八年级上期中测试卷2015

合集下载

2015八上数学期中试卷

2015八上数学期中试卷

2015-2016学年八(上)数学期中考试卷一、选择题(每小题3分,满分30分)1.下面各组线段中,能组成三角形的是( )A .5,11,6B .8,8,16C .10,5,4D .6,9,142.如图,AB 与CD 交于点O ,OA=OC ,OD=OB ,∠A=50°,∠B=30°, 则∠D 的度数为( )A . 50°B . 30°C . 80°D . 100°3.下列图形是轴对称图形的有( ) A.2个 B.3个 C.4个 D.5个4.如图,已知点A 、D 、C 、F 在同一条直线上,AB=DE ,BC=EF ,要使△ABC ≌△DEF , 还需要添加一个条件是( )A .∠BCA=∠FB .∠B=∠EC .BC ∥EFD .∠A=∠EDF5、一个等腰三角形的两边长分别是3和7,则它的周长为( )A . 17B . 15C . 13D . 13或176、等腰三角形的一个角是50°,则它的底角是( ) A .50° B .50°或65° C .80° D .65°7.下列叙述正确的语句是( )A.等腰三角形两腰上的高相等B.等腰三角形的高、中线、角平分线互相重合C.顶角相等的两个等腰三角形全等D.两腰相等的两个等腰三角形全等8.点P (2,-3)关于y 轴对称的点的坐标是( )A 、(2,3)B 、(-2,-3)C 、(3,2)D 、(-3,-2)9.若一个多边形的内角和等于1080°,则这个多边形的边数是( )A .9B .8C .7D . 610.如图,AB 的垂直平分线DE 交于BC 的延长线于F ,若∠F=30°,DE=1,则EF 的长是( )A . 3B . 2C .D . 1 二、填空题(每小题4分,共24分)11.一个多边形的每一个外角都等于36°,则该多边形的内角和等于 . 12.如图,在△ABC 中,∠C=40°,CA=CB ,则△ABC 的外角∠ABD= °.13.如果一个三角形两边为2cm,7cm ,且第三边为奇数,则第三边长是 .14.如图,点D 、E 、F 、B 在同一直线上,AB ∥CD 、AE ∥CF ,且AE=CF ,若BD=10,BF=2, 则EF= .15、如图,在等腰△ABC 中,AB=AC ,∠A=36°,BD⊥AC 于点D ,则∠CBD= .16、如图,把一张矩形纸片ABCD 沿对角线BD 折叠,使C 点落在C ′,且BC ′与AD 交于E 点, 若∠ABE=40°,则∠ADB= .第2题第4题第10题第16题第15题 第14题 第12题三、解答题(每小题6分,共18分)17、如图,在△ABC 中,已知A D⊥BC,∠B=64°,DE 平分∠ADB ,求∠AED 的度数。

2015初二上学期期中考试数学试卷(有答案)

2015初二上学期期中考试数学试卷(有答案)

2015初二上学期期中考试数学试卷(有答案)2014-2015学年山东省济南市章丘市党家中学八年级(上)期中数学试卷一、选择题:(每题3分,共45分) 1.的相反数是()A. B. C.�D.� 2.9的算术平方根是() A.±3 B. 3 C. D. 3.在(�2)0、、0、�、、、0.101001…(相邻两个1之间0的个数逐次加1)中,无理数的个数是()A. 2 B. 3 C. 4 D. 5 4.下列计算正确的是() A. B.÷ = C. =6 D. 5.估计58的立方根的大小在() A. 2与3之间 B. 3与4之间 C. 4与5之间 D. 5与6之间 6.如图,以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A处,则点A表示的数是() A. B. 1.4C. D. 7.三角形各边长度如下,其中不是直角三角形的是()A. 3,4,5 B. 6,8,10 C. 5,11,12 D. 8,15,17 8.一个长方形在平面直角坐标系中三个顶点的坐标为(�1,�1),(�1,2),(3,�1),则第四个顶点的坐标为() A.(2,2) B.(3,2) C.(3,3) D.(2,3) 9.若一次函数y=kx�4的图象经过点(�2,4),则k等于() A.�4 B. 4 C.�2 D. 2 10.直角三角形两边长分别是3、4,第三边是() A. 5 B. C. 5或 D.无法确定 11.下列各点中,在函数y=�2x+5的图象上的是() A.(0,�5) B.(2,9) C.(�2,�9) D.(4,�3) 12.一次函数y=kx+6,y随x的增大而减小,则这个一次函数的图象不经过() A.第一象限 B.第二象限 C.第三象限 D.第四象限 13.△ABC中,AB=13cm,AC=15cm,高AD=12,则BC的长为() A. 14 B. 4 C. 14或4 D.以上都不对 14.直线y=kx+b经过一、三、四象限,则直线y=bx�k的图象只能是图中的() A. B. C. D. 15.如图,已知点A(�1,0)和点B(1,2),在坐标轴上确定点P,使得△ABP为直角三角形,则满足这样条件的点P共有() A. 2个 B. 4个 C. 6个 D. 7个二.填空题(每小题3分,共18分) 16.在△ABC中,∠C=90°,AB=5,则AB2+AC2+BC2= . 17. = . 18.若点P(x,y)的坐标满足xy>0,则点P(x,y)在第象限. 19.已知y=(m�3) +m+1是一次函数,则m= . 20.若点P(�2,y)与Q(x,3)关于y轴对称,则x= ,y= . 21.函数y=(m�2)x中,已知x1>x2时,y1<y2,则m的范围是.三、解答题(共7个小题,共57分) 22.计算题:(1)(�)× ;(2)�4. 23.在△ABC中,已知∠B=90°,∠A,∠B,∠C的对边分别是a,b,c,且a=6,b=8.(1)求c的长.(2)求斜边上的高. 24.已知一次函数y=(m�4)x+3�m,当m为何值时,(1)y随x值增大而减小;(2)直线过原点;(3)直线与直线y=�2x平行;(4)直线与x轴交于点(2,0)(5)直线与y轴交于点(0,�1) 25.如图,四边形AOCB是直角梯形,AB∥OC,OA=10,AB=9,∠OCB=45°,求点A,B,C的坐标及直角梯形AOCB的面积. 26.作出函数y= x�4的图象,并回答下面的问题:(1)求它的图象与x轴、y轴的交点.(2)求图象与坐标轴围成的三角形的面积. 27.如图,小将同学将一个直角三角形的纸片折叠,A与B重合,折痕为DE,若已知AC=10cm,BC=6cm,你能求出CE的长吗? 28.直线y=kx+2与两坐标轴所围成的三角形面积为4,求直线解析式.若k>0时直线与x轴交点为A与y轴交点为B解答下列问题:(1)在x轴上是否存在一点P,使S△PAB=3?若存在,请求出P点坐标,若不存在,请说明理由.(2)求直线AB上是否存在一点E,使点E到x轴的距离等于1.5,若存在求出点E的坐标,若不存在,请说明理由.(3)在x轴上是否存在一点G,使S△BOG= S△AOB?若存在,请求出G点坐标,若不存在,请说明理由.2014-2015学年山东省济南市章丘市党家中学八年级(上)期中数学试卷参考答案与试题解析一、选择题:(每题3分,共45分)1.的相反数是() A. B. C.� D.�考点:实数的性质.分析:由于互为相反数的两个数和为0,由此即可求解.解答:解:的相反数为:�.故选:C.点评:此题主要考查了求无理数的相反数,无理数的相反数和有理数的相反数的意义相同,无理数的相反数是各地中考的重点. 2.9的算术平方根是() A.±3 B. 3 C. D.考点:算术平方根.分析:根据开方运算,可得算术平方根.解答:解:9的算术平方根是3,故选:B.点评:本题考查了算术平方根,注意一个正数只有一个算术平方根. 3.在(�2)0、、0、�、、、0.101001…(相邻两个1之间0的个数逐次加1)中,无理数的个数是() A. 2 B. 3 C. 4 D. 5考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:无理数有:,,0.101001…(相邻两个1之间0的个数逐次加1)共3个.故选B.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数. 4.下列计算正确的是() A. B.÷ = C. =6 D.考点:实数的运算.专题:计算题.分析:根据同类二次根式的定义对A进行判断;根据二次根式的除法对B进行判断;根据积的乘方对C进行判断;计算根号内的平方和即可对D进行判断.解答:解:A、和不是同类二次根式,不能合并,所以A选项错误; B、÷ = = ,所以B选项正确; C、(2 )2=4×3=12,所以C选项错误; D、= ,所以D选项错误.故选B.点评:本题考查了实数的运算:先进行乘方或开方运算,再进行乘除运算,然后进行加减运算. 5.估计58的立方根的大小在() A. 2与3之间B. 3与4之间 C. 4与5之间 D. 5与6之间考点:估算无理数的大小.分析:应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围即可求解.解答:解:∵33=27,43=64,∴3<<4.故选B.点评:此题主要考查了估算无理数的能力,现实生活中经常需要估算,“夹逼法”是估算的一般方法,也是常用方法. 6.如图,以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A处,则点A表示的数是() A. B. 1.4 C. D.考点:实数与数轴;勾股定理.分析:先根据勾股定理求出正方形的对角线长,再根据两点间的距离公式即可求出A点的坐标.解答:解:数轴上正方形的对角线长为: = ,由图中可知0 和A之间的距离为.∴点A表示的数是.故选D.点评:本题考查的是勾股定理及两点间的距离公式,解答此题时要注意,确定点A的符号后,点A所表示的数是距离原点的距离. 7.三角形各边长度如下,其中不是直角三角形的是() A. 3,4,5 B. 6,8,10 C. 5,11,12 D. 8,15,17考点:勾股定理的逆定理.专题:应用题.分析:分别把选项中的三边平方后,根据勾股定理逆定理即可判断能否构成直角三角形.解答:解:A、∵32+42=52,∴5,4,3能构成直角三角形; B、∵62+82=102,∴6,8,10能构成直角三角形; C、∵52+112≠122,∴5,11,12不能构成直角三角形; D、∵82+52=172,∴8,15,17能构成直角三角形.故选C.点评:主要考查了利用勾股定理逆定理判定直角三角形的方法.在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断. 8.一个长方形在平面直角坐标系中三个顶点的坐标为(�1,�1),(�1,2),(3,�1),则第四个顶点的坐标为() A.(2,2) B.(3,2) C.(3,3) D.(2,3)考点:坐标与图形性质;矩形的性质.分析:本题可在画出图后,根据矩形的性质,得知第四个顶点的横坐标应为3,纵坐标应为2.解答:解:如图可知第四个顶点为:即:(3,2).故选:B.点评:本题考查学生的动手能力,画出图后可很快得到答案. 9.若一次函数y=kx�4的图象经过点(�2,4),则k等于() A.�4 B. 4 C.�2 D. 2考点:待定系数法求一次函数解析式.专题:计算题.分析:将点(�2,4)代入函数解析式可得出关于k的方程,解出即可得出k 的值.解答:解:将点(�2,4)代入得:4=�2k�4,解得:k=�4.故选A.点评:本题考查待定系数求函数的解析式,属于基础性,注意在代入点的坐标时要细心求解. 10.直角三角形两边长分别是3、4,第三边是() A. 5 B. C. 5或 D.无法确定考点:勾股定理.分析:此题要考虑两种情况:当第三边是斜边时;当第三边是直角边时.解答:解:当第三边是斜边时,则第三边= =5;当第三边是直角边时,则第三边= = .故选C.点评:熟练运用勾股定理,注意此题的两种情况. 11.下列各点中,在函数y=�2x+5的图象上的是() A.(0,�5) B.(2,9)C.(�2,�9) D.(4,�3)考点:一次函数图象上点的坐标特征.分析:把选项中的各点代入解析式,通过等式左右两边是否相等来判断点是否在函数图象上.解答:解:∵一次函数y=�2x+5图象上的点都在函数图象上,∴函数图象上的点都满足函数的解析式y=�2x+5; A、当x=0时,y=5≠�5,即点(0,�5)不在该函数图象上;故本选项错误; B、当x=2时,y=1≠9,即点(2,9)不在该函数图象上;故本选项错误;C、当x=�2时,y=9≠�9,即点(�2,�9)不在该函数图象上;故本选项错误;D、当x=4时,y=�3,即点(4,�3)在该函数图象上;故本选项正确;故选D.点评:本题考查了一次函数图象上点的坐标特征.用到的知识点是:在这条直线上的各点的坐标一定适合这条直线的解析式. 12.一次函数y=kx+6,y随x的增大而减小,则这个一次函数的图象不经过() A.第一象限 B.第二象限 C.第三象限 D.第四象限考点:一次函数图象与系数的关系.分析:先根据一次函数的性质判断出k的取值范围,再根据一次函数的图象与系数的关系即可得出结论.解答:解:∵一次函数y=kx+6,y随x的增大而减小,∴k <0,∵b=6>0,∴此函数的图象经过一、二、四象限,不经过第三象限.故选C.点评:本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,k<0,b>0时函数的图象在一、二、四象限是解答此题的关键. 13.△ABC中,AB=13cm,AC=15cm,高AD=12,则BC的长为() A. 14 B. 4 C. 14或4 D.以上都不对考点:勾股定理.专题:分类讨论.分析:分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD�BD.解答:解:(1)如图,锐角△ABC中,AB=13,AC=15,BC边上高AD=12,在Rt△ABD中AB=13,AD=12,由勾股定理得BD2=AB2�AD2=132�122=25,则BD=5,在Rt△ABD中AC=15,AD=12,由勾股定理得 CD2=AC2�AD2=152�122=81,则CD=9,故BC=BD+DC=9+5=14;(2)钝角△ABC中,AB=13,AC=15,BC边上高AD=12,在Rt△ABD中AB=13,AD=12,由勾股定理得BD2=AB2�AD2=132�122=25,则BD=5,在Rt△ACD中AC=15,AD=12,由勾股定理得 CD2=AC2�AD2=152�122=81,则CD=9,故BC的长为DC�BD=9�5=4.故选:C.点评:本题考查了勾股定理,把三角形边的问题转化到直角三角形中用勾股定理解答. 14.直线y=kx+b经过一、三、四象限,则直线y=bx�k的图象只能是图中的() A. B. C. D.考点:一次函数的图象.分析:根据直线y=kx+b经过第一、三、四象限可以确定k、b的符号,则易求�b的符号,由�b,k的符号来求直线y=bx�k所经过的象限.解答:解:∵直线y=kx+b经过第一、三、四象限,∴k>0,b<0,∴�k<0,∴直线y=bx�k 经过第二、三、四象限.故选C.点评:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交. 15.如图,已知点A(�1,0)和点B(1,2),在坐标轴上确定点P,使得△ABP为直角三角形,则满足这样条件的点P共有() A. 2个 B. 4个 C. 6个 D. 7个考点:直角三角形的性质;坐标与图形性质.专题:压轴题.分析:当∠PBA=90°时,即点P的位置有2个;当∠BPA=90°时,点P的位置有3个;当∠BAP=90°时,在y轴上共有1个交点.解答:解:①以A为直角顶点,可过A作直线垂直于AB,与坐标轴交于一点,这一点符合点P的要求;②以B为直角顶点,可过B作直线垂直于AB,与坐标轴交于两点,这两点也符合P点的要求;③以P为直角顶点,可以AB为直径画圆,与坐标轴共有3个交点.所以满足条件的点P共有6个.故选C.点评:主要考查了坐标与图形的性质和直角三角形的判定.要把所有的情况都考虑进去,不要漏掉某种情况.二.填空题(每小题3分,共18分) 16.在△ABC中,∠C=90°,AB=5,则AB2+AC 2+BC2= 50 .考点:勾股定理.分析:根据勾股定理可得AB2=AC2+BC2,然后代入数据计算即可得解.解答:解:∵∠C=90°,∴AB2=AC2+BC2,∴AB2+AC2+BC2=2AB2=2×52=2×25=50.故答案为:50.点评:本题考查了勾股定理,是基础题,熟记定理是解题的关键. 17. = 4 .考点:算术平方根.分析:根据二次根式的性质,可得答案.解答:解:原式= =4,故答案为:4.点评:本题好查了算术平方根, =a (a≥0)是解题关键. 18.若点P(x,y)的坐标满足xy>0,则点P(x,y)在第一、三象限.考点:点的坐标.专题:计算题.分析:根据xy>0,可判断xy的符号,即可确定点P所在的象限.解答:解:∵xy>0,∴xy 为同号即为同正或同负,∴点P(x,y)在第一或第三象限.故答案为:一、三.点评:本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(�,+);第三象限(�,�);第四象限(+,�). 19.已知y=(m�3) +m+1是一次函数,则m= �3 .考点:一次函数的定义.分析:根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,可得答案.解答:解;由y=(m�3) +m+1是一次函数,得,解得m=�3,m=3(不符合题意的要舍去).故答案为:�3.点评:本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1. 20.若点P(�2,y)与Q(x,3)关于y轴对称,则x= 2 ,y= 3 .考点:关于x轴、y轴对称的点的坐标.分析:让纵坐标相等,横坐标互为相反数列式求值即可.解答:解:∵P(�2,y)与Q(x,3)关于y轴对称,∴�2+x=0,y=3,解得x=2,y=3.点评:用到的知识点为:两点关于y轴对称,纵坐标相等,横坐标互为相反数. 21.函数y=(m�2)x中,已知x1>x2时,y1<y2,则m 的范围是m<2 .考点:一次函数图象上点的坐标特征.专题:计算题.分析:根据一次函数的性质得到m�2<0,然后解不等式即可.解答:解:∵x1>x2时,y1<y2,∴m�2<0,∴m<2.故答案为m<2.点评:本题考查了一次函数图象上点的坐标特征:一次函数图象上的点满足其解析式.也考查了一次函数的性质.三、解答题(共7个小题,共57分) 22.计算题:(1)(�)× ;(2)�4.考点:二次根式的混合运算.分析:(1)利用二次根式的乘法法则即可求解;(2)首先把二次根式化简,然后计算二次根式的除法,求解即可.解答:解:(1)原式= �=9�12 =�3;(2)原式= �4 = �4 = .点评:本题考查的是二次根式的混合运算,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算. 23.在△ABC中,已知∠B=90°,∠A,∠B,∠C的对边分别是a,b,c,且a=6,b=8.(1)求c的长.(2)求斜边上的高.考点:勾股定理.分析:(1)直接根据勾股定理即可得出结论;(2)设斜边上的高为h,再根据三角形的面积公式即可得出结论.解答:解:(1)∵在△ABC中,已知∠B=90°,∠A,∠B,∠C的对边分别是a,b,c,且a=6,b=8,∴c= =2 ;(2)设斜边上的高为h,则8h=6×2 ,解得h= .点评:本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键. 24.已知一次函数y=(m�4)x+3�m,当m为何值时,(1)y随x值增大而减小;(2)直线过原点;(3)直线与直线y=�2x平行;(4)直线与x 轴交于点(2,0)(5)直线与y轴交于点(0,�1)考点:一次函数图象与系数的关系;两条直线相交或平行问题.分析:(1)根据一次函数的性质得出m�4<0,解不等式即可;(2)把原点的坐标(0,0)代入y=(m�4)x+3�m,得到关于m的方程,解方程即可;(3)根据两条直线平行的条件得出m�4=�2,3�m≠0,求出即可;(4)把点(2,0)代入y=(m�4)x+3�m,得到关于m 的方程,解方程即可;(5)把点(0,�1)代入y=(m�4)x+3�m,得到关于m的方程,解方程即可.解答:解:(1)由题意,得m�4<0,解得m<4;(2)把原点的坐标(0,0)代入y=(m�4)x+3�m,得3�m=0,解得m=3;(3)由题意,得m�4=�2,3�m≠0,解得m=2;(4)把点(2,0)代入y=(m�4)x+3�m,得2(m�4)+3�m=0,解得m=5;(5)把点(0,�1)代入y=(m�4)x+3�m,得3�m=�1,解得m=4.点评:本题考查了一次函数的性质,一次函数图象上点的坐标特征,两条直线平行的条件,是基础知识,需熟练掌握. 25.如图,四边形AOCB是直角梯形,AB∥OC,OA=10,AB=9,∠OCB=45°,求点A,B,C的坐标及直角梯形AOCB的面积.考点:直角梯形.分析:根据题意首先求出CO的长,进而得出A,B,C的坐标,进而求出梯形面积.解答:解:过点B作BD⊥CO于点D,∵∠OCB=45°,AB∥OC,OA=10,AB=9,∴BD=CD=10,OD=9,∴CO=OD+DC=9+10=19,故A点坐标为:(0,10), B点坐标为:(9,10), C点坐标为:(19,0),直角梯形AOCB的面积为:(AB+OC)×OA= ×(9+19)×10=140.点评:此题主要考查了直角梯形的性质以及等腰直角三角形的性质,得出CO的长是解题关键. 26.作出函数y= x�4的图象,并回答下面的问题:(1)求它的图象与x 轴、y轴的交点.(2)求图象与坐标轴围成的三角形的面积.考点:一次函数的图象;一次函数图象上点的坐标特征.分析:(1)分别把x=0和y=0代入函数的解析式,即可求出答案;(2)求出OA和OB,根据三角形的面积公式求出即可.解答:解:(1)如图所示:把x=0代入y= x�4得:y=�4,把y=0代入y= x�4得:0= x�4,解得:x=3,所以与x轴的交点为(3,0),与y轴的交点为(0,�4);( 2)∵OA=3,OB=4,∴S△AOB= ×OA×OB= ×3×4=6,即图象与坐标轴围成的三角形的面积是6.点评:本题考查了一次函数的图象和性质的应用,解此题的关键是求出函数的图象和两坐标轴的交点坐标. 27.如图,小将同学将一个直角三角形的纸片折叠,A与B重合,折痕为DE,若已知AC=10cm,BC=6cm,你能求出CE的长吗?考点:翻折变换(折叠问题).分析:连接BE,设CE=x,由折叠可知,AE=BE=10�x,把问题转化到Rt△BCE中,使用勾股定理.解答:解:连接BE,设CE=x ∵将直角三角形的纸片折叠,A与B重合,折痕为DE ∴DE是AB的垂直平分线∴AE=BE=10�x 在Rt△BCE 中 BE2=CE2+BC2 即(10�x)2=x2+62 解之得x= ,即CE= cm.点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后对应线段相等. 28.直线y=kx+2与两坐标轴所围成的三角形面积为4,求直线解析式.若k>0时直线与x轴交点为A与y轴交点为B解答下列问题:(1)在x轴上是否存在一点P,使S△PAB=3?若存在,请求出P点坐标,若不存在,请说明理由.(2)求直线AB上是否存在一点E,使点E到x轴的距离等于1.5,若存在求出点E的坐标,若不存在,请说明理由.(3)在x轴上是否存在一点G,使S△BOG= S△AO B?若存在,请求出G点坐标,若不存在,请说明理由.考点:一次函数综合题.专题:综合题.分析:当k>0时,设直线与x轴交点为A,与y轴交点为B,如图1,则有OB=2,然后由S△AOB=4可得OA,从而可得点A的坐标,代入y=kx+2就可求出该直线的解析式;当k<0时,设直线与x轴交点为C,与y轴交点为B,如图2,则有OB=2,然后由S△COB=4可得OC,从而可得点C的坐标,代入y=kx+2就可求出该直线的解析式.(1)由条件可求出AP的长,就可得到点P的坐标;(2)由条件可得到点E的纵坐标,代入y=kx+2,就可得到点E的横坐标,从而解决问题;(3)由条件可求出OG的长,从而可得到点G的坐标.解答:解:当k>0时,设直线与x 轴交点为A,与y轴交点为B,如图1,则点B的坐标为(0,2),OB=2,S△AOB= OA•OB=4,解得:OA=4,∴点A的坐标为(�4,0),∴�4k+2=0,解得:k= ,∴直线的解析式为y= x+2.当k<0时,设直线与x轴交点为C,与y轴交点为B,如图2,则点B的坐标为实用精品文献资料分享(0,2),OB=2,S△COB= OC•OB=4,解得:OC=4,∴点C的坐标为(4,0),∴4k+2=0,解得:k=�,∴直线的解析式为y=�x+2.综上所述:所求直线解析式为y= x+2或y=� x+2.(1)若在x轴上存在一点P,使S△PAB=3,则S△PAB= AP•OB= AP×2=AP=3,∵点A的坐标为(�4,0),∴点P的坐标为(�1,0)或(�7,0).(2)若直线AB上存在一点E,使点E到x轴的距离等于1.5,则|yE|=1.5,∴yE=±1.5.当yE=1.5时, xE+2=1.5,解得:xE=�1,此时点E的坐标为(�1,1.5).当yE=�1.5时, xE+2=�1.5,解得:xE=�7,此时点E的坐标为(�7,�1.5).综上所述:点E 的坐标为(�1,1.5)或(�7,�1.5).(3)若在x轴上存在一点G,使S△BOG= S△AOB,则有OG×2= ×4,解得:OG=2,∴点G的坐标为(�2,0)或(2,0).点评:本题主要考查了直线上点的坐标特征、用待定系数法求直线的解析式、线段长度与坐标之间的关系、三角形的面积等知识,需要注意的是:线段的长度确定,所对应的点的坐标可能并不唯一,要考虑全面.。

2015-2016学年八年级上学期期中考试数学试卷

2015-2016学年八年级上学期期中考试数学试卷

2015.11
7 D 8 C
三.解答题(共 56 分) 1 3 19. (共 8 分) (1)原式=4+ + ……(3 分) 2 2 =6 ……(4 分) (2)原式=3+ 2-1-1……(3 分) = 2+1……………(4 分) 27 (2) (x+1)3= ……………(1 分) 64 3 x+1= …………………(2 分) 4 1 x=- ………………(4 分) 4
B.
C.
D.
5.等腰三角形的两边长分别为 3cm 和 7cm,则周长为………………………………………… B.17 cm C.13 cm 或 17 cm D.11 cm 或 17 cm
6. 如图, 已知 AB=AD, 那么添加下列一个条件后, 仍无法判定△ABC ≌ △ADC 的是……… ) B.∠BAC=∠DAC A
C
A.CB=CD
D
C.∠BCA=∠DCA
பைடு நூலகம்
D.∠B=∠D=
F B C
G E H D
(第 8 题)
(第 7 题)
7.如图,已知△ABC 与△CDE 都是等边三角形,点 B、C、D 在同一条直线上,AD 与 BE 相交于点 G, BE 与 AC 相交于点 F, AD 与 CE 相交于点 H, 则下列结论①△ACD≌△BCE ② ∠AGB=60° ③BF=AH ④△CFH 是等边三角形 ⑤连 CG,则∠BGC=∠DGC.其中正 确的个数是…( A.2 上; △A1B1A2、 △A2B2A3、 △A3B3A4…均为等边三角形. 若 OA1=1, 则△A2015B2015A2016 的边长为… ) B.3 C.4 D.5
2.平方根等于它本身的数是………………………………………………………………………

2015年八年级上学期数学期中考试题目

2015年八年级上学期数学期中考试题目

班级: ____ 年级 班 姓名 考号 ___◆◆◆◆◆◆◆◆◆◆◆◆ ◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆ ◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆ ◆◆◆◆◆◆◆◆◆◆◆八年级数学上学期期中试题一、选择题(每小题4分,共48分)1.如图所示,图中不是轴对称图形的是( )A B C D 2.下列图形具有稳定性的是( )A. 正方形B. 长方形C. 直角三角形D. 平行四边形 3.以下列各组线段为边,能组成三角形的是( )A. 2 cm ,3 cm ,5 cmB. 3 cm ,3 cm ,6 cmC. 5 cm ,8 cm ,2 cmD. 4 cm ,5 cm ,6 cm 4.已知等腰三角形的两边长分别为3和6,则它的周长等于( ) A. 12 B. 12或15 C. 15 D. 15或18 5、多边形每一个外角为300 ,则这多边形的边数是( )(A )5 (B )6 (C ) 10 (D ) 126.如图,为估计池塘岸边A 、B 两点的距离,小方在池塘的一侧选取一点O ,测得15=OA 米,10=OB 米,A 、B 间的距离不可能是 ( )米 A . 20 B .10 C . 15 D . 57.如图,将三角尺的直角顶点放在直尺的一边上,130250∠=∠=°,°,则3∠的度数等于( )A .50° B .30° C .20° D .15°8.如图,△ABC 中,AB=AC ,∠A=36°,AB 的垂直平分线DE 交AC 于D ,交AB 于E ,则∠BDC 的度数为( )A.72°B.36°C.60°D.82°9.已知等腰三角形一腰上的高线与另一腰的夹角为50°,那么这个等腰三角形的顶角等于( ) A.15°或75° B.140° C. 40° D. 140°或40° 10.点M (—1,2)关于y 轴对称的点的坐标为( )A.(-1,-2)B.(1,2)C.(1,-2)D.(2,-1)11.如图9所示,在△ABC 中,已知点D ,E ,F 分别是BC ,AD ,CE 的中点.且ABC S △=4平方厘米,则BEF S △的值为 ( )1 23图1010 C A D BE 图9 图4NMDC BA A 、2平方厘米B 、1平方厘米C 、12平方厘米 D 、14平方厘米12.如图10所示,△ABC 中,∠C =90°,点D 在AB 上,BC=BD ,DE ⊥AB 交AC 于点E .△ABC 的周长为12,△ADE 的周长为6.则BC 的长为( ) A 、3 B 、4 C 、5 D 、6 二、填空题(每题4分,共24分)13.小明上午在理发店理发时,从镜子内看到背后墙上普通时钟的时针与分针的位置如图所示,此时时间是_____.14. 已知:AD 平分∠BAC ,AC=AB+BD ,∠B=56°求证:∠C= 15.如图,直线l ∥m ,将含有45°角的三角形板ABC 的直角顶点C 放在直线m 上,若∠1=25°,则∠2的度数为__________.16.△ABC 中,∠A=1000,BI 、CI 分别平分∠ABC ,∠ACB ,则∠BIC= 若BN 、CN 分别平分∠ABC ,∠ACB 的外角平分线,则∠N=17.如图4, 已知AB =AC , ∠A =40°, AB 的垂直平分线MN 交AC 于点D ,则∠DBC = _______度.18. 如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长为 .三、解答题(共78分)18.(6分)如图,点E 、F 在BC 上,BE=FC ,AB=DC ,∠B=∠C .求证:∠A=∠D .CD BA P2P 1N MO PBA(第15题图)19.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(用直尺画图)(7分)(1)画出格点△ABC (顶点均在格点上)关于直线DE 对称的△A 1B 1C 1;(2)在DE 上画出点P ,使PC PB +1最小;(3)在DE 上画出点Q ,使QC QA +最小。

2015学年第一学期八年级英语期中考试测验卷

2015学年第一学期八年级英语期中考试测验卷

2015学年第一学期八年级英语期中测验卷(满分100分)一、听力部分20分(孟)二、语法知识及运用(共一节;满分15分)(张)第一节单项选择(共10小题;每小题1分,满分10分)( ) 1. This computer is_______ than that one.A. expensiveB. more expensiveC. much expensiveD. most expensive ( ) 2. Mary depended _______ her grandparents after her parents died in the accident.A. onB. inC. byD. with( ) 3. Lucy’s mother_______ a teacher in a big school. She is kind to all her students.A. works outB. works asC. works inD. works on( ) 4. Sam is an excellent engineer. ________, he is a good footballer.A. In troubleB. In timeC. In additionD. In future( ) 5. We use the mouse for________ the computer.A. controlB. controlsC. controlledD. controlling( )6.Your room is as ______ as your brother’s, but much cleaner and brighter.A. bigB. biggerC. biggestD. the biggest( )7. Everyone became very _______ when arriving at the top of the hill.A. exciteB. excitingC. excitedD. excitedly( )8. Tom, don’t just sleep and do nothing _______ the daytime!A. onB. inC. atD. over( )9. ________ people use the ballpoint pen all over the world every day.A. Millions ofB. Million ofC.A million ofD. Many millions of( )10. Who is _________ at English, Jim or Sally?A. goodB. betterC. bestD. the best第二节语法选择(共10小题;每小题1分,满分10分)Computers are very popular and useful in __11__daily life. You depend __12_ computers more than you realize. There may _13__ hidden computers in your home, __14___ you might be unaware of them. For example, they may be inside you TV set, telephone or washing machine. Computers are very fast at ___15__.They can also type, print and draw things like pictures. More importantly, they can even operate railways __16___ fly planes and spaceships. Is a computer __17_ than a human brain? The answer ___18__ this question is: “NO”, for the time being. Now a human brain __19__ do some things much better than a computer. But in __20_ future, computers may be better at doing jobs than doctors, judges and teachers.11. A. we B. our C. us D. ours12. A. at B. in C. for D. on13. A. are B. is C. be D. have14. A. but B. and C. or D. no15. A. calculates B. calculate C. calculated D. calculating16. A. but B. so C. and D. since17. A. clever B. cleverer C. more clever D. cleverest18. A. to B. at C. in D. after19. A. need B. must C. should D. can20. A. a B. an C. / D. the三、完形填空(共10小题;每小题1分,满分10分)(张)Some inventions are very important. For example, the telephone allows people to communicate all over the world. The ____21____ lets people travel a long way in a short time. Life is much ____22___ with these important inventions.Some inventions are fun .A company in Japan invented ___23___ flowers. Music comes through real flowers. People in restaurants can smell the beautiful roses and listen to pleasant ___24____ while eating. People in the dentist’s office can look at pretty lilies and listen to Mozart while the dentists are examining their ____25____!There is now a vehicle(车辆)and it can get you around with almost no effort ___26_____.In fact, you find no seat on the vehicle. When you drive this invention, you ____27___ on it! This vehicle runs by electricity. It ____28___ quite easily. When your body moves forward, it goes forward, and when you move backward, it goes backward!You can buy a new kind of bubble(泡泡)liquid. If you ____29___bubbles with this liquid, they can last for several minutes! They are very ___30____.You can even pick them up and throw them around!Do you have your own ideas about inventions now?21. A. bike B. bus C. ship D. plane22. A. happier B. easier C. more difficult D. worse23. A. dancing B. talking C. singing D. walking24. A. music B. stories C. words D. voices25. A. ears B. eyes C. noses D. teeth26. A. in all B. at all C. after all D. for all27. A. sit B. lie C. sleep D. stand28. A. carries B. makes C. operates D. plays29. A. catch B. eat C. blow D. make30. A. strong B. big C. small D. good四、阅读理解(共15小题;每小题2分,满分30分)(段老师)(A )The zipper(拉链,拉锁) is a wonderful invention. How did people ever live without zippers? They are very common, so we forget that they are wonderful. They are very strong, but they open and close very easily. They come in many colors and sizes.In the 1890s,people in the United States wore boots with long rows of buttons. Clothes often had rows of buttons, too. People wished that clothes were easier to put on and take off.Whitcomb L. Judson, an engineer from the United States, invented the zipper in 1893.However,his zippers didn’t stay closed very well. This was embarrassing(使人尴尬的),and people didn’t buy many of them. Then Dr. Gideon Sundback from Sweden solved this problem.His zipper stayed closed.A zipper has three parts:1.There are lots of metal or plastic hooks(called teeth)in two rows.2.These hooks are connected to two strips(条)of cloth.3.A fastener slides along and joins the hooks together. When it slides the other way, the hooks go apart and the zipper opens.Dr. Sundback put the hooks on strips of cloth. They don’t come apart very easily. This solved the problem of the first zippers.( )31.We open and close zippers by ________.A. sliding a fastenerB. pushing a fastenerC. tying a fastenerD. choosing a fastener( )32.Mr. Judson’s zippers didn’t sell well because __________.A. the people were embarrassingB. they were hard to open and closeC. buttons were popularD. they came open very easily( )33.Dr. Sundback was________.A. a professorB. an AmericanC. a SwedeD. from Swiss( )34.According to the passage, which of the following is NOT true?A. Dr. Sundback invented the zipper.B. Zippers are common but very wonderful.C. Mr. Judson was an American engineer.D. The hooks on a zipper are metal or plastic.( )35.What’s the main idea of this passage?A. Mr. Judson and Dr. Sundback tried to sell more zippers.B. Mr. Judson and Dr. Sundback gave us a wonderful invention, the zipper.C.A zipper has hooks, clothes strips, and a slide fastener.D. People didn’t like the first zippers.( B )The designer of the Apple Computer, Steven Jobs, was not quite successful in his early years. He was not among the best students at school, and from time to time he got in trouble with either his schoolmates or his teachers. But he was full of new ideas, and few people saw the value of his new ideas. Things remained the same when he went up to college and dropped out half way. Steven Jobs worked first as a video game designer at Atria. He worked there for only a few months and then he set out to travel to India. He hoped that the trip would give him more ideas and give him a change in life for the better. After he had returned from India, he began to live on a farm in California. And then, in 1975, Steven Jobs set about making a new type of computer. Along with his friend Steven Woziak, he designed the Apple I computer in his bedroom and actually built it in his garage. He chose the name “Apple” because it reminded him of a happy summer he once spent on an orchard in Oregon.His Apple Computer turned out to be such a great success that Steven Jobs soon became worldwide famous. Today he has lots of factories and he is very famous all over the world.( )36.Steven Jobs set out to travel to India, because he wanted________.A. to have a look at IndiaB. the trip to give him more ideasC. to give him a change in life for the betterD. both B and C( )37.Steven Jobs made his first computer_______.A. in his garageB. in his bedroomC. at a collegeD. in a workshop( )38. Steven Jobs gave his computer the name “Apple” because_______.A. he only liked appleB. his first computer was like an appleC. it could remain him of a hard summer in OregonD. he wished to remember he had once spent a happy summer on an orchard in Oregon ( )39. From the passage we can know that______.A. Steven Jobs was successful in his early yearsB. Steven Jobs didn’t finish his collegeC. Steven Jobs went to India and stayed there all the timeD. Steven Jobs designed the Apple computer by himself( ) 40.Which of the following is TRUE according to the passage?A. Steven Jobs was one of the best students at school when he was young.B. Steven Jobs got on well with both his schoolmates and his teachers.C. Steven Jobs, the designer of Apple Computer, is very successful and famous now.D. Steven Jobs worked first as a video game salesman at Atria.( C )What do you think is the most important invention of the past 2000 years? The TV? The printer? The telephone? Or the computer? A report shows that these are not the only important inventions. Here are four other important ones.Paper is one of the most important inventions. You can’t have printing without paper. In 105 AD, Cai Lun invented paper in China. Long before the printer and Internet, Cai Lun’s invention allowed us to write down information, stories and history.One of the simplest inventions to save life is the toilet. Before toilet, waste ran into the rivers from people’s houses. Illnesses were common in big cities, and it was often difficult to find clean drinking water.Animal food is another invention. Before the invention, most animals were killed every autumn because there was not enough food for them in the river. After hay(牧草)became a kind of common animal food, animals could live through the long winter.Reading glasses is the fourth invention. People start getting farsighted from the age of 45.Glasses mean that anyone can read, write, and do “close work” after that age. Without glasses, the world would be difficult for people above 45.( )41.Cai Lun’s invention of paper makes it possible to_________.A. having printingB. feed animalsC. drink clean waterD. do “close work”( )42.The invention of the toilet can stop people from ________ so easily.A. saving waterB. getting illC. living in big citiesD. finding clean water ( )43.Why couldn’t the animals live through the winter?A. It was very cold in winter.B. They didn’t have enough food to eat.C. They had no drinking water.D. They died of illness.( )44.What does the underlined word farsighted mean according to your understanding?A.远视B.近视 C .头晕 D.迟钝( )45.From the last paragraph we learn that_________.A. all people need reading glassesB. anyone must do “close work” after 45C. reading glasses are usefulD. life is more difficult for the people under 45五、写作(共三节,满分25分)(李老师)第一节单词拼写(共5小题;每小题1分,满分5分)46. Tom wanted to i__________ a new machine to do the boring work.47. These lovely things are nor for h________ beings but for animals.48. It’s dark now. Please turn on the l________.49. He told a f_________ joke and everyone laughed.50. Have you decided to s_________ your car? I’d like to buy it.第二节完成句子(共5小题;每小题2分,满分10分)51. 人们白天劳作,夜晚休息。

2015八年上语文期中 试卷及答案

2015八年上语文期中 试卷及答案

八年级语文期中测试卷一、基础知识检测(4分)1、下列加点字的注音有误的一项是(2分)()A.青荇.(xìnɡ)繁殖.(zhí)咳嗽.(sòu)鞭策.(cè)B.蹩.脚(bié)羼水(chàn)船舶.(bó)癖.嗜(pǐ)C.包袱.(fù)鸿鹄.(hú)赋予.(yǔ)商酌.(zhuó)D.模.样(mú)蘸酒(zhàn) 逻辑.(jí)商贾.(gǔ)2、下列词语中没有错误的一项是(2分)()A. 阔绰笔砚损耗靡靡之音B. 蕴藏牛犊门槛战战兢兢C. 笙箫荤菜兀自不可思议D. 漫溯斑澜颓唐忐忑不安二、积累与运用(12分,3~8题每句1分)3、人生自古谁无死?_________________________。

(文天祥《过零丁洋》)4、_______________________,铜雀春深锁二乔。

(杜牧《赤壁》)5、_____________________。

鬓微霜,又何妨!(苏轼《江城子·密州出猎》)6、邹忌修八尺有余,_____________________。

(《邹忌讽齐王纳谏》)7、王湾的《次北固山下》一诗中蕴含新事物孕育旧事物解体之时的哲理的诗句是:___________________________,____________________________。

8、白居易在《钱塘湖春行》中通过对春天里富有代表性的动物加以描绘,勾勒出一幅生意盎然的江南早春图的诗句是:_______________________, __________________________。

9、《汉字英雄》、《汉字听写大赛》等电视节目让人们认识到汉字书写的重要性,也引起了国人的热议。

请你根据所给上联,对出下联,表达自己的认识。

(2分)上联:母语弘扬贵珍视。

下联:______________________。

2015八年级(上)期中数学试卷附 答案

2015八年级(上)期中数学试卷附 答案

八年级(上)期中数学试卷一、单项选择题(本题共10分,每小题3分,共30分)1.在实数,,0.1414,,﹣,0.1010010001…,,0,,,中,有几个无理数()A.3个B.4个C.5个D.6个2.下列运算正确的是()A.=+B.()2=3 C.3a﹣a=3 D.(a2)3=a53.在下列各组数据中,不能作为直角三角形的三边边长的是()A.3,4,6 B.7,24,25 C.6,8,10 D.9,12,154.在平面直角坐标系中,点P的横坐标是﹣3,且点P到x轴的距离为5,则点P的坐标是()A.(5,﹣3)或(﹣5,﹣3)B.(﹣3,5)或(﹣3,﹣5)C.(﹣3,5)D.(﹣3,﹣3)5.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.6.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D 重合,折痕为MN,则线段BN的长为()A.B.C.4 D.57.△ABC的三边长分别为a,b,c,下列条件:①∠A=∠B﹣∠C;②∠A:∠B:∠C=3:4:5;③a2=(b+c)(b﹣c);④a:b:c=5:12:13,其中能判断△ABC是直角三角形的个数有()A.1个B.2个C.3个D.4个8.直线y=kx+b不经过第四象限,则()A.k>0,b>0 B.k<0,b>0 C.k≥0,b≥0 D.k<0,b≥09.如图,在平面直角坐标系中,边长为1的正方形ABCD中,AD边的中点处有一动点P,动点P沿P→D→C→B→A→P运动一周,则P点的纵坐标y与点P走过的路程s之间的函数关系用图象表示大致是()A.B.C.D.10.按如图所示的程序计算,若开始输入的n值为,则最后输出的结果是()A.14 B.16 C.8+5D.14+11.如图,直角三角形三边上的半圆面积从小到大依次记为S1、S2、S3,则S1、S2、S3之间的关系是()A.S l+S2>S3 B.S l+S2<S3 C.S1+S2=S3 D.S12+S22=S32二.填空题(本题共8个小题,每个小题3分,共24分)12.的平方根是.13.已知直角三角形的两边的长分别是3和4,则第三边长为.14.点P(2,3)关于x轴的对称点的坐标为.15.的绝对值是,相反数是,倒数是.16.已知函数是正比例函数,且图象在第二、四象限内,则m的值是.17.函数中自变量x的取值范围是.18.实数a在数轴上的位置如图,化简+a=.19.没有上盖的圆柱盒高为10cm,底面周长为32cm,点A距离下底面3cm.一只位于圆柱盒外表面点A处的蚂蚁想爬到盒内表面对侧中点B处.则蚂蚁需要爬行的最短路程的长为cm.三、计算题(共4道题,每题4分,共16分)20.计算:(1)﹣5(2)+﹣(3)(+)(﹣)﹣(﹣2)2(4)(﹣3)0﹣+|1﹣|+.四、解答题(本题共6小题,共50分)21.已知5既是(2x﹣1)的算术平方根,又是(3x﹣7y+2)的立方根,求x2+y2的平方根.22.如图所示的一块地,AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求这块地的面积.23.如图,在平面直角坐标系中,一次函数y=kx+5的图象经过点A(1,4),点B是一次函数y=kx+5的图象与x轴的交点.(1)求点B的坐标.(2)求△AOB的面积.24.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点A的坐标为(1,4)点B的坐标为(2,0)点C的坐标为(4,0).(1)在下图的直角坐标系中画出A,B,C三点,并作出△ABC关于x轴对称的△A1B1C1,求出A1,B1,C1坐标;(2)在y轴上是否存在点D,使得△COD为等腰直角三角形?若存在,请求出D的坐标.25.某食品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:方案一:从包装盒加工厂直接购买,购买所需的费y1与包装盒数x满足如图1所示的函数关系.方案二:租赁机器自己加工,所需费用y2(包括租赁机器的费用和生产包装盒的费用)与包装盒数x满足如图2所示的函数关系.根据图象回答下列问题:(1)方案一中每个包装盒的价格是多少元?(2)方案二中租赁机器的费用是多少元?生产一个包装盒的费用是多少元?(3)请分别求出y1、y2与x的函数关系式.(4)如果你是决策者,你认为应该选择哪种方案更省钱?并说明理由.26.观察下列等式:①;②;③;…回答下列问题:(1)仿照上列等式,写出第n个等式:;(2)利用你观察到的规律,化简:;(3)计算:….参考答案与试题解析一、单项选择题(本题共10分,每小题3分,共30分)1.在实数,,0.1414,,﹣,0.1010010001…,,0,,,中,有几个无理数()A.3个B.4个C.5个D.6个考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:无理数有:,,0.1010010001…,1﹣,共有4个.故选B.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.下列运算正确的是()A.=+B.()2=3 C.3a﹣a=3 D.(a2)3=a5考点:二次根式的性质与化简;合并同类项;幂的乘方与积的乘方;二次根式的乘除法.分析:本题运用二次根式的乘方,合关同类项及幂的乘方的法则进行计算.解答:解:A、=,故A错误;B、()2=3,故B正确;C、3a﹣a=2a.故C错误;D、(a2)3=a6,故D错误.故选:B.点评:本题主要考查了二次根式的乘方,合关同类项及幂的乘方,熟记法则是解题的关键.3.在下列各组数据中,不能作为直角三角形的三边边长的是()A.3,4,6 B.7,24,25 C.6,8,10 D.9,12,15考点:勾股数.分析:根据勾股定理的逆定理,只需验证两较小边的平方和是否等于最长边的平方即可.解答:解:A、32+42≠62,故A符合题意;B、72+242=252,故B不符合题意;C、62+82=102,故C不符合题意;D、92+122=152,故D不符合题意.故选:A.点评:本题考查了勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.4.在平面直角坐标系中,点P的横坐标是﹣3,且点P到x轴的距离为5,则点P的坐标是()A.(5,﹣3)或(﹣5,﹣3)B.(﹣3,5)或(﹣3,﹣5)C.(﹣3,5)D.(﹣3,﹣3)考点:点的坐标.分析:根据点到x轴的距离为点的纵坐标的绝对值可得:P的纵坐标绝对值是5,进而得到纵坐标,再判断点A的坐标.解答:解:∵点P的横坐标是﹣3,∴设点P的坐标是(﹣3,a),∵点P到x轴的距离为5,∴|a|=5,∴a=±5,∴点P的坐标是(﹣3,5),故选:B,点评:此题主要考查了点的坐标的几何意义,注意:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.5.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.考点:勾股定理;点到直线的距离;三角形的面积.专题:计算题.分析:根据题意画出相应的图形,如图所示,在直角三角形ABC中,由AC及BC的长,利用勾股定理求出AB的长,然后过C作CD垂直于AB,由直角三角形的面积可以由两直角边乘积的一半来求,也可以由斜边AB乘以斜边上的高CD除以2来求,两者相等,将AC,AB及BC的长代入求出CD的长,即为C到AB的距离.解答:解:根据题意画出相应的图形,如图所示:在Rt△ABC中,AC=9,BC=12,根据勾股定理得:AB==15,过C作CD⊥AB,交AB于点D,又S△ABC=AC•BC=AB•CD,∴CD===,则点C到AB的距离是.故选A点评:此题考查了勾股定理,点到直线的距离,以及三角形面积的求法,熟练掌握勾股定理是解本题的关键.6.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D 重合,折痕为MN,则线段BN的长为()A.B.C.4 D.5考点:翻折变换(折叠问题).专题:几何图形问题.分析:设BN=x,则由折叠的性质可得DN=AN=9﹣x,根据中点的定义可得BD=3,在Rt△BDN中,根据勾股定理可得关于x的方程,解方程即可求解.解答:解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△BDN中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.7.△ABC的三边长分别为a,b,c,下列条件:①∠A=∠B﹣∠C;②∠A:∠B:∠C=3:4:5;③a2=(b+c)(b﹣c);④a:b:c=5:12:13,其中能判断△ABC是直角三角形的个数有()A.1个B.2个C.3个D.4个考点:勾股定理的逆定理;三角形内角和定理.分析:直角三角形的定义或勾股定理的逆定理是判定直角三角形的方法之一.解答:解;①∠A=∠B﹣∠C,∠A+∠B+∠C=180°,解得∠B=90°,故①是直角三角形;②∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,解得∠A=45°,∠B=60°,∠C=75°,故②不是直角三角形;③∵a2=(b+c)(b﹣c),∴a2+c2=b2,符合勾股定理的逆定理,故③是直角三角形;④∵a:b:c=5:12:13,∴a2+b2=c2,符合勾股定理的逆定理,故④是直角三角形.能判断△ABC是直角三角形的个数有3个;故选:C.点评:本题考查了利用直角三角形的定义和勾股定理的逆定理来判定一个三角形是不是直角三角形,是判定直角三角形的常见方法.8.直线y=kx+b不经过第四象限,则()A.k>0,b>0 B.k<0,b>0 C.k≥0,b≥0 D.k<0,b≥0考点:一次函数图象与系数的关系.专题:数形结合.分析:分类讨论:当k=0,y=b,则b≥0时,直线y=b不过第四象限;当k≠0时,直接根据一次函数图象与系数的关系求解.解答:解:当k=0,y=b,则b≥0时,直线y=b不过第四象限;当k≠0时,直线y=kx+b不经过第四象限,即直线过第一、二、三象限且与y轴的交点不在x轴的下方,则k>0,b≥0,综合所述,k≥0,b≥0.故选:C.点评:本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).9.如图,在平面直角坐标系中,边长为1的正方形ABCD中,AD边的中点处有一动点P,动点P沿P→D→C→B→A→P运动一周,则P点的纵坐标y与点P走过的路程s之间的函数关系用图象表示大致是()A.B.C.D.考点:动点问题的函数图象.专题:数形结合.分析:将动点P的运动过程划分为PD、DC、CB、BA、AP共5个阶段,分别进行分析,最后得出结论.解答:解:动点P运动过程中:①当0≤s≤时,动点P在线段PD上运动,此时y=2保持不变;②当<s≤时,动点P在线段DC上运动,此时y由2到1逐渐减少;③当<s≤时,动点P在线段CB上运动,此时y=1保持不变;④当<s≤时,动点P在线段BA上运动,此时y由1到2逐渐增大;⑤当<s≤4时,动点P在线段AP上运动,此时y=2保持不变.结合函数图象,只有D选项符合要求.故选:D.点评:本题考查了动点运动过程中的函数图象.把运动过程分解,进行分类讨论是解题的关键.10.按如图所示的程序计算,若开始输入的n值为,则最后输出的结果是()A.14 B.16 C.8+5D.14+考点:实数的运算.专题:图表型.分析:将n的值代入计算框图,判断即可得到结果.解答:解:当n=时,n(n+1)=×(+1)=2+<15;当n=2+时,n(n+1)=(2+)×(3+)=6+5+2=8+5>15,则输出结果为8+5.故选:C.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.11.如图,直角三角形三边上的半圆面积从小到大依次记为S1、S2、S3,则S1、S2、S3之间的关系是()A.S l+S2>S3 B.S l+S2<S3 C.S1+S2=S3 D.S12+S22=S32考点:勾股定理.专题:压轴题.分析:依据半圆的面积公式,以及勾股定理即可解决.解答:解:设直角三角形三边分别为a,b,c,则三个半圆的半径分别为,,由勾股定理得a2+b2=c2,即()2+()2=()2两边同时乘以π得π()2+π()2=π()2即S1、S2、S3之间的关系是S1+S2=S3故选C.点评:根据勾股定理,然后变形,得出三个半圆之间的关系.二.填空题(本题共8个小题,每个小题3分,共24分)12.的平方根是±.考点:算术平方根;平方根.分析:先求出,再根据平方根的定义解答.解答:解:∵=5,∴的平方根是±.故答案为:±.点评:本题考查了算术平方根,平方根的定义,是基础题,熟记概念是解题的关键.13.已知直角三角形的两边的长分别是3和4,则第三边长为5或.考点:勾股定理.专题:分类讨论.分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①3是直角边,4是斜边;②3、4均为直角边;可根据勾股定理求出上述两种情况下,第三边的长.解答:解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:=;②长为3、4的边都是直角边时:第三边的长为:=5;综上,第三边的长为:5或.故答案为:5或.点评:此题主要考查的是勾股定理的应用,要注意的是由于已知的两边是直角边还是斜边并不明确,所以一定要分类讨论,以免漏解.14.点P(2,3)关于x轴的对称点的坐标为(2,﹣3).考点:关于x轴、y轴对称的点的坐标.分析:根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y)得出即可.解答:解:∵点P(2,3)∴关于x轴的对称点的坐标为:(2,﹣3).故答案为:(2,﹣3).点评:此题主要考查了关于x轴、y轴对称点的性质,正确记忆坐标规律是解题关键.15.的绝对值是﹣2,相反数是2﹣,倒数是+2.考点:实数的性质.分析:分别根据绝对值、相反数、倒数的概念即可求解.解答:解:∵>2,∴>0,∴||=﹣2;﹣()=2﹣,即的相反数是2﹣;==+2.故答案是:﹣2;2﹣;+2.点评:本题考查了实数的性质.掌握实数的绝对值、相反数、倒数的定义,注意区分概念,不要混淆.16.已知函数是正比例函数,且图象在第二、四象限内,则m的值是﹣2.考点:正比例函数的定义.分析:当一次函数的图象经过二、四象限可得其比例系数为负数,据此求解.解答:解:∵函数是正比例函数,∴m2﹣3=1且m+1≠0,解得m=±2.又∵函数图象经过第二、四象限,∴m+1<0,解得m<﹣1,∴m=﹣2.故答案是:﹣2.点评:此题主要考查了正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.17.函数中自变量x的取值范围是x≥﹣5.考点:函数自变量的取值范围;二次根式有意义的条件.分析:根据二次根式的性质,被开方数大于等于0可知:x+5≥0,解不等式求x的范围.解答:解:根据题意得:x+5≥0,解得x≥﹣5.点评:本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.18.实数a在数轴上的位置如图,化简+a=1.考点:二次根式的性质与化简;实数与数轴.分析:根据二次根式的性质,可化简二次根式,根据整式的加法,可得答案.解答:解:+a=1﹣a+a=1,故答案为:1.点评:本题考查了实数的性质与化简,=a(a≥0)是解题关键.19.没有上盖的圆柱盒高为10cm,底面周长为32cm,点A距离下底面3cm.一只位于圆柱盒外表面点A处的蚂蚁想爬到盒内表面对侧中点B处.则蚂蚁需要爬行的最短路程的长为20cm.考点:平面展开-最短路径问题.分析:将圆柱侧面展开,得到长方形MNQP,作点B关于PQ的对称点B′,构造直角三角形ACB′,根据勾股定理求出AB′=20cm,即是所求.解答:解:如图,点B与点B′关于PQ对称,可得AC=16cm,B′C=12cm,则最短路程为AB′==20cm.故答案为:20.点评:本题考查平面展开最短路径问题,关键知道圆柱展开图是长方形,根据两点之间线段最短可求出解,注意是从圆柱盒外爬到盒内,审准题也是关键.三、计算题(共4道题,每题4分,共16分)20.计算:(1)﹣5(2)+﹣(3)(+)(﹣)﹣(﹣2)2(4)(﹣3)0﹣+|1﹣|+.考点:二次根式的混合运算;零指数幂.专题:计算题.分析:(1)先把分子中各二次根式化为最简二次根式,然后合并后进行二次根式的除法运算;(2)先把各二次根式化为最简二次根式,然后合并即可;(3)利用平方差公式和完全平方公式计算;(4)根据零指数幂的意义和分母有理化得到原式=1﹣3+﹣1+﹣,然后合并即可.解答:解:(1)原式=﹣5=5﹣5=0;(2)原式=+2﹣10=﹣;(3)原式=5﹣2﹣(3﹣4+8)=3﹣11+4=﹣8+4;(4)原式=1﹣3+﹣1+﹣=﹣3.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂和负整数指数幂.四、解答题(本题共6小题,共50分)21.已知5既是(2x﹣1)的算术平方根,又是(3x﹣7y+2)的立方根,求x2+y2的平方根.考点:立方根;平方根.分析:根据算术平方根和立方根的定义得出方程,求出x、y的值,求出x2+y2的值,最后根据平方根定义求出即可.解答:解:∵5既是(2x﹣1)的算术平方根,又是(3x﹣7y+2)的立方根,∴2x﹣1=25,3x﹣7y+2=125,解得:x=13,y=﹣14,∴x2+y2=365,∴x2+y2的平方根是±.点评:本题考查了算术平方根,平方根,立方根的应用,主要考查学生的理解能力和计算能力,解此题的关键是求出x、y的值.22.如图所示的一块地,AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求这块地的面积.考点:勾股定理的应用;三角形的面积;勾股定理的逆定理.专题:应用题.分析:连接AC,运用勾股定理逆定理可证△ACD,△ABC为直角三角形,可求出两直角三角形的面积,此块地的面积为两个直角三角形的面积差.解答:解:连接AC,则在Rt△ADC中,AC2=CD2+AD2=122+92=225,∴AC=15,在△ABC中,AB2=1521,AC2+BC2=152+362=1521,∴AB2=AC2+BC2,∴∠ACB=90°,∴S△ABC﹣S△ACD=AC•BC﹣AD•CD=×15×36﹣×12×9=270﹣54=216.答:这块地的面积是216平方米.点评:解答此题的关键是通过作辅助线使图形转化成特殊的三角形,可使复杂的求解过程变得简单.23.如图,在平面直角坐标系中,一次函数y=kx+5的图象经过点A(1,4),点B是一次函数y=kx+5的图象与x轴的交点.(1)求点B的坐标.(2)求△AOB的面积.考点:一次函数图象上点的坐标特征.分析:(1)利用待定系数法把A点坐标代入y=kx+5中即可算出k的值,然后联立两个函数解析式,即可算出B点坐标;(2)根据A、B两点的坐标和三角形的面积公式进行计算即可.解答:解:(1)把A(1,4)代入y=kx+5中得:4=k+5,解得:k=﹣1,则一次函数解析式为y=﹣x+5,令y=0,则0=﹣x+5,解得x=5,故B点坐标是(5,0);(2)∵A(1,4),B(5,0);∴S△AOB=×OB×y A=×5×4=10.点评:此题考查了一次函数的坐标特征以及与坐标轴交点问题,涉及的知识有:坐标与图形性质,直线与坐标轴的交点,待定系数法求函数解析式,熟练掌握待定系数法是解本题的关键.24.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点A的坐标为(1,4)点B的坐标为(2,0)点C的坐标为(4,0).(1)在下图的直角坐标系中画出A,B,C三点,并作出△ABC关于x轴对称的△A1B1C1,求出A1,B1,C1坐标;(2)在y轴上是否存在点D,使得△COD为等腰直角三角形?若存在,请求出D的坐标.考点:作图-轴对称变换;等腰直角三角形.分析:(1)根据题意画出△ABC,再根据轴对称的性质作出△ABC关于x轴对称的△A1B1C1,写出A1,B1,C1坐标即可;(2)根据C(4,0)可直接找出符合条件的点.解答:解:(1)如图所示,A1(1,﹣4),B1(2,0),C1(4,0);(2)∵C(4,0),∠COD=90°,∴D(0,4)或(0,﹣4).点评:本题考查的是作图﹣轴对称变换,熟知关于坐标轴对称的点的坐标特点是解答此题的关键.25.某食品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:方案一:从包装盒加工厂直接购买,购买所需的费y1与包装盒数x满足如图1所示的函数关系.方案二:租赁机器自己加工,所需费用y2(包括租赁机器的费用和生产包装盒的费用)与包装盒数x满足如图2所示的函数关系.根据图象回答下列问题:(1)方案一中每个包装盒的价格是多少元?(2)方案二中租赁机器的费用是多少元?生产一个包装盒的费用是多少元?(3)请分别求出y1、y2与x的函数关系式.(4)如果你是决策者,你认为应该选择哪种方案更省钱?并说明理由.考点:一次函数的应用.专题:综合题.分析:(1)根据图象1可知100个盒子共花费500元,据此可以求出盒子的单价;(2)根据图2可以知道租赁机器花费20000元,根据图象所经过的点的坐标求出盒子的单价即可;(3)根据图象经过的点的坐标用待定系数法求得函数的解析式即可;(4)求出当x的值为多少时,两种方案同样省钱,并据此分类讨论最省钱的方案即可.解答:解:(1)500÷100=5,∴方案一的盒子单价为5元;(2)根据函数的图象可以知道租赁机器的费用为20000元,盒子的单价为÷4000=2.5,故盒子的单价为2.5元;(3)设图象一的函数解析式为:y1=k1x,由图象知函数经过点(100,500),∴500=100k1,解得k1=5,∴函数的解析式为y1=5x;设图象二的函数关系式为y2=k2x+b由图象知道函数的图象经过点(0,20000)和∴,解得:,∴函数的解析式为y2=2.5x+20000;(4)令5x=2.5x+20000,解得x=8000,∴当x=8000时,两种方案同样省钱;当x<8000时,选择方案一;当x>8000时,选择方案二.点评:本题考查了一次函数的应用,解题的关键是从实际问题中整理出函数模型,并利用函数的知识解决实际问题.26.观察下列等式:①;②;③;…回答下列问题:(1)仿照上列等式,写出第n个等式:,;(2)利用你观察到的规律,化简:;(3)计算:….考点:分母有理化.专题:规律型.分析:根据观察,可得规律,根据规律,可得答案.解答:解:(1)写出第n个等式,故答案为:;(2)原式==;(3)原式=+…+=﹣1.点评:本题考查了分母有理化,发现规律是解题关键.。

2015八年级数学上学期期中试卷(带答案)

2015八年级数学上学期期中试卷(带答案)

2015八年级数学上学期期中试卷(带答案)辽宁省锦州实验中学2014~2015学年度八年级上学期期中数学试卷一、选择题(每题2分,共14分) 1.在实数�3.14,,π,,,0,,0.1010010001…(每两个1之间的0的个数依次多1)中,无理数的个数是() A. 2个 B. 3个 C. 4个 D. 5个 2.估算�2的值在() A.在5和6之间 B.在4和5之间 C.在3和4之间 D.在2和3之间 3.函数y=2x�5的图象一定过()A.(�2,1) B. C.(�1,2) D.(1,�2) 4.如图图象可能是关于x的一次函数y=k(x�1)的图象的是()A. B. C. D. 5.一架250cm的梯子斜靠在墙上,这时梯足与墙的终端距离为70cm,如果梯子顶端沿墙下滑40cm,那么梯足将向外滑动() A. 150cm B. 90c m C. 80cm D. 40cm 6.如图,直角三角形ABC中,∠C=90°,D为AC上一点,DA=DB=5,△ABD 的面积为10,则CD长是() A. 3 B. 4 C. 5 D. 6 7.△ABC 中,AB=15,AC=13,高AD=12,则△ABC的周长为() A. 42 B. 32 C. 42或32 D. 37或33 二、填空(每题2分,共14分) 8.的算术平方根是. 9.1�的绝对值是. 10.已知直角三角形的两边的长分别是3和4,则第三边长为. 11.点(�4,y1),都在直线y=�x+2上,则y1 y2(填“>”或“<”) 12.已知点P在第四象限,且P到x轴和y轴的距离分别是3和4,则点P的坐标为. 13.一个正数的平方根为2x�4和3x�1,则x= . 14.关于x的一次函数y=kx�3的图象过点M(�2,1),则该图象与x轴交点坐标,与y轴交点坐标.三、计算(每小题20分,共20分) 15.(1)���2 (1+ )(3)÷22 × (4)(4 �4 +3 )÷2 .四、作图题 16.作图:在数轴上作出表示的点.(不写作法,保留适当的作图痕迹,要作答)五、解答题 17.如图,有一个长、宽、高分别为2cm、2cm、3cm的长方体,有一只蚂蚁想沿着外侧壁从A点爬到C1处,请你帮助小蚂蚁计算出最短路线. 18.如图,我校实验大楼边上有一块空地需要绿化(用阴影部分表示),通过测量可以知道CD=6m,AD=8m,BC=24m,AB=26m,AD⊥CD,试求出这块空地的面积(即阴影部分面积) 19.某移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;“神舟行”不缴月租费,每通话1min付费0.6元.若一个月内通话x min,两种方式的费用分别为y1元和y2元.(1)写出y1、y2与x之间的函数关系式;一个月内通话多少分钟,两种移动通讯费用相同;(3)某人估计一个月内通话300min,应选择哪种移动通讯合算些. 20.如图,正比例函数与一次函数交于点A(3,4),且一次函数与x轴交于点C,与y轴交于点B,(1)求两个函数解析式;求△AOC的面积.辽宁省锦州实验中学2014~2015学年度八年级上学期期中数学试卷参考答案与试题解析一、选择题(每题2分,共14分) 1.在实数�3.14,,π,,,0,,0.1010010001…(每两个1之间的0的个数依次多1)中,无理数的个数是() A. 2个 B. 3个 C. 4个 D. 5个考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:无理数有:,π,1010010001…(每两个1之间的0的个数依次多1)共4个.故选C.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数. 2.估算�2的值在() A.在5和6之间 B.在4和5之间 C.在3和4之间 D.在2和3之间考点:估算无理数的大小.分析:先求出的范围,再两边都减去2,即可得出答案.解答:解:∵6<<7,∴4<�2<5,即�2在4和5之间,故选B.点评:本题考查了估算无理数的大小的应用,解此题的关键是求出的范围. 3.函数y=2x�5的图象一定过() A.(�2,1) B. C.(�1,2) D.(1,�2)考点:一次函数图象上点的坐标特征.分析:分别把各点代入一次函数的关系式进行检验即可.解答:解:A、∵2×(�2)�5=�9≠1,∴此点不在该一次函数的图象上,故本选项错误; B、∵2×2�5=�1,∴此点在该一次函数的图象上,故本选项正确; C、∵2×(�1)�5=�7≠2,∴此点不在该一次函数的图象上,故本选项错误; D、∵2×1�5=�3≠�2,∴此点不在该一次函数的图象上,故本选项错误.故选B.点评:考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合该函数的解析式是解答此题的关键. 4.如图图象可能是关于x的一次函数y=k(x�1)的图象的是() A. B. C. D.考点:一次函数的图象.分析:将y=k(x�1)化为y=kx�k后分k>0和k<0两种情况分类讨论即可.解答:解:y=k(x�1)=kx�k,当k>0时,�k<0,此时图象呈上升趋势,且交与y轴负半轴,无符合选项;当k<0时,�k>0,此时图象呈下降趋势,且交与y轴正半轴,D选项符合;故选D.点评:本题考查了一次函数的性质,解题的关键是能够分类讨论. 5.一架250cm的梯子斜靠在墙上,这时梯足与墙的终端距离为70cm,如果梯子顶端沿墙下滑40cm,那么梯足将向外滑动() A. 150cm B. 90cm C. 80cm D. 40cm考点:勾股定理的应用.分析:根据条件作出示意图,根据勾股定理求得OB′的长度,梯子滑动的距离就是OB′与OB的差.解答::解:在Rt△OAB中,根据勾股定理OA= = =240cm.则OA′=OA�40=240�40=200米.在Rt△A′OB′中,根据勾股定理得到:OB′= = =150cm.则梯子滑动的距离就是OB′�OB=150�70=80cm.故选C.点评:考查了勾股定理的应用,正确作出示意图,把实际问题抽象成数学问题是解题的关键. 6.如图,直角三角形ABC中,∠C=90°,D为AC上一点,DA=DB=5,△ABD的面积为10,则CD长是() A. 3 B. 4 C. 5 D. 6考点:勾股定理.分析:根据Rt△ABC中,∠C=90°,可证BC是△DAB的高,然后利用三角形面积公式求出BC的长,再利用勾股定理即可求出DC的长.解答:解:∵在Rt△ABC中,∠C=90°,∴BC⊥AC,即BC是△DAB的高,∵△DAB的面积为10,DA=5,∴ DA•BC=10,∴BC=4,∴CD= =3.故选A.点评:此题主要考查学生对勾股定理和三角形面积的理解和掌握,此题的突破点是利用三角形面积公式求出BC的长. 7.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为() A. 42 B. 32 C. 42或32 D. 37或33考点:勾股定理.分析:本题应分两种情况进行讨论:(1)当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相加即为BC的长,从而可将△ABC的周长求出;当△ABC为钝角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相减即为BC的长,从而可将△ABC的周长求出.解答:解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中, BD= = =9,在Rt△ACD 中,CD= = =5 ∴BC=5+9=14 ∴△ABC的周长为:15+13+14=42;当△ABC为钝角三角形时,在Rt△ABD中,BD= = =9,在Rt△ACD 中,CD= = =5,∴BC=9�5=4.∴△ABC的周长为:15+13+4=32 ∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.故选C.点评:此题考查了勾股定理及解直角三角形的知识,在解本题时应分两种情况进行讨论,易错点在于漏解,同学们思考问题一定要全面,有一定难度.二、填空(每题2分,共14分) 8.的算术平方根是.考点:算术平方根.分析:根据开方运算,可得一个数的算术平方根.解答:解:的算术平方根是,故答案为:.点评:本题考查了算术平方根,两次求算术平方根. 9.1�的绝对值是�1 .考点:实数的性质.分析:根据绝对值的性质解答即可.解答:解:1�的绝对值是�1.故答案为:�1.点评:本题考查了实数的性质,主要利用了绝对值的性质. 10.已知直角三角形的两边的长分别是3和4,则第三边长为5或.考点:勾股定理.专题:分类讨论.分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①3是直角边,4是斜边;②3、4均为直角边;可根据勾股定理求出上述两种情况下,第三边的长.解答:解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为: = ;②长为3、4的边都是直角边时:第三边的长为: =5;综上,第三边的长为:5或.故答案为:5或.点评:此题主要考查的是勾股定理的应用,要注意的是由于已知的两边是直角边还是斜边并不明确,所以一定要分类讨论,以免漏解. 11.点(�4,y1),都在直线y=� x+2上,则y1 >y2(填“>”或“<”)考点:一次函数图象上点的坐标特征.分析:根据一次函数y=kx+b 的性质可知.解答:解:因为直线y=� x+2中k=�<0,所以y 随x的增大而减小.又因为�4<2,所以y1>y2.故答案为:>.点评:考查了一次函数图象上点的坐标特征,解答此题要熟知一次函数y=kx+b的性质:当k>0时,y随x的增大而增大;当k<0时,y 随x的增大而减小. 12.已知点P在第四象限,且P到x轴和y 轴的距离分别是3和4,则点P的坐标为(4,�3).考点:点的坐标.分析:已知点P在第四象限内,那么横坐标大于0,纵坐标小于0,进而根据到坐标轴的距离判断具体坐标.解答:解:因为点P在第四象限,所以其横、纵坐标分别为正数、负数,又因为点P到x轴和y轴的距离分别是3和4,所以点P的坐标为(4,�3).故答案为(4,�3).点评:本题主要考查了点在第四象限时点的坐标的符号,点到x轴的距离为这点纵坐标的绝对值,到y轴的距离为这点横坐标的绝对值. 13.一个正数的平方根为2x�4和3x�1,则x= 1 .考点:平方根.分析:根据一个正数的平方根互为相反数,可得平方根的和为零.解答:解:一个正数的平方根为2x�4和3x�1,得 +(3x�1)=0. 2x�4+3x�1=0.解得x=1,故答案为:1.点评:本题考查了平方根,利用平方根的和为零得出关于x的一元一次方程是解题关键. 14.关于x的一次函数y=kx�3的图象过点M(�2,1),则该图象与x轴交点坐标(�,0),与y轴交点坐标(0,�3).考点:一次函数图象上点的坐标特征.分析:把点M的坐标代入一次函数即可求得k的值,然后让横坐标等于0得到图象与y轴的交点;让纵坐标等于0得到图象与y轴的交点.解答:解:∵一次函数y=kx�3的图象经过点M(�2,1),∴�2k�3=1.解得:k=�2.∴此一次函数的解析式为y=�2x�3.令y=0,可得x=�.∴一次函数的图象与x轴的交点坐标为(�,0).令x=0,可得y=�3.∴一次函数的图象与y轴的交点坐标为(0,�3).故答案为(�,0),(0,�3).点评:本题考查的知识点是:在这条直线上的各点的坐标一定适合这条直线的解析式;x轴上的点纵坐标为0;y轴上的点横坐标为0.三、计算(每小题20分,共20分) 15.(1)���2 (1+ )(3)÷22 × (4)(4 �4 +3 )÷2 .考点:二次根式的混合运算.分析:(1)先把各二次根式化为最简二次根式,然后合并即可;利用多项式乘法展开,然后合并即可;(3)根据二次根式的乘除法则运算;(4)根据二次根式的除法法则运算.解答:解:(1)原式=4 �5 ��= �;原式=2�+2 �5 =�3+ ;(3)原式=1× × = ;(4)原式=2 �1+3 =2 +2.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.四、作图题 16.作图:在数轴上作出表示的点.(不写作法,保留适当的作图痕迹,要作答)考点:作图―代数计算作图;实数与数轴.分析:因为5=1+4,所以只需作出以1和2为直角边的直角三角形,则其斜边的长即是.然后以原点为圆心,以为半径画弧,和数轴的正半轴交于一点即可.解答:解:如图,过表示数1的点A作数轴的垂线AB,取AB=2,以O为圆心,OB为半径画弧与数轴相交于点P,则P点就是表示的点.点评:考查了无理数用数轴上的点表示的方法,能够熟练运用勾股定理进行计算.五、解答题 17.如图,有一个长、宽、高分别为2cm、2cm、3cm的长方体,有一只蚂蚁想沿着外侧壁从A点爬到C1处,请你帮助小蚂蚁计算出最短路线.考点:平面展开-最短路径问题.分析:将长方体展开,根据勾股定理求出AC1的长,进而得出最短路线.解答:解:如图1所示,AC1= =5cm;如图2所示, AC1= = cm,∵ >5,∴按图1的爬行路线最短.点评:本题考查的是平面展开�最短路径问题,此类问题应先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题. 18.如图,我校实验大楼边上有一块空地需要绿化(用阴影部分表示),通过测量可以知道CD=6m,AD=8m,BC=24m,AB=26m,AD⊥CD,试求出这块空地的面积(即阴影部分面积)考点:勾股定理;勾股定理的逆定理.分析:先根据勾股定理求出AC的长,再根据勾股定理的逆定理判断出△ACB为直角三角形,再根据S阴影= AC×BC�AD×CD即可得出结论.解答:解:在Rt△ADC中,∵CD=6米,AD=8米,BC=24米,AB=26米,∴AC2=AD2+CD2=82+62=100,∴AC=10(取正值).在△ABC中,∵AC2+BC2=102+242=676,AB2=262=676.∴AC2+BC2=AB2,∴△ACB 为直角三角形,∠ACB=90°.∴S阴影= AC×BC�AD×CD=×10×24�×8×6=96(米2).答:剩余土地(图中阴影部分)的面积为:96米2.点评:本题考查的是勾股定理在实际生活中的应用,有利于培养学生生活联系实际的能力和计算能力. 19.某移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;“神舟行”不缴月租费,每通话1min付费0.6元.若一个月内通话x min,两种方式的费用分别为y1元和y2元.(1)写出y1、y2与x之间的函数关系式;一个月内通话多少分钟,两种移动通讯费用相同;(3)某人估计一个月内通话300min,应选择哪种移动通讯合算些.考点:一次函数的应用.分析:(1)因为移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;“神舟行”不缴月租费,每通话1min付费0.6元.若一个月内通话xm in,两种方式的费用分别为y1元和y2元,则y1=50+0.4x,y2=0.6x;令y1=y2,解方程即可;(3)令x=300,分别求出y1、y2的值,再做比较即可.解答:解:(1)y1=50+0.4x;y2=0.6x;令y1=y2,则50+0.4x=0.6x,解之,得x=250 所以通话250分钟两种费用相同;(3)令x=300 则y1=50+0.4×300=170;y2=0.6×300=180 所以选择全球通合算.点评:本题需仔细分析题意,建立函数解析式,利用方程或简单计算即可解决问题. 20.如图,正比例函数与一次函数交于点A(3,4),且一次函数与x轴交于点C,与y轴交于点B,(1)求两个函数解析式;求△AOC的面积.考点:两条直线相交或平行问题.分析:(1)首先设正比例函数解析式为y=kx,再把(3,4)点代入可得k的值,进而得到解析式;设一次函数解析式为y=kx+b,把(3,4)( 0,�5)代入可得关于k、b的方程组,然后再解出k、b的值,进而得到解析式.根据一次函数的解析式即可求得C的坐标,根据A、C的坐标进而求得三角形AOC 的面积.解答:解:(1)设正比例函数解析式为y=kx,∵图象经过点A(3,4),∴4=k×3, k= ,∴正比例函数解析式为y= x;设一次函数解析式为y=kx+b,∵图象经过(3,4)(0,�5),∴ ,解得,∴一次函数解析式为y=3x�5.∵一次函数解析式为y=3x�5.∴C(,0)∴S△AOC= × ×4= .点评:此题主要考查了待定系数法求一次函数解析式,关键是掌握凡是函数经过的点必能满足解析式.。

2015-2016学年新人教版八年级上期中数学试卷5套(含答案)

2015-2016学年新人教版八年级上期中数学试卷5套(含答案)

2015-2016学年八年级(上)期中数学试卷一一、选择题:(每小题3分,共24分)1.下列长度的三条线段能组成三角形的是()A.1,2,4 B.4,9,6 C.5,5,11 D.3,5,82.将几根木条用钉子钉成如下的模型,其中在同一平面内不具有稳定性的是()A.B.C.D.3.如图,C在AB延长线上,CE⊥AF于点E,交BF于点D,∠F=60°,∠C=20°,则∠FBA=()A.50° B.60° C.70° D.80°4.下列说法:①用同一张底片冲洗出来的8张1存相片是全等形;②我国国旗上的四颗小五角星是全等形;③所有的等边三角形是全等形;④全等形的面积一定相等,其中正确的有()A.1个B.2个C.3个D.4个5.如图,∠1=∠2,要证明△ABC≌△ADE,还需补充的条件是()A.AB=AD,AC=AE B.AB=AD,BC=DE C.AB=DE,BC=AE D.AC=AE,BC=DE6.已知一个三角形的周长为18cm,且它的角平分线的交点到一边的距离是2.5cm,则这个三角形的面积是()A.22.5cm2 B.19cm2 C.21cm2 D.23.5cm27.下列“表情图”中,属于轴对称图形的是()A.B.C.D.8.已知一个等腰三角形两内角的度数之比为1:2,则这个等腰三角形顶角的度数为()A.36° B.36°或90° C.90° D.60°二、填空题(共7小题,每小题3分,满分21分)9.在平面直角坐标系中,点A(﹣1,2)和(﹣1,6)的对称轴是直线.10.在△ABC中,∠A=75°,∠B﹣∠C=15°,则∠C的度数是.11.若一个多边形的每一个外角都等于20°,则它的内角和等于.12.如图,已知AC=AD,BC=BD,CE=DE,则全等三角形共有对.13.如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是.14.在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,交AB于E,DB=12cm,则CD=.15.正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于.三、解答题.16.若过m边形的一个顶点有7条对角线,n边形没有对角线,k边形对角线共有k条,你能算出代数式的值吗?17.如图,AF是△ABC的高,AD是△ABC的角平分线,∠B=36°,∠C=76°,求∠DAF 的度数.18.已知:∠AOB和两点C、D,求作一点P,使PC=PD,且点P到∠AOB的两边的距离相等.(要求:用尺规作图,保留作图痕迹,写出作法,不要求证明).19.如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线MN对称的△A′B′C′;(2)在(1)的结果下,连接AA′,CC′,求四边形AA′C′C的面积.20.在平面直角坐标系中,M(2a﹣b,a+5),N(2b﹣1,b﹣a)(1)若M、N关于x轴对称,求a、b的值.(2)若M、N关于y轴对称,求a、b的值.21.(10分)(2014秋•禹州市期中)如图,14:00时,一条船从A处出发,以18海里/小时的速度,向正北航行,16:00时,船到达B处,从A处测得灯塔C在北偏西28°,从B 处测得灯塔C在北偏西56°,求B处到灯塔C的距离.22.(10分)(2014秋•禹州市期中)如图,等边△ABC中,点P在△ABC内,点Q在△ABC 外,且∠1=∠2,∠BPA=∠CQA,试判断△APQ的形状,并说明理由.23.(11分)(2014秋•禹州市期中)如图,在△ABC中,D是AB边的中点,PD⊥AB交∠ACB 的平分线与点P,PM⊥AC于点M,PN⊥BC交CB的延长线于点N.求证:CM=CN=(AC+BC)2015-2016学年八年级(上)期中数学试卷参考答案与试题解析一、选择题:(每小题3分,共24分)1.下列长度的三条线段能组成三角形的是()A.1,2,4 B.4,9,6 C.5,5,11 D.3,5,8考点:三角形三边关系.分析:根据三角形的三边关系进行分析判断.解答:解:根据三角形任意两边的和大于第三边,得A中,1+2=3<4,不能组成三角形;B中,4+6>9,能组成三角形;C中,5+5=11,不能够组成三角形;D中,5+3=8,不能组成三角形.故选B.点评:本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.2.将几根木条用钉子钉成如下的模型,其中在同一平面内不具有稳定性的是()A.B.C.D.考点:三角形的稳定性.分析:根据三角形具有稳定性进行解答.解答:解:根据三角形具有稳定性可得A、B、D都具有稳定性,C未曾构成三角形,因此不稳定,故选:C.点评:此题主要考查了三角形的稳定性,是需要识记的内容.3.如图,C在AB延长线上,CE⊥AF于点E,交BF于点D,∠F=60°,∠C=20°,则∠FBA=()A.50° B.60° C.70° D.80°考点:三角形的外角性质;直角三角形的性质.分析:首先根据三角形内角和定理可得∠FDE=30°,根据对顶角相等可得∠BDC=30°,再根据三角形外角的性质可得∠ABF=30°+20°=50°.解答:解:∵CE⊥AF,∴∠FED=90°,∵∠F=60°,∴∠FDE=30°,∴∠BDC=30°,∴∠C=20°,∴∠ABF=30°+20°=50°,故选:A.点评:此题主要考查了三角形外角的性质,以及三角形内角和,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.4.下列说法:①用同一张底片冲洗出来的8张1存相片是全等形;②我国国旗上的四颗小五角星是全等形;③所有的等边三角形是全等形;④全等形的面积一定相等,其中正确的有()A.1个B.2个C.3个D.4个考点:全等图形.分析:直接利用全等图形的性质分别分析得出即可.解答:解:①用同一张底片冲洗出来的8张1存相片是全等形,正确;②我国国旗上的四颗小五角星是全等形,正确;③所有的等边三角形是全等形,错误;④全等形的面积一定相等,正确.故选:C.点评:此题主要考查了全等图形,正确利用全等图形的性质分析得出是解题关键.5.如图,∠1=∠2,要证明△ABC≌△ADE,还需补充的条件是()A.AB=AD,AC=AE B.AB=AD,BC=DE C.AB=DE,BC=AE D.AC=AE,BC=DE考点:全等三角形的判定.分析:根据三角形内角和定理,由∠1=∠2,然后根据“SAS”对各选项进行判断.解答:解:∵∠1=∠2,∴∠C=∠E,∴当AE=AC,DE=BC时,可根据“SAS”判断△ABC≌△ADE.故选D.点评:本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.6.已知一个三角形的周长为18cm,且它的角平分线的交点到一边的距离是2.5cm,则这个三角形的面积是()A.22.5cm2 B.19cm2 C.21cm2 D.23.5cm2考点:角平分线的性质.分析:根据角平分线的性质得到OD=OE=OF=2.5,根据三角形面积公式得到答案.解答:解:∵点O是角平分线的交点,OD⊥AB,OF⊥AC,OE⊥BC,∴OD=OE=OF=2.5,△ABC的面积为:×AB×OD+×AC×OF+×BC×OE=×18×2.5=22.5,故选:A.点评:本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.7.下列“表情图”中,属于轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的定义:把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形直接回答即可.解答:解:A、不能沿某条直线对折后直线两旁的部分完全重合,故不是轴对称图形;B、不能沿某条直线对折后直线两旁的部分完全重合,故不是轴对称图形;C、不能沿某条直线对折后直线两旁的部分完全重合,故不是轴对称图形;D、是轴对称图形;故选D.点评:本题考查了轴对称图形的定义,牢记轴对称图形的定义是解答本题的关键,属于基础题,比较简单.8.已知一个等腰三角形两内角的度数之比为1:2,则这个等腰三角形顶角的度数为()A.36° B.36°或90° C.90° D.60°考点:等腰三角形的性质.分析:根据已知条件,根据一个等腰三角形两内角的度数之比先设出三角形的两个角,然后进行讨论,即可得出顶角的度数.解答:解:在△ABC中,设∠A=x,∠B=2x,分情况讨论:当∠A=∠C为底角时,x+x+2x=180°解得,x=45°,顶角∠B=2x=90°;当∠B=∠C为底角时,2x+x+2x=180°解得,x=36°,顶角∠A=x=36°.故这个等腰三角形的顶角度数为90°或36°.故选B.点评:本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.二、填空题(共7小题,每小题3分,满分21分)9.在平面直角坐标系中,点A(﹣1,2)和(﹣1,6)的对称轴是直线y=4.考点:坐标与图形变化-对称.专题:数形结合.分析:利用两已知点的坐标特征得这两个点的连线段与y轴平行,且连线段的中点坐标为(﹣1,4),则过点(﹣1,4)且与y轴垂直的直线是它们的对称轴.解答:解:∵(﹣1,2)和(﹣1,6)的横坐标相同,∴这两个点的连线段与y轴平行,且连线段的中点坐标为(﹣1,4),∴点(﹣1,2)与(﹣1,6)关于直线y=4对称.故答案为y=4.点评:本题考查了坐标与图形变化﹣对称:记住关于x轴对称和关于y轴对称的点的坐标特征.通常利用数形结合的思想解决此类问题.10.在△ABC中,∠A=75°,∠B﹣∠C=15°,则∠C的度数是45°.考点:三角形内角和定理.分析:根据三角形内角和等于180°和∠A=75°求得∠B+∠C=105°,由于∠B﹣∠C=15°,解方程组即可得到结果.解答:解:在△ABC中,∠A=75°,根据三角形的内角和定理和已知条件得到∠C+∠B=180°﹣∠A=180°﹣105°=105°,∵∠B﹣∠C=15°,∴∠C=45°.则∠C的度数为45°.故答案为:45°.点评:本题考查三角形的内角和定理,进行角的等量代换是解答本题的关键.11.若一个多边形的每一个外角都等于20°,则它的内角和等于2880°.考点:多边形内角与外角.分析:首先根据外角和与外角的度数可得多边形的边数,再根据多边形内角和公式180(n ﹣2)计算出答案.解答:解:∵多边形的每一个外角都等于20°,∴它的边数为:360°÷20°=18,∴它的内角和:180°(18﹣2)=2880°,故答案为:2880°.点评:此题主要考查了多边形的内角与外角,关键是正确计算出多边形的边数.12.如图,已知AC=AD,BC=BD,CE=DE,则全等三角形共有6对.考点:全等三角形的判定.分析:先根据“SSS”可证明△ABC≌△ABD,△AEC≌△AED,利用全等三角形的性质得∠ABC=∠ABD,则利用”SAS”可判断△BCF≌△BDF,然后再利用“SSS”可分别判断△AFC≌△AFD,△CEF≌△DEF,△BCE≌△BDE.解答:解:在△ABC和△ABD中,,∴△ABC≌△ABD(SSS);同理可得△AEC≌△AED(SSS),由△ABC≌△ABC得∠ABC=∠ABD,在△BCF和△BDF中,,∴△BCF≌△BDF(SAS),∴CF=DF,同理可得△AFC≌△AFD(SSS),△CEF≌△DEF(SSS),△BCE≌△BDE(SSS).故答案为6.点评:本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.13.如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是5.考点:全等三角形的性质.分析:先求出AB的长度,再根据全等三角形对应边相等解答即可.解答:解:∵BE=4,AE=1,∴AB=BE+AE=4+1=5,∵△ABC≌△DEF,∴DE=AB=5.故答案为:5.点评:本题考查了全等三角形对应边相等的性质,先求出DE的对应边AB的长度是解题的关键.14.在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,交AB于E,DB=12cm,则CD=6cm.考点:线段垂直平分线的性质.分析:根据直角三角形的性质得到DE=BD,根据线段垂直平分线的性质得到DA=DB,证明∠CAD=∠DAB,根据角平分线的性质得到答案.解答:解:∵DE⊥AB,∠B=30°,∴DE=BD=6,∵DE是AB的垂直平分线,∴DA=DB,∴∠DAB=∠B=30°,又∠C=90°,∴∠CAD=∠DAB,又∠C=90°,DE⊥AB,∴DC=DE=6.故答案为:6cm.点评:本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.15.正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于120°.考点:等边三角形的性质.分析:根据等边三角形性质得出∠ABC=∠ACB=60°,根据角平分线性质求出∠IBC和∠ICB,根据三角形的内角和定理求出即可.解答:解:∵△ABC是等边三角形,∴∠A=∠ABC=∠ACB=60°,∵BI平分∠ABC,CI平分∠ACB,∴∠IBC=∠ABC=30°,∠ICB=∠ACB=30°,∴∠BIC=180°﹣30°﹣30°=120°,故答案为:120°.点评:本题考查了等边三角形的性质,三角形的内角和定理,角平分线定义等知识点的应用,关键是求出∠IBC和∠ICB的度数.三、解答题.16.若过m边形的一个顶点有7条对角线,n边形没有对角线,k边形对角线共有k条,你能算出代数式的值吗?考点:多边形的对角线.分析:根据n边形从一个顶点出发可引出(n﹣3)条对角线.从n个顶点出发引出(n﹣3)条,而每条重复一次,所以n边形对角线的总条数为:(n≥3,且n为整数)可得到m、k、n的值,进而可得答案解答:解:解:由题意得:m﹣3=7,n=3解得m=10,n=3,由题意得:=k,解得k=5,=200.点评:此题主要考查了多边形的对角线,关键是掌握对角线条数的计算公式.17.如图,AF是△ABC的高,AD是△ABC的角平分线,∠B=36°,∠C=76°,求∠DAF 的度数.考点:三角形的外角性质;角平分线的定义;三角形内角和定理.分析:在△ADF中,由三角形的外角性质知:∠ADF=∠B+∠BAC,所以∠B+∠BAC+∠FAD=90°,联立△ABC中,由三角形内角和定理得到的式子,即可推出∠DAF,∠B,∠C的关系,再代值求解即可.解答:解:由三角形的外角性质知:∠ADF=∠B+∠BAC,故∠B+∠BAC+∠DAF=90°;①△ABC中,由三角形内角和定理得:∠C+∠B+∠BAC=180°,即:∠C+∠B+∠BAC=90°,②②﹣①,得:∠DAF=(∠C﹣∠B)=20°.点评:此题主要考查了三角形的外角性质、角平分线的性质以及三角形内角和定理等知识,熟记此题的结论在解选择和填空题时会加快解题效率.18.已知:∠AOB和两点C、D,求作一点P,使PC=PD,且点P到∠AOB的两边的距离相等.(要求:用尺规作图,保留作图痕迹,写出作法,不要求证明).考点:作图—复杂作图;角平分线的性质;线段垂直平分线的性质.专题:作图题.分析:由所求的点P满足PC=PD,利用线段垂直平分线定理得到P点在线段CD的垂直平分线上,再由点P到∠AOB的两边的距离相等,利用角平分线定理得到P在∠AOB的角平分线上,故作出线段CD的垂直平分线,作出∠AOB的角平分线,两线交点即为所求的P 点.解答:解:如图所示:作法:(1)以O为圆心,任意长为半径画弧,与OA、OB分别交于两点;(2)分别以这两交点为圆心,大于两交点距离的一半长为半径,在角内部画弧,两弧交于一点;(3)以O为端点,过角内部的交点画一条射线;(4)连接CD,分别为C、D为圆心,大于CD长为半径画弧,分别交于两点;(5)过两交点画一条直线;(6)此直线与前面画的射线交于点P,∴点P为所求的点.点评:此题考查了作图﹣复杂作图,涉及的知识有:角平分线性质,以及线段垂直平分线性质,熟练掌握性质是解本题的关键.19.如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线MN对称的△A′B′C′;(2)在(1)的结果下,连接AA′,CC′,求四边形AA′C′C的面积.考点:作图-轴对称变换.分析:(1)根据轴对称的性质作出△ABC关于直线MN对称的△A′B′C′即可;(2)根据梯形的面积公式求出梯形AA′C′C的面积即可.解答:解:(1)如图所示;(2)∵由图得四边形AA′C′C的面积是等腰梯形,CC′=2,AA′=4,高是3,∴S四边形AA′C′C=(AA′+CC′)×3=(4+2)×3=9.点评:本题考查的是作图﹣轴对称变换,熟知轴对称图形的作法是解答此题的关键.20.在平面直角坐标系中,M(2a﹣b,a+5),N(2b﹣1,b﹣a)(1)若M、N关于x轴对称,求a、b的值.(2)若M、N关于y轴对称,求a、b的值.考点:关于x轴、y轴对称的点的坐标.分析:(1)根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”列方程组求解即可;(2)根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”列方程组求解即可.解答:解:(1)∵M、N关于x轴对称,∴,解得;(2)∵M、N关于y轴对称,∴,解得.点评:本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.21.(10分)(2014秋•禹州市期中)如图,14:00时,一条船从A处出发,以18海里/小时的速度,向正北航行,16:00时,船到达B处,从A处测得灯塔C在北偏西28°,从B 处测得灯塔C在北偏西56°,求B处到灯塔C的距离.考点:等腰三角形的判定与性质;方向角.分析:根据所给的角的度数,容易证得△BCA是等腰三角形,而AB的长易求,所以根据等腰三角形的性质,BC的值也可以求出.解答:解:据题意得,∠A=28°,∠DBC=56°,∵∠DBC=∠A+∠C,∴∠A=∠C=28°,∴AB=BC,∵AB=18×2=36,∴BC=36(海里).∴B处到灯塔C的距离36(海里).点评:本题考查了等腰三角形的性质及方向角的问题;由已知得到三角形是等腰三角形是正确解答本题的关键.要学会把实际问题转化为数学问题,用数学知识进行解决实际问题的方法.22.(10分)(2014秋•禹州市期中)如图,等边△ABC中,点P在△ABC内,点Q在△ABC 外,且∠1=∠2,∠BPA=∠CQA,试判断△APQ的形状,并说明理由.考点:全等三角形的判定与性质;等边三角形的判定与性质.分析:先证△ABP≌△ACD得AP=AD,再证∠PAD=60°,从而得出△APD是等边三角形.解答:解:△APQ是等边三角形.理由如下:∵AB=AC,∠1=∠2,∠BPA=∠CQA,∴△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∴∠PAQ=∠CAQ+∠PAC=∠BAP+∠PAC=∠BAC=60°,∴△APQ是等边三角形.点评:本题考查了等边三角形的判定与性质及全等三角形的判定方法,注意条件与问题之间的联系.23.(11分)(2014秋•禹州市期中)如图,在△ABC中,D是AB边的中点,PD⊥AB交∠ACB 的平分线与点P,PM⊥AC于点M,PN⊥BC交CB的延长线于点N.求证:CM=CN=(AC+BC)考点:全等三角形的判定与性质;角平分线的性质.专题:证明题.分析:连接AP,BP,易证PM=PN和AP=BP,即可证明RT△APM≌RT△BPN和RT△CPM≌RT△CPN,可得AM=BN和CM=CN,即可解题.解答:证明:连接AP,BP,∵CP是∠ACB平分线,∴PM=PN,∵PD⊥AB,D是AB中点,∴AP=BP,在RT△APM和RT△BPN中,,∴RT△APM≌RT△BPN(HL),∴AM=BN,在RT△CPM和RT△CPN中,,∴RT△CPM≌RT△CPN(HL),∴CM=CN,∵CN=BC+BN,CM=AC﹣AM∴CM=CN=(BC+BN+AC﹣AM)=(BC+AC).点评:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证RT△APM≌RT△BPN和RT△CPM≌RT△CPN是解题的关键.2015-2016学年八年级(上)期中数学试卷一、选择题(每小题3分,共24分)1.下列说法①任意一个数都有两个平方根;②任意一个数都有立方根;③﹣125的立方根是±5;④是一个分数;⑤两个无理数的积是一个有理数;⑥但0<a<1时,,其中正确的有()A.0个B.1个C.2个D.3个2.如图数轴上有A、B、C、D四点,根据图中各点的位置,判断那一点所表示的数与最接近的是()A.A B.B C.C D.D3.一次课堂练习,小颖同学做了如下4道因式分解题,你认为小颖做的不够完整的一道题是()A.x3﹣4x2+4x=x(x2+4x+4)B.x2y﹣xy2=xy(x﹣y)C.x2﹣y2=(x﹣y)(x+y)D.x2﹣2xy+y2=(x﹣y)24.如果ax2+2x+=(2x+)2+m,则a,m的值分别是()A.2,0 B.4,0 C.2,D.4,5.下列运算正确的是()A.a3+a3=a6 B.a6÷a2=a4 C.a3•a5=a15 D.(a3)4=a76.下列语句好可以称为命题的是()A.延长线段AB到C B.垂线段最短C.过点P作线段AB的垂线D.锐角都相等吗7.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110° B.125° C.130° D.155°8.如图,在正方形网格中,△ABC的三个顶点及点D、E、F、G、H都在格点上,现以D、E、F、G、H中的三点为顶点画三角形,则下列与△ABC面积相等但不全等的三角形是()A.△EHD B.△EGF C.△EFH D.△HDF二、填空题(每小题3分,共21分)9.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是(结果需化简).10.已知x2=16,那么x=;如果(﹣a)2=(﹣5)2,那么a=.11.利用分解因式计算:(1)16.8×+7.6×=;(2)1.222×9﹣1.332×4=.12.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是.13.将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成,定义=ad﹣bc,上述记号就叫做2阶行列式,若=12,则x=.14.如图,△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是.15.如图,已知∠1=∠2=90°,AD=AE,那么图中有对全等三角形.三、计算题(本大题共8小题,满分65分)16.(1)÷(π﹣2014)0+|﹣4|(2)|3﹣π|﹣+(π﹣4)0.17.先化简,再求值:(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1),其中x=﹣.18.化简(1)(2x4﹣x3)÷(﹣x)﹣(x﹣x2)•2x(2)[(ab﹣1)(ab+2)﹣2a2b2+2]÷(﹣ab)19.因式分解(1)m2﹣n2+2m﹣2n(2)x2(y2﹣1)+2x(y2﹣1)+(y2﹣1)20.如图,△ABC和△DAE中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE,求证:△ABD≌△AEC.21.如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,BE=CF.(1)图中有几对全等的三角形请一一列出;(2)选择一对你认为全等的三角形进行证明.22.(10分)(2014秋•太康县期中)已知:a=2012x+2013,b=2012x+2014,c=2012x+2015,求多项式a2+b2+c2﹣ab﹣bc﹣ac的值.23.(10分)(2007•常州)已知,如图,延长△ABC的各边,使得BF=AC,AE=CD=AB,顺次连接D,E,F,得到△DEF为等边三角形.求证:(1)△AEF≌△CDE;(2)△ABC为等边三角形.2015-2016学年八年级(上)期中数学试卷二参考答案与试题解析一、选择题(每小题3分,共24分)1.下列说法①任意一个数都有两个平方根;②任意一个数都有立方根;③﹣125的立方根是±5;④是一个分数;⑤两个无理数的积是一个有理数;⑥但0<a<1时,,其中正确的有()A.0个B.1个C.2个D.3个考点:实数.分析:根据实数、立方根、平方根,即可解答.解答:解:①任意一个数都有两个平方根,错误,因为负数没有平方根;②任意一个数都有立方根,正确;③﹣125的立方根是﹣5,故错误;④是一个无理数,故错误;⑤两个无理数的积是一个有理数,错误,例如:;⑥当0<a<1时,,正确;其中正确的有2个.故选:C.点评:本题考查了实数,解决本题的关键是熟记平方根、立方根的定义.2.如图数轴上有A、B、C、D四点,根据图中各点的位置,判断那一点所表示的数与最接近的是()A.A B.B C.C D.D考点:实数与数轴.分析:先估算出的取值范围,再找出与之接近的点即可.解答:解:∵≈1.4,∴≈0.7,∴点D与之接近.故选D.点评:本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.3.一次课堂练习,小颖同学做了如下4道因式分解题,你认为小颖做的不够完整的一道题是()A.x3﹣4x2+4x=x(x2+4x+4)B.x2y﹣xy2=xy(x﹣y)C.x2﹣y2=(x﹣y)(x+y)D.x2﹣2xy+y2=(x﹣y)2考点:提公因式法与公式法的综合运用.专题:计算题.分析:A、原式提取x,再利用完全平方公式分解得到结果,即可做出判断;B、原式提取xy得到结果,即可做出判断;C、原式利用平方差公式分解得到结果,即可做出判断;D、原式利用完全平方公式分解得到结果,即可做出判断.解答:解:x3﹣4x2+4x=x(x2+4x+4)=x(x+2)2,过程不够完整,故选A.点评:此题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4.如果ax2+2x+=(2x+)2+m,则a,m的值分别是()A.2,0 B.4,0 C.2,D.4,考点:完全平方公式.专题:计算题.分析:运用完全平方公式把等号右边展开,然后根据对应项的系数相等列式求解即可.解答:解:∵ax2+2x+=4x2+2x++m,∴,解得.故选D.点评:本题考查了完全平方公式,利用公式展开,根据对应项系数相等列式是求解的关键.5.下列运算正确的是()A.a3+a3=a6 B.a6÷a2=a4 C.a3•a5=a15 D.(a3)4=a7考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:根据合并同类项的法则,同底数幂的乘法与除法以及幂的乘方的知识求解即可求得答案.解答:解:A、a3+a3=2a3,故A错误;B、a6÷a2=a4,故B正确;C、a3•a5=a8,故C错误;D、(a3)4=a12,故D错误.故选:B.点评:此题考查了合并同类项的法则,同底数幂的乘法与除法以及幂的乘方等知识,解题要注意细心.6.下列语句好可以称为命题的是()A.延长线段AB到C B.垂线段最短C.过点P作线段AB的垂线D.锐角都相等吗考点:命题与定理.分析:根据命题的定义解答即可.解答:解:A、延长线段AB到C,不是命题;B、垂线段最短,是命题;C、过点P作线段AB的垂线,不是命题;D、锐角都相等吗,不是命题;故选:B.点评:此题考查了命题与定理,判断一件事情的语句是命题,一般有“是”,“不是”等判断词.7.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110° B.125° C.130° D.155°考点:全等三角形的判定与性质.分析:易证△ACD≌△BCE,由全等三角形的性质可知:∠A=∠B,再根据已知条件和四边形的内角和为360°,即可求出∠BPD的度数.解答:解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选:C.点评:本题考查了全等三角形的判定和性质、三角形的内角和定理以及四边形的内角和定理,解题的关键是利用整体的数学思想求出∠B+∠D=75°.8.如图,在正方形网格中,△ABC的三个顶点及点D、E、F、G、H都在格点上,现以D、E、F、G、H中的三点为顶点画三角形,则下列与△ABC面积相等但不全等的三角形是()A.△EHD B.△EGF C.△EFH D.△HDF考点:全等三角形的判定.分析:根据所给三角形结合三角形全等的判定定理可得△EHD与△ABC全等,△EGF与△ABC全等,因此A、B错误;△EFH与△ABC不全等,但是面积也不相等,故C错误;△HDF与△ABC不全等,面积相等,故此选项正确.解答:解:A、△EHD与△ABC全等,故此选项不合题意;B、△EGF与△ABC全等,故此选项不合题意;C、△EFH与△ABC不全等,但是面积也不相等,故此选项不合题意;D、△HDF与△ABC不全等,面积相等,故此选项符合题意;故选:D.点评:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.二、填空题(每小题3分,共21分)9.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是﹣3(结果需化简).考点:算术平方根.专题:规律型.分析:通过观察可知,规律是根号外的符号以及根号下的被开方数依次是:(﹣1)1+1×0,(﹣1)2+1,(﹣1)3+1…(﹣1)n+1),可以得到第16个的答案.解答:解:由题意知道:题目中的数据可以整理为:,(﹣1)2+1,…(﹣1)n+1),∴第16个答案为:.故答案为:.点评:主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.10.已知x2=16,那么x=±4;如果(﹣a)2=(﹣5)2,那么a=±5.考点:平方根.分析:根据平方根的定义,即可解答.解答:解:∵x2=16,∴x=±4,∵(﹣a)2=(﹣5)2,∴a2=25,∴a=±5,故答案为:±4,±5.点评:本题考查了平方根的定义,解决本题的关键是熟记平方根的定义.11.利用分解因式计算:(1)16.8×+7.6×=7;(2)1.222×9﹣1.332×4= 6.32.考点:因式分解的应用.分析:(1)利用提取公因式法分解因式计算即可;(2)利用平方差公式分解因式计算即可.解答:解:(1)原式=(8.4+7.6)×=16×=7;(2)1.222×9﹣1.332×4。

2015—2016学年度上学期期中检测八年级英语试卷

2015—2016学年度上学期期中检测八年级英语试卷

2015—2016学年度上学期期中检测八年级英语试卷听力部分(25分)一﹑听句子选图片(共5小题,计5分)听下面五个句子,选出与其意思相符的图片。

每个句子读两遍。

( )1.( )2.( )3.( )4.( )5.二﹑听短对话选答案(共5小题,计5分)听下面五段对话,每段对话后有一个小题,从题中所给的A﹑B﹑C三个选项中选出最佳答案。

每段对话读两遍。

( ) 6. What lesson does Lucy have this Sunday morning?A.A tennis lesson.B.A dance lesson.C.A guitar lesson( ) 7. What’s the main reason Sarah likes watching the sitcom?A.It’s easy.B. It’s interesting.C. It’s educational( ) 8. What did Steven win in the talent show?A. The prize for the funniest performer.B. The prize for the most creative performer.C. .The prize for the most exciting performer.( ) 9. What is Bob like?A.He is funnyB. He is quiet.C. He is shy.( ) 10. Who hardly watches TV this term?A.Helen.B. Tim.C. Mike三﹑听长对话选答案(共10小题,计10分)听下面四段对话,每段对话后有几个小题,从题中所给的A﹑B﹑C三个选项中选出最佳答案。

每段对话读两遍。

听下面一段对话,回答11至12两个小题。

( ) 11.What shows does Mike like?A.Game shows. B .Talent shows. C .Talk shows.( )12.why does Mike like them?A.Because he can know more players.B.Because he can get more fun from them.C.Because he can learn more things from the performers.听下面一段对话,回答13至14两个小题。

2015年八年级上册物理期中测试卷答案

2015年八年级上册物理期中测试卷答案

期中测试卷参考答案
二、填空题(每空1分,共34分)
16.2.80 1
17.运动静止
18.(1)12.50 0.150
(2)16 6.25
19.振动鼓面琴弦空气柱
20.(1)音调低响度大响度
(2)次超
21.信息能量
22.露霜
23.外液化
24.A 变大
25.45°0°
26.能光路是可逆的
27.1.8 1.5 不变
28.37°43°
三、解答题(共36分)
29.答案:s隧道=s﹣s车=vt﹣s车=13m/s×70s﹣310m=600m.
30.解:(3)探测器发出自动刹车装置出现故障的信息到探测器收到地面刹车指令用时
t=1s+1s+3s=5s,
故当探测器收到地面刹车指令时,距离障碍物d=22m﹣V(5s+5s)=22m﹣2m/s×10s=2m;答:当探测器收到地面刹车指令时,距离障碍物是2m.
31.答案:(1)答案:(2)
32.均匀缓慢
(1)冰(2)吸热(3)需要
33.(1)D
(2)垂直
(3)同一平面内
(4)光源(激光笔等)
(5)验证反射光线跟入射光线和法线是否在同一平面上
34.①在公路上,汽车鸣笛要很长时间才能听见,易发生交通事故
②在野外,发现紧急情况进行呼救,声音不易被人发觉
③在教室里听课,老师的讲话后排同学可能要1.5min才能听见,声音与口形不相对应等。

2015年(人教版)八年级上册期中考试试题及答案

2015年(人教版)八年级上册期中考试试题及答案

2015年八年级上册物理期中试题(后附答案)第I卷选择题一.选择题(本题共20小题,每小题只有一个正确选项,总分60分) 1. 下列数值最接近实际情况的是 A.人体感到舒适的温度约为42℃ B.人步行的速度约为20m/sC.正常人10次脉搏的时间约为1min D.课桌的高度约为80cm2. 下列说法正确的是A.房屋、树木随地球转动不属于机械运动。

B.对同一物体选用不同的参照物,其运动情况一定不相同。

C.在匀速直线运动中速度与路程成正比,与时间成反比。

D.用也可以表示物体运动的快慢,且越小,表示运动越快。

3. 关于运动和静止,下列说法错误的是A.甲图中拖拉机和联合收割机以同样的速度前进时,以拖拉机为参照物,联合收割机是静止的 B.乙图中站在正在上升的观光电梯上的乘客认为电梯是静止的,是因为他以身边的乘客为参照物 C.丙图中站在地球上的人觉得地球同步通信卫星在空中静止不动,是因为他以自己为参照物 D.丁图中飞机在空中加油时若以受油机为参照物,加油机是运动的4. 甲、乙两同学从同一地点同时向相同方向做直线运动,他们通过的路程随时间变化的图象如图所示,由图象可知A.在0~10s内,甲同学比乙同学运动的快 B.两同学在距离出发点100m处相遇 C.在10s~20s内,乙同学静止不动 D.在0~10s内,乙同学的速度为10m/s5. 下列关于声现象的说法中正确的是 A.声音在真空中的传播速度为340m/s B.声音在不同介质中的传播速度相同1 C.一切发声的物体都在振动 D.超声碎石是利用声能传递信息6. 利用如图所示的装置进行有关声现象的探究实验,下列说法中错误的是A.用该装置可以探究声音的产生B.若要用该装置探究音调与频率的关系,可以移动两铅笔之间的距离 C.若要用该装置探究响度与振幅的关系,可以将橡皮筋快速拨动 D.拨动橡皮筋是我们能听到声音,说明空气可以传声7. 在一只玻璃杯中先后装入不同量的水,用细棒轻轻敲击玻璃杯,会听到不同频率的声音,与此类似,当医生在给病人检查腹部是否有积水时,常会用手指关节轻轻叩击患者腹部,细细倾听其发出的声音,此为“叩诊”,医生主要是根据什么判定患者腹部是否有积水的A.声音的响度 B.声音的音调C.声音是否悦耳动听 D.这种判断方法不合理8. 下列关于声的说法正确的是A.用大小不同的力敲击同一音叉是为了探究音调与频率的关系 B.人们可以用声学仪器接收到超声波判断地震的方位和强度 C.倒车雷达是利用回声定位探测车后的障碍物 D.给摩托车安装消声器是阻断噪声传播9. 如图所示,分别是音叉和钢琴发出的两列声波在同一示波器上显示的波形,则这两列声波A.音调不同 B.响度不同C.音色不同D.音调、响度和音色均不同10.伴随现代社会的高速发展,噪声已严重影响人们的正常生活和工作,下面事例中不是直接控制噪声措施的是2。

2015年八年级上学期期中数学试卷

2015年八年级上学期期中数学试卷

2015年八年级上学期期中数学试卷二、填空题7.如图,△ABC中,∠ACB=90°,以它的各边为边向外作三个正方形,面积分别为S1,S2,S3,已知S1=15,S3=25,则S2=▲.8.已知等腰三角形一个外角等于80°,则这个等腰三角形的顶角的度数是▲.9.如图,已知∠BAC=∠DAC,请添加一个条件:▲,使△ABC≌△ADC(写出一个即可).10.如图,OC是∠AOB的平分线,PD⊥DA,垂足为D,PD=2,则点P到OB的距离是▲.11.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB =9,AC=7,则△ADE的周长是▲.12.如图,△ABC为等边三角形,以AC为直角边作等腰直角三角形ACD,∠ACD=90°,则∠CBD=▲°.13.如图,△ABC≌△BDE,点B、C、D在一条直线上,AC、BE交于点O,若∠AOE=95°,则∠BDE=▲°.14.如图,在△ABC中,∠ACB=90°,∠CAB=30°.以AB长为一边作△ABD,且AD=BD,∠ADB=90°,取AB中点E,连DE、CE、CD.则∠EDC=▲°.15.已知直角三角形斜边长为10 cm,周长为22 cm,则此直角三角形的面积为▲.16.如图,在2×2方格纸中,有一个以格点为顶点的△ABC,请你找出方格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有▲个.一、选择题1.在下列常见的手机软件小图标中,是轴对称图形的是A. B. C. D.2.下列几组数中,能构成直角三角形三边的是AB(第9题)DCAO BPCD(第10题)ABCS3S1S2(第7题)(第14题)A BDCEA(第16题)CBAB DEC(第13题)O(第12题)AB CDA .2,3,5B .3,4,4C .32,42,52D .6,8,103.下列说法正确的是A .全等三角形是指形状相同的两个三角形B .全等三角形的周长和面积分别相等C .全等三角形是指面积相等的两个三角形D .所有的等边三角形都是全等三角形 4.如图,在△ABC 中,AB =AC ,AD 是BC 边上中线.若AB =10,AD =8,则△ABC 的周长是A .26B .28C .32D .365.如图,点O 是△ABC 的两外角平分线的交点,下列结论:①OB =OC ;②点O 到AB 、AC 的距离相等;③点O 到△ABC 的三边的距离相等;④点O 在∠A 的平分线上.其中结论正确的个数是A .1B .2C .3D .46.如图,在△ABC 中,AB =BC ,∠ACB =90°,点D 、E 在AB 上,将△ACD 、△BCE 分别沿CD 、CE 翻折,点A 、B 分别落在点A ′、B ′的位置,再将△A ′CD 、△B ′CE 分别沿A ′C 、B ′C 翻折,点D 与点E 恰好重合于点O ,则∠A ′OB ′ 的度数是A .90°B .120°C .135°D .150°三、解答17.已知:如图,AB =AD ,∠C =∠E ,∠BAE =∠DAC . 求证:△ABC ≌△ADE .18.已知:如图,在△ABC 中,DE ∥BC ,AD =AE . 求证:AB =AC .19.如图,在边长为1的小正方形组成的方格纸中,有一个以格点为 顶点的△ABC .(1)试根据三角形三边关系,判断△ABC 的形状;(2)在方格纸中利用直尺分别画出AB 、BC 的垂直平分线,交点为O .观察点O 的位置, 你能得出怎样的结论?A (第4题) D (第5题) A CB O B A A ′ B ′ D E O (第6题) D E BC (第18题)A ABC (第19题)(第17题) A B D E20.如图,将边长为a 与b 、对角线长为c 的长方形纸片ABCD ,绕点C 顺时针旋转90°得到长方形EFCG ,连接AE .通过用不同方法计算梯形ABGE 的面积可验证勾股定理,请你写出验证的过程.21.如图,在△ABC 中,∠C =90°,∠A >∠B .(1)用直尺和圆规.....作.AB 的垂直平分线,交AB 与D ,交BC 于E ;(不写作法,保留作图痕迹) (2)在(1)的条件下,若CE =DE ,求∠A ,∠B 的度数.22.八年级某班数学实验课安排测量操场上旗杆的高度.小聪同学经过认真思考,研究出了一个可行的测量方案:在某一时刻测得旗杆AB 的影长BC 和∠ACB 的大小,然后在操场上画∠MDN ,使得∠MDN =∠ACB ,在边DM 上截取线段DE =BC ,再利用三角形全等的知识求出旗杆的高度.请完成小聪同学的测量方案,并说明方案可行的理由.23.(1)如图(1),在△ABC 中,AB =AC ,O 为△ABC 内一点,且OB =OC求证:直线AO 垂直平分BC .以下是小明的证题思路,请补全框图中的分析过程.(2)如图(2),在△ABC 中,AB =AC ,点D 、E 分别在AB 、AC 上,且BD =CE .请你只用无刻度的直尺画出BC 的垂直平分线(不写画法,保留画图痕迹).(3)如图(3),五边形ABCDE 中,AB =AE ,BC =DE ,∠B =∠E .请你只用无刻度的直尺画出CD 边的垂直平分线,并说明理由.(第21题)B AC (第20题) A B C G E FD a a b b c c (第22题) (第23题)(1) (2) A B D C E (3)24.在一次“构造勾股数”的探究学习课中,老师给出了下表:其中(1)观察表格,当m =2,n =1时,此时对应的a 、b 、c 的值能否作为直角三角形三边的长?说明你的理由.(2)探究a 、b 、c 与m 、n 之间的关系,并用含m 、n 的代数式表示: a = ▲ ,b = ▲ ,c = ▲ .(3)以a 、b 、c 为三边长的三角形是否一定是直角三角形?如果是,请说明理由;如果不是,请举出反例.25. (1)如图(1),在△ABC 中,AB >AC >BC ,∠ACB =80°,点D 、E 线段BA 、AB 的延长线上,且AD =AC ,BE =B C ,则∠DCE = ▲ °;(2)如图(2),在△ABC 中,AB >AC >BC ,∠ACB =80°,点D 、E 在边AB 上,且AD =AC ,BE =BC ,求∠DCE 的度数;C (第25题(1)) C ADE B。

2015年八年级上册期中试卷及答案大全

2015年八年级上册期中试卷及答案大全

2015年八年级上册期中试卷及答案大全2015年八年级上册期中试卷及答案大全语文2015年八年级上学期半期语文期中试卷(含答案)2015-2016学年八年级语文期中试题(带答案)八年级语文上册期中复习测试卷(新人教有答案)数学新人教版15年八年级上册数学期中考试试卷及答案新人教版八年级上册数学期中考试模拟题带答案青岛版八年级数学上册期中测试题:附答案英语2015年八年级英语上册半期质检试题(有答案)2015年八年级上学期英语期中试卷(含答案) 八年级英语上册期中试题(人教新目标带答案)生物2015-2016年八年级生物上学期期中试卷(带答案) 2015年八年级生物上册期中测试题(苏科版附答案) 2015学年八年级生物上册期中试卷(含答案) 地理15年秋季学期八年级地理期中试题(有答案)2016学年八年级地理上册期中测试题及答案八年级上册地理期中考试模拟试题(新人教有答案)物理八年级上册物理期中测试题2015年及参考答案秋季学期八年级物理上册期中试题及答案2015年八年级上册期中物理试题(含答案)历史2015-2016八年级历史与社会上册期中试卷(含答案) 2015年八年级上册历史与社会期中试卷(有答案)2015-2016八年级历史上册期中试卷(附答案)政治2015-2016学年上学期八年级政治期中试题(附答案) 2015-2016年秋期八年级政治上册期中试题(含答案) 2016年苏教版八年级上册政治期中考试卷(带答案)同学们一定要懂得只有好好学习才能取得好成绩,希望提供的2015年八年级上册期中试卷及答案,大家能够多多练习,争取向父母和老师交一份不错的成绩单!为大家策划了八年级上册期中复习专题,为大家提供了八年级期中考试复习知识点、八年级期中考试复习要点、八年级期中考试模拟题、八年级期中考试试卷、八年级语文期中复习要点、八年级数学期中模拟题、八年级英语期中模拟题等相关内容,供大家复习参考。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015—2016学年度第一学期期中考试试卷
八年级数学
班级 姓名 得分
一、单项选择题(每小题4分,共40分) 1.函数2
1
--=
x x y 中自变量x 的取值范围为( ). A .x>2 B .x>1 C .x>1且 x ≠2 D .21≠≥x x 且
2.已知点P(2a,1-3a)在第二象限,且点P 到x 轴的距离与到y 轴的距离之和为6,则a 的值为( ).
A . -1
B .1
C . -5
D .5 3.在下列条件中能确定⊿ABC 是直角三角形的条件有( ).
①∠A+∠B=∠C;②∠A: ∠B: ∠C=1:2:3;③∠A=90°-∠B;④∠A=∠B=2
1
∠C.
A .1个
B .2个
C .3个
D .4个
4.已知直线y=2x+k 与x 轴的交点为(-2,0),则关于x 的不等式2x+k<0的解集是( )
A .x>-2
B .x ≥-2
C .x<-2
D .x ≤-2
5.点A(-5,1y ),B (-2,2y )都在直线x y 2
1
-=上,则1y 与2y 之间的大小关系
是( ).
A .1y =2y
B .1y >2y
C .1y <2y
D .不能确定 6.在⊿ABC 中,∠ABC 与∠ACB 的角平分线交于点I 若∠ABC=60°,∠ACB=40°则∠BIC=( ).
A .100°
B .110°
C .120°
D .130°
7.若直线y=3x-1与y=x-k 的交点在第三象限,则k 的取值范围是( ).
A .k<31
B .131〈〈k
C .k>1
D .k>1或k<31
8.如图,直线y=kx+b 经过点A(-1,-2)和点B (-2,0),则不等式2x<kx+b<0的解集为( ). A x<-2 C .-2<x<-1 D .-2≤x ≤-1
9.如图,∠A,∠1,∠2的大小关系是( ). A .∠2>∠1>∠A B .∠1>∠2>∠A C .∠A>∠2>∠1 D .∠A>∠1>∠2
/分
10.小高从家门口骑车去单位上班,先走平路到达点A 走上坡路到达点B 到家门口需要的时间为( )分钟。

A .12 B .13 C .14 D .15
二、填空题(每小题5分,共20分)
11.已知三角形的边长分别为5cm 和2cm 数,则它的周长是 .
12.王老师在黑板上写出一个一次函数关系式,甲、乙、丙三位同学分别说出这个函数的一条性质:甲:函数图象不经过第三象限;乙:当x<1时y>0;丙:y 随x 的增大而减小。

已知这三位同学的叙述是正确的,请写出一个满足上述所有性质的函数 .
13.若y+2与x-3成正比例,且当x=0时,y=1.则当x=1时,y 的值为 .
14. 甲、乙两人在直线跑道上同起点、同终点、 同方向匀速跑步500米,先到终点的人原地休息。

已知甲先出发2秒。

在跑步过程中,
甲、乙两人的距离y (米)与乙出发的时间x(秒)
之间的关系如图所示,给出以下结论:
①a=8; ②b=92; ③c=123. 其中正确的是 .
三、解答题(15,16,17,18每题8分,19,20每题10分,21,22每题12分,23题14分,共90分)
15.写出下列命题的逆命题,并判断原命题的真假,如果是假命题,请举一反例。

(1) 如果两个数都是负数,那么这两个数的差是负数。

(2) 内错角相等。

16. 某探险队得到一幅藏宝图,海岛上四棵古树的位置分别记作A (3,5),B (-3,-4),C (-2,7),D (3,1),
宝藏埋在AB 和CD 的交点处。

(1) 在图中画出A,B,C,D 四点; (2) 连接AB,CD ,写出宝藏所在地的坐标。

17.已知直线y=2x+3沿x 轴平移后经过点(2,-1),求:
(1)直线平移后的表达式;
(2)如何平移的?
C
1A B
D
kg
18. 如图,已知:DC ∥AB,∠1+∠A=90°,求证:AD ⊥DB.
19.某地长途汽车客运公司规定旅客可随身携带一定质量的行李,如果超过规定质量,则需要购买行李票。

行李票费用y 元是行李质量xkg 函数图像如图所示。

(1) 求y 与x 之间的函数表达式;
(2) 求旅客最多可免费携带行李的质量是多少? (3) 当行李票费为8元时,携带行李的质量是多少?
20.已知等腰三角形的周长为24cm,若底边长为y(cm),一腰长为x(cm ), (1)写出y 与x 的函数关系式; (2)求自变量x 的取值范围;(3)画出这个函数图象。

21.已ABC 知直线111b x k y +=,经过原点和点(-2,-4),直线222b x k y +=经过点(1,5)和点(8,-2),求:
(1)21y y 和的函数关系式,并在同一坐标系中画出函数图象; (2)若两直线交于点M ,求M 的坐标;
(3)若直线2y 与x 轴交与点N ,试求⊿MON 的面积。

A
B
B
A B 22.如图,AD,AE 分别是⊿ABC 的高和角平分线(∠C>∠B )(1)求证:∠DAE=2
1
(∠C-∠B).
(2)若F 为AE 上一点,且FD ⊥BC 于点D ,试推导∠EFD 数量关系。

(4) 当点在AE 的延长线上时,其余条件都不变,请直接判断(2)中推导的结论是否还成立?
23.某饮料厂开发了A,B 两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲、乙的含量如下表所示,现用甲原料和乙原料各2800克进行试生产,计划生产A,B 两种饮料共100瓶。

设生产A 种饮料x 瓶,解答下列问题: (1)有哪几种符合题意的生产方案?写出解答过程;
(2)如果A 种饮料每瓶的成本为2.6元,B 饮料每瓶的成本为2.8元,这两种饮料成本总额为y 元,请写出y 与x 之间的关系式,并说明x 取何值时成本总额最低,最低是多少元?。

相关文档
最新文档