+−−∞−∞+∞−+=⋅+⋅==1)1(212021)1(2120222e 41e 21e 412e )()(dx x dx x dx x dx x dx x p x X E x x x x因2e 202e e )(e e 00020202=−=⋅−⋅=⋅=∫∫∫∫∞−∞−∞−∞−∞−dx x xdx x d x dx x x x xx x ,∫∫∫∞+−−+∞−−∞+−−∞+−−⋅+−=⋅−=1)1(211)1(2121)1(2121)1(2122e2e2][e2exdx x d x dx x x x x x26642e421)1(21=×+=+=∫∞+−−dx x x ,可得2152641221)(2=×+×=X E ,故2131215)]([)()Var(222=−=−=X E X E X .5. 设随机变量X 的密度函数为⎪⎩⎪⎨⎧≤<−≤<−+=.,0;10,1;01,1)(其他x x x x x p试求Var (3X + 2).解:因061613232)1()1()()(13201321001=+−=⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛+=−++==−−∞+∞−∫∫∫x x x x dx x x dx x x dx x xp X E , 且611211214343)1()1()()(1043014310201222=+=⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛+=−++==−−∞+∞−∫∫∫x x x x dx x x dx x x dx x p x X E , 则61)]([)()Var(22=−=X E X E X , 故23619)Var(9)23Var(=×==+X X .6. 试证:对任意的常数c ≠ E (X ),有Var (X ) = E (X – E (X ))2 < E (X – c )2.证:因E (X – c )2 = E (X 2 – 2cX + c 2) = E (X 2) – 2c E (X ) + c 2 = E (X 2) – [E (X )]2 + [E (X )]2 – 2c E (X ) + c 2= E (X – E (X ))2 + [E (X ) – c ]2 > E (X – E (X ))2 = Var (X ).7. 设随机变量X 仅在区间[a , b ]上取值,试证a ≤ E(X) ≤ b ,22)Var(⎟⎠⎞⎜⎝⎛−≤a b X .证:因X ≥ a ,有X – a ≥ 0,得E (X – a ) = E (X ) – a ≥ 0,即E (X ) ≥ a ,又因X ≤ b ,同理可得E (X ) ≤ b ,故a ≤ E (X ) ≤ b ;因a ≤ X ≤ b ,有222a b b a X a b −≤+−≤−−,得2222⎟⎠⎞⎜⎝⎛−≤⎟⎠⎞⎜⎝⎛+−a b b a X , 则022222222≤⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛+−=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛+−a b b a X E a b b a X E ,即2222⎟⎠⎞⎜⎝⎛−≤⎟⎠⎞⎜⎝⎛+−a b b a X E , 故22222))(()Var(⎟⎠⎞⎜⎝⎛−≤⎟⎠⎞⎜⎝⎛+−≤−=a b b a X E X E X E X .8. 设随机变量X 取值x 1 ≤ … ≤ x n 的概率分别是p 1 , …, p n ,11=∑=nk k p .证明212)Var(⎟⎠⎞⎜⎝⎛−≤x x X n .证:因x 1 ≤ X ≤ x n ,有222111x x x x X x x n n n −≤+−≤−−,得212122⎟⎠⎞⎜⎝⎛−≤⎟⎠⎞⎜⎝⎛+−x x x x X n n ,故2121212222))(()Var(⎟⎠⎞⎜⎝⎛−=⎟⎠⎞⎜⎝⎛−≤⎟⎠⎞⎜⎝⎛+−≤−=x x x x E x x X E X E X E X n n n .9. 设g (x ) 为随机变量X 取值的集合上的非负不减函数,且E (g (X )) 存在,证明:对任意的ε > 0,有)())((}{εεg X g E X P ≤>.注:此题应要求g (ε ) ≠ 0.证:以连续型随机变量为例加以证明,设连续型随机变量X 的密度函数为p (x ),因g (x ) 为非负不减函数,当x > ε 时,有g (x ) ≥ g (ε ) > 0,即1)()(≥εg x g , 故)())(()()()()()()()()()(}{εεεεεεεg X g E g X g E dx x p g x g dx x p g x g dx x p X P =⎟⎟⎠⎞⎜⎜⎝⎛=≤≤=>∫∫∫∞+∞−∞+∞+. 10.设X 为非负随机变量,a > 0.若E (e aX)存在,证明:对任意的x > 0,有axaX E x X P e )(e }{≤≥.证:以连续型随机变量为例加以证明,设连续型随机变量X 的密度函数为p (x ),故ax aX ax aX ax au xax auxE E du u p du u p du u p x X P e )(e e e )(e e )(e e )(}{=⎟⎟⎠⎞⎜⎜⎝⎛=≤≤=≥∫∫∫∞+∞−∞+∞+. 11.已知正常成人男性每升血液中的白细胞数平均是7.3 × 10 9,标准差是0.7 × 10 9.试利用切比雪夫不等式估计每升血液中的白细胞数在5.2 × 10 9至9.4 × 10 9之间的概率的下界. 解:设X 表示“每升血液中的白细胞数”,有E (X ) = 7.3 × 10 9,Var (X ) = (0.7 × 10 9) 2 = 0.49 × 10 18,则P {5.2 × 10 9 ≤ X ≤ 9.4 × 10 9} = P {–2.1 × 10 9 ≤ X – 7.3 × 10 9 ≤ 2.1 × 10 9} = P { | X – E (X ) | ≤ 2.1 × 10 9}989111041.41049.01)101.2()Var(1181829=−=××−=×−≥X ,故所求概率的下界为98.习题2.41. 一批产品中有10%的不合格品,现从中任取3件,求其中至多有一件不合格品的概率. 解:设X 表示“取到的不合格品个数”,有X 服从二项分布b (3, 0.1),故所求概率为972.09.01.0139.0}1{}0{}1{23=××⎟⎟⎠⎞⎜⎜⎝⎛+==+==≤X P X P X P . 2. 一条自动化生产线上产品的一级品率为0.8,现检查5件,求至少有2件一级品的概率. 解:设X 表示“检查到的一级品个数”,有X 服从二项分布b (5, 0.8),故所求概率为99328.02.08.0152.01}1{}0{1}2{45=××⎟⎟⎠⎞⎜⎜⎝⎛−−==−=−=≥X P X P X P . 3. 某优秀射手命中10环的概率为0.7,命中9环的概率为0.3.试求该射手三次射击所得的环数不少于29环的概率.解:设X 表示“三次射击所中的10环次数”,有X 服从二项分布b (3, 0.7),故所求概率为784.07.03.07.023}3{}2{}2{32=+××⎟⎟⎠⎞⎜⎜⎝⎛==+==≥X P X P X P .4. 经验表明:预定餐厅座位而不来就餐的顾客比例为20%.如今餐厅有50个座位,但预定给了52位 顾客,问到时顾客来到餐厅而没有座位的概率是多少? 解:设X 表示“到时来到餐厅的顾客人数”,有X 服从二项分布b (52, 0.8),故所求概率为0001279.08.02.08.05152}52{}51{}51{5251=+××⎟⎟⎠⎞⎜⎜⎝⎛==+==≥X P X P X P .5. 设随机变量X ~ b (n , p ),已知E (X ) = 2.4,Var (X ) = 1.44,求两个参数n 与p 各为多少? 解:因X ~ b (n , p ),有E (X ) = np = 2.4,Var (X ) = np (1 – p ) = 1.44,有6.04.244.11==−p , 故p = 0.4,64.04.2==n . 6. 设随机变量X 服从二项分布b (2, p ),随机变量Y 服从二项分布b (4, p ).若P {X ≥ 1} = 8/9,试求P {Y ≥ 1}.解:因X 服从二项分布b (2, p ),有98)1(1}0{1}1{2=−−==−=≥p X P X P ,即32=p ,故8180311)1(1}0{1}1{44=⎟⎠⎞⎜⎝⎛−=−−==−=≥p Y P Y P .7. 一批产品的不合格率为0.02,现从中任取40件进行检查,若发现两件或两件以上不合格品就拒收这批产品.分别用以下方法求拒收的概率:(1)用二项分布作精确计算;(2)用泊松分布作近似计算. 解:设X 表示“发现的不合格品个数”,有X 服从二项分布b (40, 0.02),(1)所求概率为1905.098.002.014098.01}1{}0{1}2{3940=××⎟⎟⎠⎞⎜⎜⎝⎛−−==−=−=≥X P X P X P ;(2)因n = 40较大,p = 0.02很小,取λ = np = 0.8,有)8.0(~P X ,故查表可得所求概率为191.0809.01}1{1}2{=−=≤−=≥X P X P . 8. 设X 服从泊松分布,且已知P {X = 1} = P {X = 2},求P {X = 4}. 解:设X 服从泊松分布P (λ ),有λ > 0,则λλλλλ−−=====e 2}2{e 1}1{21P X P ,得22λλ=,即λ = 2,故查表可得P {X = 4} = P {X ≤ 4} – P {X ≤ 3} = 0.947 – 0.857 = 0.090.9. 已知某商场一天来的顾客数X 服从参数为λ 的泊松分布,而每个来到商场的顾客购物的概率为p ,证明:此商场一天内购物的顾客数服从参数为λ p 的泊松分布. 证:设Y 表示“该商场一天内购买商品的顾客人数”,Y 的全部可能取值为0, 1, 2, …,有∑∑∞=−−∞=−⎟⎟⎠⎞⎜⎜⎝⎛⋅======rk rk r k rk p p r k k k X r Y P k X P r Y P )1(!e }|{}{}{λλ ∑∑∑∞=+−∞=−−∞=−−−=−−=−−⋅⋅=0!)1(!e )!()1(!e )1()!(!!!e n nr n r rk rk k r rk rk r k n p r p r k p r p p p r k r k k λλλλλλpr p r n n r r r p r p n p r p λλλλλλλλ−−−−∞=−=⋅=−=∑e !)(e !e )(!)]1([!e )1(0, r = 0, 1, 2, …, 故Y 服从参数为λ p 的泊松分布.10.从一个装有m 个白球、n 个黑球的袋子中返回地摸球,直到摸到白球时停止.试求取到黑球数的期望. 解:设X 表示“取到的黑球数”,有X + 1服从参数为n m mp +=的几何分布,有mn m p X E +==+1)1(, 故mnm n m X E =−+=1)(. 11.某种产品上的缺陷数X 服从下列分布列:121}{+==k k X P ,k = 0, 1, …,求此种产品上的平均缺陷数.解:因X + 1服从参数为21=p 的几何分布⎟⎠⎞⎜⎝⎛21Ge ,有21)1(==+p X E ,故E (X ) = 2 – 1 = 1. 12.设随机变量X 的密度函数为⎩⎨⎧<<=.,0;10,2)(其他x x x p 以Y 表示对X 的三次独立重复观察中事件{X ≤ 1/2}出现的次数,试求P {Y = 2}.解:因412}21{212210===≤∫x xdx X P ,有Y 服从二项分布⎟⎠⎞⎜⎝⎛41,3b , 故649434123}2{2=⋅⎟⎠⎞⎜⎝⎛⋅⎟⎟⎠⎞⎜⎜⎝⎛==Y P .13.某产品的不合格品率为0.1,每次随机抽取10件进行检查,若发现其中不合格品数多于1,就去调整设备.若检验员每天检查4次,试问每天平均要调整几次设备. 解:设X 表示“所取10件中的不合格品数”,有X 服从二项分布b (10, 0.1),则需要调整设备的概率为2639.09.01.01109.01}1{}0{1}2{910=××⎟⎟⎠⎞⎜⎜⎝⎛−−==−=−=≥X P X P X P , 设Y 表示“每天调整设备的次数”,有X 服从二项分布b (4, 0.2639), 故E (X ) = 4 × 0.2639 = 1.0556,即每天平均要调整1.0556次设备.习题2.51. 设随机变量X 服从区间 (2, 5)上的均匀分布,求对X 进行3次独立观察中,至少有2次的观察值大于3的概率. 解:设Y 表示“X 大于3的次数”,有Y 服从二项分布b (3, p ),且322535}3{=−−=>=X P p , 故所求概率为272032313223}2{32=⎟⎠⎞⎜⎝⎛+⋅⎟⎠⎞⎜⎝⎛⋅⎟⎟⎠⎞⎜⎜⎝⎛=≥Y P . 2. 在 (0, 1)上任取一点记为X ,试求⎭⎬⎫⎩⎨⎧≥+−081432X X P .解:因X 服从区间 (0, 1)上的均匀分布,且021*******≥⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛−=+−X X X X ,即41≤X 或21≥X ,故432110412141081432=⎟⎠⎞⎜⎝⎛−+⎟⎠⎞⎜⎝⎛−=⎭⎬⎫⎩⎨⎧≥≤=⎭⎬⎫⎩⎨⎧≥+−X X P X X P 或.3. 设K 服从 (1, 6)上的均匀分布,求方程x 2 + Kx + 1 = 0有实根的概率.解:因方程x 2 + Kx + 1 = 0有实根,有判别式 ∆ = K 2 – 4 ≥ 0,即K ≤ – 2或K ≥ 2,故所求概率为5416260}22{=−−+=≥−≤K K P 或. 4. 设流经一个2 Ω 电阻上的电流I 是一个随机变量,它均匀分布在9A 至11A 之间.试求此电阻上消耗的平均功率,其中功率W = 2I 2.解:因电流I 的密度函数为⎪⎩⎪⎨⎧<<=.,0,119,21)(其他x x p故平均功率36023212)(2)2()(1193119222==⋅===∫∫∞+∞−x dx x dx x p x I E W E . 5. 某种圆盘的直径在区间 (a , b )上服从均匀分布,试求此种圆盘的平均面积. 解:设d 表示“圆盘的直径”,S 表示“圆盘的面积”,有2π41d S =, 因直径d 密度函数为⎪⎩⎪⎨⎧<<−=.,0,,1)(其他b x a ab x p 故平均面积)(4π)(4π1π41)(π41π41)(223222b ab a a b x dx a b x dx x p x d E S E ba b a ++=−=−⋅==⎟⎠⎞⎜⎝⎛=∫∫∞+∞−. 6. 设某种商品每周的需求量X 服从区间 (10, 30)上的均匀分布,而商店进货数为区间 (10, 30)中的某一整数,商店每销售1单位商品可获利500元;若供大于求则削价处理,每处理1单位商品亏损100元;若供不应求,则可从外部调剂供应,此时每一单位商品仅获利300元.为使商店所获利润期望值不少于9280元,试确定最少进货量.解:因X 的密度函数为⎪⎩⎪⎨⎧≤≤=,,0,3010,201)(其它x x p 并设每周进货量为a 单位商品,商店所获利润为Y 元,当X ≤ a 时,Y = 500X − 100 (a − X ) = 600X − 100a ;当X > a 时,Y = 500a + 300 (X − a ) = 300X + 200a ,即⎩⎨⎧>+≤−==,,200300,,100600)(a X a X a X a X X g Y则∫∫∫++−==+∞∞−3010201)200300(201)100600()()()(a adx a x dx a x dx x p x g Y E5250350215)10215()515(2302102++−=++−=a a ax x ax x a a ,要使得92805250350215)(2≥++−=a a Y E ,有040303502152≤+−a a ,可得26362≤≤a ,故a 可取21, 22, 23, 24, 25, 26,即最少进货量为21单位商品. 7. 已知X ~ Exp (λ ),试在λ = 0.1下求P {5 ≤ X ≤ 20}.解:因X 的密度函数为⎩⎨⎧<≥=−,0,0,0,e )(x x x p x λλ 故4712.0e e )e (e 1.0e }205{25.02051.02051.0205=−=−===≤≤−−−−−∫∫x x x dx dx X P λλ.8. 统计调查表明,英格兰在1875年至1951年期间,在矿山发生10人或10人以上死亡的两次事故之间的时间T (以日计)服从均值为241的指数分布.试求P {50 ≤ T ≤ 100}.解:因T 服从指数分布,且2411)(==λT E ,有T 的密度函数为⎪⎩⎪⎨⎧<≥=−,0,0,0,e 2411)(241t t t p t故1523.0ee)e(e 2411}10050{241100241501005024110050241=−=−==≤≤−−−−∫x t dt T P .9. 若一次电话通话时间X (单位:min )服从参数为0.25的指数分布,试求一次通话的平均时间. 解:因X 服从参数为λ = 0.25的指数分布,故一次通话的平均时间41)(==λX E .10.某种设备的使用寿命X (以年计)服从指数分布,其平均寿命为4年.制造此种设备的厂家规定,若设备在使用一年之内损坏,则可以予以调换.如果设备制造厂每售出一台设备可盈利100元,而调换一台设备需花费300元.试求每台设备的平均利润.解:因X 服从指数分布,且41)(==λX E ,有X 的密度函数为⎪⎩⎪⎨⎧<≥=−,0,0,0,e 41)(4x x x p x设Y 表示“每台设备的利润”,当X ≤ 1时,Y = 100 − 300 = −200;当X > 1时,Y = 100.故平均利润∫∫∞+−−+−=>+≤−=14104e 41100e 41200}1{100}1{200)(dx dx X P X P Y E xx 6402.33200e 300e100)e 1(200)e (100)e (2004141411414=−=+−−=−+−−=−−−+∞−−x x.11.设顾客在某银行的窗口等待服务的时间X (以min 计)服从指数分布,其密度函数为⎪⎩⎪⎨⎧>=−.,0,0,e 51)(5其他x x p x某顾客在窗口等待服务,若超过10min ,他就离开.他一个月要到银行5次,以Y 表示一个月内他未。

概率论与数理统计课外大作业2参考答案

概率论与数理统计课外大作业2参考答案

《概率论与数理统计》作业(参考答案)班级 学号 姓名 得分 注意:书写清楚、整洁;并有主要的解题过程.1. 设1021,,,X X X 是来自总体)3.0,0(2N 的样本,求统计量∑=10129100i iX的分布(需说明理由).解:因)1,0(~3.0/N X i ,)1(~)3.0(22χi X ,由可加性)10(~910010122=∑χi iX2. 设总体),3(~2σN X ,有n=9的样本,样本方差42=s ,求统计量2/)93(-X 的分布(需说明理由).)8(~293t X - 3. 设总体)9,(~,)4,(~μμN Y N X ,有16,1121==n n 的两个独立样本,求统计量222149S S 的分布(需说明理由). )1510~492221,F (S S 4. 4. 设总体X 的概率密度函数为⎩⎨⎧<<+=其他,010,)1(),;(x x x f θθθ,),,,(21n X X X 是来自该总体的一个样本,),,,(21n x x x 是相应的样本值,求(1)未知参数θ的矩估计量;(2)最大似然估计量.((1)XX --=∧112θ;(2) 1ln 1--=∑=∧ni iXnθ班级 学号 姓名 得分 注意:书写清楚、整洁;并有主要的解题过程.5. 设),,(321X X X 是来自总体X 的样本,(1)证明:3211213161X X X ++=μ;3212525251X X X ++=μ;3213313131X X X ++=μ 是总体均值μ的无偏估计量;(2)说明哪一个估计较有效?(需说明理由)提示:(1)求)(1μE =++=)213161(321X X X E μ=++)(21)(31)(61321X E X E X E 同理求另外两个……………………….. (2)求)(1μD =++=)213161(321X X X D )(187)(41)(91)(361321X D X D X D X D =++同理求另外两个的方差,比较大小,小的较有效6. 设有一批胡椒粉,每袋净重X (单位:g )服从正态分布,从中任取9袋,计算得样本均值21.12=x ,样本方差09.02=s ,求总体均值μ的置信度为0.95的置信区间.(306.2)8(025.0=t ,2622.2)9(025.0=t ) 参考答案()44.12,98.11())1(2/=-±n t ns x α7. 设高速公路上汽车的速度服从正态分布,现对汽车的速度独立地做了6次测试,求得这6次测试的方差22)/(08.0s m s =,求汽车速度的方差2σ的置信度为0.9的置信区间. (488.9)5(205.0=χ,145.1)5(295.0=χ)参考答案()3493.0,0422.0())1()1(,)1()1(22/1222/2≈-----n s n n s n ααχχ班级 学号 姓名 得分 注意:书写清楚、整洁;并有主要的解题过程.8. 甲、乙两位化验员各自独立地用相同的方法对某种聚合物的含氯量各作了10次测量,分别求得测定值的样本方差为6065.0,5419.02221==s s ,设测定值总体服从正态分布),(,),(222211σμσμN N ,试求方差比2221σσ的置信度为0.95的置信区间.(03.4)9,9(025.0=F )参考答案()6007.3,2217.0())1,1(,)1(1122/222112/2221≈---n n F s s n F s s αα9. 某糖厂用自动打包机打包,每包标准重量为50公斤,每天开工后需检验一次打包机是否正常工作,某日开工后,测得9包重量,计算得样本均值82.49=x ,样本方差44.12=s ,假设每包的重量服从正态分布.在显著性水平为05.0=α下,打包机工作是否正常?(即检验假设:50:,50:10≠=μμH H ,306.2)8(025.0=t ,2622.2)9(025.0=t )解:由题意,需检验假设:50:,50:10≠=μμH H ;9=n拒绝域为:)1(/2/0->-n t ns x αμ;计算:)8(306.245.03/2.15082.49/025.00t ns x t =<=-=-=μ,不在拒绝域内,即可以认为打包机工作是正常的。

奥鹏地大《概率论与数理统计》在线作业二标准答案

奥鹏地大《概率论与数理统计》在线作业二标准答案
的时间小于3分钟的概率是( )
【选项】:
A 0.4
B 0.6
C 0.1
D 0.5
【答案】:B
15.环境保护条例规定,在排放的工业废水中,某有害物质含量不得超过0.5‰现取5份水样,测定该有害物质含量,得如下数据:0.53‰,0.542‰,0.510‰,0.495‰,0.515‰则抽样检验结果( )认为说明含量超过了规定。
D d
【答案】:B
18.炮弹爆炸时产生大、中、小三块弹片。大、中、小三块弹片打中某距离的装甲车的概率
分别等于0.1,0.2,0.4。当大、中、小三块弹片打中装甲车时其打穿装甲车的概率分别
为0.9,0.5,0.01。今有一装甲车被一块炮弹弹片打穿(在上述距离),则装甲车是被
大弹片打穿的概率是( )
【选项】:
中国地质大学(北京)
《概率论与数理统计》在线作业二
参考答案
地大《概率论与数理统计》在线作业二
1.从1到2000这2000个数字中任取一数,则该数能被6或8整除的概率为()。
【选项】:
A 333/2000
B 1/8
C 83/2000
D 1/4
【答案】:D
2.假设一个小孩是男是女是等可能的,若某家庭有三个孩子,在已知至少有一个女孩的条件下,求这个家庭中至少有一个男孩的概率为()。
A 0.761
B 0.647
C 0.845
D 0.464
【答案】:D
19.若随机变量X与Y不独立,则下面式子一定正确的是( )
【选项】:
A EXY=EX*EY
B D(X+Y)=DX+DY
C Cov(X,Y)=0
D E(X+Y)=EX+EY
【答案】:D

概率论与数理统计习题二答案

概率论与数理统计习题二答案

概率论与数理统计习题二答案概率论与数理统计习题二答案概率论与数理统计是一门重要的数学学科,广泛应用于各个领域。

习题是学习这门学科的重要方式之一,通过解答习题可以巩固理论知识,提高问题解决能力。

本文将针对概率论与数理统计习题二给出详细的答案解析。

1. 设事件A和事件B为两个相互独立的事件,且P(A) = 0.3,P(B) = 0.4。

求P(A并B)和P(A或B)。

解析:由于事件A和事件B是相互独立的,所以P(A并B) = P(A) * P(B) = 0.3 * 0.4 = 0.12。

而P(A或B) = P(A) + P(B) - P(A并B) = 0.3 + 0.4 - 0.12 = 0.58。

2. 一批产品中有10%的次品,从中随机抽取5个产品进行检验,求恰好有3个次品的概率。

解析:设事件A为恰好有3个次品,事件B为抽取的5个产品中有3个次品。

根据二项分布的概率公式,P(B) = C(5, 3) * (0.1)^3 * (0.9)^2 = 10 * 0.001 * 0.81 = 0.0081。

因此,恰好有3个次品的概率为0.0081。

3. 一批产品的质量服从正态分布,已知平均值为μ,标准差为σ。

从中随机抽取一个样本,样本容量为n。

求样本均值的期望值和方差。

解析:样本均值的期望值为总体均值μ,样本均值的方差为总体方差除以样本容量n。

因此,样本均值的期望值为μ,方差为σ^2/n。

4. 设X和Y是两个随机变量,它们的协方差为Cov(X, Y) = 5,方差分别为Var(X) = 9,Var(Y) = 16。

求随机变量Z = 2X + 3Y的方差。

解析:根据随机变量的性质,Var(Z) = Var(2X + 3Y) = 4Var(X) + 9Var(Y) +12Cov(X, Y) = 4 * 9 + 9 * 16 + 12 * 5 = 36 + 144 + 60 = 240。

5. 设X服从参数为λ的指数分布,即X ~ Exp(λ)。

概率论与数理统计大作业二

概率论与数理统计大作业二

班级:姓名:学号:分数:
《概率论与数理统计》大作业二(100分)
1、设二维随机变量(,)X Y 的联合概率密度为20112,(,)0,
y x y f x y ≤≤≤⎧=⎨⎩其他,求(1)(),(),()E X E Y E XY ;
(2)(),()D X D Y ;(3)判断,X Y 是否相关.(20分)
2、设随机变量(,)X Y 联合分布律为
讨论(1)Y X ,是否独立?
(2)Y X ,是否相关?(15分)3、设1210,,,X X X 是来自正态总体2
(0,0.3)X N 的一个简答随机样本。

求(1)(0)P X ≥;(2)求10
21( 1.44)i i P X =>∑.(已知20.1(10)16χ=)(10分)
班级:姓名:学号:
4、计算机在进行加法时,每个加数取整数(四舍五入),设所有取整误差是相互独立的,且它们都在[-0.5,0.5]上服从均匀分布。

(1)若将1500个数相加,问误差总和的绝对值超过15的概率是多少?(2)最少几个数相加在一起可使得误差总和的绝对值小于10的概率不超过90%?(15分)
5、设总体X 的概率密度函数1,0(),0,0x e x f x x θθ-⎧>⎪=⎨⎪≤⎩
12,,,n X X X 是取自总体X 的简单随机样本。

(1)求θ的矩估计量ˆθ
;(2)求θ的极大似然估计量ˆθ.(20分)6、设总体X 的概率分布为:其中θ是未知参数.
总X 有如下的样本值:3,1,3,1,3,1,2,3,求θ的矩估计值和极大似然估计值.(20
分)。

概率论及数理统计习题解答(第2章).doc

概率论及数理统计习题解答(第2章).doc

概率论及数理统计习题解答(第2章).doc习题⼆(A )三、解答题1.⼀颗骰⼦抛两次,以X 表⽰两次中所得的最⼩点数 (1) 试求X 的分布律; (2) 写出X 的分布函数.解: (1)分析:这⾥的概率均为古典概型下的概率,所有可能性结果共36种,如果X=1,则表明两次中⾄少有⼀点数为1,其余⼀个1⾄6点均可,共有1-612?C (这⾥12C 指任选某次点数为1,6为另⼀次有6种结果均可取,减1即减去两次均为1的情形,因为612?C 多算了⼀次)或1512+?C 种,故{}36113615361-611212=+?=?==C C X P ,其他结果类似可得.(2)≥<≤=+=+=+=+=<≤=+=+=+=<≤=+=+=<≤=+=<≤=<=6165}5{}4{}3{}2{}1{54 }4{}3{}2{}1{43 }3{}2{}1{32}2{}1{21}1{1 0 )(x x X P X P X P X P X P x X P X P X P X P x X P X P X P x X P X P x X P x x F ,,,,,,,≥<≤<≤<≤<≤<≤<=6 165363554 363243 36273236202136111 0 x x x x x x x ,,,,,,,2.某种抽奖活动规则是这样的:袋中放红⾊球及⽩⾊球各5只,抽奖者交纳⼀元钱后得到⼀次抽奖的机会,然后从袋中⼀次取出5只球,若5只球同⾊,则获奖100元,否则⽆奖,以X 表⽰某抽奖者在⼀次抽取中净赢钱数,求X 的分布律.解:注意,这⾥X 指的是赢钱数,X 取0-1或100-1,显然{}1261299510===C X P . 3.设随机变量X 的分布律为0;,2,1,0,! }{>===λλΛk k ak X P k为常数,试求常数a .解:因为1!==-∞=∑λλae k ak k,所以λ-=e a .4.设随机变量X 的分布律为(1) 求X 的分布函数;(2) 求}21{≤X P ,}2523{≤解:(1)≥<≤<≤-<=??≥<≤=+-=<≤--=<=3x 13 2432141-1x 03x 132}2{}1{21}1{-1x 0)(,,,,,,,,x x x X P X P x X P x f ,(2) {}41121=-==≤X p X P 、 {}2122523===≤<x p="" x="" ,="" {}{}{}{}{}{}4<="" bdsfid="126">。

概率论与数理统计综合测试2

概率论与数理统计综合测试2

中国地质大学(武汉)远程与继续教育学院概率论与数理统计课程综合测试2 学习层次:专升本 时间:90分钟一、单项选择题(每小题4分,共32分)1.从装有3个红球和2个白球的袋中任取两个球,记=A “取到两个白球”,则A =( )()A 取到两个红球 ()B 至少取到一个白球 ()C 没有取到白球 ()D 至少取到一个红球2.某人射击,中靶的概率是43,如果射击直到中靶为止,射击次数为3的概率是( ) ()A 343⎪⎭⎫ ⎝⎛ ()B 41432⎪⎭⎫ ⎝⎛ ()C 43412⎪⎭⎫ ⎝⎛ ()D 341⎪⎭⎫ ⎝⎛ 3.设事件B A ,互不相容,(),(),P A p P B q == 则()P AB =( )()(1) A p q - ()B pq ()C q ()D p4.设X 服从正态分布2(,)N μσ,则()P k X k μσμσ-≤≤+ =( )()A )1(2-Φk ()B 1)2(-Φk ()C )12(-Φk ()D 1)(2-Φk5.已知随机变量X 服从二项分布(,)B n p , 则()()E X D X += ( )()A np ()B p q + ()()C n p q + ()(2)D np p -6、现在有10张奖券,其中8张为2元,2张为5元,今某人从中随机地、无放回地抽取3张,则此人得奖金额的数学期望是( )()A 6 ()B 12 ()C 7.8 ()D 97.设随机变量X 的方差()E X 存在, (,Y aX b a b =+是常数),则( )()A ()()D X D Y = ()B ()()D Y aD X = ()C 2()()D Y a D X = ()D 2()()D Y a D X b =+8.若总体2~(,)X N μσ,其中2σ已知,当样本容量n 保持不变时,如果置信度1α-减小,则μ的置信区间 ( )()A 长度变大 ()B 长度变小 ()C 长度不变 ()D 长度不一定不二、填空题(每小题4分,共24分)9. 若事件A,B 互不相容,则P (A +B )= . 10.若事件,A B相互独立,()0.4,()0.5P A P B ==,则(),()P A B P A B=+=. 11.设X 是连续型随机变量,则对于任意实数a ,{}P X a == .12.设随机变量X 服从参数为λ的泊公分布,且已知[(1)(2)]1E X X --=,则λ= . 13.设12,,X X …60X 是来自总体X 的一个样本,则总体期望()E X 的无偏估计X = .14.对于相同置信度,参数估计的精确度越高,则相应置信区间长度就越 .三、计算题(每小题9分,共36分)15.10件产品中7件正品,3件次品,从中随机抽取2件,求(1)两件都是次品的概率(2)至少有一件是次品的概率.16.设随机变量X 的概率密度为⎩⎨⎧<<=其它,010,)(3x Cx x f , 试(1) 确定常数C 的值; (2)求1()2P X <. 17.设随机变量X 的概率密度为:⎪⎩⎪⎨⎧≤≤-<≤-+=其它 ,010 ,101 ,1)(x x x x x f ,求)(),(X D X E .18.随机变量),(Y X 的联合分布如表所示,试求: (1),X Y 的边缘分布;(2) X Y ⋅的概率分布;(3) ,X Y 是否相互独立?四、证明题(本题8分)19.若()0,()0A A P B >>,且(|)()P A B P A >,证明:(|)()P B A P B >.答案一、单项选择题(每小题4分,共32分)1.从装有3个红球和2个白球的袋中任取两个球,记=A “取到两个白球”,则A =( D )()A 取到两个红球; ()B 至少取到一个白球; ()C 没有取到白球; ()D 至少取到一个红球。

武汉地大 概率论与数理统计作业答案

武汉地大 概率论与数理统计作业答案

概率论与数理统计作业答案总分: 100分考试时间:分钟单选题1. 设一批零件的长度服从, 其中均未知,现从中随机抽取16个零件,测得样本均值,样本标准差,, 则的置信度为0.90的置信区间是 _______(4分)(A) :(B) :(C) :(D) :您的回答:C 正确2. 设总体~,其中已知,是的一个样本,则不是统计量的是 _______(4分)(A) :(B) :(C) :(D) :您的回答:C 正确3. 设…,是总体的一个样本,则有 _______(4分)(A) :(B) :(C) :(D) : 以上三种都不对您的回答:D 正确4. 设随机变量服从正态分布,对给定的,数满足,若,则等于 _______(4分)(A) :(B) :(C) :(D) :您的回答:C 正确5. 设…,是总体的样本,并且,令,则 _______(4分)(A) :(B) :(C) :(D) :您的回答:B 正确6. 设总体~,…, 是的一个样本,则 _______(4分)(A) : ~(B) :~(C) : ~(D) :~您的回答:B 正确7. 设是总体的一个样本,则的无偏估计是 _______(4分)(A) :(B) :(C) :(D) :您的回答:C 正确8. 设总体~,是的一个样本,则 _______(4分)(A) :(B) :(C) :(D) :您的回答:C 正确9. 为总体的未知参数,的估计量是,则 _______(4分)(A) : 是一个数,近似等于(B) : 是一个随机变量(C) :(D) :您的回答:B 正确10. 样本取自标准正态分布总体, 分别为样本均值及样本标准差, 则 _______(4分)(A) :(B) :(C) :(D) :您的回答:D 正确11. 设随机变量和都服从标准正态分布,则 _______(4分)(A) : 服从正态分布(B) : 服从分布(C) : 和都服从分布(D) : 服从分布您的回答:C 正确12. 若总体,其中已知,当置信度保持不变时,如果样本容量增大,则的置信区间 _______(4分)(A) : 长度变大(B) : 长度变小(C) : 长度不变(D) : 长度不一定不变您的回答:B 正确13. 一个容量为的样本(或称子样)是一个 _______(4分)(A) : 随机变量(B) : 维向量(C) : 维随机向量(D) : 答案B或C您的回答:D 正确填空题14. 在数理统计中,简单随机样本必须满足两条基本原则,即随机性与___(1)___ . (4分)(1). 参考答案: 独立性解题思路:简单随机样本的基本定义.15. 在参数估计中,区间估计与点估计的最大区别在于不仅给出了一个包含参数的区间而且还给出了参数落在该区间内的___(2)___ .(4分)(1). 参考答案: 概率解题思路:从两者的定义出发考虑.16. 评判一个点估计量优劣的标准通常用一致性、有效性与什么性来进行___(3)__ _ .(4分)(1). 参考答案: 无偏性解题思路:评判标准的三条定义.17. 重复独立试验所对应的抽样方法称为___(4)___ .(4分)(1). 参考答案: 简单随机抽样18. 在数理统计中,我们把研究的对象全体称之为___(5)___ .(4分)(1). 参考答案: 总体解题思路:数理统计的基本概念.19. 设为总体的一个样本,为一个连续函数,如果中___(6)___ ,则称为一个统计量.(4分)(1). 参考答案: 不包含任何未知参数20. 极大似然估计法是在___(7)___ 已知情况下的一种点估计方法.(4分)(1). 参考答案: 总体分布形式21. 在数理统计中,参数估计通常用点估计法和什么估计法___(8)___ (4分) (1). 参考答案: 区间估计解题思路:参数估计的基本方法内容22. 在区间估计中,样本容量、置信区间的宽度和置信水平之间有着密切的联系.当样本容量确定时,其置信区间的宽度会随着置信水平的增加而___(9)___ .(4分) (1). 参考答案: 增加解题思路:置信水平的增加,说明包含参数的概率增加,可信度加大了,则必然导致置信区间增加23. 在参数估计中,极大似然估计的原理是,如果在随机试验中事件A发生了,则参数在各个可能的取值中,应选择使A发生的概率___(10)___ 的那个值.(4分) (1). 参考答案: 最大解题思路:由极大似然估计的定义中寻找答案.判断题24. 样本与样本观察值是两个不同的概念。

中国地质大学(北京)网络教育学院课程考试

中国地质大学(北京)网络教育学院课程考试

中国地质大学(北京)网络教育学院课程考试《概率论与数理统计》模拟题一、单项选择题1、设随机事件A 与B 互不相容,且P (A )>P (B )>0,则(D )A . P(A)=1-P(B)B .P(AB)=P(A)P(B)C .P(A ∪B)=1D .1AB P )=(2、设A ,B 为随机事件,P (B )>0,P (A|B )=1,则必有(A )A . P(A ∪B)=P (A )B .B A ⊃C .P (A )=P (B )D .P (AB )=P (A )3、将两封信随机地投入四个邮筒中,则未向前面两个邮筒投信的概率为( A )A .2242 B .2412C C C .24A 2! D .4!2!4、设X ~B (n ,ϕ),则有_______D_____。

A .E (3X -1)=n ϕ-1;B .E (3X -1)=3n ϕ;C .D (3X -1)=9n ϕ(1-ϕ)-1; D .D (3X -1)=9n ϕ(1-ϕ)。

5则a =__D______。

A .1/6;B .1/2;C .1/4;D .1/3。

6、若X ~N (0, 1 ),ϕ(x) 是它的密度函数,Φ(x)是它的分布函数,则下面叙述不正确的是____A____。

A .Φ (-x)= -Φ (x);B .ϕ(x)关于纵轴对称 ;C .Φ (0)=0.5;D .ϕ(-x)=ϕ(x)。

7、设随机变量X 的数学期望E(X)=μ,方差D(X)=σ2,X 1 ,X 2 ,…X n 为其一个样本,样本平均值X =∑=n i i X n 11,样本方差S 2 =21)]([1X E X n n i i -∑=,修正样本方差S 2*=21)]([11X E X n ni i --∑=,下列叙述中不完全正确的是_D______。

A .X ,S2*分别是μ,σ2的估计;B . X ,S 2分别是μ,σ2的矩估计;C . X ,S2*分别是μ,σ2的无偏估计;D . X ,S 2分别是μ,σ2的无偏估计。

中国地质大学(北京)继续教育学院概率论与数理统计模拟题(开卷)

中国地质大学(北京)继续教育学院概率论与数理统计模拟题(开卷)

中国地质大学(北京)继续教育学院概率论与数理统计模拟题(开卷)《概率论与数理统计》模拟题一.单项选择题1. 掷一枚质地均匀的骰子,则在出现偶数点的条件下出现大于2点的概率为( ). A. 1/3 B. 2/3 C. 1/6 D. 3/62. 设,A B 为两随机事件,且A B ?,则下列式子正确的是( ). A. ()()P A B P B += B .()()()P AB P A P B ==C.()|()P B A P B = D. ()()()()()P B A P B P A P B P AB -=-=-3. 一批产品中有10%不合格品,而合格品中一等品占60%,从这批产品中任取一件,则该件产品是一等品的概率为 ( ) A. 0.20B. 0.30C. 0.38D. 0.544. 设随机变量X 的分布律为,,2,1,2}{P N k Nak x ===则常数a 等于 ( ) A. 1 B. 2 C. 3 D. 4 5. 设随机变量X 与Y 相互独立,它们的概率分布依次为则下列各式正确的是 ( ) A. 1{}4P X Y ==B. {}0P X Y ==C. 1{}2P X Y ==D. {}1P X Y ==6. A 、B 为两个事件,则)(B A P -= ( )A .)()(B P A P - B .)()(AB P A P -C .)()(B P A P -D .)(A B P -7. 设A 与B 相互独立,3.0)(=A P ,4.0)(=B P ,则=)(B A P( ) A .0.2B .0.4C .0.7D .0.88. 任意抛一个均匀的骰子两次,则这两次出现的点数之和为7的概率为() A .363 B .364 C .365 D .3669. 某一随机变量的分布函数为()4x xa be F x e +=+,则F (0)的值为()A. 0.2B. 0.5C. 0.25D. 都不对10. 设随机变量X 服从参数为3的指数分布,其分布函数记为)(xF ,则=)31(F ( ) A .e31B .3e C .11--e D .1311--e二.填空题1. A 、B 为两事件,6.0)(=B A P ,3.0)(=A P ,6.0)(=B P ,则=-)(A B P 。

地大《概率论与数理统计》在线作业二-0009.9B98A577-38F8-4978-9714-45567E826215(总4页)

地大《概率论与数理统计》在线作业二-0009.9B98A577-38F8-4978-9714-45567E826215(总4页)

地大《概率论与数理统计》在线作业二-0009A:A B:B C:C D:D 答案:B A:a B:b C:c D:d 答案:A A:A B:B C:C D:D 答案:A A:A B:B C:C D:D 答案:B A:A B:B C:C D:D 答案:B 一部10卷文集,将其按任意顺序排放在书架上,试求其恰好按先后顺序排放的概率()。

A:2/10! B:1/10! C:4/10! D:2/9! 答案:A 设试验E为的投掷一枚骰子,观察出现的点数。

试判别下列事件是随机事件的为( ) A:点数大于7 B:点数小于1 C:点数为9 D:点数为4 答案:D A:a B:b C:c D:d 答案:B 现考察某个学校一年级学生的数学成绩,现随机抽取一个班,男生21人,女生25人。

则样本容量为( ) A:2 B:21 C:25 D:46 答案:DA:A B:B C:C D:D 答案:C 如果随机变量X服从标准正态分布,则Y=-X服从() A:标准正态分布B:一般正态分布 C:二项分布 D:泊淞分布答案:A 设随机变量X和Y独立同分布,记U=X-Y,V=X+Y,则随机变量U与V必然()。

A:不独立 B:独立 C:相关系数不为零 D:相关系数为零答案:D 电话交换台有10条外线,若干台分机,在一段时间内,每台分机使用外线的概率为10%,则最多可装()台分机才能以90%的把握使外线畅通。

A:59 B:52 C:68 D:72 答案:C 设随机事件A与B相互独立,已知只有A发生的概率和只有B发生的概率都是1/4,则P(A)=() A:1/6B:1/5 C:1/3 D:1/2 答案:DA:A B:B C:C D:D 答案:A 设X,Y为两个随机变量,则下列等式中正确的是()。

A:E(X+Y)=E(X)+E(Y) B:D(X+Y)=D(X)+D(Y) C:E(XY)=E(X)E(Y) D:D(XY)=D(X)D(Y) 答案:A 设E为掷一颗骰子,以X表示出现的点数,则随机变量X的概率分布为() A:P{X=n}=1/6, (n=1,2,3,4,5,6) B:P{X=n}=n/6 (n=1,2,3,4,5,6) C:P{X=n}=(n-1)/6 (n=1,2,3,4,5.6) D:P{X=n}=1-n/6 (n=1,2,3,4,5,6) 答案:A。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地大《概率论与数理统计》在线作业二-0009
A:A B:B C:C D:D 答案:B A:a B:b C:c D:d 答案:A A:A B:B C:C D:D 答案:A A:A B:B
C:C D:D 答案:B A:A B:B C:C D:D 答案:B 一部10卷文集,将其按任意顺序排放在书架上,试求其恰好按先后
顺序排放的概率()。

A:2/10! B:1/10! C:4/10! D:2/9! 答案:A 设试验E为的
投掷一枚骰子,观察出现的点数。

试判别下列事件是随机事件的为( ) A:点数大于7 B:点数小于1 C:点数为9 D:点数为4 答案:D
A:a B:b C:c D:d 答案:B 现考察某个学校一年级学生的数学成绩,现随机抽取一个班,男生21人,女生
25人。

则样本容量为( ) A:2 B:21 C:25 D:46 答案:D
A:A B:B C:C D:D
答案:C 如果随机变量X服从标准正态分布,则Y=-X服从() A:标准正态分布 B:一般正态分布 C:二项分布 D:泊淞分布答案:A 设随机变量X和
Y独立同分布,记U=X-Y,V=X+Y,则随机变量U与V必然()。

A:不独立 B:独立 C:相关系数不为零 D:相关系数为零答案:D 电话交换台有10条外线,若干台分机,在一段时间内,每台分机使用外线的概率为10%,则最多可装()台分机才能以90%的把握使外线畅通。

A:59 B:52 C:68 D:72 答案:C 设随机事件A与B相互独立,已知只有A发生的概率和只有B发生的概
率都是1/4,则P(A)=() A:1/6 B:1/5 C:1/3 D:1/2 答案:D
A:A B:B C:C D:D 答案:A 设X,Y为两个随机变量,则下列等式中正确的是()。

A:E(X+Y)=E(X)+E(Y) B:D(X+Y)=D(X)+D(Y) C:E(XY)=E(X)E(Y)。

相关文档
最新文档