2020~2021成都市实验外国语学校(西区)初三上学期期中数学试卷
2020-2021学年四川成都九年级上数学期中试卷
2020-2021学年四川成都九年级上数学期中试卷一、选择题1. 下列说法正确的是( )A.8的立方根是2B.−4的平方根是−2C.16的平方根是4D.1的立方根是±12. 如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是( )A. B.C. D.3. 2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成.该卫星距离地面约36000千米,将数据36000用科学记数法表示为( )A.3.6×103B.3.6×104C.3.6×105D.36×1044. 二次根式√x−1中,x的取值范围是( )A.x≥1B.x>1C.x≤1D.x<15. 在平面直角坐标系中,点P(−3, −5)关于原点对称的点的坐标是( )A.(3, −5)B.(−3, 5)C.(3, 5)D.(−3, −5)6. 下列计算正确的是( )A.x2+x2=x4B.(x−y)2=x2−y2C.(x2y)3=x6yD.(−x)2⋅x3=x57. 某校开展了主题为“青春•梦想”的艺术作品征集活动.从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50,则这组数据的中位数是( ) A.42件 B.45件 C.46件 D.50件8. 如图,直线l1 // l2 // l3,直线AC和DF被l1,l2,l3所截,AB=5,BC=6,EF=4,则DE的长为( )A.2B.3C.4D.1039. 分式方程x+1x+1x−2=1的解是( )A.x=1B.x=−1C.x=3D.x=−310. 若ab>0,则一次函数y=ax−b与反比例函数y=abx在同一坐标系中的大致图象是( )A. B.C. D.二、填空题如图,在矩形ABCD中,按以下步骤作图:①分别以点A和C为圆心,以大于12AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若DE=2,CE=3,则矩形的对角线AC的长为________.三、解答题(1)计算: √9−4|√3−1|+(2014−π)0−2−1;(2)解不等式组: {3x −1>5,2(x +2)<x +7.先化简,再求值:(1−4x+3)÷x 2−2x+12x+6,其中x =√2+1.2021年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会.目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如图两幅不完整的统计图.根据以上信息,解答下列问题: (1)这次被调查的同学共有________人;(2)扇形统计图中“篮球”对应的扇形圆心角的度数为________;(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大运会志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.综合实践课上,某兴趣小组同学用航拍无人机进行测高实践,如图为实践时绘制的截面图.无人机从地面点B 垂直起飞到达点A 处,测得学校1号楼顶部E 的俯角为60∘,测得2号楼顶部F 的俯角为45∘,此时航拍无人机的高度为50米.已知1号楼的高度为20米,且EC 和FD 分别垂直地面于点C 和D ,B 为CD 的中点,求2号楼的高度.如图,在平面直角坐标系xOy 中,一次函数y=12x +5和y =−2x 的图象相交于点A ,反比例函数y =kx的图象经过点A .(1)求反比例函数的表达式.(2)设一次函数y =12x +5的图象与反比例函数y =kx 的图象的另一个交点为B ,连接OB ,求△ABO 的面积.如图1,以正方形ABCD 的相邻两边AD ,CD 为边向外作等边三角形,得到△ADE ,△DCF ,点G ,H 分别是AE ,CF 的中点,连接AF ,GH .(1)问题发现:GHAF=________;(2)猜想论证:如图2,若四边形ABCD是矩形,其他条件不变,则(1)中结论是否仍然成立?若成立,请加以证明;若不成立,请说明理由.(3)拓展延伸:如图3,在(2)的条件下,点P,Q分别为AF,GH的中点,连接PQ,DQ,猜想PQ,DQ的位置关系,并加以证明.四、填空题如图,在正方形ABCD中,△BPC是等边三角形,BP,CP的延长线分别交AD于点E,F,连结BD,DP,BD 与CF相交于点H.给出下列结论:①△ABE≅△DCF;②FPPH=35;③DP2=PH⋅PB;④S△BPDS正方形ABCD=√3−14.其中正确的是________.(写出所有正确结论的序号)五、解答题某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时,月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?如图,在正方形ABCD中,AB=6,M是对角线BD上的一个动点(0<DM<12BD),连接AM,过点M作MN⊥AM交BC于点N.(1)如图①,求证:MA=MN;(2)如图②,连接AN,O为AN的中点,MO的延长线交边AB于点P,当S△AMNS△BCD=1318时,求AN和PM的长;(3)如图③,过点N作NH⊥BD于H,当AM=2√5时,求△HMN的面积.如图1,直线y=−x+4与x轴交于点B,与y轴交于点C,交双曲线y=kx(x<0)于点N,S△OBN=10.(1)求双曲线的解析式;(2)已知点H是双曲线上一动点,若S△HON=203,求点H的坐标;(3)如图2,平移直线BC交双曲线于点P,交直线y=−6于点Q,连接PC,QB,并延长PC,QB交于第一象限内一点G,若PG=GQ,求平移后的直线PQ的解析式.参考答案与试题解析2020-2021学年四川成都九年级上数学期中试卷一、选择题1.【答案】A【考点】平方根立方根的性质【解析】根据立方根的定义即可判定.【解答】解:A,23=8,8的立方根是2,故选项正确;B,负数没有平方根,故选项错误;C,16的平方根是±4,故选项错误;D,1的立方根是1,故选项错误.故选A.2.【答案】B【考点】简单组合体的三视图【解析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得第一层有2个正方形,第二层左边有1个正方形,如图所示:故选B.3.【答案】B【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:36000用科学记数法表示为3.6×104. 故选B.4.【答案】A【考点】二次根式有意义的条件【解析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:x−1≥0,解得x≥1.故选A.5.【答案】C【考点】关于原点对称的点的坐标【解析】解答此题的关键在于理解关于原点对称的点的坐标的相关知识,掌握两个点关于原点对称时,它们的坐标的符号相反,即点P(x, y)关于原点的对称点为P’(−x, −y).【解答】解:P(−3, −5)关于原点对称的点坐标是(3, 5).故选C.6.【答案】D【考点】整式的混合运算幂的乘方与积的乘方【解析】此题暂无解析【解答】解:A中,x2+x2=2x2,故A错误;B中,(x−y)2=x2+y2−2xy,故B错误;C中,(x2y)3=x6y3,故C错误;D中,(−x)2⋅x3=x5,故D正确.故选D.7.【答案】C【考点】中位数【解析】将数据按从小到大的顺序排列,根据中位数的定义求解即可.【解答】解:将数据按从小到大的顺序排列为:42,45,46,50,50,∴中位数为46.故选C.8.【答案】D【考点】平行线分线段成比例【解析】根据平行线分线段成比例定理得出比例式,代入求出即可.【解答】解:∵直线l1 // l2 // l3,∴ABBC =DEEF.∵AB=5,BC=6,EF=4,∴56=DE4,∴DE=103.故选D.9.【答案】A【考点】解分式方程——可化为一元一次方程【解析】观察可得最简公分母是x(x−2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:x+1x +1x−2=1,去分母,方程两边同时乘以x(x−2)得:(x+1)(x−2)+x=x(x−2),整理得:−2=−2x,解得:x=1,经检验,x=1是原分式方程的解.故选A.10.【答案】C【考点】反比例函数的图象【解析】根据ab>0,可得a、b同号,结合一次函数及反比例函数的特点进行判断即可.【解答】解:根据题意可得,ab>0,故排除B,D;A,根据一次函数可判断a>0,b<0,根据反比例函数可判断ab>0,与一次函数判断的a,b相矛盾,本选项错误;C,根据一次函数可判断a<0,b<0,根据反比例函数可判断ab>0,与一次函数判断的a,b相符合,本选项正确.故选C.二、填空题【答案】√30【考点】作图—基本作图矩形的性质勾股定理线段垂直平分线的性质【解析】连接AE,如图,利用基本作图得到MN垂直平分AC,则EA=EC=3,然后利用勾股定理先计算出AD,再计算出AC.【解答】解:连接AE,如图所示,由作法得MN垂直平分AC,∴EA=EC=3,在Rt△ADE中,AD=√32−22=√5,在Rt△ADC中,AC=√(√5)2+52=√30.故答案为:√30.三、解答题【答案】解:(1)原式=3−4(√3−1)+1−12=152−4√3.(2)解不等式组:{3x−1>5,①2(x+2)<x+7,②由①得:x >2, 由②得:x <3,故不等式的解集为2<x <3. 【考点】 绝对值 实数的运算 解一元一次不等式组 【解析】 【解答】解:(1)原式=3−4(√3−1)+1−12 =152−4√3.(2)解不等式组: {3x −1>5,①2(x +2)<x +7,②由①得:x >2,由②得:x <3,故不等式的解集为2<x <3. 【答案】 解:原式=x−1x+3⋅2(x+3)(x−1)2=2x−1.当x =√2+1时, 原式=√2+1−1=√2.【考点】分式的化简求值 【解析】 此题暂无解析 【解答】 解:原式=x−1x+3⋅2(x+3)(x−1)2=2x−1.当x =√2+1时, 原式=√2+1−1=√2.【答案】 180 126∘(3)列表如下:∴ 恰好选中甲、乙两位同学的概率为212=16. 【考点】 条形统计图 扇形统计图 列表法与树状图法【解析】(1)根据跳水的人数和跳水所占的百分比即可求出这次被调查的学生数; (2)用360∘乘以篮球的学生所占的百分比即可;(3)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选中甲、乙两位同学的情况,再利用概率公式即可求得答案. 【解答】解:根据题意得:54÷30%=180(人). 故答案为:180. (2)根据题意得:360∘×(1−20%−15%−30%)=126∘. 故答案为:126∘. (3)列表如下:∴ 恰好选中甲、乙两位同学的概率为212=16.【答案】解:过点E 作EG ⊥AB 于点G ,过点F 作FH ⊥AB 于点H ,如图所示,则四边形ECBG,HBDF是矩形,∴EC=GB=20,HB=FD.∵B为CD的中点,∴EG=CB=BD=HF.由题意得:∠EAG=90∘−60∘=30∘,∠AFH=45∘.在Rt△AEG中,AG=AB−GB=50−20=30(米),∴EG=AG⋅tan30∘=30×√33=10√3(米).在Rt△AHF中,AH=HF=BD=EG=10√3(米),∴FD=HB=AB−AH=50−10√3(米),∴2号楼的高度为(50−10√3)米.【考点】解直角三角形的应用-仰角俯角问题矩形的性质【解析】过点E作EG⊥AB于G,过点F作FH⊥AB于H,可得四边形ECBG,HBDF是矩形,在Rt△AEG中,根据三角函数求得EG,在Rt△AHP中,根据三角函数求得AH,再根据线段的和差关系即可求解.【解答】解:过点E作EG⊥AB于点G,过点F作FH⊥AB于点H,如图所示,则四边形ECBG,HBDF是矩形,∴EC=GB=20,HB=FD.∵B为CD的中点,∴EG=CB=BD=HF.由题意得:∠EAG=90∘−60∘=30∘,∠AFH=45∘.在Rt△AEG中,AG=AB−GB=50−20=30(米),∴EG=AG⋅tan30∘=30×√33=10√3(米).在Rt△AHF中,AH=HF=BD=EG=10√3(米),∴FD=HB=AB−AH=50−10√3(米),∴2号楼的高度为(50−10√3)米.【答案】解:(1)由{y=12x+5,y=−2x,得{x=−2,y=4,∴A(−2, 4),∵反比例函数y=kx的图象经过点A,∴k=−2×4=−8,∴反比例函数的表达式是y=−8x.(2)解{y=−8x,y=12x+5,得{x=−2,y=4,或{x=−8,y=1,∴B(−8, 1),由直线AB的解析式为y=12x+5得到直线与x轴的交点为(−10, 0),∴S△AOB=12×10×4−12×10×1=15.【考点】反比例函数与一次函数的综合三角形的面积待定系数法求反比例函数解析式【解析】(1)联立方程求得A的坐标,然后根据待定系数法即可求得;(2)联立方程求得交点B的坐标,进而求得直线与x轴的交点,然后利用三角形面积公式求得即可.【解答】解:(1)由{y=12x+5,y=−2x,得{x=−2,y=4,∴A(−2, 4),∵反比例函数y=kx的图象经过点A,∴k=−2×4=−8,∴反比例函数的表达式是y=−8x.(2)解{y=−8x,y=12x+5,得{x=−2,y=4,或{x=−8,y=1,∴B(−8, 1),由直线AB的解析式为y=12x+5得到直线与x轴的交点为(−10, 0),∴S△AOB=12×10×4−12×10×1=15.【答案】2√33(2)结论成立.理由:如图,连结DG,DH,∵ 四边形ABCD是矩形,∴ ∠ADC=90∘.∵ △ADE,△DCF都是等边三角形,∴ DA=DE,DC=DF,∠ADE=∠CDF=60∘. ∵ AG=GE,CH=FH,∴ ∠ADG=∠CDH=30∘,∴ ∠ADF=∠GDH=150∘.∵ADDG =DFDH=2√33,∴ △DGH∽△DAF,∴GH AF =ADDG=2√33.(3)PQ⊥DQ.理由:如图,连结DG,DH,DP,由(2)可知:△DGH∽△DAF,∴ ∠DGQ=∠DAP.∵ DQ,DP分别是△GDH,△ADF的中线,∴DPDQ =DADG=2√33,∴ADDP =DGDQ.∵ADDG=PAQG,∴ △DGQ∼△DAP,∴ ∠GDQ=∠ADP,∴ ∠ADG=∠PDQ,∴ △ADG∼△PDQ,∴ ∠DQP=∠DGA.∵ DA=DE,AG=GE,∴ DG⊥AE,∴ ∠DGA=90∘,∴ ∠DQP=90∘,∴ DQ⊥PQ.【考点】正方形的性质等边三角形的性质特殊角的三角函数值相似三角形的性质与判定【解析】此题暂无解析【解答】解:(1)如图,连结DG,DH,∵ 四边形ABCD是正方形,∴ AD=CD,∠ADC=90∘.∵ △ADE,△DCF都是等边三角形,∴ DA=DE,DC=DF,∠ADE=∠CDF=60∘.∵ 点G,H分别是AE,CF的中点,∴ ∠GDA=∠CDH=30∘,∴ ∠ADF=∠GDH=150∘.∵ADDG=DFDH=2√33,∴ △DGH∼△DAF,∴GHAF=ADDG=2√33.故答案为:2√33.(2)结论成立.理由:如图,连结DG,DH,∵ 四边形ABCD是矩形,∴ ∠ADC=90∘.∵ △ADE,△DCF都是等边三角形,∴ DA=DE,DC=DF,∠ADE=∠CDF=60∘. ∵ AG=GE,CH=FH,∴ ∠ADG=∠CDH=30∘,∴ ∠ADF=∠GDH=150∘.∵ADDG =DFDH=2√33,∴ △DGH∽△DAF,∴GHAF=ADDG=2√33.(3)PQ⊥DQ.理由:如图,连结DG,DH,DP,由(2)可知:△DGH∽△DAF,∴ ∠DGQ=∠DAP.∵ DQ,DP分别是△GDH,△ADF的中线,∴DPDQ=DADG=2√33,∴ADDP=DGDQ.∵ADDG=PAQG,∴ △DGQ∼△DAP,∴ ∠GDQ=∠ADP,∴ ∠ADG=∠PDQ,∴ △ADG∼△PDQ,∴ ∠DQP=∠DGA.∵ DA=DE,AG=GE,∴ DG⊥AE,∴ ∠DGA=90∘,∴ ∠DQP=90∘,∴ DQ⊥PQ.四、填空题【答案】①③④【考点】全等三角形的性质与判定相似三角形的性质与判定正方形的性质解直角三角形三角形的面积【解析】【解答】解:∵△BPC等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60∘.在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90∘,∴∠ABE=∠DCF=30∘.在△ABE与△DCF中,{∠A=∠CDF,∠ABE=∠DCF,AB=DC,∴△ABE≅△DCF(ASA),故①正确;∵PC=BC=CD,∠PCD=30∘,∴∠PDC=75∘,∴∠FDP=15∘.∵∠DBA=45∘,∴∠PBD=15∘,∴∠FDP=∠PBD.∵∠DFP=∠BPC=60∘,∴△DFP∼△BPH,∴PFPH=DFPB=DFCD=√33,故②错误;∵∠PDH=∠PCD=30∘.又∠DPH=∠DPC,∴△DPH∼△CPD,∴PDCD=PHPD,∴PD2=PH⋅CD.∵PB=CD,∴ PD 2=PH ⋅PB ,故③正确;如图,过点P 作PM ⊥CD 于M ,PN ⊥BC 于N ,设正方形ABCD 的边长是4, △BPC 为正三角形,∴ ∠PBC =∠PCB =60∘,PB =PC =BC =CD =4, ∴ ∠PCD =30∘, ∴ PN =PB ⋅sin 60∘=4×√32=2√3,PM =PC ⋅sin 30∘=2, S △BPD =S 四边形PBCD −S △BCD =S △PBC +S △PDC −S △BCD=12×4×2√3+12×2×4−12×4×4 =4√3+4−8=4√3−4, ∴ S △BPDS正方形ABCD=√3−14,故④正确. 故答案为:①③④.五、解答题【答案】解:(1)根据题意得:y =(30+x −20)(230−10x)=−10x 2+130x +2300, 自变量x 的取值范围是:0<x ≤10.(2)当y =2520时,得−10x 2+130x +2300=2520, 解得x 1=2,x 2=11(不合题意,舍去), 当x =2时,30+x =32(元).答:每件玩具的售价定为32元时,月销售利润恰为2520元.(3)根据题意得:y =−10x 2+130x +2300 =−10(x −6.5)2+2722.5.∵ a =−10<0,函数开口向下, ∴ 当x =6.5时,y 有最大值为2722.5.答:每件玩具的售价定为6.5元时可使月销售利润最大,最大的月利润是2722.5. 【考点】根据实际问题列二次函数关系式 一元二次方程的应用——利润问题 解一元二次方程-因式分解法 二次函数的应用【解析】(1)根据题意知一件玩具的利润为(30+x −20)元,月销售量为(230−10x),然后根据月销售利润=一件玩具的利润×月销售量即可求出函数关系式.(2)把y =2520时代入y =−10x 2+130x +2300中,求出x 的值即可.(3)把y =−10x 2+130x +2300化成顶点式,求得当x =6.5时,y 有最大值,再根据0<x ≤10且x 为正整数,分别计算出当x =6和x =7时y 的值即可. 【解答】解:(1)根据题意得:y =(30+x −20)(230−10x)=−10x 2+130x +2300, 自变量x 的取值范围是:0<x ≤10.(2)当y =2520时,得−10x 2+130x +2300=2520, 解得x 1=2,x 2=11(不合题意,舍去), 当x =2时,30+x =32(元).答:每件玩具的售价定为32元时,月销售利润恰为2520元.(3)根据题意得:y =−10x 2+130x +2300 =−10(x −6.5)2+2722.5.∵ a =−10<0,函数开口向下, ∴ 当x =6.5时,y 有最大值为2722.5.答:每件玩具的售价定为6.5元时可使月销售利润最大,最大的月利润是2722.5. 【答案】(1)证明:过点M 作MF ⊥AB 于点F ,作MG ⊥BC 于点G ,如图所示:∴ ∠AFM =∠MFB =∠NGM =90∘. ∵ 四边形ABCD 是正方形,∴ ∠ABC =∠DAB =90∘,AD =AB ,∠ABD =∠DBC =45∘. ∵ MF ⊥AB ,MG ⊥BC , ∴ MF =MG . ∵ ∠ABC =90∘,∴ 四边形FBGM 是正方形, ∴ ∠FMG =90∘,∴ ∠FMN +∠NMG =90∘. ∵ MN ⊥AM ,∴ ∠AMF +∠FMN =90∘, ∴ ∠AMF =∠NMG . 在△AMF 和△NMG 中,{∠AFM=∠NGM,MF=MG,∠AMF=∠NMG,∴△AMF≅△NMG(ASA),∴MA=MN.(2)解:在Rt△AMN中,由(1)知:MA=MN,∴∠MAN=45∘.∵∠DBC=45∘,∴∠MAN=∠DBC,∴Rt△AMN∼Rt△BCD,∴S△AMNS△BCD =(ANBD)2.在Rt△ABD中,AB=AD=6,∴BD=6√2,∴2(6√2)2=1318,解得:AN=2√13,∴在Rt△ABN中,BN=√AN2−AB2=√(2√13)2−62=4.∵在Rt△AMN中,MA=MN,O是AN的中点,∴OM=OA=ON=12AN=√13,OM⊥AN,∴∠AOP=90∘,∴∠AOP=∠ABN.∵∠PAO=∠NAB,∴△PAO∼△NAB,∴OPBN =OABA,即OP4=√136,解得:OP=2√133,∴PM=OM+OP=√13+2√133=5√133.(3)解:过点A作AF⊥BD于点F,如图所示:∴∠AFM=90∘,∴∠FAM+∠AMF=90∘.∵MN⊥AM,∴∠AMN=90∘,∴∠AMF+∠HMN=90∘,∴∠FAM=∠HMN.∵NH⊥BD,∴∠AFM=∠MHN=90∘.在△AFM和△MHN中,{∠FAM=∠HMN,∠AFM=∠MHN,AM=MN,∴△AFM≅△MHN(AAS),∴AF=MH.在等腰直角△ABD中,AF⊥BD,∴AF=12BD=3√2,∴MH=3√2.∵AM=2√5,∴MN=2√5,∴HN=√MN2−MH2=√2,∴S△HMN=12MH⋅HN=12×3√2×√2=3,∴△HMN的面积为3.【考点】正方形的判定与性质全等三角形的性质与判定相似三角形的性质与判定勾股定理三角形的面积等腰三角形的性质:三线合一【解析】(1)过点M作MF⊥AB于F,作MG⊥BC于G,由正方形的性质得出∠ABD=∠DBC=45∘,由角平分线的性质得出MF=MG,证得四边形FBGM是正方形,得出∠FMG=90∘,证出∠AMF=∠NMG,证明△AMF≅△NMG,即可得出结论;(2)证明Rt△AMN∽Rt△BCD,得出S△AMNS△BCD=(ANBD)2,求出AN=2√13,由勾股定理得出BN=√AN2−AB2=4,由直角三角形的性质得出OM=OA=ON=12AN=√13,OM⊥AN,证明△PAO∽△NAB,得出OPBN=OAAB,求出OP=2√133,即可得出结果;(3)过点A作AF⊥BD于F,证明△AFM≅△MHN得出AF=MH,求出AF=12BD=12×6√2=3√2,得出MH =3√2,MN =2√5,由勾股定理得出HN =√MN 2−MH 2=√2,由三角形面积公式即可得出结果. 【解答】(1)证明:过点M 作MF ⊥AB 于点F ,作MG ⊥BC 于点G ,如图所示:∴ ∠AFM =∠MFB =∠NGM =90∘.∵ 四边形ABCD 是正方形,∴ ∠ABC =∠DAB =90∘,AD =AB ,∠ABD =∠DBC =45∘. ∵ MF ⊥AB ,MG ⊥BC , ∴ MF =MG . ∵ ∠ABC =90∘,∴ 四边形FBGM 是正方形, ∴ ∠FMG =90∘,∴ ∠FMN +∠NMG =90∘. ∵ MN ⊥AM ,∴ ∠AMF +∠FMN =90∘, ∴ ∠AMF =∠NMG . 在△AMF 和△NMG 中, {∠AFM =∠NGM ,MF =MG ,∠AMF =∠NMG ,∴ △AMF ≅△NMG(ASA), ∴ MA =MN .(2)解:在Rt △AMN 中,由(1)知:MA =MN , ∴ ∠MAN =45∘.∵ ∠DBC =45∘, ∴ ∠MAN =∠DBC ,∴ Rt △AMN ∼Rt △BCD , ∴S △AMN S △BCD=(AN BD)2. 在Rt △ABD 中,AB =AD =6, ∴ BD =6√2, ∴ 2(6√2)2=1318,解得:AN =2√13, ∴ 在Rt △ABN 中,BN =√AN 2−AB 2=√(2√13)2−62=4. ∵ 在Rt △AMN 中,MA =MN ,O 是AN 的中点,∴ OM =OA =ON =12AN =√13,OM ⊥AN ,∴ ∠AOP =90∘, ∴ ∠AOP =∠ABN . ∵ ∠PAO =∠NAB , ∴ △PAO ∼△NAB , ∴ OPBN =OABA ,即OP4=√136, 解得:OP =2√133, ∴ PM =OM +OP =√13+2√133=5√133.(3)解:过点A 作AF ⊥BD 于点F ,如图所示:∴ ∠AFM =90∘,∴ ∠FAM +∠AMF =90∘. ∵ MN ⊥AM , ∴ ∠AMN =90∘,∴ ∠AMF +∠HMN =90∘, ∴ ∠FAM =∠HMN . ∵ NH ⊥BD ,∴ ∠AFM =∠MHN =90∘. 在△AFM 和△MHN 中,{∠FAM =∠HMN ,∠AFM =∠MHN ,AM =MN ,∴ △AFM ≅△MHN(AAS), ∴ AF =MH .在等腰直角△ABD 中,AF ⊥BD , ∴ AF =12BD =3√2, ∴ MH =3√2. ∵ AM =2√5, ∴ MN =2√5,∴ HN =√MN 2−MH2=√2,∴ S △HMN =12MH ⋅HN =12×3√2×√2=3,∴ △HMN 的面积为3. 【答案】解:(1)如图,作NG ⊥x 轴于点G .∵ 直线y =−x +4与x 轴交于点B ,与y 轴交于点C ,∴ B(4,0),C(0,4). ∵ S △NOB =12⋅OB ⋅NG ,∴ 12×4×NG =10, ∴ NG =5, ∴ N(−1,5).∵ 反比例函数y =kx 经过点N(−1,5),∴ k =−5, ∴ y =−5x .(2)如图,作NM ⊥x 轴于点M ,HE ⊥x 轴于点E ,设H(m,−5m ). ∵ S △HEO =S △NMO ,又S 四边形HEON =S △HNO +S △HEO =S △NMO +S 梯形MNHE , ∴ S △OHN =S 梯形NMHE , ∴ 12⋅(5−5m )⋅|m +1|=203.当m <−1时,整理得3m 2+8m −3=0, 解得m =−3或m =13(舍去),当0>m >−1时,整理得3m 2−8m −3=0, 解得m =−13或m =3(舍去),综上所述,满足条件的点H 的坐标为(−3,53)或(−13,15). (3)如图,∵ GP =GQ , ∴ ∠GPQ =∠GQP . ∵ BC//PQ ,∴ ∠GCB =∠GPQ ,∠GBC =∠GQP , ∴ ∠GCB =∠GBC , ∴ GC =GB . ∵ OC =OB ,∴ OG 垂直平分BC ,∴ P ,Q 关于直线OG 对称. ∵ 点P 在y =−5x 上,∴ 点Q 也在y =−5x 上. 又∵ 点Q 在直线y =−6上,∴ Q(56,−6).设直线PQ 的解析式为y =−x +b , ∴ −6=−56+b ,∴ b =−316,∴ 直线PQ 的解析式为y =−x −316.【考点】待定系数法求反比例函数解析式 三角形的面积一次函数图象上点的坐标特点 反比例函数与一次函数的综合 待定系数法求一次函数解析式 线段垂直平分线的性质【解析】 此题暂无解析 【解答】解:(1)如图,作NG ⊥x 轴于点G .∵ 直线y =−x +4与x 轴交于点B ,与y 轴交于点C ,∴ B(4,0),C(0,4). ∵ S △NOB =12⋅OB⋅NG , ∴12×4×NG =10, ∴ NG =5, ∴ N(−1,5).∵ 反比例函数y =kx 经过点N(−1,5), ∴ k =−5, ∴ y =−5x .(2)如图,作NM ⊥x 轴于点M ,HE ⊥x 轴于点E ,设H(m,−5m ). ∵ S △HEO =S △NMO ,又S 四边形HEON =S △HNO +S △HEO=S △NMO +S 梯形MNHE , ∴ S △OHN =S 梯形NMHE , ∴ 12⋅(5−5m )⋅|m +1|=203.当m <−1时,整理得3m 2+8m −3=0, 解得m =−3或m =13(舍去),当0>m >−1时,整理得3m 2−8m −3=0, 解得m =−13或m =3(舍去),综上所述,满足条件的点H 的坐标为(−3,53)或(−13,15).(3)如图,∵ GP =GQ , ∴ ∠GPQ =∠GQP .∵ BC//PQ ,∴ ∠GCB =∠GPQ ,∠GBC =∠GQP , ∴ ∠GCB =∠GBC , ∴ GC =GB . ∵ OC =OB ,∴ OG 垂直平分BC ,∴ P ,Q 关于直线OG 对称. ∵ 点P 在y =−5x 上, ∴ 点Q 也在y =−5x 上.又∵ 点Q 在直线y =−6上, ∴ Q(56,−6).设直线PQ 的解析式为y =−x +b , ∴ −6=−56+b , ∴ b =−316,∴ 直线PQ的解析式为y=−x−31.6。
四川省成都市部分学校2020-2021学年九年级上学期期中数学试题
3.2021年4月10日,人类首张黑洞图片问世,该黑洞位于室女座一个巨椭圆星系 的中心,距离地球 万光年.将数据 万用科学计数法表示为()
A. B. C. ห้องสมุดไป่ตู้.
4.一元二次方程 的根的情况是( )
A.有两个不相等的实数根B.有两个相等的实数根
C.只有一个实数根D.没有实数根
5.已知函数y= ,则自变量x的取值范围是( )
A.﹣1<x<1B.x≥﹣1且x≠1C.x≥﹣1D.x≠1
6.若△ABC∽ ,其面积比为 , 与 的周长比为()
A. B. C. D.
7.某校开展了主题为“青春·梦想”的艺术作品征集互动,从九年级五个班收集到的作品数量(单位:件)分别为: , , , , 则这组数据的中位数是()
A. 件B. 件C. 件D. 件
A. B. C. D.
二、填空题
11.已知 则 _______________
12.关于 的一元二次方程 有一个根为0,则 的值为________.
13.已知反比例函数y= 的图象经过点(1,2),则k的值为_____.
14.如图, 是 斜边AB上的高,其中 则 ________________
15.方程 的两根为 , ,则 =______.
19.如图,在 中, , , ,点M为边AC的中点,点N为边BC上任意一点,若点C关于直线MN的对称点 恰好落在 的中位线上,则CN的长为______.
三、解答题
20.(1)计算: ;
(2)解方程: .
21.先化简,再求值: ,其中 .
22.国务院办公厅在2021年3月16日发布了《中国足球发展改革总体方案》,这是中国足球史上的重大改革,为进一步普及足球知识,传播足球文化,我市某区在中小学举行了“足球在身边”知识竞赛,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:
2020-2021学年四川省成都实验外国语学校九年级(上)期中数学试卷(解析版)
2020-2021学年四川省成都实验外国语学校九年级第一学期期中数学试卷一、选择题(共10小题,满分30分,每小题3分)1.下列函数是二次函数的为()A.y=x2B.y=x C.y=D.y=2x+12.一元二次方程x2+x﹣2=0的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根3.当k<0,x>0时,反比例函数y=的图象在()A.第一象限B.第二象限C.第三象限D.第四象限4.已知线段AB=2,点P是线段AB的黄金分割点(AP>BP),则线段AP的长为()A.+1B.﹣1C.D.5.某厂通过改进工艺降低了某种产品的成本,两个月内从每件产品25元降低到每件16元,则平均每月降低的百分率为()A.10%B.5%C.15%D.20%6.如图,点D在△ABC的边AB上,连接CD,若∠BCD=∠A,则下列结论不正确的是()A.△BCD∽△BAC B.∠ACD=∠A C.∠BDC=∠ACB D.BC2=BD•BA 7.若∠A为锐角,则下列三角函数值可能为的是()A.sin A B.sin2A C.cos A D.tan A8.点A(﹣1,y1),B(﹣2,y2)在二次函数y=﹣x2+x+c(c为常数)的图象上,则y1、y2满足()A.y1>y2B.y1<y2C.y1=y2D.y1、y2的大小不确定9.如图,菱形OABC的顶点B在y轴上,顶点C的坐标为(﹣3,2),若反比例函数y=(x>0)的图象经过点A,则k的值为()A.﹣6B.﹣3C.3D.610.如图,在任意四边形ABCD中,AC,BD是对角线,E、F、G、H分别是线段BD、BC、AC、AD上的点,对于四边形EFGH的形状,某班的学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是()A.当E,F,G,H是各条线段的中点时,四边形EFGH为平行四边形B.当E,F,G,H是各条线段的中点,且AC⊥BD时,四边形EFGH为矩形C.当E,F,G,H是各条线段的中点,且AB=CD时,四边形EFGH为菱形D.当E,F,G,H不是各条线段的中点时,四边形EFGH可以为平行四边形二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.已知a,b是一元二次方程x2+x﹣1=0的两根,则ab的值是.12.如图,已知l1∥l2∥l3,直线l4、l5被这组平行线所截,且直线l4、l5相交于点E,已知AE=EF=1,FB=3,则=.13.将抛物线y=x2﹣2x+2先向右平移1个单位,再向下平移1个单位,平移后得抛物线的表达式是.14.如图,平面直角坐标系中,A(2,0),B(0,3),分别以A、B为圆心,大于AB 的长度d为半径作弧,两弧相交于点M、N,直线MN与x轴相交于点C,连接BC,则BC 的长度为.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(1)计算:(﹣2)2+|﹣tan60°|+2sin30°+;(2)解不等式组:;(3)解方程:=2.16.先化简,再求值:1﹣(1﹣)2÷,其中x是最小的非负整数.17.为了防范新冠肺炎疫情,我校在网络平台开展防疫宣传,并出了6道选择题,对甲、乙两个班级学生(各有40名学生)的答题情况进行统计分析,得到统计表如下:请根据以上信息,解答下列问题:0123456答对的题数023417122甲班答对人数015315142乙班答对人数(1)甲班学生答对的题数的众数为;(2)若答对的题数大于或等于5道的为优秀,则乙班该次考试的优秀率为;(3)从甲、乙两班答题全对的学生中随机抽取2人做学习防疫知识心得交流,通过画树状图或列表法,求抽到的2人来自同一个班级的概率.18.如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路l,AB是A到l的小路.现新修一条路AC到公路l.小明测量出∠ACD=31°,∠ABD=45°,BC=100m.请你帮小明计算他家到公路l的距离AD的长度?(精确到1m;参考数据tan31°≈0.60,sin31°≈0.51,cos31°≈0.86).19.如图,已知A(﹣4,),B(﹣1,a)是一次函数y=x+b与反比例函数y=(m ≠0,x<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)求m、a的值及一次函数表达式;(2)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.20.如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.关于x的方程x2﹣kx+2=0有两个实数根,一个根是1,另一个根为.22.在△ABC中,∠A、∠B为锐角,且|sin A﹣|+(﹣3tan B)2=0,则∠C=度.23.如图,在矩形ABCD中,AD=13,点E、F均在对角线BC上,且BE=EF=FD,若线段AE和CF之间的距离为6,则AB的长为.24.在直角坐标系中,已知A(0,4)、B(2,4),C为x轴正半轴上一点,且OB平分∠ABC,过B的反比例函数y=交线段BC于点D,E为OC的中点,BE与OD交于点F,若记△BDF的面积为S1,△OEF的面积为S2,则=.25.如图,在矩形ABCD中,AB=4,BC=5,E为BC上一点,且BE=2,P为AD上动点,将PE绕点P逆时针旋转90°至PQ,则AQ+EQ的最小值为.五、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.成都某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为60元,用120元购进甲种玩具的件数与用180元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共40件,其中甲种玩具的件数少于20件,并且商场决定此次进货的总资金不超过1320元,求商场共有几种进货方案?(3)在(2)的条件下,若每件甲种玩具售价32元,每件乙种玩具售价50元.请求出卖完这批玩具共获利w(元)与甲种玩具进货量m(件)之间的函数关系式,并求出最大利润为多少元?27.如图,在边长为2的正方形ABCD中,点E,F分别在边CD,对角线AC上,连接AE,EF,且∠AED=∠CEF,过F作FG⊥AE交边AD于点G,连接EG.(1)求证:∠AFG=∠CFE;(2)设DE=x,DG=y,求y与x之间的函数关系式;(3)当△EFG是以EF为腰的等腰三角形时,求DE的长.28.已知抛物线y=﹣x2+bx+c与x轴交于点A、点B(3,0),与y轴交于点C(0,3),点P为抛物线上一点,过点P作PE⊥x轴,交直线BC于点D,交x轴于点E.(1)求抛物线的解析式;(2)如图1,若线段QF和线段PE关于抛物线的对称轴对称,当四边形PQFE为正方形时,求正方形PQFE的面积;(3)如图2,在y轴上点C的正下方取点H,使CH=2DE,在函数图象上取点K,过点H作直线DK的垂线交直线PE于点G,若∠HDC=∠KDG,∠CHG=∠KGH,求点K 的坐标和点P的坐标.参考答案一、选择题(共10小题,满分30分,每小题3分)1.下列函数是二次函数的为()A.y=x2B.y=x C.y=D.y=2x+1【分析】根据二次函数的定义判断即可.解:A、该函数是二次函数,故本选项符合题意;B、该函数是一次函数,故本选项不符合题意;C、该函数是反比例函数,故本选项不符合题意;D、该函数是一次函数,故本选项不符合题意.故选:A.2.一元二次方程x2+x﹣2=0的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【分析】计算出判别式的值即可得出答案.解:Δ=12﹣4×1×(﹣2)=9>0,所以方程有两个不相等的实数根.故选:D.3.当k<0,x>0时,反比例函数y=的图象在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据反比例函数比例系数小于0,得到函数图象分别在二、四象限,根据自变量取值为正,得出函数图象只在第四象限.解:∵在反比例函数y=中,k<0,∴函数图象分别在二、四象限,又∵x>0,∴函数图象在第四象限.故选:D.4.已知线段AB=2,点P是线段AB的黄金分割点(AP>BP),则线段AP的长为()A.+1B.﹣1C.D.【分析】根据黄金比值为计算即可.解:∵点P是线段AB的黄金分割点,AP>BP,∴AP=×AB=×2=﹣1,故选:B.5.某厂通过改进工艺降低了某种产品的成本,两个月内从每件产品25元降低到每件16元,则平均每月降低的百分率为()A.10%B.5%C.15%D.20%【分析】降低后的价格=降低前的价格×(1﹣降低率),如果设平均每次降价的百分率是x,则第一次降低后的价格是25(1﹣x),那么第二次后的价格是25(1﹣x)2,即可列出方程求解.解:设平均每月降低率为x,根据题意可得,25(1﹣x)2=16,∴x1=20%,x2=180%(不合题意,舍去).故选:D.6.如图,点D在△ABC的边AB上,连接CD,若∠BCD=∠A,则下列结论不正确的是()A.△BCD∽△BAC B.∠ACD=∠A C.∠BDC=∠ACB D.BC2=BD•BA 【分析】由“两角法”判定△BCD∽△BAC,结合相似三角形的性质进行推理即可.解:由∠B=∠B,∠BCD=∠A判定△BCD∽△BAC.故选项A不符合题意.由△BCD∽△BAC知,∠BDC=∠ACB,故选项C不符合题意.由△BCD∽△BAC知,BC:BD=BA:BC,即BC2=BD•BA,故选项D不符合题意.无法判定∠ACD=∠A,故选项B符合题意.故选:B.7.若∠A为锐角,则下列三角函数值可能为的是()A.sin A B.sin2A C.cos A D.tan A【分析】根据正弦、余弦、正切函数的值的范围即可作出判断.解:∵对任意的∠α,都一定有sinα≤1,cosα≤1,tanα>0,∴A、B、C一定是错误的.D正确.故选:D.8.点A(﹣1,y1),B(﹣2,y2)在二次函数y=﹣x2+x+c(c为常数)的图象上,则y1、y2满足()A.y1>y2B.y1<y2C.y1=y2D.y1、y2的大小不确定【分析】抛物线开口向下,且对称轴为直线x=﹣1,根据二次函数的图象性质:在对称轴的左侧,y随x的增大而增大.解:∵二次函数的解析式为y=﹣x2+x+c,∴该抛物线开口向下,且对称轴为直线:x=﹣=.∵点A(﹣1,y1),B(﹣2,y2)在二次函数y=﹣x2+x+c(c为常数)的图象上,且﹣2<﹣1<,∴y1>y2.故选:A.9.如图,菱形OABC的顶点B在y轴上,顶点C的坐标为(﹣3,2),若反比例函数y=(x>0)的图象经过点A,则k的值为()A.﹣6B.﹣3C.3D.6【分析】根据菱形的对称性求出点A的坐标,再根据反比例函数图象上点的坐标特征代入函数解析式进行计算即可得解.解:∵菱形OABC的顶点B在y轴上,顶点C的坐标为(﹣3,2),∴点A的坐标为(3,2),∵反比例函数y=(x>0)的图象经过点A,∴=2,解得k=6.故选:D.10.如图,在任意四边形ABCD中,AC,BD是对角线,E、F、G、H分别是线段BD、BC、AC、AD上的点,对于四边形EFGH的形状,某班的学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是()A.当E,F,G,H是各条线段的中点时,四边形EFGH为平行四边形B.当E,F,G,H是各条线段的中点,且AC⊥BD时,四边形EFGH为矩形C.当E,F,G,H是各条线段的中点,且AB=CD时,四边形EFGH为菱形D.当E,F,G,H不是各条线段的中点时,四边形EFGH可以为平行四边形【分析】根据平行四边形、矩形、菱形的判定判断即可.解:∵E,F,G,H是BD,BC,AC,AD的中点,∴EF=CD,FG=AB,GH=CD,HE=AB,∴EF=GH,FG=HE,∴四边形EFGH为平行四边形,故A正确;∵AB=CD,∴EF=FG=GH=HE,∴四边形EFGH是菱形,故C正确;当AC⊥BD时,∠BOC=90°,∵∠BOC>∠EHG,∴四边形EHGF不可能是矩形,故B错误;当E,F,G,H是相应线段的三等分点时,四边形EFGH是平行四边形,∵E,F,G,H是相应线段的三等分点,∴△EHD∽△BAD,△CFG∽△CBA,∴,∴EH=FG,∵EH∥AB,FG∥AB,∴EH∥FG,∴四边形EFGH是平行四边形,故D正确;故选:B.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.已知a,b是一元二次方程x2+x﹣1=0的两根,则ab的值是﹣1.【分析】根据根与系数的关系可得出ab=﹣1,此题得解.解:∵a,b是一元二次方程x2+x﹣1=0的两根,∴ab=﹣1.故答案为:﹣1.12.如图,已知l1∥l2∥l3,直线l4、l5被这组平行线所截,且直线l4、l5相交于点E,已知AE=EF=1,FB=3,则=.【分析】由l1∥l2,根据根据平行线分线段成比例定理可得FG=AC;由l2∥l3,根据根据平行线分线段成比例定理可得==.解:∵l1∥l2,AE=EF=1,∴==1,∴FG=AC;∵l2∥l3,∴==,∴==,故答案为.13.将抛物线y=x2﹣2x+2先向右平移1个单位,再向下平移1个单位,平移后得抛物线的表达式是y=(x﹣2)2.【分析】根据“上加下减,左加右减”的原则进行解答即可.解:将抛物线y=x2﹣2x+2=(x﹣1)2+1先向右平移1个单位,再向下平移1个单位,平移后得抛物线的表达式是:y=(x﹣1﹣1)2+1﹣1,即y=(x﹣2)2.故答案为:y=(x﹣2)2.14.如图,平面直角坐标系中,A(2,0),B(0,3),分别以A、B为圆心,大于AB 的长度d为半径作弧,两弧相交于点M、N,直线MN与x轴相交于点C,连接BC,则BC的长度为.【分析】由作图可知,MN是线段AB的垂直平分线,得到AC=BC=OC+2,在Rt△BCO 中,根据勾股定理求出OC即可求出BC的长度.解:由作图可知,MN是线段AB的垂直平分线,∴AC=BC,∵A(2,0),B(0,3),∴OB=3,OC=2,∴BC=AC=OC+2,在Rt△BCO中,BC2=OC2+OB2,∴(OC+2)2=OC2+32,解得:OC=,∴BC=2+=,故答案为:.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(1)计算:(﹣2)2+|﹣tan60°|+2sin30°+;(2)解不等式组:;(3)解方程:=2.【分析】(1)首先对乘方、特殊角的三角函数值、二次根式、绝对值分别进行计算,然后根据实数的运算法则求得计算结果;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.(3)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:(1)原式=4+|﹣|+2×+2=4++1+2=5+3;(2),解不等式①得:x<2,解不等式②得:x≥﹣1,则不等式组的解集为﹣1≤x<2.(3)去分母得:x2+4x+4﹣3x2=2x2+4x,整理得:x2=1解得:x=±1,检验:把x=1代入得:x(x﹣2)=1×(﹣1)=﹣1≠0,把x=﹣1代入得:x(x﹣2)=﹣1×(﹣3)=3≠0,∴分式方程的解为x=1或x=﹣1.16.先化简,再求值:1﹣(1﹣)2÷,其中x是最小的非负整数.【分析】先算括号内的减法,再算乘方,同时把除法变成乘法,算乘法,再算减法,最后把x=﹣1代入求出答案即可.解:原式=1﹣()2÷=1﹣•=1﹣=∵x是最小的非负整数,∴x=0,当x=﹣1时,原式==1.17.为了防范新冠肺炎疫情,我校在网络平台开展防疫宣传,并出了6道选择题,对甲、乙两个班级学生(各有40名学生)的答题情况进行统计分析,得到统计表如下:请根据以上信息,解答下列问题:0123456答对的题数023417122甲班答对人数015315142乙班答对人数(1)甲班学生答对的题数的众数为4;(2)若答对的题数大于或等于5道的为优秀,则乙班该次考试的优秀率为40%;(3)从甲、乙两班答题全对的学生中随机抽取2人做学习防疫知识心得交流,通过画树状图或列表法,求抽到的2人来自同一个班级的概率.【分析】(1)根据众数的概念直接得出答案;(2)用优秀的人数除以乙班的总人数即可;(3)画树状图列出所有等可能结果,从中找到抽到的2人来自同一个班级的结果数,再根据概率公式求解可得.解:(1)甲班学生答对的题数的众数为4,故答案为:4.(2)乙班该次考试的优秀率为×100%=40%,故答案为:40%;(3)把甲班答题全对的2名学生记为A、B,乙班答题全对的2名学生记为C、D,画树状图如下:共有12种等可能的结果,其中抽到的2人来自同一个班级的结果有4种,∴抽到的2人来自同一个班级的概率为=.18.如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路l,AB是A到l的小路.现新修一条路AC到公路l.小明测量出∠ACD=31°,∠ABD=45°,BC=100m.请你帮小明计算他家到公路l的距离AD的长度?(精确到1m;参考数据tan31°≈0.60,sin31°≈0.51,cos31°≈0.86).【分析】设BD=AD=xm,利用x表示出CD的长,然后在直角△ACD中,利用三角函数即可得到AD和CD的比值,即可列方程求得x的值.解:设AD=xm,∴BD=xm,∵∠ACD=30°,∠ABD=45°,BC=100m,∴tan31°===0.51,解得:x=150,∴他家到公路l的距离AD的长度约我150m.19.如图,已知A(﹣4,),B(﹣1,a)是一次函数y=x+b与反比例函数y=(m ≠0,x<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)求m、a的值及一次函数表达式;(2)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.【分析】(1)根据反比例函数图象上点的坐标特征可计算出m=﹣4×=﹣2,再把B (﹣1,a)代入y=﹣可求得a=2,然后把A点坐标代入y=x+b求出b,从而得到一次函数解析式;(2)连接PC、PD,如图,设P(x,x+),根据三角形面积公式得到××(x+4)=×|﹣1|×(2﹣x﹣),解得x=,然后计算自变量为时的一次函数值即可得到P点坐标.解:(1)∵反比例y=的图象过点(﹣4,),∴m=﹣4×=﹣2,把B(﹣1,a)代入y=﹣得﹣a=﹣2,解得a=2,∵y=x+b的图象过点A(﹣4,)∴×(﹣4)+b=,解得b=,∴一次函数的表达式是y=x+;(2)连接PC、PD,如图,设P(x,x+),∵△PCA和△PDB面积相等,∴××(x+4)=×|﹣1|×(2﹣x﹣),解得x=,当x=时,y=x+=,∴P点坐标是(﹣,).20.如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.【分析】(1)根据翻折变换的性质可知∠C=∠BAG=90°,C′D=AB=CD,∠AGB =∠DGC′,故可得出结论;(2)由(1)可知GD=GB,故AG+GB=AD,设AG=x,则GB=8﹣x,在Rt△ABG 中利用勾股定理即可求出AG的长,进而得出tan∠ABG的值;(3)由△AEF是△DEF翻折而成可知EF垂直平分AD,故HD=AD=4,再根据tan ∠ABG即可得出EH的长,同理可得HF是△ABD的中位线,故可得出HF的长,由EF =EH+HF即可得出结论.【解答】(1)证明:∵△BDC′由△BDC翻折而成,∴∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,∴∠ABG=∠ADE,在△ABG与△C′DG中,∵,∴△ABG≌△C′DG(AAS);(2)解:∵由(1)可知△ABG≌△C′DG,∴GD=GB,∴AG+GB=AD,设AG=x,则GB=8﹣x,在Rt△ABG中,∵AB2+AG2=BG2,即62+x2=(8﹣x)2,解得x=,∴tan∠ABG===;(3)解:∵△AEF是△DEF翻折而成,∴EF垂直平分AD,∴HD=AD=4,∴tan∠ABG=tan∠ADE=,∴EH=HD×=4×=,∵EF垂直平分AD,AB⊥AD,∴HF是△ABD的中位线,∴HF=AB=×6=3,∴EF=EH+HF=+3=.四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.关于x的方程x2﹣kx+2=0有两个实数根,一个根是1,另一个根为2.【分析】设方程的另一个根为t,然后根据根与系数的关系得到1•t=2,再解一次方程即可.解:设方程的另一个根为t,根据题意得1•t=2,解得t=2.故答案为:2.22.在△ABC中,∠A、∠B为锐角,且|sin A﹣|+(﹣3tan B)2=0,则∠C=105度.【分析】根据非负数的性质求出∠A,∠B,再根据三角形内角和求出∠C即可.解:∵|sin A﹣|+(﹣3tan B)2=0,∴sin A﹣=0,﹣3tan B=0,∴∠A=45°,∠B=30°,∴∠C=180°﹣45°﹣30°=105°,故答案为:105.23.如图,在矩形ABCD中,AD=13,点E、F均在对角线BC上,且BE=EF=FD,若线段AE和CF之间的距离为6,则AB的长为.【分析】延长AE,DC交于点G,过点C作CH⊥AG于点H,可得CH=6,证明△ABE ∽△GDE,可得==,所以DG=2AB,再证明△GCH∽△GAD,可得=,所以HG=AB,利用勾股定理即可求出AB的长.解:如图,延长AE,DC交于点G,过点C作CH⊥AG于点H,∴CH=6,∵BE=EF=FD,∴=,∵四边形ABCD是矩形,∴AB∥DC,∠ADC=90°,∴△ABE∽△GDE,∴==,∴DG=2AB,∴AB=DC=CG,∵∠CHG=∠ADG=90°,∠G=∠G,∴△GCH∽△GAD,∴=,∴=,∴HG=AB,在Rt△GCH中,根据勾股定理,得CG2=CH2+HG2,∴AB2=62+(AB)2,解得AB=.故答案为:.24.在直角坐标系中,已知A(0,4)、B(2,4),C为x轴正半轴上一点,且OB平分∠ABC,过B的反比例函数y=交线段BC于点D,E为OC的中点,BE与OD交于点F,若记△BDF的面积为S1,△OEF的面积为S2,则=.【分析】如图,过点B作BH⊥OC于H.首先证明CB=OC,设BC=OC=m,利用勾股定理构建方程求出m,再根据一次函数,利用方程组确定交点坐标,分别求出D,F,E的坐标,即可解决问题.解:如图,过点B作BH⊥OC于H.∵A(0,4)、B(2,4),∴OA=4,AB=2,AB∥OC,∴∠ABO=∠BOC,∵OB平分∠ABC,∴∠ABO=∠OBC,∴∠BOC=∠OBC,∴CB=OC,设BC=OC=m,∵BH⊥OC,AB∥OC,∴∠AOH=∠OHB=∠ABH=90°,∴四边形ABHO是矩形,∴BH=OA=4,AB=OH=2,在Rt△BCH中,则有m2=42+(m﹣2)2,∴m=5,∴C(5,0),∴直线BC的解析式为y=﹣x+,∵反比例函数y=经过点B(2,4),∴k=8,由,解得或,∴D(3,),∴直线OD的解析式为y=x,∵OE=EC,∴E(,0),∴直线BE的解析式为y=﹣8x+20,由,解得,∴F(,2),∴S1=2×1﹣×1×﹣×2×﹣××=,S2=××2=,∴==,故答案为:.25.如图,在矩形ABCD中,AB=4,BC=5,E为BC上一点,且BE=2,P为AD上动点,将PE绕点P逆时针旋转90°至PQ,则AQ+EQ的最小值为2.【分析】如图:过点E作EF⊥AD于F,延长AD至M,使得DM=1,连接EM,EQ,QM,证明∠FME=∠FMQ=45°,推出点Q在射线QM上运动,如图,作点E关于直线QM的对称点E′,连接AE′交QM于点Q,此时AQ+EQ=AE′的值最小.解:如图:过点E作EF⊥AD于F,延长AD至M,使得DM=1,连接EM,EQ,QM,∵四边形ABCD是矩形,∴AD=BC=5,∠B=∠A=90°,∵EF⊥AD,∴∠AFE=90°,∴四边形ABEF是矩形,∴AB=EF=4,BE=AF=2,∴EF=EM=4,∵△EPQ,△EFN都是等腰直角三角形,∴EQ=PE,EM=EF,∵=,∵∠PEQ=∠FEM=45°,∴∠PEF=∠QEM,∴△PEF∽△QEM,∴∠PFE=∠QME=90°,∴∠FME=∠FMQ=45°,∴点Q在射线QM上运动,如图,作点E关于直线QM的对称点E′,连接AE′交QM于点Q,此时AQ+EQ=AE′的值最小.过点E′作E′T⊥AM交AM的延长线于点T,在Rt△AET中,AE′===2.∴AQ+QE的最小值为2故答案为:2.五、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.成都某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为60元,用120元购进甲种玩具的件数与用180元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共40件,其中甲种玩具的件数少于20件,并且商场决定此次进货的总资金不超过1320元,求商场共有几种进货方案?(3)在(2)的条件下,若每件甲种玩具售价32元,每件乙种玩具售价50元.请求出卖完这批玩具共获利w(元)与甲种玩具进货量m(件)之间的函数关系式,并求出最大利润为多少元?【分析】(1)设甲种玩具进价为x元/件,则乙种玩具进价为(60﹣x)元/件,根据用120元购进甲种玩具的件数与用180元购进乙种玩具的件数相同可列方程求解.(2)设购进甲种玩具m件,则购进乙种玩具(40﹣m)件,根据甲种玩具的件数少于20件,并且商场决定此次进货的总资金不超过1320元,可列出不等式组求解.(3)先列出有关总利润和进货量的一次函数关系式,然后利用一次函数的性质结合自变量的取值范围求最大值即可.解:(1)设甲种玩具进价x元/件,则乙种玩具进价为(60﹣x)元/件,根据题意,得,解得x=24,经检验x=24是原方程的解.则60﹣x=36.答:甲、乙两种玩具分别是24元/件,36元/件;(2)设购进甲种玩具m件,则购进乙种玩具(40﹣m)件,由题意,得,解得10≤m<20.∵m是整数,故商场共有10种进货方案;(3)设购进甲种玩具m件,卖完这批玩具获利W元,则购进乙种玩具(40﹣m)件,根据题意得:w=(32﹣24)m+(50﹣36)(40﹣m)=﹣6m+560,∵k=﹣6<0,∴w随着m的增大而减小,∴当m=10时,有最大利润w=﹣6×10+560=500元.27.如图,在边长为2的正方形ABCD中,点E,F分别在边CD,对角线AC上,连接AE,EF,且∠AED=∠CEF,过F作FG⊥AE交边AD于点G,连接EG.(1)求证:∠AFG=∠CFE;(2)设DE=x,DG=y,求y与x之间的函数关系式;(3)当△EFG是以EF为腰的等腰三角形时,求DE的长.【分析】(1)利用同角的余角相等可证∠AED=∠AGF,再根据∠AED=∠CEF,即可证明结论;(2)延长CD至M,使得DM=DE,首先△AGF∽△CEF,得,再证明EF∥AM,得,从而AG=2DE,即可解决问题;(3)分EF=GF或EF=EG两种情形分别求解,若EF=GF时,可证△AGF≌△CEF(AAS),得AG=CE,若EF=EG时,过点E作EH⊥AC于H,可证AE垂直平分FG,则AG=AF,进而解决问题.解:(1)∵四边形ABCD是正方形,∴∠DAC=∠DCA=45°,∠ADC=90°,∴∠DAE+∠AED=90°,∵FG⊥AE,∴∠AGF+∠DAE=90°,∴∠AED=∠AGF,∵∠AED=∠CEF,∴∠CEF=∠AGF,∵∠AFG=180°﹣∠AGF﹣∠GAF=135°﹣∠AGF,∠CFE=180°﹣∠CEF﹣∠ECF=135°﹣∠CEF,∴∠AFG=∠CFE;(2)∵GAF=∠ECF=45°,∠AGF=∠CEF,∴△AGF∽△CEF,∴,延长CD至M,使得DM=DE,∵AD⊥DC,DM=DE,∴AM=AE,∴∠AME=∠AEM,∵∠AEM=∠CEF,∴∠AME=∠CEF,∴EF∥AM,∴,∴AG=2DE,∵DE=x,DG=y,∴AG=2x,∵AG+DG=2,∴2x+y=2,∴y=2﹣2x;(3)若EF=GF时,在△AGF和△CEF中,,∴△AGF≌△CEF(AAS),∴AG=CE,∵AG=2DE,∴CE=2DE,∴DE=,若EF=EG时,过点E作EH⊥AC于H,∵EF=EG,AE⊥FG,∴AE平分FG,即AE垂直平分FG,∴AG=AF,∴AE平分∠GAF,∵ED⊥AD,EH⊥AC,∴ED=EH,在Rt△EHC中,∠EHC=90°,∠ECH=45°,∴EC=EH=ED,∵ED+EC=2,∴ED+ED=2,∴DE==2()=2﹣2,∴DE的长为:或2﹣2.28.已知抛物线y=﹣x2+bx+c与x轴交于点A、点B(3,0),与y轴交于点C(0,3),点P为抛物线上一点,过点P作PE⊥x轴,交直线BC于点D,交x轴于点E.(1)求抛物线的解析式;(2)如图1,若线段QF和线段PE关于抛物线的对称轴对称,当四边形PQFE为正方形时,求正方形PQFE的面积;(3)如图2,在y轴上点C的正下方取点H,使CH=2DE,在函数图象上取点K,过点H作直线DK的垂线交直线PE于点G,若∠HDC=∠KDG,∠CHG=∠KGH,求点K 的坐标和点P的坐标.【分析】(1)运用待定系数法即可求得答案;(2)设P点坐标为(m,﹣m2+2m+3),利用正方形性质可求得|OF|=﹣m2+m+3,F(m2﹣m﹣3,0),再根据抛物线对称轴建立方程求解即可得出m=,进而可求得答案;(3)如图2,过点K和点D作y轴的垂线分别交y轴于R和T点,HG和KD相交于点M,根据平行线性质和直角三角形性质得出∠HDK=45°,进而可得△HMD是等腰直角三角形,再证得△GDK是等腰三角形,从而证得:△KMH≌△DMH(SAS),△KHR≌△HDT(AAS),设点D的坐标为(m,3﹣m),建立方程求解即可.解:(1)∵已知抛物线y=﹣x2+bx+c与x轴交于点A、点B(3,0),与y轴交于点C (0,3),∴将B(3,0)、C(0,3)两点坐标代入抛物线中,得:,解得:,∴抛物线的解析式为y=﹣x2+2x+3;(2)∵P点在抛物线上,∴设P点坐标为(m,﹣m2+2m+3),∵四边形QPEF为正方形,∴PE=EF,∴|PE|﹣|OE|=|OF|,∴|OF|=﹣m2+2m+3﹣m=﹣m2+m+3,∴F点坐标为(m2﹣m﹣3,0),∵抛物线对称轴为直线x=﹣=﹣=1,∴=1,即=1,解得:m=﹣(舍去)或m=,∴E(,0),F(2﹣,0),∴EF=﹣(2﹣)=2﹣2,∴S正方形PQFE=EF2=(2﹣2)2=24﹣8,故正方形PQFE的边长为2﹣2,面积为24﹣8;(3)如图2,过点K和点D作y轴的垂线分别交y轴于R和T点,HG和KD相交于点M,∵y轴∥PE,∴∠CHG=∠HGD,∵HG⊥KD,∴∠HGD+∠GDK=90°,∵∠GDK=∠CDH,∴∠CHG+∠CDH=90°,∵OB=OC=3,∠BOC=90°,∴∠OCD=45°,∵y轴∥PE,∴∠KDG+∠CDK=∠OCD=45°,∵∠HDC=∠KDG,∴∠HDC+CDK=45°,即∠HDK=45°,∵HG⊥KD,∴△HMD是等腰直角三角形,∵∠CHG=∠HGD,∠CHG=∠KGH,∴∠HGD=∠KGH,∵HG⊥KD,∴△GDK是等腰三角形,∴KM=MD,在△KMH和△DMH中,,∴△KMH≌△DMH(SAS),∴KH=HD,∴△KHD是等腰直角三角形,∴∠KHC=90°﹣∠DHO=∠HDT,在△KHR和△HDT中,,∴△KHR≌△HDT(AAS),∴RH=DT,KR=HT,设点D的坐标为(m,3﹣m),则DT=m,DE=3﹣m,∵CH=2DE,∴CH=6﹣2m,∴OH=OC﹣CH=3﹣(6﹣2m)=2m﹣3,∴HT=OH﹣OT=2m﹣3﹣(3﹣m)=3m﹣6,∴H的坐标为(0,2m﹣3),∵OK=OH+RH=2m﹣3+m=3m﹣3,∴K的坐标为(3m﹣6,3m﹣3),将点K的坐标代入抛物线y=﹣x2+2x+3中,得:3m﹣3=﹣(3m﹣6)2+2(3m﹣6)+3,解得:m1=2,m2=,∵点H在点C下方,∴2m﹣3<3,∴m<3,∴m=2∴K的坐标为(0,3),P的坐标为(2,3).。
2021-2022学年四川省成都实验外国语学校西区九年级(上)月考数学试卷(12月份)
2021-2022学年四川省成都实验外国语学校西区九年级(上)月考数学试卷(12月份)一、选择题(每小题3分,共30分)1.(3分)下列几何体中,俯视图为三角形的是()A.B.C.D.2.(3分)下列方程是一元二次方程的是()A.2x+3y=1B.2x(x﹣1)=2x2+3C.2x+=3D.x2﹣3=03.(3分)已知=,则的值为()A.B.C.﹣D.﹣4.(3分)已知B是锐角,且满足sin(B﹣10)°=,则B的度数为()A.30°B.40°C.45°D.60°5.(3分)如图,四边形ABCD与四边形EFGH是位似图形,位似中心是点O,已知=,则=()A.25:9B.9:25C.3:5D.5:36.(3分)抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6.则朝上一面的数字为偶数的概率是()A.B.C.D.7.(3分)已知一元二次方程x2﹣6x+c=0有一根为2,则另一根为()A.3B.﹣3C.4D.﹣48.(3分)下列命题正确的是()A.对角线相等的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直且相等的四边形是正方形9.(3分)某种钢笔经过两次连续降价,每支钢笔的零售价由60 元降为50 元,若两次降价的百分率相同且均为x,求每次降价的百分率.下面所列的方程中,正确的是()A.60(1+x)2=50B.60(1﹣x)2=50C.60(1﹣2x)=50D.60(1﹣x2)=5010.(3分)如图,四边形ABCD为平行四边形,E、F为CD边的两个三等分点,连接AF、BE交于点G,则S△EFG:S△ABG=()A.1:3B.3:1C.1:9D.9:1二、填空题(每小题4分,共16分)11.(4分)已知反比例函数y=(k≠0)的图象过点A(1,﹣2),则k的值为.12.(4分)已知关于x的一元二次方程x2﹣2x+k﹣1=0有实数根,则求k的取值范围.13.(4分)如图,在菱形ABCD中,AC、BD相交于点O,E为AB的中点,若OE=3,则菱形ABCD的周长是.14.(4分)如图,在平行四边形ABCD中,AB=4,BC=5,以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN 交BA的延长线于点E,则AE的长是.三、解答题(共54分)15.(10分)计算:(1)()﹣1+cos30°+﹣|1﹣tan60°|;(2)解方程:x2﹣4x+1=0.16.(8分)已知关于x的方程3x2+2x﹣m=0有两个不相等的实数根.(1)求m的取值范围;(2)若方程的一个根为﹣1,求方程的另一个根.17.(8分)如图,实外西区新校区建设中需要测量某块地的宽度AB,无人飞机在C处测得A,B两点的俯角分别为∠DCA=45°和∠DCB=30°.若飞机离地面的高度CH为1000米,且点H,A,B在同一水平直线上,求这块地的宽度AB为多少米?(结果保留根号).18.(8分)校园文化是学校的灵魂,实外西区肖明华校长推出《读100本名著》《听100首名曲》《赏100幅名面》《懂100个名人》等一系列文化活动.为了解学生对这些文化活动的喜爱情况,我校组织学生会成员随机抽取了部分学生进行调查,被调查的学生必须从《读100本名著》(记为A)、《听100首名曲》(记为B)、《赏100幅名面》(记为C)、《懂100个名人》(记为D)中选择自己最喜爱的一个栏目,也可以写出一个自己喜爱的其他校园文化栏目(记为E).根据调查结果绘制成如图所示的两幅不完整的统计图.请根据图中信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)将条形统计图补充完整,并求出扇形统计图中“B”所在扇形圆心角的度数;(3)若选择“E”的学生中有2名女生,其余为男生.现从选择“E”的学生中随机选出两名学生参加座谈,请用列表法或画树状图的方法求出刚好选到同性别学生的概率.19.(10分)如图,在平面直角坐标系中,直线y=﹣x与反比例函数y=(k≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣x向上平移后与反比例函数图象在第二象限内交于点B,与y轴交于点C,且△ABO 的面积为,求直线BC的解析式.(3)设y BC=k1x+b1,在第二象限中,求B点坐标并直接写出k1x+b1≥的解集.20.(10分)如图:在四边形ABCD中,AB∥CD,∠BCD=90°,且AB=2,DC=BC=4.(1)求sin∠ADC的值.(2)E是四边形内一点,F是四边形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状.(等腰直角三角形)(3)在(2)的条件下,当BE:CE=1:2,∠BEC=135°时,求sin∠BFE的值.一、填空题(每小题4分,共20分)21.(4分)一元二次方程x2+3x﹣5=0的两个根分别是m和n,则m2+2m﹣n+5=.22.(4分)已知C,D分别是线段AB上的两个黄金分割点,且AB=6,则CD=.23.(4分)如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为2,4,△OAC与△ABD的面积之和为3,则k 的值为.24.(4分)在矩形ABCD中,AB=6,BC=8,G为AD边的中点.如图,若E、F为边AB上的两个动点,且EF=4,当四边形CGEF的周长最小时,则求AF的长为.25.(4分)三角形的布洛卡点是法国数学家和数学教育家克洛尔于1816年首次发现.但他的发现并未被当时的人们所注意.1875年,布洛卡点被一个数学爱好者法国军官布洛卡重新发现,并用它的名字命名.如图1,若任意△ABC内一点Q满足∠1=∠2=∠3=α,则点Q叫做△ABC的布洛卡点,α叫布洛卡角.如图2,若点Q为等边△ABC的布洛卡点,则布洛卡角α的度数是,如图3,若点Q为等腰直角△ABC(其中∠ACB=90°)的布洛卡点.则△QAC,△QBA,△QCB的面积比为.二、解答题(共30分)26.(8分)科技驱动新零售商业变革的时代已经来临,无人超市的经营模式已在全国各地兴起,某家无人超市开业以来,经测算,为销售A型商品每天需固定支出的费用为400元,若A型商品每件的销售利润不超过9元,每天销售A型商品的数量为280件,若A型商品每件的销售利润超过9元,则每超过1元,每天销售A型商品的数量减少10件,设该家无人超市A型商品的销售利润为x元/件,A型商品的日净收入为y元(日净收入=A型商品每天销售的总利润﹣A型商品每天固定的支出费用):(1)试求出该超市A型商品的日净收入为y(元)与A型商品的销售利润x(元/件)之间的关系式;(2)该超市能否实现A型商品的销售日净收入3000元的目的?如能实现,求出A型商品的销售利润为多少元/件?如不能实现,请说明理由;(3)请问该超市A型商品的销售利润为多少元/件时,能获得A型商品的最大日净收入?27.(10分)已知,在Rt△ABC中,∠ACB=90°,BC=4,AB=,点D是AC边上的一个动点,将△ABD沿BD所在直线折叠,使点A落在P处.(1)如图1,若点D是AC中点,连接PC.①求AC的长;②试猜想四边形BCPD的形状,并加以证明;(3)如图2,若BD=AD,过点P作PH⊥BC交BC的延长线于点H,求CH的长.28.(12分)“数学建模”是中学数学的核心素养,平时学习过程中能归纳一些几何模型,解决几何问题就能起到事半功倍的作用:(1)如图①,正方形ABCD中,∠EAF=45°,且DE=BF,求证:EG=AG;(2)如图②,正方形ABCD中,∠EAF=45°,延长EF交AB的延长线于点G,(1)中的结论还成立吗?请说明理由;(3)如图③在(2)的条件下,作GQ⊥AE,垂足为点Q,交AF于点N,连结DN,求证:∠NDC=45°.参考答案一、选择题(每小题3分,共30分)1.C;2.D;3.D;4.B;5.C;6.C;7.C;8.C;9.B;10.C;二、填空题(每小题4分,共16分)11.﹣2;12.k≤2;13.24;14.1;三、解答题(共54分)15.(1)3+.(2)x1=2+,x2=2﹣.;16.;17.;18.(1)150;(2)见解答,36°;(3).;19.;20.;一、填空题(每小题4分,共20分)21.13;22.6﹣12;23.5;24.;25.30°;1:2:2;。
2020-2021学年四川省成都市九年级上册期中数学试卷
2020-2021学年四川省成都市九年级上册期中数学试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.已知关于x的方程是一元二次方程,则a的值是A. B. 2 C. 或3 D. 32.如图,在菱形ABCD中,已知,,则菱形ABCD的面积为A. 12B. 48C. 25D. 243.如图,四边形ABCD和是以点O为位似中心的位似图形.若,则四边形ABCD与四边形的面积比为A. B. C. D.4.如图,,,,,则的值为A.B.C.D.5.如图,与是位似图形,位似比为2:3,已知,则AC的长为A. B. C. D.6.用频率估计概率,可以发现,抛掷硬币,“正面朝上”的概率为,是指A. 连续掷2次,结果一定是“正面朝上”和“反面朝上”各1次B. 连续抛掷100次,结果一定是“正面朝上”和“反面朝上”各50次C. 抛掷2n次硬币,恰好有n次“正面朝上”D. 抛掷n次,当n越来越大时,正面朝上的频率会越来越稳定于7.已知,a是关于m的方程的一个根,则的值为A. 4B. 5C. 6D. 78.如图,已知,那么添加下列一个条件后,仍无法判定∽的是.A.B.C.D.9.解一元二次方程,用配方法可变形为A. B. C. D.10.在四边形ABCD中,两对角线交于点O,若,则这个四边形A. 可能不是平行四边形B. 一定是菱形C. 一定是正方形D. 一定是矩形二、填空题(本大题共9小题,共36.0分)11.若,则______.12.如图,在中,,,D是AB的中点,则CD的长为________.13.如果表示正方形ABCD各边长的代数式如图所示,那么,阴影部分的面积是______.14.我们知道:四边形具有不稳定性如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,,,边AD长为5,现固定边AB,把矩形沿箭头方向“推”,当点D落在y轴的正半轴上时落点记为,相应地,点C的对应点的坐标为___________.15.已知周长为20的矩形的长和宽是一元二次方程的两个实数根,则m的值为______ .16.如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是______ .17.如图,已知线段AB两个端点的坐标分别为,,以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点D的坐标为______.18.若关于x的方程有实数根,则a的取值范围是______.19.如图,正方形DEFG的边EF在的边BC上,顶点D、G分别在边AB、AC上,已知,的面积为9,则正方形DEFG的面积为______.三、解答题(本大题共9小题,共84.0分)20.用指定的方法解下列方程因式分解法公式法21.若一元二次方程有实数根,求k的取值范围.22.如图是小明设计利用光线来测量某古城墙CD高度的示意图,如果镜子P与古城墙的距离米,镜子P与小明的距离米,小明刚好从镜子中看到古城墙顶端点C,小明眼睛距地面的高度米,那么该古城墙的高度是?23.在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形如图,小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.用树状图或列表法表示两次摸牌所有可能出现的结果纸牌可用A、B、C、D表示;求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.24.已知:平行四边形ABCD的两条边AB,AD的长是关于x的方程的两个实数根.当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;若,求平行四边形ABCD的周长.25.已知,,,BF为的平分线.求证:.26.某商品的进价为每件40元,售价每件不低于60元且每件不高于80元当售价为每件60元时,每个月可卖出100件,经调查发现,每件商品每上涨1元,每个月少卖2件设每件商品的售价为x元为正整数.求每个月的销售利润用含有x的代数式表示若每个月的利润为2250元,定价应为多少元27.解方程:28.如图,点P是正方形ABCD边AB上一点不与点A,B重合,连接PD并将线段PD绕点P顺时针方向旋转得到线段PE,PE交边BC于点连接BE、DF.求证:;求的度数;当的值等于多少时.∽?并说明理由.答案和解析1.【答案】A【解析】【分析】此题主要考查了一元二次方程定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.根据一元二次方程定义可得,,再解即可.【解答】解:由题意得:,,解得:,故选A.2.【答案】D【解析】【分析】此题考查了菱形的性质.解此题的关键是掌握菱形的面积等于其对角线乘积的一半.根据菱形的性质可知菱形的对角线互相垂直平分,利用菱形的面积公式可求解即可.【解答】解:四边形ABCD是菱形,,,,,,,菱形ABCD的面积是,故选D.3.【答案】A【解析】【分析】本题考查的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键.根据题意求出两个相似多边形的相似比,根据相似多边形的性质解答.【解答】解:四边形ABCD和是以点O为位似中心的位似图形,,,四边形ABCD与四边形的面积比为.4.【答案】A【解析】【分析】本题考查的是平行线分线段成比例定理,比例的性质,灵活运用平行线分线段成比例定理,找准对应关系是解题的关键.根据平行线分线段成比例定理得到,根据比例的性质计算,得到答案.【解答】解:,,即,,故选A.5.【答案】C【解析】解:与是位似图形,位似比为2:3,::3,::3,则.故选:C.位似图形就是特殊的相似图形位似比等于相似比.利用相似三角形的性质即可求解.本题主要考查位似的定义.解题的关键是掌握位似图形是相似图形的特殊形式,位似比等于相似比的特点.6.【答案】D【解析】【试题解析】解:连续抛掷2n次不一定正好正面向上和反面向上的次数各一半,故A、B、C错误,抛掷n次,当n越来越大时,正面朝上的频率会越来越稳定于,故D正确,故选D.利用“大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,这个常数可以估计事件发生的概率”进行判断即可.本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,这个常数可以估计事件发生的概率.7.【答案】A【解析】【分析】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.利用一元二次方程的解的定义得到,再把变形为,然后利用整体代入的方法计算.【解答】解:是关于m的方程的一个根,,,.故选:A.8.【答案】D【解析】【分析】本题考查的是相似三角形的判定,先根据得出,再由相似三角形的判定定理对各选项进行逐一判定即可.【解答】解:,.A.,∽,故本选项错误;B.,∽,故本选项错误;C.,∽,故本选项错误;D.,与的大小无法判定,无法判定∽,故本选项正确.故选D.9.【答案】A【解析】【分析】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键移项后两边都加上一次项系数一半的平方可得.【解答】解:,,即.故选A.10.【答案】D【解析】解:这个四边形是矩形,理由如下:对角线AC、BD交于点O,,四边形ABCD是平行四边形,又,,四边形ABCD是矩形.故选:D.根据,判断四边形ABCD是平行四边形.然后根据,判定四边形ABCD是矩形.本题考查了矩形的判断,熟记矩形的各种判定方法是解题的关键.11.【答案】【解析】【分析】此题主要考查了比例的性质,正确将原式变形是解题关键.直接利用已知变形进而得出a,b之间的关系.【解答】解:,,故,,则.故答案为.12.【答案】3【解析】【分析】本题主要考查了直角三角形的性质,熟记性质是解题的关键根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:,D为AB的中点,.故答案为:3.13.【答案】8【解析】解:根据正方形的性质可得,解得.所以正方形的边长为.把阴影部分进行重新组合正好是的面积,即.故答案为8.先根据正方形的边长都相等,构造方程组求出x和y的值,进而得到正方形的边长,观察图形得到阴影部分面积与面积相等.本题只要考查了正方形的性质以及三角形面积问题,解题的关键是对阴影部分进行转化,使其成为规则图形.14.【答案】.【解析】【分析】本题考查了矩形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.根据题意可得,,,根据勾股定理得到,进而即可求得结果.【解答】解:,,,,,,,.故答案为.15.【答案】10【解析】解:周长为20的矩形的长和宽的和为10,矩形的长和宽是一元二次方程的两个实数根,;故答案为:10.先求出矩形的长和宽的和为10,再由一元二次方程的根与系数的关系即可得出m的值.本题考查了一元二次方程的根与系数的关系、矩形的性质;熟练掌握一元二次方程的根与系数的关系是解决问题的关键.16.【答案】【解析】解:画树状图得:共有12种等可能的结果,现任意闭合其中两个开关,则小灯泡发光的有6种情况,小灯泡发光的概率为:.故答案为:.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小灯泡发光的情况,再利用概率公式即可求得答案.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率所求情况数与总情况数之比.17.【答案】【解析】解:线段AB两个端点的坐标分别为,,以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点B与点D是对应点,则点D的坐标为,即,故答案为:.根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或解答.本题考查的是位似变换的概念和性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或.18.【答案】【解析】解:关于x的方程有实数根,,,故答案为:.根据方程有实数根得到根的判别式,列出a的不等式,求出a 的取值范围.本题考查了根的判别式的知识,解答此题要掌握一元二次方程根的情况与判别式的关系:方程有两个不相等的实数根;方程有两个相等的实数根;方程没有实数根.19.【答案】4【解析】解:作于H,交DG于P,如图所示:的面积,,,设正方形DEFG的边长为x.由正方形DEFG得,,即,,.由得∽.,,,即,由,,,得,解得.故正方形DEFG的面积;故答案为:4.由得∽,利用相似三角形对应边上高的比等于相似比,列方程求解.本题考查了相似三角形的判定与性质、正方形的性质.关键是由平行线得到相似三角形,利用相似三角形的性质列方程.20.【答案】解:,,则,或,解得,;,,,,则,即,.【解析】利用因式分解法求解可得;利用公式法求解可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.21.【答案】解:一元二次方程有实数根,,.【解析】根据的意义得到,然后解不等式即可.本题考查了一元二次方程的根的判别式:当,方程有两个不相等的实数根;当,方程有两个相等的实数根;当,方程没有实数根.22.【答案】解:,,∽,即:,解得:米.答:该古城墙的高度是.【解析】由光学知识反射角等于入射角不难分析得出,再由得到∽,得到代入数值求的CD的值即可.本题考查了相似三角形的应用,同时渗透光学中反射原理,结合相似三角形的性质分析是解决本题关键.23.【答案】解画树状图得:则共有16种等可能的结果;既是中心对称又是轴对称图形的只有B、C,既是轴对称图形又是中心对称图形的有2种情况,既是轴对称图形又是中心对称图形的概率为:.【解析】此题考查了列表法或树状图法求概率以及轴对称图形与中心对称图形的性质.用到的知识点为:概率所求情况数与总情况数之比.首先根据题意画出树状图,然后由树状图求得所有等可能的结果;由既是轴对称图形又是中心对称图形的有4种情况,直接利用概率公式求解即可求得答案.24.【答案】解:四边形ABCD是菱形,.又、AD的长是关于x的方程的两个实数根,,,当m为1时,四边形ABCD是菱形.当时,原方程为,即,解得:,菱形ABCD的边长是.把代入原方程,得:,解得:.将代入原方程,得:,方程的另一根,▱ABCD的周长是.【解析】本题考查了根与系数的关系、根的判别式、平行四边形的性质以及菱形的判定与性质,解题的关键是:根据菱形的性质结合根的判别式,找出关于m的一元二次方程;根据根与系数的关系结合方程的一根求出方程的另一根.根据菱形的性质可得出,结合根的判别式,即可得出关于m的一元二次方程,解之即可得出m的值,将其代入原方程,解之即可得出菱形的边长;将代入原方程可求出m的值,将m的值代入原方程结合根与系数的关系可求出方程的另一根AD的长,再根据平行四边形的周长公式即可求出▱ABCD的周长.25.【答案】证明:连接EF.,BF为的平分线,,等角对等边;又已知,;,,::平行线分线段成比例;而AB::角平分线的性质,::等量代换,,即.【解析】连接根据角平分线的性质知AF::EC,由平行线分线段成比例知AF::EC,由这两个比例式和已知条件“”知,即.此题考查了平行线分线段成比例定理.此题难度适中,解题的关键是准确作出辅助线,掌握数形结合思想的应用,注意对应线段的对应关系.26.【答案】解:.,解得,.,不符合题意,舍去,.因此当每件商品的售价为65元时,每个月的利润为2250元.【解析】本题考查了一元二次方程的应用以及列代数式,解题的关键是:根据数量关系,列出代数式;找准等量关系,正确列出一元二次方程.设每件商品的售价为x元为正整数,则每个月可卖出件,根据销售利润每件的利润销售数量,即可得出结论;由的结论结合每个月的利润为2250元,即可得出关于x的一元二次方程,解之取大于等于60小于等于80的值即可得出结论.27.【答案】,;,.【解析】分析通过观察方程形式,利用一元二次方程的因式分解法解方程比较简单;找出方程中二次项系数a,一次项系数b及常数项c,计算出根的判别式,由根的判别式大于0,得到方程有解,将a,b及c的值代入求根公式即可求出原方程的解.详解解:因式分解得:,,,,;,,,方程有两个不相等的实数根,,.故答案为:,;,.点睛本题考查解一元二次方程因式分解法,解一元二次方程公式法.28.【答案】证明:四边形ABCD是正方形.,,,,,;解:过点E作交AB的延长线于点Q,则,又,,≌,,,,;解:.理由:∽,,,,∽,,,当时,∽.【解析】本题主要考查了正方形的性质,以及三角形相似的判定与性质,正确探究三角形相似的性质是解题的关键.根据与都是的余角,根据同角的余角相等,即可求证;首先证得≌,可以证得是等腰直角三角形,可以证得,即可证得;这两个三角形是直角三角形,若相似,则对应边的比相等,即可求得的值.。
2020-2021学年成都实验外国语学校西区九年级上学期期中数学试卷(含解析)
2020-2021学年成都实验外国语学校西区九年级上学期期中数学试卷一、选择题(本大题共10小题,共30.0分)1.由5个完全相同的正方体组成的立体图形如图所示,则它的俯视图是()A.B.C.D.2.若关于x的一元二次方程(m−2)x2−2x+1=0有实根,则m的取值范围是()A. m<3B. m≤3C. m<3且m≠2D. m≤3且m≠23.若3a=2b,则下列式子不正确的是()A. ab =23B. a+ba=52C. a+ba−b=3 D. 2a=3b4.如图,在直角坐标系中,△ABC的顶点B的坐标为(−1,1),现以坐标原点O为位似中心,作与△ABC的位似比为23的位似图形△A′B′C′,则B′的坐标为()A. (−23,2 3 )B. (23,−23)C. (−23,23)或(23,−23)D. (−23,23)或(−23,−23)5.对式子m作恒等变形,使根号外不含字母m,正确的结果是()A. B. − C. D.6.下列说法中错误的是()A. 对角线互相平分的四边形是菱形B. 对角线相等的平行四边形是矩形C. 菱形的对角线互相垂直D. 对角线长为12a的正方形的面积是18a27.关于▱ABCD的叙述,正确的是()A. 若AC=BD,则▱ABCD是菱形B. 若AB=AD,则▱ABCD是矩形C. 若AB⊥BC,则▱ABCD是正方形D. 若AC⊥BD,则▱ABCD是菱形8.如图,已知∠1=∠2,若添一个条件就能使△ADE∽△ABC成立,则条件不能是()A. AD:AB=DE:BCB. ∠AED=∠CC. ∠D=∠BD. AD:AB=AE:AC9.如图,AB⊥BD,CD⊥BD,垂足分别为B、D,AC和BD相交于点E,EF⊥BD垂足为F.则下列结论错误的是()A. AEEC =BEEDB. AEED =BFFDC. EFAB =DFDBD. ADBD =AEBF10.某厂前年缴税30万元,今年缴税36.3万元,若该厂缴税的年平均增长率为x,则可列方程是()A. 30x2=36.3B. 30(1−x)2=36.3C. 30+30(1+x)+30(1+x)2=36.3D. 30(1+x)2=36.3二、填空题(本大题共9小题,共36.0分)11.设m,n分别为一元二次方程x2+2x−1=0的两个实数根,则m+n+mn=______.12.一个不透明的袋子里装有3个白球、1个红球,这些球除了颜色外无其他的差异,从袋子中随机摸出1个球,恰好是白球的概率是______ .13.如图,菱形OACD的边长为2cm,以点O为圆心,OA长为半径的AD⏜经过点C,作CE⊥OD,垂足为点E,则阴影部分面积为______.14.如图,早上10点小东测得某树的影长为2m,到了下午5时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度约为m.15.关于x的方程(k−2)x k2−2−11=0是一元二次方程,则k的值是______.16.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.某女士身高157cm,下半身长为94cm,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为______ cm.(精确到1cm)17.有四张正面分别标有−1,0,1,2的不透明卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中取出一张,将卡片上的数字记为a,不放回,再取出一张,将卡片上的数字记为b,设P点的坐标为(a,b).如图,点P落在抛物线y=x2与直线y=x+2所围成的封闭区域内(图中含边界的阴影部分)的概率是______ .18.如图,正方形ABCD的边长为6cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于______cm.19.如图,锐角△ABC中,∠A=45°,AB=8√2,BC=10,则BC边上的高为______.三、解答题(本大题共9小题,共72.0分)20.用适当的方法解下列方程:(1)4(6x−1)2=25(直接开平方法);(2)x2−2x=2x−1(公式法);(3)x2+3x−2=0(配方法);(4)x(x−7)=8(7−x)(因式分解法)21.求证:无论m取何值,方程(x−2)2−m2=1有两个不相等的实数根.22.如图,将五边形缩小,使缩小后的五边形与原五边形对应线段的比是1:3.23.如图,AB是⊙O的直径,PA,PC分别与⊙O相切于点A,C,PC交AB的延长线于点D,DE⊥PO交PO的延长线于点E.∠APD;(1)求证:∠ODE=12(2)若PC=6,tan∠PDA=3,求OE的长.424.一个不透明的布袋里装有4个大小、质地均相同的乒乓球,球上分别标有数字1、2、3、4(1)小明随机从布袋中摸出一个乒乓球,记下数字后放回布袋里,再随机从布袋中摸出一个乒乓球.请用列表或列树状图的方式列出所有可能的结果,并求出“两个乒乓球上的数字之和不小于4”的概率;(2)小明随机从布袋中一次摸出两个乒乓球,直接写出“两个乒乓球上的数字至少有一个是奇数”的概率.25.如图,在⊙O上有定点C和动点Q,位于直径AB的异侧,过点C作CP的垂线,与PB的延长线交于点Q,已知:⊙O半径为5,2tan∠ABC=3,求△PCQ面积的最大值.426.某水果经销商以19元/千克的价格新进一批芒果进行销售,因为芒果不耐储存,在运输储存过程损耗率为5%.为了得到日销售量y(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:销售价格x(元/千克)2025303540日销售量y(千克)4003002001000(1)这批芒果的实际成本为______ 元/千克;[实际成本=进价÷(1−损耗率)](2)①请你根据表中的数据直接出写出y与x之间的函数表达式,标出x的取值范围;②该水果经销商应该如何确定这批芒果的销售价格,才能使日销售利润W1最大?[日销售利润=(销售单价−实际成本)×日销售量](3)该水果经销商参与电商平台助农活动,开展网上直销,可以完全避免运输储存过程中的损耗成本,但每销售1千克芒果需支出a元(a>0)的相关费用,销售量与销售价格之间关系不变.当25≤x≤29,该水果经销商日获利W2的最大值为2156元,求a的值.【日获利=日销售利润−日支出费用】27. 如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC=6,D在线段BC上,E是线段AD的一点.现以CE为直角边,C为直角顶点,在CE的下方作等腰直角△ECF,连接BF.(1)如图1,求证:AE=BF;(2)当A、E、F三点共线时,如图2,若BF=2,则AF的长为______ ;(3)如图3,若∠BAD=15°,连接DF,当E运动到使得∠ACE=30°时,则△DEF的面积为______ .28. 问题情境:在平面直角坐标系xOy中有不重合的两点A(x1,y1)和点B(x2,y2),小明在学习中发现,若x1=x2,则AB//y轴,且线段AB的长度为|y1−y||;若y1=y2,则AB//x轴,且线段AB的长度为|x1−x2|;(1)若点A(−1,1)、B(2,1),则AB//x轴,AB的长度为______.我们规定:平面直角坐标系中任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为d(M,N)= |x1−x2|+|y1−y2|;例如:图1中,点M(−1,1)与点N(1,−2)之间的折线距离为d(M,N)=|−1−1|+|1−(−2)|=2+3=5.解决下列问题:(2)①如图1,已知E(2,0),若F(−1,−2),则d(E,F)=______.②如图2,已知E(2,0),H(1,t),若d(E,H)=3,则t=______.(3)如图3,已知P(3,3),点Q在坐标轴上,且三角形OPQ的面积为3,请求d(P,Q)的值.参考答案及解析1.答案:C解析:此题考查了三视图的作图,注意掌握看所得到的图形的形状、数量与位置.几何体的俯视图有3列,每行小正方形数目分别为1,3,且第一行的一个在第二行的最左边,由此得出答案即可.解:它的俯视图是.故选C.2.答案:D解析:解:∵关于x的一元二次方程(m−2)x2−2x+1=0有实根,∴m−2≠0,并且△=(−2)2−4(m−2)=12−4m≥0,∴m≤3且m≠2.故选:D.由于x的一元二次方程(m−2)x2−2x+1=0有实根,那么二次项系数不等于0,并且其判别式△是非负数,由此可以建立关于m的不等式组,解不等式组即可求出m的取值范围.本题考查了根的判别式的知识,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.此题切记不要忽略一元二次方程二次项系数不为零这一隐含条件.3.答案:C解析:本题考查了比例的性质,熟记比例的性质是解题关键.根据比例的性质逐项判断即可.解:A、两边都除以3b,ab =23故A正确;B、两边都除以2a,得ba =32,,a+ba=1+ba=52,故B正确;C、若3a=2b,两边都除以3,得a=23b,a+ba−b=23b+b23b−b=−5,故C错误;D 、若3a =2b ,两边都除以ab ,得2a =3b ,故D 正确; 故选:C .4.答案:C解析:解:∵位似中心为坐标原点,作与△ABC 的位似比为23的位似图形△A′B′C′, 而B 的坐标为(−1,1), ∴B′的坐标为(−23,23)或(23,−23). 故选:C .根据以原点为位似中心的对应点的坐标关系,把B 点的横纵坐标都乘以23或−23得到B′的坐标. 本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或−k .5.答案:D解析:m=;故选D6.答案:A解析:解:因为对角线互相平分的四边形是平行四边形,所以A 选项错误,符合题意; 因为对角线相等的平行四边形是矩形,所以B 选项正确,不符合题意; 因为菱形的对角线互相垂直,所以C 选项正确,不符合题意;因为对角线长为12a 的正方形的面积是:12×12a ×12a =18a 2.所以D 选项正确,不符合题意. 故选:A .根据正方形的性质、平行四边形的判定与性质、菱形的判定与性质、矩形的判定逐一进行判断即可. 本题考查了正方形的性质、平行四边形的判定与性质、菱形的判定与性质、矩形的判定,解决本题的关键是掌握特殊四边形的判定与性质.7.答案:D解析:解:∵▱ABCD 中,AC =BD , ∴四边形ABCD 是矩形,选项A 不符合题意; ∵▱ABCD 中,AB =AD ,∴四边形ABCD是菱形,不一定是正方形,选项B不符合题意;∵▱ABCD中,AB⊥BC,∴四边形ABCD是矩形,不一定是正方形,选项C不符合题意;∵▱ABCD中,AC⊥BD,∴四边形ABCD是菱形,选项D符合题意;故选:D.由菱形的判定方法、矩形的判定方法、正方形的判定方法得出选项A、B、D错误,C正确;即可得出结论.本题考查了平行四边形的性质、菱形的判定方法、矩形的判定方法、正方形的判定方法;熟练掌握矩形、菱形、正方形的判定方法是解决问题的关键.8.答案:A解析:解:∵∠1=∠2,∴∠DAE=∠BAC.∴若∠AED=∠C或∠D=∠B或AD:AB=AE:AC时△ADE∽△ABC.故选A.先根据∠1=∠2得出∠DAE=∠BAC,再由相似三角形的判定定理即可得出结论.本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.9.答案:A解析:解:∵AB⊥BD,CD⊥BD,EF⊥BD,∴AB//CD//EF,∴AEED =BFFD,故选项B正确,∵EF//AB,∴EFAB =DFDB,ADAE=BDBF,∴ADDB =AEBF,故选项C,D正确,故选:A.利用平行线分线段成比例定理等知识一一判断即可.本题考查平行线的性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.答案:D解析:解:如果设该厂缴税的年平均增长率为x,那么根据题意得今年缴税30(1+x)2,列出方程为:30(1+x)2=36.3.故选:D.本题是关于增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设该厂缴税的年平均增长率为x,那么根据题意可用x表示今年缴税数,然后根据已知可以得出方程为:30(1+x)2=36.3.平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.11.答案:−3解析:解:∵m,n分别为一元二次方程x2+2x−1=0的两个实数根,∴m+n=−2,mn=−1,则m+n+mn=−2−1=−3.故答案为:−3.根据一元二次方程根与系数的关系即可得出m+n=−2,mn=−1,将其代入m+n+mn中即可求出结论.本题考查了根与系数的关系,根据一元二次方程根与系数的关系得出m+n=−2,mn=−1是解题的关键.12.答案:34解析:解:∵不透明的袋子里装有3个白球、1个红球,共有4个球,∴从袋子中随机摸出1个球,恰好是白球的概率是34.故答案为:34.根据不透明的袋子里装有3个白球、1个红球,共有4个球,再根据概率公式即可得出答案.本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.13.答案:(23π−√32)cm2解析:本题考查了菱形的性质、等边三角形的性质和判定、扇形的面积等知识点,能把不规则图形的面积转化成规则图形的面积是解此题的关键.连接OC,根据等边三角形的判定得出△DOC是等边三角形,求出∠DOC=60°,OE=1cm,CE=√3cm,根据扇形和三角形面积公式求出即可.解:连接OC,∵菱形OACD的边长为2cm,以点O为圆心,OA长为半径的AD⏜经过点C,∴DC=OD=OC=2cm,∴△DOC是等边三角形,∴∠COE=60°,∵CE⊥OD,∴∠CEO=90°,OE=DE=1cm,∴CE=OC×sin60°=2×√32=√3(cm),∴阴影部分的面积S=S扇形DOC −S△CEO=60π×22360−12×1×√3=(23π−√32)cm2.故答案为(23π−√32)cm2.14.答案:4解析:试题分析:根据题意,画出示意图,易得:Rt△EDC∽Rt△FDC,进而可得EDDC =DCFD;即DC2=ED⋅FD,代入数据可得答案.根据题意,作△EFC;树高为CD,且∠ECF=90°,ED=2,FD=8;∵∠ECD+∠FCD=90°,∠CED+∠ECD=90°,∴∠CED=∠FCD,又∵∠EDC=∠CDF=90°,∴Rt△EDC∽Rt△CDF,∴EDDC =DCFD;即DC 2=ED ⋅FD ,∴代入数据可得DC 2=16,DC =4;故答案为:4.15.答案:−2解析:解:由题意得:k 2−2=2;k −2≠0;解得k =±2;k ≠2;∴k =−2.是一元二次方程,那么x 的指数为2,系数不为0,列式求值即可.用到的知识点为:一元二次方程未知数的最高次数是2,并且二次项系数不为0.16.答案:8解析:解:设她应穿xcm 高度的高跟鞋,由题意得:94+x 157+x =0.618解得:x ≈8(cm)故答案为:8表示出下半身、全身的高度,再根据下半身:全身=0.618,求出鞋子的高度.本题考查了黄金分割的应用.关键是明确黄金分割所涉及的线段的比. 17.答案:13解析:解:解方程组{y =x 2y =x +2得{x =−1y =1或{x =2y =4, 所以抛物线y =x 2与直线y =x +2的交点坐标为(−1,1)和(2,4),画树状图为:共有12种等可能的结果数,其中点P 落在抛物线y =x 2与直线y =x +2所围成的封闭区域内(图中含边界的阴影部分)有4种,它们是(−1,1)、(0,1)、(0,2)、(1、2),所以点P 落在抛物线y =x 2与直线y =x +2所围成的封闭区域内(图中含边界的阴影部分)的概率=412=13. 故答案为13.先确定抛物线y=x2与直线y=x+2的交点坐标为(−1,1)和(2,4),再利用树状图展示所有12种等可能的结果数,然后找出满足条件的P点的个数,再利用概率公式计算.本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果数,再找出某事件所占有的结果数,然后根据概率公式计算这个事件的概率.18.答案:2或4解析:解:∵∠DAE=30°,∴AE=ADcos30∘=√324√3(cm),∵M为AE的中点,∴AM=2√3cm,①如图1作PF⊥BC于F,交AE与G,则∠PFQ=90°,PF=AD,在Rt△PFQ和Rt△ADE中,{PQ=AEPF=AD,∴Rt△PFQ≌Rt△ADE(HL),∴∠FPQ=∠DAE=30°,∴∠APM=90°+30°=120°,∴∠AMP=30°,∴∠DAE=∠AMP=30°,∵∠AMP=∠PMG,∴△APM∽△PGM,∴APPG =AMAP,∴cot30°=APPG=√3,∴AMAP=√3,即2√3AP=√3∴AP=2cm.②如图2所示:作PF⊥BC于F,同理Rt△PFQ≌Rt△ADE,∴∠FPQ=∠DAE,∵∠FPQ+∠APM=90°,∴∠DAE+∠APM=90°,∴∠AMP=90°=∠D,∵∠PAM=∠DAE,∴△APM∽△AED,∴APAE =AMAD,即AP4√3=2√36,∴AP=4cm.故答案为2或4.先由三角函数求出AE,得出AM,再证明Rt△PFQ≌Rt△ADE,得出∠FPQ=∠DAE,然后分两种情况分别作图求出AP即可.本题考查了正方形的性质、全等三角形的判定与性质、三角函数、相似三角形的判定与性质;熟练掌握正方形的性质,并能进行推理论证与计算是解决问题的关键.19.答案:565解析:解:作BD⊥AC于点D,AH⊥BC于点H,在Rt△ABD中,∠BAC=45°,∴DA=DB,由勾股定理得,DA2+DB2=AB2,即DA2+DB2=(8√2)2,解得,DA=DB=8,在Rt△BCD中,CD=√BC2−BD2=√102−82=6,∴AC=AD+CD=14,由三角形的面积公式可得,12×AC×BD=12×BC×AH,即12×14×8=12×10×AH,解得,AH=565,故答案为:565.作BD⊥AC于点D,AH⊥BC于点H,根据等腰直角三角形的性质、勾股定理分别求出AD、BD,根据勾股定理求出CD,根据三角形的面积公式列式计算即可.本题考查的是勾股定理、等腰直角三角形的性质,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.20.答案:解:(1)∵4(6x −1)2=25∴(6x −1)2=254,∴6x −1=±52,解得,x 1=712,x 2=−14;(2)∵x 2−2x =2x −1,∴x 2−4x +1=0,∵a =1,b =−4,c =1,∴△=b 2−4ac =(−4)2−4×1×1=12>0,∴x =4±√122×1=4±2√32=2±√3,∴x 1=2+√3,x 2=2−√3;(3)∵x 2+3x −2=0,∴x 2+3x =2,∴(x +32)2=174, ∴x +32=±√172, 解得,x 1=√17−32,x 2=−√17−32;(4)∵x(x −7)=8(7−x),∴x(x −7)−8(7−x)=0,∴x(x −7)+8(x −7)=0,∴(x −7)(x +8)=0,∴x −7=0,x +8=0,解得,x 1=7,x 2=−8.解析:(1)根据直接开平方法可以解答此方程;(2)根据公式法可以解答此方程;(3)根据配方法可以解答此方程;(4)根据因式分解法可以解答此方程.本题考查解一元二次方程,解答本题的关键是明确解一元二次方程的方法.21.答案:解:由题意可知:(x−2)2=m2+1,∵m2+1>0,∴无论m取何值,该方程有两个不相等的实数根.解析:根据直接开方法以及二次根式的性质即可求出答案.本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.22.答案:解:如图,五边形A′B′C′D′E′为所作.解析:如图,在五边形内任意取点O,连接OA、OB、OC、OD、OE,再OA上取点A′使OA=3OA′,同样得到B′、C′、D′、E′,然后依次连接得到五边形A′B′C′D′E′.本题考查了作图−位似变换:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.23.答案:(1)证明:∵PA,PC与⊙O分别相切于点A,C,∴∠APO=∠EPD=1∠APD,且PA⊥AO,2∴∠PAO=90°,∵∠AOP=∠EOD,∠PAO=∠E=90°,∴∠APO=∠ODE,∴∠ODE=1∠APD;2(2)解:连接OC,∵PA,PC与⊙O分别相切于点A,C,∴PA=PC=6,∵tan∠PDA=34,∴在Rt△PAD中,AD=8,PD=10,∴CD=4,∵tan∠PDA=34,∴在Rt△OCD中,OC=OA=3,OD=5,∵∠EPD=∠ODE,∴△DEP∽△OED,∴DPDO =PEDE=EDOE=105=2,∴DE=2OE在Rt△OED中,OE2+DE2=OD2,即5OE2=52,∴OE=√5.解析:本题综合考查了切线长定理,相似三角形的性质和判定,勾股定理的应用,能综合运用性质进行推理和计算是解此题的关键,通过做此题培养了学生的分析问题和解决问题的能力.(1)根据切线长定理和切线的性质即可证明:∠EPD=∠ODE,从而得到结论;(2)连接OC,利用tan∠PDA=34,可求出CD=4,再证明△DEP∽△OED,根据相似三角形的性质和勾股定理即可求出OE的长.24.答案:解:(1)画树状图为:共有16种等可能的结果数,其中两个乒乓球上的数字之和不小于4的结果数为13,所以两个乒乓球上的数字之和不小于4的概率=1316;(2)画树状图为:共有12种等可能的结果数,两个乒乓球上的数字至少有一个是奇数的结果数有10种,所以两个乒乓球上的数字至少有一个是奇数的概率=1012=56.解析:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件的结果数目m,然后利用概率公式计算事件的概率.(1)画树状图展示所有16种等可能的结果数,再找出两个乒乓球上的数字之和不小于4的结果数,然后根据概率公式求解;(2)画树状图展示所有12种等可能的结果数,再找出两个乒乓球上的数字至少有一个是奇数的结果数,然后根据概率公式求解.25.答案:解:∵CP⊥CQ,AB是直径,∴∠ACB=∠PCQ=90°,∵∠A=∠P,∴∠Q=∠ABC,∴tan∠Q=tan∠ABC,∴CPCQ =34,∴CQ=43CP,∴当CP最大时,CQ的值最大,即△PCQ的面积最大,∴当CP是直径时,即CP=5,CQ最大,CQ的最大值为203,∴△PCQ的面积的最大值=12×5×203=503.解析:由CP⊥CQ,AB是直径,易得∠Q=∠ABC,又由tan∠ABC=43,易得当CP是直径,CQ最大,此时△PCQ的面积最大.此题考查了圆周角定理、锐角三角函数、三角形的面积直径的性质等知识,解题的关键是学会利用圆中最长的弦是直径解决最值问题,属于中考常考题型.26.答案:20解析:解:(1)由题意知:这批芒果的实际成本为:191−0.05=190.95=20(元/千克),故答案为:20;(2)①根据表中数据可以发现,销售价格每增加5元,日销售量减少100千克,∴日销售量y与销售价格x满足一次函数,设y与x的函数关系为y=kx+b,把(20,400)与(25,300)代入解析式得:{20k +b =40025k +b =300, 解得:{k =−20b =800, y =−20x +800(20≤x ≤40),②W 1=(x −20)(−20x +800)=20x 2+1200x −16000=−20(x 2−60x +900−900)−16000=−20(x −30)2+2000,∵a =−20<0,∴抛物线开口向上,又∵20≤x ≤40,对称轴x =30,∴当x =30时,W 1最大=2000(元),答:这批芒果的价格为30元时,才能使日销售利润最大,(3)W 2=(x −19)(−20x +800)−a(−20x +800)=−20x 2+(1180+20a)x −15200−800a ,对称轴:x =−1180+2a −40=29.5+0.5a , 又∵a >0∴x =29.5+0.5a >0又∵抛物线开口向下,25≤x ≤29,∴当x =29时,W 2最大=2156,即:−20×292+(1180+20a)×29−15200−800a =2156,解得:a =0.2,答:a 的值为0.2.(1)根据芒果进价19元/千克,在运输过程中损耗率为5%,芒果的实际进价为:190.95,得出结论;(2)①根据表中数据可得日销售量y 与销售价格x 满足一次函数,设出函数解析式,用待定系数法求出函数解析式即可,②根据日销售利润=(销售单价−实际成本)×日销售量列出二次函数关系式,根据函数的性质以及x 的取值范围求函数最值;(3)根据日获利=日销售利润−日支出费用列出二次函数关系式,然后根据函数的性质当x =29时,函数取得最大值,解方程求出a 的值.本题考查了二次函数在实际生活中的应用以及解一元一次方程,关键是根据日获利=日销售利润−日支出费用列出函数关系式.27.答案:2√173√3−3解析:(1)证明:∵△ACB、△ECF都是等腰三角形,∴CA=CB,CE=CF,∠ACB=∠ECF=90°,∴∠ACB−∠BCE=∠ECF−∠BCE,即∠ACE=∠BCF,在△ACE和△BCF中,{AC=BC∠ACE=∠BCF EC=FC,∴△ACE≌△BCF(SAS),∴AE=BF;(2)解:∵CA=CB=6,∠ACB=90°,∴AB=6√2,∵△ACE≌△BCF,∴∠CAD=∠DBF,∵∠ADC=∠BDF,∴∠ACD=∠DFB=90°,∴AF=√AB2−BF2=√(6√2)2−22=2√17,故答案为:2√17;(3)如图3,作FH⊥BC于H,∵∠ACE=∠CAE=30°,∴AE=EC,∵△ACE≌△BCF,∴BF=AE,∵CF=CE,∴CF=BF,∴∠FCB=∠CBF=30°,∵FC=FB,FH⊥BC,∴CH=BH=3,FH=√3,CF=BF=2√3,∵∠CED=∠CAE+∠ACE=60°,∠ECD=90°−30°=60°,∴△ECD是等边三角形,∴EC=CF=CD=2√3,∴S△EDF=S△ECD+S△CDF−S△ECF=√34×(2√3)2+12×2√3×√3−12×2√3×2√3=3√3−3,故答案为:3√3−3.(1)根据等腰直角三角形的性质得到CA=CB,CE=CF,根据同角的余角相等得到∠ACE=∠BCF,证明△ACE≌△BCF,根据全等三角形的性质证明结论;(2)根据全等三角形的性质证明∠ACD=∠DFB=90°,再利用勾股定理即可解决问题;(3)如图3,作FH⊥BC于H,证明△BCF是底角为30°的等腰三角形,求出CF,FB,FH,根据S△EDF= S△ECD+S△CDF−S△ECF计算即可.本题考查的是等腰直角三角形的性质,等边三角形的判定和性质,解直角三角形,全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造直角三角形解决问题、学会利用参数构建方程解决问题.28.答案:352或−2解析:解:(1)由题意得:AB的长度为|−1−2|=3.故答案为:3.(2)①d(E,F)=|2−(−1)|+|0−(−2)|=5.故答案为:5.②∵E(2,0),H(1,t),d(E,H)=3,∴|2−1|+|0−t|=3,解得:t=±2.故答案为:2或−2.(3)由点Q在x轴上,可设点Q的坐标为(x,0),∵三角形OPQ的面积为3,∴12|x|×3=3,解得:x=±2.当点Q的坐标为(2,0)时,d(P,Q)=|3−2|+|3−0|=4;当点Q的坐标为(−2,0)时,d(P,Q)=|3−(−2)|+|3−0|=8.综上所述,d(P,Q)的值为4或8.(1)根据若y1=y2,则AB//x轴,且线段AB的长度为|x1−x2|,代入数据即可得出结论;(2)①根据两点之间的折线距离公式,代入数据即可得出结论;②根据两点之间的折线距离公式结合d(E,H)=3,即可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论;(3)由点Q在x轴上,可设点Q的坐标为(x,0),根据三角形的面积公式结合三角形OPQ的面积为3即可求出x的值,再利用两点之间的折线距离公式即可得出结论.本题是三角形综合题目,考查了新定义、两点间的距离公式、三角形面积等知识,读懂题意并熟练运用两点间的距离及两点之间的折线距离公式是解题的关键.。
成都实验外国语学校2020-2021学年上学期初三物理期中试卷及答案
五、解答题
26. ( 1 ) 或 . ( 2 )不能;证明见解析.
27. ( 1 )1 证明见解析.
2
.
(2)
.
28. ( 1 )1
.
2 存在;满足条件的 的值为 或 或
.
( 2 )是;证明见解析.
/
期中期末中考高考冲刺电话:4000-121-121
期中期末中考高考冲刺电话:4000-121-121
期中期末中考高考冲刺电话:4000-121-121
期中期末中考高考冲刺电话:4000-121-121
期中期末中考高考冲刺电话:4000-121-121
期中期末中考高考冲刺电话:4000-121-121
二、填空题
11. 12. 13. 14.
三、解答题
15. ( 1 ) .
(2)
,
.
16.
;
.
/
17.( 1 ) ( 2 )
18. ( 1 )
米.
( 2 )超速,证明见解析.
19. ( 1 ) (2) (3证明见解析.
( 2 )1 证明见解析.
2
时,
3
.
的面积最大.
四、填空题
成都学而思1对1 1对1面授&1对1在线&8人小班课 期中期末中考高考冲刺电话:4000-121-121
期中期末中考高考冲刺电话:4000-121-121
2020~2021学年成都石室中学(北湖校区)初三上学期 期中数学试卷(答案)
一、单项选择题
1. A 2. D 3. B 4. C 5. B 6. B 7. D 8. C 9. D 10. C
2020-2021成都四川师范大学实验外国语学校初三数学上期中试卷含答案
2020-2021成都四川师范大学实验外国语学校初三数学上期中试卷含答案一、选择题1.如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形 AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )A .68°B .20°C .28°D .22°2.如图在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…若点A (32,0),B (0,2),则点B 2018的坐标为( )A .(6048,0)B .(6054,0)C .(6048,2)D .(6054,2)3.已知抛物线y=x 2-2mx-4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( ) A .(1,-5) B .(3,-13)C .(2,-8)D .(4,-20)4.若α,β是一元二次方程x 2﹣x ﹣2018=0的两个实数根,则α2﹣3α﹣2β+3的值为( ) A .2020 B .2019C .2018D .20175.用配方法解一元二次方程x 2﹣6x ﹣10=0时,下列变形正确的为( )A .(x+3)2=1B .(x ﹣3)2=1C .(x+3)2=19D .(x ﹣3)2=19 6.已知实数x 满足(x 2﹣2x +1)2+2(x 2﹣2x +1)﹣3=0,那么x 2﹣2x +1的值为( ) A .﹣1或3 B .﹣3或1 C .3D .17.在平面直角坐标系中,点A (m ,2)与点B (3,n )关于y 轴对称,则( ) A .m =3,n =2B .m =﹣3,n =2C .m =2,n =3D .m =﹣2,n =﹣3 8.在Rt ABC ∆中,90ABC ∠=︒,:BC 23=AB , 5AC =,则AB =( ).A .52B 10C 5D 159.如图,P 是等腰直角△ABC 外一点,把BP 绕点B 顺时针旋转90°到BP′,已知∠AP′B =135°,P′A ∶P′C =1∶3,则P′A ∶PB =( )A .1∶2B .1∶2C .3∶2D .1∶310.如图,△DEF 是由△ABC 绕着某点旋转得到的,则这点的坐标是( )A .(1,1)B .(0,1)C .(﹣1,1)D .(2,0)11.函数y=x 2+bx+c 与y=x 的图象如图所示,有以下结论:①b 2﹣4c >0;②b+c+1=0;③3b+c+6=0;④当1<x <3时,x 2+(b ﹣1)x+c <0. 其中正确的个数为A .1B .2C .3D .412.用配方法解方程2890x x ++=,变形后的结果正确的是( ) A .()249x +=-B .()247x +=-C .()2425x +=D .()247x +=二、填空题13.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为____.14.某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.15.若关于x 的一元二次方程()22 26k x kx k --+=有实数根,则k 的最小整数值为__________.16.如图,矩形ABCD 对角线AC 、BD 交于点O ,边AB=6,AD=8,四边形OCED 为菱形,若将菱形OCED 绕点O 旋转一周,旋转过程中OE 与矩形ABCD 的边的交点始终为M ,则线段ME 的长度可取的整数值为___________________.17.一个正多边形的一个外角为30°,则它的内角和为_____.18.关于x 的方程ax²-(3a+1)x+2(a+1)=0有两个不相等的实数根x 1,x 2,且x 1-x 1x 2+x 2=1-a ,则a=19.一副三角板如图放置,将三角板ADE 绕点A 逆时针旋转(090)αα<<oo,使得三角板ADE 的一边所在的直线与BC 垂直,则α的度数为______.20.如图,四边形ABCD 是O e 内接四边形,若3080BAC CBD ∠︒∠︒=,=,则BCD ∠的度数为______.三、解答题21.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC 的三个顶点坐标分别为A (1,4),B (1,1),C (3,1). (1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)画出△ABC 绕点O 逆时针旋转90°后的△A 2B 2C 2; (3)在(2)的条件下,求线段BC 扫过的面积(结果保留π).22.如图,已知抛物线y=﹣x 2+bx +c 与x 轴交于点A (﹣1,0)和点B (3,0),与y 轴交于点C ,连接BC 交抛物线的对称轴于点E ,D 是抛物线的顶点. (1)求此抛物线的解析式; (2)求点C 和点D 的坐标;(3)若点P 在第一象限内的抛物线上,且S △ABP =4S △COE ,求P 点坐标.23.已知二次函数243y x x =-+.(1)求函数图象的顶点坐标,对称轴和与坐标轴的交点坐标,并画出函数的大致图象. (2)若1122(,),(,)A x y B x y 是函数243y x x =-+图象上的两点,且121x x <<,请比较12y y 、的大小关系(直接写出结果).24.如图,在平面直角坐标系中,二次函数21262y x x =-++的图象交x 轴于点A ,B (点A 在点B 的左侧).(1)求点A ,B 的坐标,并根据该函数图象写出y ≥0时x 的取值范围;(2)把点B 向上平移m 个单位得点B 1.若点B 1向左平移n 个单位,将与该二次函数图象上的点B 2重合;若点B 1向左平移(n +6)个单位,将与该二次函数图象上的点B 3重合.已知m >0,n >0,求m ,n 的值.25.已知抛物线y=-x 2-2x+c 与x 轴的一个交点是(1,0). (1)C 的值为_______;(2)选取适当的数据补填下表,并在平面直角坐标系内描点画出该抛物线的图像;x ••• 1- 1••• y ••••••(3)根据所画图像,写出y>0时x的取值范围是_____.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题解析:∵四边形ABCD为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.故选D.2.D解析:D【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B 、B 2、B 4…每偶数之间的B 相差6个单位长度,根据这个规律可以求得B 2018的坐标. 【详解】 ∵A (32,0),B (0,2), ∴OA =32,OB =2,∴Rt △AOB 中,AB 52=, ∴OA +AB 1+B 1C 2=32+2+52=6, ∴B 2的横坐标为:6,且B 2C 2=2,即B 2(6,2), ∴B 4的横坐标为:2×6=12, ∴点B 2018的横坐标为:2018÷2×6=6054,点B 2018的纵坐标为:2, 即B 2018的坐标是(6054,2). 故选D . 【点睛】此题考查了点的坐标规律变换以及勾股定理的运用,通过图形旋转,找到所有B 点之间的关系是解决本题的关键.3.C解析:C 【解析】 【分析】 【详解】解:22224=()4y x mx x m m =-----,∴点M (m ,﹣m 2﹣4),∴点M′(﹣m ,m 2+4),∴m 2+2m 2﹣4=m 2+4.解得m=±2.∵m >0,∴m=2,∴M (2,﹣8). 故选C . 【点睛】本题考查二次函数的性质.4.B解析:B 【解析】 【分析】根据方程的解的定义及韦达定理得出α+β=1、α2-α=2018,据此代入原式=α2-α-2(α+β)+3计算可得. 【详解】解:∵α,β是一元二次方程x 2﹣x ﹣2018=0的两个实数根, ∴α+β=1、α2﹣α=2018,则原式=α2﹣α﹣2(α+β)+3 =2018﹣2+3 =2019, 故选:B . 【点睛】考查根与系数的关系,解题的关键是掌握韦达定理及方程的解的定义和整体代入思想的运用.5.D解析:D 【解析】 【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断. 【详解】方程移项得:2610x x -=, 配方得:26919x x -+=, 即2(3)19x -=, 故选D .6.D解析:D 【解析】 【分析】设x 2﹣2x +1=a ,则(x 2﹣2x +1)2+2(x 2﹣2x +1)﹣3=0化为a 2+2a ﹣3=0,求出方程的解,再判断即可. 【详解】解:设x 2﹣2x +1=a ,∵(x 2﹣2x +1)2+2(x 2﹣2x +1)﹣3=0, ∴a 2+2a ﹣3=0, 解得:a =﹣3或1,当a =﹣3时,x 2﹣2x +1=﹣3, 即(x ﹣1)2=﹣3,此方程无实数解; 当a =1时,x 2﹣2x +1=1,此时方程有解, 故选:D . 【点睛】此题考查换元法解一元二次方程,借助另外设未知数的方法解一元二次方程使理解更容易,计算更简单.7.B解析:B 【解析】【分析】根据“关于y 轴对称的点,横坐标互为相反数,纵坐标相同”解答. 【详解】∵点A (m ,2)与点B (3,n )关于y 轴对称, ∴m =﹣3,n =2. 故选:B . 【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数; (2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数; (3)关于原点对称的点,横坐标与纵坐标都互为相反数.8.B解析:B 【解析】 【分析】 依题意可设2=AB x ,3BC x =,根据勾股定理列出关于x 的方程,解方程求出x 的值,进而可得答案. 【详解】 解:如图,设2=AB x ,3BC x =,根据勾股定理,得:222325+=x x ,解得5x =,∴10AB =.故选B.【点睛】本题考查了勾股定理和简单的一元二次方程的解法,属于基础题型,熟练掌握勾股定理是解题的关键.9.B解析:B 【解析】 【分析】 【详解】解:如图,连接AP ,∵BP 绕点B 顺时针旋转90°到BP ′,∴BP =BP ′,∠ABP +∠ABP ′=90°,又∵△ABC 是等腰直角三角形,∴AB =BC ,∠CBP ′+∠ABP ′=90°,∴∠ABP =∠CBP ′,在△ABP 和△CBP ′中,∵BP =BP ′,∠ABP =∠CBP ′,AB =BC ,∴△ABP ≌△CBP ′(SAS ),∴AP =P ′C , ∵P ′A :P ′C =1:3,∴AP =3P ′A ,连接PP ′, 则△PBP ′是等腰直角三角形, ∴∠BP ′P =45°,PP ′=2PB ,∵∠AP ′B =135°,∴∠AP ′P =135°﹣45°=90°, ∴△APP ′是直角三角形,设P ′A =x ,则AP =3x ,根据勾股定理,PP ′=22'AP P A -=22(3)x x -=22x ,∴PP ′=2PB =22x ,解得PB =2x ,∴P ′A :PB =x :2x =1:2. 故选B .【点睛】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理的应用,作辅助线构造出全等三角形以及直角三角形,把P ′A 、P ′C 以及P ′B 长度的2倍转化到同一个直角三角形中是解题的关键.10.B解析:B 【解析】根据旋转的性质:对应点到旋转中心的距离相等,可知,只要连接两组对应点,作出对应点所连线段的两条垂直平分线,其交点即为旋转中心. 解:如图,连接AD 、BE ,作线段AD 、BE 的垂直平分线, 两线的交点即为旋转中心O ′.其坐标是(0,1). 故选B..11.B解析:B 【解析】分析:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<0;故①错误。
2020-2021学年四川省成都九年级(上)期中数学试卷
2020-2021学年四川省成都九年级(上)期中数学试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.如图是由7个小正方体组合而成的几何体,它的俯视图是()A.B.C.D.2.下列关于x的方程中,一定是一元二次方程的是()A. (m−3)x2−√3x−2B. k2x+5k+6=0C. √2x2−√24x−12=0 D. 3x2+1x−2=03.如果a2=b3(a≠0、b≠0),那么下列比例式变形错误的是()A. ab =23B. ba=32C. ab=32D. 3a=2b4.如图,△ABC经过位似变换得到△DEF,点O是位似中心且OA=AD,则△ABC与△DEF的面积比是()A. 1:6B. 1:5C. 1:4D. 1:25. 1.已知x=−1是方程2x2+ax−5=0的一个根,则a的值为()A. −3B. −4C. 3D. 76.如图,两个含有30°角的完全相同的三角板ABC和DEF沿直线l滑动,下列说法错误的是()A. 四边形ACDF是平行四边形B. 当点E为BC中点时,四边形ACDF是矩形C. 当点B与点E重合时,四边形ACDF是菱形D. 四边形ACDF不可能是正方形7.在四边形ABCD中,AC⊥BD,点E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH是()A. 矩形B. 菱形C. 正方形D. 无法确定8.图中四个阴影的三角形中与△ABC相似的是()A.B.C.D.9.如图,直线l1//l2//l3,直线AC和DF被l1,l2,l3所截,AB=5,BC=6,EF=4,则DE的长为()A. 2B. 3C. 4D. 10310.如图,在一块长为22米,宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x米,则根据题意可列方程为()A. 22×17−17x−22x=300B. 22×17−17x−22x−x2=300C. (22−x)(17−x)=300D. (22+x)(17+x)=300二、填空题(本大题共9小题,共36.0分)11.若α、β是一元二次方程x2+2x−6=0的两根,则α2+β2=______ .12.在一个不透明的袋子中装有除颜色外完全相同的6只小球,其中4只白球,2只红球,从中任意摸一只球,恰好摸到红球的概率是______ .13.已知菱形的两条对角线的长分别为10,20,则菱形的面积为______.14.如图,小明从路灯下,向前走了5米,发现自己在地面上的影子长DE是2米.如果小明的身高为1.6米,那么路灯高地面的高度AB是______米.)x2−(4a2−1)x+1=0的一次项系数为0,那么a 15.若关于x的一元二次方程(a+12的值为_________.16.已知点P是线段AB的黄金分割点,PA>PB,AB=4cm,则PA=____cm.17.桌上放有完全相同的三张卡片,卡片上分别标有数字2,1,4,随机摸出一张卡片(不放回),其数字记为p,再随机摸出一张卡片,其数字记为q,则关于x的方程x2+px+q=0有实数根的概率是________.18.如图,正方形ABCD的边长为10cm,E是AB上一点,BE=4cm,P是对角线AC上一动点,则PB+PE的最小值是______cm.19.如图,已知在正方形ABCD外取一点E,连接CE、BE、DE.过点C作CE的垂线交BE于点F,CE=CF=1,DF=√6.下列结论:①△BCF≌△DCE;②EB⊥ED;③点D到直线CE的距离为2;④S四边形DECF =√2+12.其中正确结论的序号是______.三、解答题(本大题共9小题,共72.0分)20.解方程(1)3x2−8x+4=0;(2)(2x−1)2=(x−3)221.已知关于x的一元二次方程x2−(m−3)x−m=0.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实数根为x1,x2,且x12+x22−x1x2=7,求m的值.22.△ABC在平面直角坐标系中的位置如图所示.(1)在网格内画出和△ABC以点O为位似中心的位似图形△A1B1C1,且△A1B1C1和△ABC的位似比为2:1;(2)分别写出A1、B1、C1三个点的坐标:A1______ 、B1______ 、C1______ ;(3)求△A1B1C1的面积为______ .23.如图①,在正方形ABCD中,点F在CD上,连接AF交BC的延长线于点E.(1)求证:AD2=BE⋅DF;(2)如图②,点O为正方形对角线的交点,连接OF,求证:∠DOF=∠BED;(3)若AB=6,DF=2CF,延长OF交DE于点M,求OM的长.24.随着信息技术的快速发展,人们购物的付款方式更加多样、便捷.某校数学兴趣小组为了解人们最喜欢的付款方式设计了一份调查问卷,要求被调查者选且只选其中一种你最喜欢的付款方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次活动共调查了______人;在扇形统计图中,表示“支付宝”付款的扇形圆心角的度数为______;(2)补全条形统计图;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种付款方式中选一种方式进行付款,请用树状图或列表法求出两人恰好选择同一种付款方式的概率.25.如图,AB//CD,AD、BC相交于点E,过E作EF//CD交BD于点F,如果AB:CD=2:3,EF=6,求CD的长.26.某商店准备进一批季节性小家电,经调查一种进价每个为2元的小家电的销售情况,若每个小家电售价为5元,每天能卖出500个,而且这种小家电的售价每上涨0.1元,其销售量减少10个.(1)如果每天要实现1575元的销售利润,那该如何定价?(2)如果每天要实现销售利润最大,那该如何定价?27.已知在Rt△ABC中,∠C=90°,AC=kBC,直线l经过点A,过点C、B分别向直线l作垂线,垂足分别为E、F,CE交AB于点M.(1)如图1,若k=1,求证:AE+BF=CE;(2)如图2,若k=2,则AE、BF、CE之间的数量关系,并证明你的结论;(3)在(2)的条件下,如图3,连接CF,过点A作AG//CF,交CE延长线于点G,若CF=3√5,BF=5,求MG的长.28.如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E从点C出发,以每秒1个单位长度的速度沿CA方向向点A运动,△CDE关于DE的轴对称图形为△FDE.(1)当t为何值时,点F在线段AC上.(2)当0<t<4时,求∠AEF与∠BDF的数量关系;(3)当点B、E、F三点共线时,求证:点F为线段BE的中点.答案和解析1.【答案】D【解析】【分析】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看,得到的图形是:,故选:D.2.【答案】C【解析】解:A、m=3时是一元一次方程,,故A错误;B、k=0时是一元一次方程,故B错误;C、是一元二次方程,故C正确;C、是分式方程,故D错误;故选:C.根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证.本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.3.【答案】C【解析】解:由a2=b3得,3a=2b,A、由ab =23得3a=2b,所以变形正确,故本选项错误;B、由ba =32得3a=2b,所以变形正确,故本选项错误;C、由ab =32可得2a=3b,所以变形错误,故本选项正确;D、3a=2b变形正确,故本选项错误.故选:C.根据两内项之积等于两外项之积对各选项分析判断即可得解.本题考查了比例的性质,主要利用了两内项之积等于两外项之积.4.【答案】C【解析】解:∵△ABC经过位似变换得到△DEF,点O是位似中心且OA=AD,∴AC//DF,∴△OAC∽△ODF,∴AC:DF=OA:OD=1:2,∴△ABC与△DEF的面积比是1:4.故选:C.由△ABC经过位似变换得到△DEF,点O是位似中心且OA=AD,根据位似图形的性质,即可得AC//DF,即可求得AC:DF=OA:OD=1:2,然后根据相似三角形面积的比等于相似比的平方,即可求得△ABC与△DEF的面积比.此题考查了位似图形的性质.注意掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.5.【答案】A【解析】【分析】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.把x=−1代入方程计算即可求出a的值.【解答】解:把x=−1代入方程得:2−a−5=0,解得:a=−3.故选:A.6.【答案】B【解析】【分析】本题考查平行四边形的判定、矩形的判定、菱形的判定.正方形的判定等知识,解题的关键是熟练掌握特殊四边形的判定方法,属于中考常考题型.根据平行四边形、矩形、菱形、正方形的判定方法一一判断即可.【解答】解:A.∵∠ACB=∠EFD=30°,∴AC//DF,∵AC=DF,∴四边形AFDC是平行四边形,故A正确;B.当E是BC中点时,无法证明∠ACD=90°,故B错误;C.B、E重合时,易证FA=FD,∵四边形AFDC是平行四边形,∴四边形AFDC是菱形,故C正确;当四边相等时,∠AFD=60°,∠FAC=120°,∴四边形AFDC不可能是正方形,故D正确.故选B.7.【答案】A【解析】【分析】本题考查了三角形中位线的性质、平行四边形的判定以及矩形的判定.根据三角形的中位线定理得到四边形EFGH是平行四边形,再推出一个角是直角,由矩形的判定定理可求解.【解答】解:如图,依题意四边形ABCD,AC⊥BD,E、F、G、H分别是AB、BC、CD、DA 的中点,依据三角形的中位线定理得:EF//AC,EF=12AC,GH//AC,GH=12AC,∴EF//GH,EF=GH,∴四边形EFGH是平行四边形,∵EF//AC,EH//BD,BD⊥AC,∴EH⊥EF,∴∠HEF=90°,∴平行四边形EFGH是矩形.故选A.8.【答案】B【解析】【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.此题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解本题的关键.【解答】解:由勾股定理得:AC=√2,BC=2,AB=√10,∴AC:BC:AB=1:√2:√5,A、三边之比为1:√5:2√2,图中的三角形(阴影部分)与△ABC不相似;B、三边之比:1:√2:√5,图中的三角形(阴影部分)与△ABC相似;C、三边之比为√2:√5:3,图中的三角形(阴影部分)与△ABC不相似;D、三边之比为2:√5:√13,图中的三角形(阴影部分)与△ABC不相似.故选:B.9.【答案】D【解析】解:∵直线l1//l2//l3,∴ABBC =DEEF,∵AB=5,BC=6,EF=4,∴56=DE4,∴DE=10,3故选:D.根据平行线分线段成比例定理得出比例式,代入求出即可.本题考查了平行线分线段成比例定理,能根据平行线分线段成比例定理得出正确的比例式是解此题的关键.10.【答案】C【解析】解:设道路的宽应为x米,由题意有(22−x)(17−x)=300,故选:C.把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.此题主要考查了由实际问题抽象出一元二次方程,把中间修建的两条道路分别平移到矩形地面的最上边和最左边是做本题的关键.11.【答案】16【解析】【试题解析】【分析】本题主要考查一元二次方程根与系数的关系,把α2+β2化成(α+β)2−2αβ是解题的关键.利用根与系数的关系可得出α+β和αβ,且α2+β2=(α+β)2−2αβ,代入计算即可.【解答】解:∵α、β是一元二次方程x2+2x−6=0的两根,∴α+β=−2,αβ=−6,∴α2+β2=(α+β)2−2αβ=(−2)2−2×(−6)=4+12=16.故答案为16.12.【答案】13【解析】此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:随机事件A 的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,用红球的个数除以6,求出恰好摸到红球的概率是多少即可.【解答】解:∵2÷6=13,∴恰好摸到红球的概率是13.故答案为:13.13.【答案】100【解析】解:∵菱形的两条对角线的长分别为10,20,∴菱形的面积=12×10×20=100.故答案为100.根据菱形的面积等于两对角线乘积的一半,列式计算即可得解.本题考查了菱形的性质,掌握菱形的面积等于两对角线乘积的一半是解题的关键.14.【答案】5.6【解析】解:∵AB//CD,∴△ECD∽△EBA,∴CDAB =DEAE,而CD=1.6,AD=5,DE=2,∴AE=7,∴1.6AB =27,∴AB=5.6米.故答案为5.6.要求出AB的高,可利用相似三角形的性质,对应边成比例就可以求出.本题只要是把实际问题抽象到相似三角形中,利用相似三角形的性质对应边成比例解题.15.【答案】12【分析】此题考查了一元二次方程的定义和一元二次方程的一般形式.解题关键是掌握一元二次方程的一般形式为ax2+bx+c=0(a≠0).解题时,根据一次项系数为0且二次项系数不为0即可求解.【解答】解:∵一元二次方程(a+12)x2−(4a2−1)x+1=0的一次项系数为0,∴−(4a2−1)=0,解得:a=12或a=−12,但二次项系数a+12≠0,∴a只取12.故答案为12.16.【答案】(2√5−2)【解析】【试题解析】解:∵点P是线段AB的黄金分割点,PA>PB,∴PA=√5−12AB=√5−12×4=(2√5−2)cm.故答案为(2√5−2).本题考查了黄金分割,根据黄金分割的定义得到PA=√5−12AB,然后把AB=4cm代入计算即可.17.【答案】12【解析】【分析】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.画树状图列出所有等可能结果,从中依据根的判别式找到使方程x2+px+q=0有实数根的结果数,利用概率公式计算可得.【解答】解:画树状图如下:由树状图知共有6种等可能结果,其中使关于x的方程x2+px+q=0有实数根的结果有p=2,q=1,p=4,q=1,p=4,q=2,共3种结果,∴关于x的方程x2+px+q=0有实数根的概率为36=12,故答案为12.18.【答案】2√34【解析】【分析】此题主要考查了利用轴对称求最短路线以及正方形的性质,正确得出P点位置是解题关键.直接利用正方形的性质,得出B,D点关于直线AC对称,连接BD,ED,BP,进而利用勾股定理得出答案.【解答】解:如图所示:连接BD,DE,BP,由题意可得:B,D点关于直线AC对称,则P点是ED与AC的交点,∵正方形ABCD的边长为10cm,BE=4cm,∴AE=6cm,AD=10cm,则EP+BP=ED=√102+62=2√34(cm).故答案为:2√34.19.【答案】①②④【解析】【分析】本题考查四边形的综合问题,涉及全等三角形的性质与判定,勾股定理,三角形面积公式等知识内容.根据正方形的性质、全等三角形的判定和性质、勾股定理等知识一一判断即可.【解答】解:在正方形ABCD 中,BC =CD ,∠BCD =90°,∵CE ⊥CF ,即∠ECF =90°,∴∠BCF =∠DCE ,在△BCF 与△DCE 中,{BC =CD ∠BCF =∠DCE CF =CE, ∴△BCF≌△DCE(SAS),故①正确;∵△BCF≌△DCE ,∴∠CBF =∠CDE ,∴∠DEB =∠BCD =90°,∴BE ⊥ED ,故②正确,过点D 作DM ⊥CE ,交CE 的延长线于点M ,∵∠ECF =90°,FC =EC =1,∴∠CEF =45°,∵∠DEM +∠CEB =90°,∴∠DEM =∠EDM =45°,∴EM =DM ,∴由勾股定理可求得:EF=√2,∵DF=√6,∴由勾股定理可求得:DE=2,∴DM=EM=√2,故③错误,S四边形DECF =S三角形ECF+S三角形EFD=12+√2,故④正确,故答案为①②④20.【答案】解:(1)3x2−8x+4=0,(3x−2)(x−2)=0,∴3x−2=0或x−2=0,∴x1=23,x2=2;(2)(2x−1)2=(x−3)2,(2x−1)2−(x−3)2=0,(2x−1+x−3)(2x−1−x+3)=0,∴3x−4=0或x+2=0,∴x1=43,x2=−2.【解析】(1)利用因式分解法解方程;(2)先移项,然后利用因式分解法解方程.本题考查了解一元二次方程−因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).21.【答案】(1)证明:Δ=[−(m−3)]2−4×1⋅(−m)=m2−2m+9=(m−1)2+8> 0,∴方程有两个不相等的实数根.(2)解:根据一元二次方程根与系数的关系,得x1+x2=m−3,x1x2=−m.∵x12+x22−x1x2=7,∴(x1+x2)2−3x1x2=7,∴(m−3)2−3⋅(−m)=7,解得m1=1,m2=2,∴m的值为1或2.【解析】本题考查根与系数的关系、根的判别式,解答本题的关键是明确题意,找出所求问题需要的条件,利用方程的思想解答.(1)要证明方程有两个不相等的实数根,只要证明原来的一元二次方程的△的值大于0即可;(2)根据根与系数的关系可以得到关于m的方程,从而可以求得m的值.22.【答案】(1)如图所示:△A1B1C1,即为所求;(2)(4,7);(2,2);(8,2);(3)15.【解析】解:(1)见答案;(2)由图易得:A1(4,7),B1(2,2),C1(8,2);(3)△A1B1C1的面积为:5×6−12×2×5−12×5×4=15.(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)利用(1)中所画图形得出各点坐标;(3)利用△A1B1C1所在矩形面积,减去周围三角形面积进而得出答案.此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题关键.23.【答案】(1)证明:∵四边形ABCD是正方形,∴AD//BE,∠D=∠B=90°,AB=AD,∴∠DAF=∠AEB,∴△DAF∽△BEA,∴DABE =DFBA,∴AD2=BE·DF;(2)证明:连接AO,∵四边形ABCD是正方形,∴∠AOD=∠DAB=90°,∵∠ADO=∠ADB,∴△AOD∽△DAB,∴DO:AB=AD:BD,∴BD·OD=AD2=AB2,由(1)得AD2=BE·DF,∴BD·OD=BE·DF,∴BD:BE=DF:OD,∵∠ODF=∠DBE=45°,∴△DOF∽△BED,∴∠DOF=∠BED;(3)解:∵AB=6,DF=2CF,∴FC=2,∵四边形ABCD是正方形,∴AB//CF,∴△EFC∽△EAB,∴EC:BE=FC:AB,∴EC=3,∴DE=√DC2+CE2=3√5,易证△DOM∽△DEB,∴DO:DE=OM:BE,∴OM=9√105.【解析】本题考查了正方形的性质,相似三角形的判定与性质,勾股定理.会构造三角形证明三角形相似,并利用相似三角形的性质及勾股定理求线段的长是解题的关键.(1)根据正方形的性质可证△DAF∽△BEA,进而可得比例式DABE =DFBA即可证明结论;(2)连接AO,由正方形的性质可证△AOD∽△DAB,可得比例式DO:AB=AD:BD,再结合由(1)的结论证明△DOF∽△BED即可;(3)先求出DF,CF的长,再根据相似三角形的性质求出EC的长,进而求出DE,易证△DOM∽△DEB,即可由DO:DE=OM:BE求OM的长.24.【答案】(1)200;90°;(2)如图,使用微信支付的人数:200×30%=60(人)使用银行卡支付的人数:200×15%=30(人),(3)画树状图如下:共有9种等可能的结果数,其中两人恰好选择同一种付款方式的结果数为3,所以两人恰好选择同一种付款方式的概率=39=13.【解析】解:(1)(50+45+15)÷(1−15%−30%)=200,所以这次活动共调查了200人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数=360°×40200=90°;故答案为200;90°;(2)见答案;(3)见答案.(1)用选用“微信”、“支付宝”、“银行卡”的人数总和除以它们所占的百分比得到调查的总人数;用选用支付宝的人数的百分比乘以360度得到在扇形统计图中,表示“支付宝”付款的扇形圆心角的度数;(2)分别计算出选用微信、银行卡的人数,然后补全条形统计图;(3)画树状图展示所有9种等可能的结果数,找出两人恰好选择同一种付款方式的结果数,然后利用概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.也考查了统计图.25.【答案】解:∵AB//CD,∴△ABE∽△DCE,∴BEEC =ABCD=23,∴BEBC =25,∵EF//CD,∴△BEF∽△BCD,∴EFCD=BEBC=25∵EF=6,∴CD=15.【解析】本题考查相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.由AB//CD,得到△ABE∽△DCE,推出BEEC =ABCD=23,可得BEBC=25,再证明△BEF∽△BCD,可得EFCD =BEBC=25,由此即可解决问题.26.【答案】解:(1)设定价为x元,则由题意列方程得:×10)(x−2)=1575,(500−x−50.1解得:x1=6.5,x2=5.5,答:如果每天要实现1575元的销售利润,定价应为6.5元或5.5元;(2)设每天销售利润为W,×10)(x−2)则W=(500−x−50.1=−100x2+1200x−2000=−100(x−6)2+1600,∴当x=6,W的最大值为1600元.答:如果每天要实现销售利润最大,应定价为6元,此时最大利润为1600元.【解析】本题考查了二次函数的应用,一元二次方程的应用,属于中档题.(1)设定价为x元,根据条件列方程,即可得解;(2)利用二次函数的性质就可以求出结论.27.【答案】解答:(1)证明:过点C作CH⊥BF,交FB的延长线于点H,如图1.∵CH⊥BF,BF⊥EF,CE⊥EF,∴∠CHF=∠HFE=∠FEC=90°.∴四边形CEFH是矩形.∴CE=HF,∠HCE=90°.∵∠HCE=∠ACB=90°,∴∠HCB=∠ECA.在△BHC和△AEC中,∠BHC=∠AEC,∠HCB=∠ECA,BC=AC.∴△BHC≌△AEC(AAS).∴BH=AE,∴AE+BF=BH+BF=HF=CE.(2)证明:过点C作CP⊥BF,交FB的延长线于点P,如图2.∵CP⊥BF,BF⊥EF,CE⊥EF,∴∠CPF=∠PFE=∠FEC=90°.∴四边形CEFP是矩形.∴CP=EF,CE=PF,∠PCE=90°.∵∠ACB=∠PCE=90°,∴∠ECA=∠PCB.∵∠AEC=∠BPC=90°,∴△AEC∽△BPC.∴AEBP =ECPC=ACBC=2.∴AE=2BP,EC=2PC.∴CE=PE=PB+BF=12AE+BF故答案为:CE=12AE+BF.(3)过点C作CP⊥BF,交FB的延长线于点P,如图3.由(2)得:CP=EF,CE=PF,AE=2BP,EC=2PC.∴PF=CE=2PC.在Rt△CPF中,∵∠CPF=90°,∴PC2+PF2=CF2.∴PC2+(2PE)2=(3√5)2.解得:PC=3.∴EF=PC=3,PF=CE=2PC=6,BP=PF−BF=6−5=1,AE=2BP=2.∵CF//AG,∴△AEG∽△FEC.∴EGEC =AEFE.∴EG6=23∴EG=4.∵∠AEC=90°=∠AFB,∴EM//BF.∴△AEM∽△AFB.∴MEBF=AEAF.∴ME5=22+3.∴ME=2.∴MG=GE+ME=6.∴MG的长为6.【解析】本题考查了全等三角形,相似三角形的判定.有一定难度.(1)过点C作CH⊥BF,交FB的延长线于点H,如图1,易证四边形CEFH是矩形,从而有CE=HF,∠HCE=90°,进而证到△BHC≌△AEC,则有BH=AE,就可证到AE+ BF=CE.(2)过点C作CP⊥BF,交FB的延长线于点P,如图2,易证四边形CEFP是矩形,则有CP=EF,CE=PF,∠PCE=90°,进而可证到△AEC∽△BPC,根据相似三角形的性质可得AE=2BP,EC=2PC,进而可证到CE=12AE+BF.(3)过点C作CP⊥BF,交FB的延长线于点P,如图3.利用(2)中的结论可证到PF=CE= 2PC,在Rt△CPF中运用勾股定理可求出PC长,进而可求出EF、CE、PF、BP、AE 的长.然后可通过证明△AEG∽△FEC求出EG的长,再通过证明△AEM∽△AFB求出ME的长,就可求出MG的长.28.【答案】解:(1)∵△ABC是等边三角形∴∠A=∠B=∠C=60°∵△CDE关于DE的轴对称图形为△FDE,∴DF=DC,EF=EC,且点F在AC上,∠C=60°,∴△DCF是等边三角形,∴CD=CF=AB−BD=2,∴CE=1,∴t=1=1s;1(2)如图1,当0<t≤1时,∵△CDE关于DE的轴对称图形为△FDE,∴∠F=∠C=60°,∠FDE=∠CDE,∠CED=∠FED,∵∠C+∠CDE+∠CED=180°,∴∠C+∠F+∠CDE+∠EDF+∠CED+∠FED=360°,∴∠CDF+180°+∠AEF=360°−120°∴180°−∠BDF+180°+∠AEF=240°,∴∠BDF−∠AEF=120°;如图2,当1<t<4时,∵△CDE关于DE的轴对称图形为△FDE,∴∠F=∠C=60°,∠FDE=∠CDE,∠CED=∠FED,∵∠FDC+∠C+∠F+∠CEF=360°,∴180°−∠BDF+120°+180°−∠AEF=360°,∴∠BDF+∠AEF=120°;(3)如图3,过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,∵△CDE关于DE的轴对称图形为△FDE∴DF=DC=2,∠EFD=∠C=60°,EF=EC,∵GD⊥EF,∠EFD=60°∴FG=1,DG=√3FG=√3,∵BD2=BG2+DG2,∴16=3+(BF+1)2,∴BF=√13−1∴BG=√13,∵EH⊥BC,∠C=60°∴CH=EC2,EH=√3HC=√32EC,∵∠GBD=∠EBH,∠BGD=∠BHE=90°∴△BGD∽△BHE,∴DGBG =EHBH,∴√3√13=√32EC6−EC2∴EC=√13−1,∴EC=EF=BF=√13−1,∴点F是线段BE的中点.【解析】(1)由折叠的性质可得DF=DC,EF=EC,可证△DCF是等边三角形,可求CE的长,即可求解;(2)分两种情况讨论,由折叠的性质和四边形内角和定理可求解;(3)过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,由勾股定理可求BG的长,通过证明△BGD∽△BHE,可求EC的长,即可得结论.本题是三角形综合题,考查了等边三角形的性质,折叠的性质,勾股定理,相似三角形的判定和性质,添加恰当的辅助线构造相似三角形是本题的关键.。
2020-2021学年四川省成都市九年级(上)期中数学试卷
2020-2021学年四川省成都市九年级(上)期中数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.如图所示的几何体由五个相同的小正方体搭成,它的主视图是()A.B.C.D.2.方程的x2+6x−5=0左边配成完全平方式后所得的方程为()A. (x+3)2=14B. (x−3)2=14D. 以上答案都不对C. (x+6)2=123.若a,b,c,d是成比例线段,其中a=3cm,c=6cm,d=4cm,则b等于()cm C. 4 cm D. 2cmA. 8 cmB. 324.下列各点中,在反比例函数y=8图象上的是()xA. (−1,8)B. (2,4)C. (1,7)D. (−2,4)5.已知x1、x2是方程x2+3x−1=0的两根,则()A. x1+x2=−3,x1⋅x2=−1B. x1+x2=−3,x1⋅x2=1C. x1+x2=3,x1⋅x2=−1D. x1+x2=3,x1⋅x2=16.在相同时刻的物高与影长成比例,如果高为1.5m的测杆的影长为3m,那么影长为30m的旗杆的高是()A. 15mB. 16mC. 18mD. 20m7.顺次连接菱形各边中点所得的四边形是()A. 菱形B. 矩形C. 正方形D. 无法确定8.已知△ABC∽△DEF,△ABC的长为3,△DEF的周长为1,则△DEF与△ABC的面积之比为()A. 9:1B. 1:9C. 3:1D. 1:39.若反比例函数y=m−3的图象在第一、三象限,则m的值可以是()xA. 4B. 3C. 0D. −310.矩形ABCD的周长为56,对角线AC、BD交于点O,△ABO与△BCO的周长差为4,则AB的长是()A. 12B. 22C. 16D. 26二、填空题(本大题共9小题,共36.0分)11.已知x=3是方程x2−6x+k=0的一个根,则k=______.12.一个矩形的长比宽多2,面积是100,若设矩形的宽为x,列出关于x的方程是.13.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD的长为.14.如图,O为坐标原点,矩形OABC中,A(−8,0),C(0,6),将矩形OABC绕点O旋转60°,得到矩形OA′B′C′,此时直线OA′与直线BC相交于P.则点P的坐标为______.15.已知m,n是方程x2+2x−5=0的两个实数根,则m−mn+n=.16.已知反比例函数y=k的图象经过点A(−2,3),则当x=−6时,y=________.x(k1>0,x>0),17.如图,平行于x轴的直线与函数y=k1x(k2>0,x>0)的图象分别相交于A,B两点,点y=k2xA在点B的右侧,C为x轴上的一个动点,若△ABC的面积为3,则k1−k2的值为______.18.在平面直角坐标系xOy中,点A(3m,2n)在直线y=−x+1上,点B(m,n)在双曲线y=k上,则k的取值范围为______.x19.如图,将边长为6cm的正方形纸片ABCD折叠,使点D落在AB边中点E处,点C落在点Q处,折痕为FH,则线段AF的长为________.三、计算题(本大题共1小题,共8.0分)20.去学校食堂就餐,经常会在一个买菜窗口前等待.经调查发现,同学的舒适度指数y与等待时间x(分)之间存在如下的关系:y=100,求:x(1)若等待时间x=5分钟时,求舒适度y的值;(2)舒适度指数不低于10时,同学才会感到舒适.函的图象如图(x>0),请根据图象说明,作为数y=100x食堂的管理员,让每个在窗口买菜的同学最多等待多少时间?四、解答题(本大题共8小题,共76.0分)21. 20.(1)解方程:x 2−2x −1=0.;(2)解不等式组:22. 化简,再求值:(a +1−4a−5a−1)÷(1a −1a 2−a ),其中a =2+√3.23. 如图,在平面直角坐标系网格中,将△ABC 进行位似变换得到△A 1B 1C 1.(1)△A 1B 1C 1与△ABC 的位似比是______ ; (2)画出△A 1B 1C 1关于y 轴对称的△A 2B 2C 2;(3)设点P(a,b)为△ABC 内一点,则依上述两次变换后,点P 在△A 2B 2C 2内的对应点P 2的坐标是______ .24.已知关于x的一元二次方程x2−2(k−1)x+k2−1=0有两个不相等的实数根.(1)求k的取值范围;(2)若该方程的两根分别为x1,x2,且满足|x1+x2|=2x1x2,求k的值.25.如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE//DB,BE//DC.(1)求证:四边形DBEC是菱形;(2)若AD=3,DF=1,求四边形DBEC面积.(x<0)的图象交于点26.如图,一次函数y=−x十b的图象与反比例函数y=kxA(−3,m),与x轴交于点B(−2,0).(1)求一次函数和反比例函数的表达式;(2)若直线y=3与直线AB交于点C,与双曲线交于点D,求CD的长.27.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=4,AD=3√3,AE=3,求AF的长.28.如图,正方形AOCB的边长为4,反比例函数的图象过点E(3,4).(1)求反比例函数的解析式;x+b过点D,与线段AB(2)反比例函数的图象与线段BC交于点D,直线y=−12相交于点F,求点F的坐标;(3)连接OF,OE,探究∠AOF与∠EOC的数量关系,并证明.(4)若点P是x轴上的动点,点Q是(1)中的反比例函数在第一象限图象上的动点,且使得△PDQ为等腰直角三角形,请求出点P的坐标.答案和解析1.【答案】A【解析】【分析】根据从正面看得到的图形是主视图,可得答案.本题考查了简单组合体的三视图,从正面看得到的图形是主视图.【解答】解:从正面看第一层是三个小正方形,第二层左边一个小正方形.故选A.2.【答案】A【解析】【分析】本题主要考查配方法解一元二次方程.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.把方程变形得到x2+6x=5,方程两边同时加上一次项的系数一半的平方,两边同时加上9即可.【解答】解:∵x2+6x−5=0,∴x2+6x=5,∴x2+6x+9=5+9,∴(x+3)2=14.,故选A.3.【答案】D【解析】解:因为a,b,c,d是成比例线段,可得:b=adc =3×46=2cm,故选:D.由a、b、c、d四条线段是成比例的线段,根据成比例线段的定义计算即可.此题考查了成比例线段的定义.此题比较简单,解题的关键是注意掌握比例线段的定义.4.【答案】B【解析】【分析】此题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.根据y=8x,得k=xy=8,所以只要点的横坐标与纵坐标的积等于8,就在函数图象上.【解答】解:因为k=xy=8,符合题意的只有B(2,4),即k=xy=2×4=8.故选B.5.【答案】A【解析】解:∵x1、x2是方程x2+3x−1=0的两根,∴x1+x2=−3,x1x2=−1.故选A.根据一元二次方程根与系数的关系直接解答即可.本题考查了一元二次方程根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba ,x1x2=ca.6.【答案】A【解析】【分析】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.设影长为30m的旗杆的高是xm,再由同一时刻物高与影长成正比即可得出结论.【解答】解:设影长为30m的旗杆的高是xm,∵在相同时刻物高与影长成比例,高为1.5m的测杆的影长为3m,∴1.53=x30,∴x=15.故选A.7.【答案】B【解析】解:∵E,F是中点,∴EH//BD,同理,EF//AC,GH//AC,FG//BD,∴EH//FG,EF//GH,则四边形EFGH是平行四边形.又∵AC⊥BD,EH//BD,∴AC⊥EH,∵EF//AC,∴EF⊥EH,∴平行四边形EFGH是矩形.故选:B.根据三角形的中位线定理可得EH//BD,EF//AC,GH//AC,FG//BD进而得到四边形EFGH是平行四边形,再根据菱形的性质AC⊥DB可证明EF⊥EH,进而得到答案.本题主要考查了矩形的判定定理,正确理解菱形的性质以及三角形的中位线定理是解题的关键.8.【答案】B【解析】【分析】根据相似三角形周长的比等于相似比、面积的比等于相似比的平方计算.本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方是解题的关键.【解答】解:∵△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,∴△ABC与△DEF的相似比为3,∴△DEF与△ABC的相似比为1:3,∴△DEF与△ABC的面积之比为1:9,故选:B.9.【答案】A【解析】【分析】本题考查的是反比例函数的性质,熟知反比例函数的图象与系数的关系是解答此题的关键.先根据反比例函数的性质列出关于m的不等式,求出m的取值范围,进而可得出结论.【解答】解:∵反比例函数y=m−3的图象位于第一、三象限,x∴m−3>0,解得m>3,则m的值可以是4.故选A.10.【答案】C【解析】【分析】本题主要考查的是矩形的性质的有关知识,根据△ABO与△BCO的周长差为4,得AB+ AO+BO−BC−BO−OC=4,利用矩形的对角线互相平分有AO=OC.故得AB−BC=4,根据矩形ABCD的周长为56,得2(AB+BC)=56,求解即可.【解答】解:∵△ABO与△BCO的周长差为4,∴AB+AO+BO−BC−BO−OC=4,∵四边形ABCD是矩形,∴AO=OC,∴AB−BC=4①,∵矩形ABCD的周长为56,∴2(AB+BC)=56②,①×2+②得AB=16故选C.11.【答案】9【解析】解:把x=3代入方程x2−6x+k=0,可得9−18+k=0,解得k=9.故答案为:9.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.本题考查的是一元二次方程的根即方程的解的定义,比较简单.12.【答案】x(x+2)=100【解析】解:设矩形的宽为x,则矩形的长为(x+2),根据题意得:x(x+2)=100.故答案为:x(x+2)=100.设矩形的宽为x,则矩形的长为(x+2),利用矩形的面积公式,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.13.【答案】4【解析】解:∵在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,∴CD2=AD⋅BD=8×2,则CD=4.故答案是:4.根据射影定理得到:CD2=AD⋅BD,把相关线段的长度代入计算即可.本题考查了射影定理.Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:①AD2=BD⋅DC;②AB2=BD⋅BC;AC2=CD⋅BC.14.【答案】(−2√3,6)或(2√3,6)【解析】解:如图,矩形OABC绕点O旋转60°,可能顺时针旋转,也可能逆时针旋转,所以有两种可能,见图.∵∠AOP1=60°,∠AOC=90°,∴∠COP1=30°,在Rt△COP1中,∵OC=6,∠COP1=30°,∴CP1=2√3,∴点P1坐标为(−2√3,6),根据对称性,P1、P2关于y轴对称,∴P2坐标(2√3,6).故答案为(−2√3,6)或(2√3,6).作出图形,有两个解,利用直角三角形的30°的性质可以解决问题.本题考查矩形的性质.直角三角形的30°角的性质,解题的关键是正确画出图形,熟练掌握30°角的性质,善于观察利用对称性就很容易解决问题,善于中考常考题型.15.【答案】3【解析】【分析】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba ,x1x2=ca.根据根与系数的关系得到m+n=−2,mn=−5,然后利用整体代入的方法计算即可.【解答】解:根据题意得m+n=−2,mn=−5,所以m+n−mn=−2−(−5)=3.故答案为3.16.【答案】1【解析】【分析】本题考查了反比例函数图象上点的坐标特征.利用待定系数法求得反比例函数解析式是解题的关键.先把点A(−2,3)代入y=kx求得k的值,然后将x=−6代入,即可求出y的值.【解答】解:∵反比例函数y=kx的图象经过点A(−2,3),∴k=−2×3=−6,∴反比例函数解析式为y=−6x,∴当x =−6时,y =−6−6=1. 故答案为1.17.【答案】6【解析】解:设:A 、B 点的坐标分别是A(k 1m,m)、B(k2m ,m), 则:△ABC 的面积=12⋅AB ⋅y A =12⋅(k 1m−k2m)⋅m =3, 则k 1−k 2=6. 故答案为6.△ABC 的面积=12⋅AB ⋅y A ,先设A 、B 两点坐标(其纵坐标相同),然后计算相应线段长度,用面积公式即可求解.此题主要考查了反比例函数系数的几何意义,以及图象上点的特点,求解函数问题的关键是要确定相应点坐标,通过设A 、B 两点坐标,表示出相应线段长度即可求解问题.18.【答案】k ≤124且k ≠0【解析】 【分析】本题考查了一次函数图象上点的坐标特征,反比例函数图象上点的坐标特征,二次函数的性质,图象上点的坐标适合解析式是解题的关键. 根据一次函数图象上点的特征求得n =−3m+12,即可得到B(m,−3m+12),根据反比例函数图象上点的特征得到k 关于m 的函数,根据二次函数的性质即可求得k 的取值范围. 【解答】解:∵点A(3m,2n)在直线y =−x +1上, ∴2n =−3m +1,即n =−3m+12,∴B(m,−3m+12),∵点B 在双曲线y =kx 上, ∴k =m ⋅−3m+12=−32(m −16)2+124,∵−32<0, ∴k 有最大值为124,∴k的取值范围为k≤124,∵k≠0,故答案为k≤124且k≠0.19.【答案】94cm【解析】【分析】本题考查翻折变换、正方形的性质、勾股定理等知识,解题的关键是设未知数利用勾股定理列出方程解决问题,设EF=FD=x,在Rt△AEF中利用勾股定理即可解决问题.【解答】解:如图:∵四边形ABCD是正方形,∴AB=BC=CD=AD=6,∵AE=EB=3,EF=FD,设EF=FD=x.则AF=6−x,在Rt△AEF中,∵AE2+AF2=EF2,∴32+(6−x)2=x2,∴x=154,∴AF=6−154=94cm,故答案为94cm.20.【答案】解:(1)当x=5时,舒适度y=100x =1005=20;(2)舒适度指数不低于10时,由图象y≥10时,0<x≤10所以作为食堂的管理员,让每个在窗口买菜的同学最多等待10分钟.【解析】函数关系式y=100中,y代表舒适度指数,x(分)代表等待时间.x(1)是已知x=5,代入函数解析式求得y.(2)是已知y≥10,就可以得到关于x的不等式求的x的范围.现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是根据函数关系及题目的已知条件,分别求解,要注意自变量和函数代表的实际意义.21.【答案】(1)x1=1+√2x2=1−√2;(2)−2<x≤2.【解析】【分析】(1)利用配方法解方程,先把常数项移方程右边,左边配方,然后求出方程的解;(2)首先解每个不等式,两个不等式解集的公共部分就是不等式组的解集.【详解】解:(1)x2−2x=1x2−2x+1=2(x−1)2=2∴x1=1+√2x2=1−√2(2)解:解不等式①,得:x>−2;解不等式②,得:x≤2,∴不等式组的解集为:−2<x≤2.【点睛】本题考查的是解一元二次方程和一元一次不等式组,(1)考查了解一元二次方程−公式法,以及配方法,熟练掌握各种方法是解本题的关键,(2)正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键22.【答案】解:原式=(a +1−4a−5a−1)÷(1a−1a 2−a)=(a +1)(a −1)−(4a −5)a −1÷(a −1)−1a(a −1)=a 2−4a +4a −1÷a −2a(a −1) =(a −2)2a −1×a(a −1)a −2=a(a −2),把a =2+√3代入上式可得:原式=(2+√3)(2+√3−2)=2√3+3.【解析】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将a 的值代入计算即可求出值.23.【答案】解:(1)2:1;(2)如图所示(3)(−2a,2b).【解析】 【分析】此题考查作图问题,关键是根据轴对称图形的画法和位似图形的性质分析. (1)根据位似图形可得位似比即可; (2)根据轴对称图形的画法画出图形即可; (3)根据三次变换规律得出坐标即可. 【解答】解:(1)△A1B1C1与△ABC的位似比等于=A1B1AB =42=2;(2)见答案;(3)点P(a,b)为△ABC内一点,依次经过上述两次变换后,点P的对应点的坐标为(−2a,2b).故答案为:12,(−2a,2b).24.【答案】解:(1)△=[−2(k−1)]2−4(k2−1)=4k2−8k+4−4k2+4=−8k+8.∵原方程有两个不相等的实数根,∴−8k+8>0,解得k<1,即实数k的取值范围是k<1;(2)由根与系数的关系,x1+x2=2(k−1),x1x2=k2−1,∵|x1+x2|=2x1x2,∴|2(k−1)|=2k2−2,∵k<1,∴2−2k=2k2−2,化简得k2+k−2=0,∴k=1(舍)或k=−2,∴k=−2.【解析】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.以及根与系数的关系.(1)根据方程有两个不相等的实数根得出△=[−2(k−1)]2−4(k2−1)=4k2−8k+4−4k2+4=−8k+8>0,解之可得.(2)利用根与系数的关系可用k表示出x1+x2和x1x2的值,根据条件可得到关于k的一元二次方程,可求得k的值,注意利用根的判别式进行取舍.25.【答案】解:(1)证明:如图,∵CE//DB,BE//DC,∴四边形DBEC为平行四边形.又∵Rt△ABC中,∠ABC=90∘,点D是AC的中点,∴CD=BD=12AC,∴平行四边形DBEC是菱形;(2)∵点D,F分别是AC,AB的中点,AD=3,DF=1,∴DF是△ABC的中位线,AC=2AD=6,S△BCD=12S△ABC,∴BC=2DF=2.又∵∠ABC=90∘,∴AB=√AC2−BC2=√62−22=4√2,∵平行四边形DBEC是菱形,∴S四边形DBEC =2S△BCD=S△ABC=12AB⋅BC=12×4√2×2=4√2.【解析】本题考查菱形的判定与性质,全等三角形的判定与性质,直角三角形斜边上的中线,三角形中位线定理,熟练运用菱形的判定与性质,全等三角形的判定与性质,直角三角形斜边上的中线,三角形中位线定理是解答的关键,(1)根据平行四边形的判定定理首先推知四边形DBEC为平行四边形,然后由直角三角形斜边上的中线等于斜边的一半得到其邻边相等:CD=BD,得证;(2)由三角形中位线定理和勾股定理求得AB边的长度,然后根据菱形的性质和三角形的面积公式进行解答.26.【答案】解:(1)由点B(−2,0)在一次函数y=−x十b上,得b=−2,∴一次函数的表达式为y=−x−2;由点A(−3,m)在y=−x−2上,得m=1,∴A(−3,1),把A(−3,1)代入数y=kx得k=−3,∴反比例函数的表达式为:y=−3x;(2)y=3,即y C=y D=3,当y C=3时,−x C−2=3,解得x C=−5,当y D=3时,−3xD=3,解得x D=−1,∴CD=x D−x C=−1−(−5)=4.【解析】(1)运用待定系数法求出在一次函数的表达式,从而求出点A的坐标,再运用待定系数法即可求出反比例函数的表达式;(2)根据反比例函数的性质分别求出点C和点D的横坐标即可解答.本题考查了待定系数法求函数解析式及反比例函数与一次函数图象交点的问题.27.【答案】解:(1)∵四边形ABCD是平行四边形,∴AB//CD,AD//BC,∴∠B+∠C=180°,∠ADF=∠DEC,∵∠AFD+∠AFE=180°,∠AFE=∠B,∴∠AFD=∠C,∴△ADF∽△DEC;(2)∵AE⊥BC,AD=3√3,AE=3,∴在Rt△DAE中,DE=√AD2+AE2=√(3√3)2+32=6,由(1)知△ADF∽△DEC,得AFDC =ADDE,∴AF=DC×ADDE =4×3√36=2√3.【解析】(1)根据四边形ABCD是平行四边形,得出AB//CD,AD//BC,再根据平行线的性质得出∠B+∠C=180°,∠ADF=∠DEC,然后根据∠AFD+∠AFE=180°,∠AFE=∠B,得出∠AFD=∠C,从而得出△ADF∽△DEC;(2)根据已知和勾股定理得出DE=√AD2+AE2,再根据△ADF∽△DEC,得出AFDC =ADDE,即可求出AF的长.此题考查了相似三角形的判定与性质、平行四边形的性质以及勾股定理.此题难度不大,注意掌握数形结合思想的应用.28.【答案】解:(1)设反比例函数的解析式y=kx,∵反比例函数的图象过点E(3,4),∴4=k3,即k=12,∴反比例函数的解析式y=12x;(2)∵正方形AOCB的边长为4,∴点D的横坐标为4,点F的纵坐标为4.∵点D在反比例函数的图象上,∴点D 的纵坐标为3,即D(4,3),∵点D 在直线y =−12x +b 上,∴3=−12×4+b , 解得:b =5,∴直线DF 为y =−12x +5,将y =4代入y =−12x +5,得4=−12x +5,解得:x =2,∴点F 的坐标为(2,4).(3)∠AOF =12∠EOC ,理由为: 证明:在CD 上取CG =AF =2,连接OG ,连接EG 并延长交x 轴于点H ,∵AO =CO =4,∠OAF =∠OCG =90°,AF =CG =2,∴△OAF≌△OCG(SAS).∴∠AOF =∠COG .∵∠EGB =∠HGC ,∠B =∠GCH =90°,BG =CG =2,∴△EGB≌△HGC(ASA).∴EG =HG .设直线EG :y =mx +n ,∵E(3,4),G(4,2),∴{3m +n =44m +n =2, 解得{m =−2n =10, ∴直线EG :y =−2x +10.令y =−2x +10=0,得x =5.∴H(5,0),OH =5.在Rt △AOE 中,AO =4,AE =3,根据勾股定理得OE =5.∴OH=OE.∴OG是等腰三角形底边EH上的中线.∴OG是等腰三角形顶角的平分线.∴∠EOG=∠GOH.∠EOC;∴∠EOG=∠GOC=∠AOF,即∠AOF=12(4)当Q在D的右侧(如图1),且∠PDQ=90°时,作DK⊥x轴,作QL⊥DK,于点L.则△DPK≌△QDK,设P的坐标是(a,0),则KP=DL=4−a,QL=DK=3,则Q的坐标是(4+3,4−3+a)即(7,−1+a),得:7(−1+a)=12,把(7,−1+a)代入y=12x,解得:a=197,0);则P的坐标是(197当Q在D的左侧(如图2),且∠PDQ=90°时,作DK⊥x轴,作QR⊥x轴,作DL⊥QR,于点L,则△QDL≌△PDK,则DK=DL=3,设P的坐标是b,则PK=QL=4−b,则QR=4−b+3=7−b,OR=OK−DL=4−3=1,则Q的坐标是(1,7−b),代入y=12得:b=−5,则P的坐标是(−5,0);x当Q在D的右侧(如图3),且∠DQP=90°时,作DK⊥x轴,作QR⊥x轴,作DL⊥QR,于点L,,则△QDL≌△PQK,则DK=DL=3,设Q的横坐标是c,则纵坐标是12c则QK=QL=12,c又∵QL=c−4,∴c−4=12,c解得:c=−2(舍去)或6.=1,则PK=DL=DR−LR=DR−QK=3−126∴OP=OK−PK=6−1=5,则P的坐标是(5,0);当Q在D的左侧(如图3),且∠DQP=90°时,不成立;当∠DPQ=90°时,(如图4),作DK⊥x轴,作QR⊥x轴,则△DPR≌△PQK,∴DR=PK=3,RP=QK,设P的坐标是(d,0),则RK=QK=d−4,则OK=OP+PK=d+3,则Q 的坐标是(d +3,d −4),代入y =12x 得:(d +3)(d −4)=12, 解得:d =1+√972或d =1−√972(舍去).则P 的坐标是(1+√972,0).总之,P 的坐标是(197,0)或(−5,0)或(1+√972,0)或(5,0).【解析】本题是待定系数法求函数的解析式,以及全等三角形的判定与性质的综合应用,正确作出辅助线,构造全等的三角形是关键.(1)设反比例函数的解析式为y =k x ,把点E(3,4)代入即可求出k 的值,进而得出结论;(2)由正方形AOCB 的边长为4,故可知点D 的横坐标为4,点F 的纵坐标为4.由于点D 在反比例函数的图象上,所以点D 的纵坐标为3,即D(4,3),由点D 在直线y =−12x +b 上可得出b 的值,进而得出该直线的解析式,再把y =4代入直线的解析式即可求出点F 的坐标;(3)在CD 上取CG =AF =2,连接OG ,连接EG 并延长交x 轴于点H ,由全等三角形的判定定理可知△OAF≌△OCG ,△EGB≌△HGC(ASA),故可得出EG =HG.设直线EG 的解析式为y =mx +n ,把E(3,4),G(4,2)代入即可求出直线EG 的解析式,故可得出H 点的坐标,在Rt △AOF 中,AO =4,AE =3,根据勾股定理得OE =5,可知OC =OE ,即OG 是等腰三角形底边EF 上的中线.所以OG 是等腰三角形顶角的平分线,由此即可得出结论;(4)分△PDQ 的三个角分别是直角,三种情况进行讨论,作DK ⊥x 轴,作QR ⊥x 轴,作DL ⊥QR ,于点L ,即可构造全等的直角三角形,设出P 的坐标,根据点在图象上,则一定满足函数的解析式即可求解.。
2020-2021成都市第实验学校初三数学上期中一模试卷(带答案)
2020-2021成都市第实验学校初三数学上期中一模试卷(带答案)一、选择题1.﹣3的绝对值是( )A .﹣3B .3C .-13D .132.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( ) A . B . C .D .3.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是( )A .16B .29C .13D .234.如图,抛物线y =ax 2+bx +c 经过点(-1,0),对称轴为直线l.则下列结论:①abc >0;②a -b +c =0;③2a +c <0;④a +b <0.其中所有正确的结论是( )A .①③B .②③C .②④D .②③④ 5.如果关于x 的方程240x x m -+=有两个不相等的实数根,那么在下列数值中,m 可以取的是( )A .3B .5C .6D .8 6.已知关于x 的方程()211230mm x x +-+-=是一元二次方程,则m 的值为( ) A .1B .-1C .±1D .2 7.在平面直角坐标系中,点A (m ,2)与点B (3,n )关于y 轴对称,则( ) A .m =3,n =2 B .m =﹣3,n =2C .m =2,n =3D .m =﹣2,n =﹣3 8.若关于x 的一元二次方程2(1)220k x x -+-=有两个不相等的实数根,则k 的取值范围是( )A .12k >且k ≠1B .12k >C .12k ≥且k ≠1D .12k < 9.如图,P 是等腰直角△ABC 外一点,把BP 绕点B 顺时针旋转90°到BP′,已知∠AP′B =135°,P′A ∶P′C =1∶3,则P′A ∶PB =( )A .1∶2B .1∶2C .3∶2D .1∶3 10.如图,△ABC 绕点A 旋转一定角度后得到△ADE,若BC=4,AC=3,则下列说法正确的是( )A .DE=3B .AE=4C .∠ACB 是旋转角D .∠CAE 是旋转角 11.如图,已知二次函数2y ax bx c =++(0a ≠)的图象与x 轴交于点A (﹣1,0),对称轴为直线x=1,与y 轴的交点B 在(0,2)和(0,3)之间(包括这两点),下列结论:①当x >3时,y <0;②3a+b <0;③213a -≤≤-; ④248acb a ->;其中正确的结论是( )A .①③④B .①②③C .①②④D .①②③④ 12.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有A .4个B .3个C .2个D .1个二、填空题13.已知方程x 2﹣3x+k=0有两个相等的实数根,则k=_____.14.关于x 的方程ax²-(3a+1)x+2(a+1)=0有两个不相等的实数根x 1,x 2,且x 1-x 1x 2+x 2=1-a ,则a=15.已知圆锥的底面半径是2cm ,母线长是3cm ,则圆锥侧面积是_________.16.如图,Rt ABC ∆中,已知90C =o ∠,55B ∠=o ,点D 在边BC 上,2BD CD =.把线段BD 绕着点D 逆时针旋转α(0180α<<o o )度后,如果点B 恰好落在Rt ABC ∆的边上,那么α=__________.17.关于x 的方程的260xx m -+=有两个相等的实数根,则m 的值为________. 18.二次函数2y ax bx c =++的部分对应值如下表:利用二次函数的图象可知,当函数值y >0时,x 的取值范围是____________19.如图,正六边形ABCDEF 内接于⊙O,⊙O 的半径为6,则这个正六边形的边心距OM 的长为__.20.如图,在△ABC 中,AB =6,将△ABC 绕点B 按逆时针方向旋转30°后得到△A 1BC 1,则阴影部分的面积为________.三、解答题21.如图,点C 是⊙O 的直径AB 延长线上的一点,且有BO=BD=BC .(1)求证:CD 是⊙O 的切线;(2)若半径OB=2,求AD 的长.22.“早黑宝”葡萄品种是我省农科院研制的优质新品种,在我省被广泛种植,邓州市某葡萄种植基地2017年种植“早黑宝”100亩,到2019年“卓黑宝”的种植面积达到196亩.(1)求该基地这两年“早黑宝”种植面积的平均增长率;(2)市场调查发现,当“早黑宝”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,同时减少库存,已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”每天获利1750元,则售价应降低多少元?23.工人师傅用一块长为10dm ,宽为6dm 的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm 2时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?24.关于x 的一元二次方程2210x x k ++-=有两个不相等的实数根.(1)求k 的取值范围;(2)当k 为正整数时,求此时方程的根.25.解方程:2411231x x x -=+--【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-3|=3.故选B .【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.2.B解析:B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A 、C 、D 都不是中心对称图形,只有B 是中心对称图形.故选B.3.C解析:C【解析】解:画树状图如下:一共有6种情况,“一红一黄”的情况有2种,∴P (一红一黄)=26=13.故选C . 4.D解析:D【解析】【分析】【详解】试题分析:①∵二次函数图象的开口向下,∴a <0,∵二次函数图象的对称轴在y 轴右侧, ∴﹣2b a>0, ∴b >0, ∵二次函数的图象与y 轴的交点在y 轴的正半轴上,∴c >0,∴abc <0,故①错误;②∵抛物线y=ax 2+bx+c 经过点(﹣1,0),∴a ﹣b+c=0,故②正确;③∵a ﹣b+c=0,∴b=a+c .由图可知,x=2时,y <0,即4a+2b+c <0,∴4a+2(a+c )+c <0,∴6a+3c <0,∴2a+c <0,故③正确;④∵a ﹣b+c=0,∴c=b ﹣a .由图可知,x=2时,y <0,即4a+2b+c <0,∴4a+2b+b ﹣a <0,∴3a+3b <0,∴a+b <0,故④正确.故选D .考点:二次函数图象与系数的关系.5.A解析:A【解析】【分析】根据根的判别式的意义得到16﹣4m >0,然后解不等式得到m <4,然后对各选项进行判断.【详解】根据题意得:△=16﹣4m >0,解得:m <4,所以m 可以取3,不能取5、6、8. 故选A .【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.6.B解析:B【解析】【分析】根据一元二次方程的定义得出m-1≠0,m 2+1=2,求出m 的值即可.【详解】∵关于x 的方程()211230mm x x +-+-=是一元二次方程,∴m 2+1=2且m-1≠0,解得:m=-1,【点睛】本题考查了对一元二次方程的定义的理解和运用,注意:①是整式方程,②只含有一个未知数,③所含未知数的项的最高次数是2,且二次项系数不为0.7.B解析:B【解析】【分析】根据“关于y 轴对称的点,横坐标互为相反数,纵坐标相同”解答.【详解】∵点A (m ,2)与点B (3,n )关于y 轴对称,∴m =﹣3,n =2.故选:B .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.8.A解析:A【解析】【分析】由根的判别式求出k 的取值范围,再结合一元二次方程的定义,即可得到答案.【详解】解:∵关于x 的一元二次方程2(1)220k x x -+-=有两个不相等的实数根,∴224(1)(2)0k ∆=-⨯-⨯->, 解得:12k >, ∵10k -≠,则1k ≠, ∴k 的取值范围是12k >且k≠1; 故选:A .【点睛】本题考查了利用根的判别式求参数的取值范围,以及一元二次方程的定义,解题的关键是正确求出k 的取值范围.9.B解析:B【分析】【详解】解:如图,连接AP ,∵BP 绕点B 顺时针旋转90°到BP ′,∴BP =BP ′,∠ABP +∠ABP ′=90°,又∵△ABC 是等腰直角三角形,∴AB =BC ,∠CBP ′+∠ABP ′=90°,∴∠ABP =∠CBP ′,在△ABP 和△CBP ′中,∵BP =BP ′,∠ABP =∠CBP ′,AB =BC ,∴△ABP ≌△CBP ′(SAS ),∴AP =P ′C ,∵P ′A :P ′C =1:3,∴AP =3P ′A ,连接PP ′,则△PBP ′是等腰直角三角形,∴∠BP ′P =45°,PP ′=2PB , ∵∠AP ′B =135°,∴∠AP ′P =135°﹣45°=90°,∴△APP ′是直角三角形,设P ′A =x ,则AP =3x ,根据勾股定理,PP ′=22'AP P A -=22(3)x x -=22x , ∴PP ′=2PB =22x ,解得PB =2x ,∴P ′A :PB =x :2x =1:2.故选B .【点睛】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理的应用,作辅助线构造出全等三角形以及直角三角形,把P ′A 、P ′C 以及P ′B 2倍转化到同一个直角三角形中是解题的关键.10.D解析:D【解析】【分析】根据旋转的定义和三角形的性质即可求解.【详解】∵△ABC 绕点A 旋转一定角度得到△ADE ,BC=4,AC=3.∴DE=BC=4;AE=AC=3;∠CAE 是旋转角.故答案选D.【点睛】本题考查的知识点是旋转的性质,解题的关键是熟练的掌握旋转的性质.11.B解析:B【分析】①由抛物线的对称性可求得抛物线与x 轴令一个交点的坐标为(3,0),当x >3时,y <0,故①正确;②抛物线开口向下,故a <0,∵12b x a=-=,∴2a+b=0.∴3a+b=0+a=a <0,故②正确;③设抛物线的解析式为y=a (x+1)(x ﹣3),则223y ax ax a =--,令x=0得:y=﹣3a .∵抛物线与y 轴的交点B 在(0,2)和(0,3)之间,∴233a ≤-≤.解得:213a -≤≤-,故③正确; ④.∵抛物线y 轴的交点B 在(0,2)和(0,3)之间,∴2≤c≤3,由248acb a ->得:248ac a b ->,∵a <0,∴224b c a -<,∴c ﹣2<0,∴c <2,与2≤c≤3矛盾,故④错误. 【详解】解:①由抛物线的对称性可求得抛物线与x 轴令一个交点的坐标为(3,0),当x >3时,y <0,故①正确;②抛物线开口向下,故a <0, ∵12b x a=-=, ∴2a+b=0. ∴3a+b=0+a=a <0,故②正确;③设抛物线的解析式为y=a (x+1)(x ﹣3),则223y ax ax a =--,令x=0得:y=﹣3a .∵抛物线与y 轴的交点B 在(0,2)和(0,3)之间,∴233a ≤-≤. 解得:213a -≤≤-, 故③正确;④.∵抛物线y 轴的交点B 在(0,2)和(0,3)之间,∴2≤c≤3,由248ac b a ->得:248ac a b ->,∵a <0, ∴224b c a-<, ∴c ﹣2<0,∴c <2,与2≤c≤3矛盾,故选B .【点睛】本题考查二次函数图象与系数的关系,结合图像,数形结合的思想的运用是本题的解题关键..12.B解析:B【解析】分析:根据圆中的有关概念、定理进行分析判断.解答:解:①经过圆心的弦是直径,即直径是弦,弦不一定是直径,故正确; ②当三点共线的时候,不能作圆,故错误;③三角形的外心是三角形三边的垂直平分线的交点,所以三角形的外心到三角形各顶点的距离都相等,故正确;④在同圆或等圆中,能够互相重合的弧是等弧,所以半径相等的两个半圆是等弧,故正确.故选B .二、填空题13.【解析】∵x2﹣3x+k=0有两个相等的实数根∴△=∴9﹣4k=0∴k=故答案为 解析:94 【解析】 ∵x 2﹣3x +k=0有两个相等的实数根,∴△=2(3)410k --⨯⨯=,∴9﹣4k=0,∴k=94. 故答案为94. 14.-1【解析】试题分析:根据根与系数的关系得出x1+x2=-bax1x2=ca 整理原式即可得出关于a 的方程求出即可试题解析:∵关于x 的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x1解析:-1【解析】试题分析:根据根与系数的关系得出x 1+x 2=-,x 1x 2=,整理原式即可得出关于a 的方程求出即可.试题解析:∵关于x 的方程ax 2-(3a+1)x+2(a+1)=0有两个不相等的实根x 1、x 2,∴x 1+x 2=,x 1x 2=,依题意△>0,即(3a+1)2-8a (a+1)>0,即a 2-2a+1>0,(a-1)2>0,a≠1,∵关于x 的方程ax 2-(3a+1)x+2(a+1)=0有两个不相等的实根x 1、x 2,且有x 1-x 1x 2+x 2=1-a ,∴x 1-x 1x 2+x 2=1-a ,∴x 1+x 2-x 1x 2=1-a , ∴-=1-a ,解得:a=±1,又a≠1,∴a=-1.考点:1.根与系数的关系;2.根的判别式.15.【解析】【分析】圆锥的侧面积=底面周长×母线长÷2=【详解】根据圆锥的侧面积公式:底面半径是2cm 母线长是3cm 的圆锥侧面积为故答案是:【点睛】本题考查圆锥的侧面积解题的关键是记住圆锥是侧面积公式解析:26cm π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2=RL π.【详解】根据圆锥的侧面积公式:RL π底面半径是2cm ,母线长是3cm 的圆锥侧面积为 236ππ⨯⨯=故答案是:26cm π【点睛】本题考查圆锥的侧面积,解题的关键是记住圆锥是侧面积公式.16.或【解析】【分析】分两种情况:①当点落在AB 边上时②当点落在AB 边上时分别求出的值即可【详解】①当点落在AB 边上时如图1∴DB=DB′∴∠B=∠DB′B=55°∴∠BDB′=180°-55°-55°解析:70o 或120o【解析】【分析】分两种情况:①当点B 落在AB 边上时,②当点B 落在AB 边上时,分别求出α的值,即可.【详解】①当点B 落在AB 边上时,如图1,∴DB=DB ′,∴∠B=∠DB ′B=55°,∴α=∠BDB ′=180°-55°-55°=70°;②当点B 落在AB 边上时,如图2,∴DB=DB ′=2CD ,∵90C =o ∠,∴∠CB ′D=30°,∴α=∠BDB ′=30°+90°=120°.故答案是:70o 或120o .【点睛】本题主要考查等腰三角形的性质和直角三角形的性质定理,画出图形分类讨论,是解题的关键.17.9【解析】【分析】因为一元二次方程有两个相等的实数根所以△=b2-4ac=0根据判别式列出方程求解即可【详解】∵关于x 的方程x2-6x+m=0有两个相等的实数根∴△=b2-4ac=0即(-6)2-4解析:9【解析】【分析】因为一元二次方程有两个相等的实数根,所以△=b 2-4ac=0,根据判别式列出方程求解即可.【详解】∵关于x 的方程x 2-6x+m=0有两个相等的实数根,∴△=b 2-4ac=0,即(-6)2-4×1×m=0, 解得m=9故答案为:9【点睛】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.18.x <-1或x >3【解析】【分析】根据二次函数的增减性求解即可【详解】由题意得二次函数的对称轴为故当时y 随x 的增大而增大当时y 随x 的增大而减小∵∴当函数值y >0时x 的取值范围是x <-1或x >3故答案为解析:x <-1或x >3【解析】【分析】根据二次函数的增减性求解即可.【详解】由题意得,二次函数的对称轴为1x =故当1x >时,y 随x 的增大而增大,当1x <时,y 随x 的增大而减小,∵()()1,0,3,0-∴当函数值y >0时,x 的取值范围是x <-1或x >3故答案为:x <-1或x >3.【点睛】本题考查了二次函数的问题,掌握二次函数的增减性是解题的关键.19.3【解析】连接OB∵六边形ABCDEF 是⊙O 内接正六边形∴∠BOM==30°∴OM=OB•cos∠BOM=6×=3故答案为:3解析:33 【解析】 连接OB ,∵六边形ABCDEF 是⊙O 内接正六边形,∴∠BOM=36062︒⨯ =30°, ∴OM=OB•cos∠BOM=6×3 =33, 故答案为:33.20.9【解析】【分析】根据旋转的性质得到△ABC ≌△A1BC1A1B=AB=6所以△A1BA 是等腰三角形依据∠A1BA=30°得到等腰三角形的面积由图形可以知道S 阴影=S △A1BA+S △A1BC1﹣S △解析:9【解析】【分析】根据旋转的性质得到△ABC ≌△A 1BC 1,A 1B=AB=6,所以△A 1BA 是等腰三角形,依据∠A1BA=30°得到等腰三角形的面积,由图形可以知道 S 阴影=S△A1BA+S△A1BC1﹣S△ABC=S△A1BA,最终得到阴影部分的面积.【详解】解:∵在△ABC 中,AB=6,将△ABC 绕点 B 按逆时针方向旋转 30°后得到△A1BC1,∴△ABC≌△A1BC1,∴A1B=AB=6,∴△A1BA 是等腰三角形,∠A1BA=30°,∴S△A1BA= 12×6×3=9,又∵S 阴影=S△A1BA+S△A1BC1﹣S△ABC,S△A1BC1=S△ABC,∴S阴影=S△A1BA=9.故答案为9.【点睛】本题主要考查旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决此题的关键是运用面积的和差关系解决不规则图形的面积.三、解答题21.(1)见解析;(2)23【解析】【分析】(1)由于BO=BD=BC,根据等边三角形的判定和性质,三角形外角性质可得∠ODC=90°,从而根据切线的判定方法即可得到结论.(2)由AB为⊙O的直径得∠BDA=90°,而BO=BD=2, AB=2BO=4,根据勾股定理可求出AD.【详解】解:(1)证明:如图,连接OD,∵BO=BD=DO,∴△OBD是等边三角形.∴∠OBD=∠ODB=60°.∵BD=BC,∴∠BDC=12∠OBD=30°.∴∠ODC=90°.∴OD⊥CD.∵OD为⊙O的半径,∴CD 是⊙O 的切线.(2)∵AB 为⊙O 的直径,∴∠BDA=90°.∵BO=BD=2,∴AB=2BO=4. ∴2223AD AB BD =-=. 22.(1)该基地这两年“早黑宝”种植面积的平均增长率为40%.(2)售价应降低3元【解析】【分析】(1)设该基地这两年“早黑宝”种植面积的平均增长率为x ,根据题意列出关于x 的一元二次方程,求解方程即可;(2)设售价应降低y 元,则每天售出(200+50y )千克,根据题意列出关于y 的一元二次方程,求解方程即可.【详解】(1)设该基地这两年“早黑宝”种植面积的平均增长率为x ,根据题意得2100(1)196x += 解得10.440%x ==,2 2.4x =-(不合题意,舍去)答:该基地这两年“早黑宝”种植面积的平均增长率为40%.(2)设售价应降低y 元,则每天可售出(20050)y +千克根据题意,得(2012)(20050)1750y y --+=整理得,2430y y -+=,解得11y =,23y =∵要减少库存∴11y =不合题意,舍去,∴3y =答:售价应降低3元.【点睛】本题考查一元二次方程与销售的实际应用,明确售价、成本、销量和利润之间的关系,正确用一个量表示另外的量然后找到等量关系是列出方程的关键.23.(1)作图见解析;裁掉的正方形的边长为2dm ,底面积为12dm 2;(2)当裁掉边长为2.5dm 的正方形时,总费用最低,最低费用为25元.【解析】试题分析:(1)由题意可画出图形,设裁掉的正方形的边长为xdm ,则题意可列出方程,可求得答案;(2)由条件可求得x 的取值范围,用x 可表示出总费用,利用二次函数的性质可求得其最小值,可求得答案.试题解析:(1)如图所示:设裁掉的正方形的边长为xdm ,由题意可得(10﹣2x )(6﹣2x )=12,即x 2﹣8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm ,底面积为12dm 2;(2)∵长不大于宽的五倍,∴10﹣2x≤5(6﹣2x ),解得0<x≤2.5,设总费用为w 元,由题意可知w=0.5×2x (16﹣4x )+2(10﹣2x )(6﹣2x )=4x 2﹣48x+120=4(x ﹣6)2﹣24,∵对称轴为x=6,开口向上,∴当0<x≤2.5时,w 随x 的增大而减小,∴当x=2.5时,w 有最小值,最小值为25元,答:当裁掉边长为2.5dm 的正方形时,总费用最低,最低费用为25元.考点:1、二次函数的应用;2、一元二次方程的应用24.(1)k <2(2)120,2x x ==-【解析】【分析】(1)根据一元二次方程根的判别式与根的关系列出不等式即可求出k 的取值范围; (2)根据(1)中的k 的取值范围和k 为正整数得出k 的值,再解方程即可,【详解】(1)∵关于x 的一元二次方程有两个不相等的实数根,∴()22410k ∆=-->, =8-4k >0.,∴2k <;(2)∵k 为正整数,∴k =1,解方程220x x +=得,120,2x x ==-.【点睛】本题考查了一元二次方程根的判别式、解一元二次方程.利用一元二次方程根的判别式与根的关系列出不等式是解题的关键.25.4x =-【解析】【分析】方程左右两边同时乘以(x+3)(x-1),将分式方程转化为整式方程,解出x 的值,并检验即可.【详解】 解:4(3)(1)x x +--1=11x -, 去分母,得:24(23)3x x x -+-=+,整理,得:x 2+3x -4=0,解得:x1=-4,x2=1.经检验:x2=1是增根,舍去,x=-.∴原方程的解是4【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根.。
2020-2021学年四川省成都实验外国语学校西区九年级(上)期中数学试卷
2020-2021学年四川省成都实验外国语学校西区九年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)如图是由长方体和圆柱组成的几何体,它的俯视图是()A.B.C.D.2.(3分)下列方程中,是关于x的一元二次方程的是()A.x2+=0B.ax2+bx+c=0C.(x﹣1)(x+2)=1D.3x2﹣2x﹣53.(3分)已知3a=2b(a≠0,b≠0),下列变形错误的是()A.B.C.D.4.(3分)如图,△A'B'C'是△ABC以点O为位似中心经过位似变换得到的,若△A'B'C'的周长与△ABC的周长比是2:3,则OB':OB为()A.4:9B.3:2C.4:5D.2:35.(3分)如果2是方程x2﹣x+c=0的一个根,则常数c的值是()A.1B.2C.﹣1D.﹣26.(3分)下列说法中错误的是()A.一组对边平行且一组对角相等的四边形是平行四边形B.每组邻边都相等的四边形是菱形C.四个角都相等的四边形是矩形D.对角线互相垂直平分的四边形是正方形7.(3分)如图,E,F,G,H分别是四边形ABCD四条边的中点,要使四边形EFGH为矩形,则四边形ABCD应具备的条件是()A.一组对边平行而另一组对边不平行B.对角线相等C.对角线互相垂直D.对角线互相平分8.(3分)如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是()A.B.C.D.9.(3分)如图直线AB、CD、EF被直线a、b所截,若∠1=100°,∠2=100°,∠3=125°,∠4=55°,下列结论错误的是()A.EF∥CD∥AB B.=C.=D.=10.(3分)如图,在长为62米、宽为42米的矩形草地上修同样宽的路,余下部分种植草坪.要使草坪的面积为2400平方米,设道路的宽为x米,则可列方程为()A.(62﹣x)(42﹣x)=2400B.(62﹣x)(42﹣x)+x2=2400C.62×42﹣62x﹣42x=2400D.62x+42x=2400二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)已知α,β是一元二次方程x2﹣5x﹣2=0的两个不相等的实数根,则α+β+αβ的值为.12.(4分)一个不透明的布袋里装有7个只有颜色不同的球,其中4个白球,2个红球,1个黄球,从布袋里任意摸出1个球,是红球的概率是.13.(4分)已知菱形ABCD的对角线AC,BD的长分别为6和8,则该菱形面积是.14.(4分)如图是一束平行的光线从教室窗户射入教室的平面示意图,测得光线与地面所成的角∠AMC=30°,窗户的高在教室地面上的影长MN=米,窗户的下檐到教室地面的距离BC=1米(点M、N、C在同一直线上),则窗户的高AB为米.三、解答题(本大题共6小题,共54分)15.解方程:(1)x(x+2)=3(x+2).(2)(x+1)2﹣2(x+1)=0.16.已知关于x的一元二次方程x2﹣2(m﹣2)x+m2=0有实根.(1)求m的取值范围;(2)如果方程的两个实数根为x1,x2,且x12+x22=56,求m的值.17.方格纸中每个小正方形的边长都是单位1,△OAB在平面直角坐标系中的位置如图所示,解答问题:(1)请按要求对△OAB作变换:以点O为位似中心,位似比为2:1,将△ABC在位似中心的异侧进行放大得到△OA′B′.(2)写出点A′的坐标;(3)△OA′B'的面积为.18.如图,在正方形ABCD中,E为边AD的中点,点F在边CD上,且∠BEF=90°,延长EF交BC的延长线于点G.(1)求证:△ABE∽△EGB;(2)若AB=4,求CG的长.19.为了遏制新型冠状病毒疫情的蔓延势头,各地教育部门在推迟各级学校开学时间的同时提出“停课不停学”的要求,各地学校也都开展了远程网络教学,某校集合为学生提供四类在线学习方式:在线阅读、在线听课、在线答疑、在线讨论,为了了解学生的需求,该校通过网络对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.(1)本次调查的人数有多少人?(2)请补全条形图;(3)请求出“在线答疑”在扇形图中的圆心角度数;(4)小宁和小娟都参加了远程网络教学活动,请求出小宁和小娟选择同一种学习方式的概率.20.如图,△ABC中,DE∥BC,G是AE上一点,连接BG交DE于F,作GH∥AB交DE 于点H.(1)如图1,与△GHE相似的三角形是(直接写出答案);(2)如图1,若AD=3BD,BF=FG,求的值;(3)如图2,连接CH并延长交AB于P点,交BG于Q,连接PF,则一定有PF∥CE,请说明理由.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)若关于x的一元二次方程(m+4)x2+5x+m2+3m﹣4=0的常数项为0,则m的值等于.22.(4分)已知点C和点D均为线段AB的黄金分割点,AB=6cm,则CD=cm.23.(4分)在三张分别标有数字﹣1,﹣2,3的不透明卡片,它们除数字不同外其余均相同,现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a后放回,再次洗匀从中任取一张,将数字记为b,则方程x2+ax+b=0有解的概率是.24.(4分)正方形ABCD内有一点E,且△ABE是面积为4的正三角形,在对角线AC 上有一点P,当PD+PE的值最小时,则这个最小值为.25.(4分)如图,正方形ABCD中,BE=EF=FC,CG=2GD,BG分别交AE,AF于M,N.下列结论:①AF⊥BG;②BN=NF;③=;④S四边形CGNF=S四边形ANGD.其中正确的结论的序号是.五、解答题(本大题共3小题,共30分)26.某宾馆有50个房间供游客居住,当每个房间每天的定价为180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.(1)若每个房间定价增加40元,则这个宾馆这一天的利润为多少元?(2)若宾馆某一天获利10640元,则房价定为多少元?(3)房价定为多少时,宾馆的利润最大?27.如图1,△ABC为等腰直角三角形,∠BAC=90°,AD⊥BC于D.(1)点E、F分别在DA、DC的延长线上,且AE=CF,连接BE、AF,猜想线段BE和AF的数量关系和位置关系,并证明你的结论;(2)如图2,连接EF,将△DEF绕点D顺时针旋转角α(0°<α<90°),连接AE、CE,若四边形ABCE恰为平行四边形,求DA与DE的数量关系;(3)如图3,连接EF,将△DEF绕点D逆时针旋转,当点A落在线段EF上时,设DE 与AB交于点G,若AE:AF=3:4,求的值.28.如图1,在平面直角坐标系中,O为坐标原点,点A(0,﹣2a)、C(﹣2a,0)在坐标轴上,点B(4a,2a)在第一象限,把线段AB平移,使点A与点C对应,点B与点D 对应,连接AC、BD.(1)用含a的式子表示点D坐标:D(,);(2)点P由D出发沿线段DC向终点C匀速运动,点P的横、纵坐标每秒都减少a个单位长度,作PM垂直x轴于点M,作BE垂直x轴于点E,点N从点E出发沿x轴负方向运动,速度为每秒a个单位长度,P、N两点同时出发,同时停止运动.当O为MN 中点时,PM=1,求B点坐标;(3)在(2)的条件下,连接PN、DN,在整个运动过程中,当OM=ON时,求△PND 的面积.。
2020_2021川成都天府新区成都市实验外国语学校(西区)初三上学期月考数学试卷
的对角线交点 的对称点为 ,过点 且垂直于 的直线 交菱
形
的边 (或 )于点 .
1 当 为何值时,点 、 、 在一直线上?
2 当点 、 、 不在一直线上时,是否存在这样的 ,使得
是以 为一直
角边的直角三角形?若存在,请求出所有符合条件的 的值;若不存在,请说明理由.
【答案】( 1 )
.
( 2 )1
.
∵
, 是公共角,
∴
,
∴
,
∴
;
故④正确.
故选 .
8. 以 , 为两边的三角形的第三边长是方程
).
A. 或
B.
C.
的根,则这个三角形的周长为( D. 以上都不对
【答案】 B
【解析】
,
,
则
,
,
解得:
,
,
设三角形的第三边长为 ,由题意得:
,
解得
,
∴
,
/
三角形周长为
,
故选: .
9. 如图,四边形 角形.若
的对角线 、 相交于 ,且将这个四边形分成①、②、③、④四个三 ,则下列结论中一定正确的是( ).
A. ①和②相似
B. ①和③相似
C. ①和④相似
【答案】 B
【解析】 在
和
中.
∵
,
.
∴
.
故选 .
D. ②和④相似
10. 要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划
天,每天安排 场比赛.设比赛组织者应邀请 个队参赛,则 满足的关系式为( ).
A.
B.
C.
D.
【答案】 A
2020-2021成都外国语学校九年级(上)期中数学试卷
(1)该班共有
人,扇形统计图中的 C 所对应的圆心角为
度.
(2)请步了解学生出错的原因,该班数学老师从 D 类学生中随机抽取 2 人的试卷进行错题统计.已
知 D 类学生中有 2 名男生,2 名女生,请用树状图或列表法求出恰好选中一男一女的试卷的概率.
18.(8 分)如图,某中学计划在主楼的顶部 D 和大门的上方 A 之间挂一些彩旗.经测量得到,大门 AB 的 高度是 3 m,大门距主楼的距离是 30m,在大门处测得主楼顶部的仰角是 30°,而当时测量器 E 离地 面的高度为 m.( ≈1.732)求:
20.(10 分)在△ABC 中,AB=AC,∠BAC=90°,点 D 在射线 BC 上(不与点 B,点 C 重合),以 AD 为 边作正方形 ADEF,使点 E 与点 B 在直线 AD 的异侧,射线 BA 与射线 CF 相交于点 G.
(1)若点 D 在线段 BC 上,如图 1,请判断 CD 与 GF 的关系. (2)若点 D 在线段 BC 的延长线上,如图 2,(1)中的结论还成立吗?请说明理由. (3)在(2)的条件下,连接 GE,若 tan∠AFC= ,AB= ,求 GE 的长.
C.2.03×109
D.2.03×1010
4.(3 分)函数 y=
+(x﹣5)﹣2 中自变量 x 的取值范围是( )
A.x≥3 且≠5
B.x>3 且 x≠5
C.x<3 且 x≠5 D.x≤3 且 x≠5
5.(3 分)如图,将△ABC 绕点 C 顺时针旋转,点 A 的对应点为点 D,点 B 的对应点为点 E,当点 E 落在
(填写正确的序号)
5th
B卷
二、解答题(本大题共 3 小题,共 30 分) 26.(8 分)某旅馆有客房 120 间,每间房的日租金为 160 元,每天都客满.经市场调查发现,每天房间的
2020-2021成都市实验外国语学校初三数学上期中第一次模拟试卷(附答案)
2020-2021成都市实验外国语学校初三数学上期中第一次模拟试卷(附答案)一、选择题1.下列事件中,属于必然事件的是()A.随时打开电视机,正在播新闻B.优秀射击运动员射击一次,命中靶心C.抛掷一枚质地均匀的骰子,出现4点朝上D.长度分别是3cm,5cm,6cm的三根木条首尾相接,组成一个三角形2.函数y=﹣x2﹣4x﹣3图象顶点坐标是()A.(2,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,1)3.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是()A.4.75 B.4.8 C.5 D.44.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪.若草坪的面积为570m2,道路的宽为xm,则可列方程为()A.32×20﹣2x2=570B.32×20﹣3x2=570C.(32﹣x)(20﹣2x)=570D.(32﹣2x)(20﹣x)=5705.如图,△ABC内接于⊙O,∠C=45°,AB=2,则⊙O的半径为()A.1B.2C.2D26.已知实数x满足(x2﹣2x+1)2+2(x2﹣2x+1)﹣3=0,那么x2﹣2x+1的值为()A.﹣1或3B.﹣3或1C.3D.17.解一元二次方程x2﹣8x﹣5=0,用配方法可变形为()A.(x+4)2=11B.(x﹣4)2=11C.(x+4)2=21D.(x﹣4)2=218.设a b ,是方程220190x x +-=的两个实数根,则22a a b ++的值为( ) A .2017 B .2018 C .2019 D .20209.如图,直线y=kx+c 与抛物线y=ax 2+bx+c 的图象都经过y 轴上的D 点,抛物线与x 轴交于A 、B 两点,其对称轴为直线x=1,且OA=OD .直线y=kx+c 与x 轴交于点C (点C 在点B 的右侧).则下列命题中正确命题的是( )①abc>0; ②3a+b>0; ③﹣1<k <0; ④4a+2b+c<0; ⑤a+b<k .A .①②③B .②③⑤C .②④⑤D .②③④⑤ 10.下列事件中,属于必然事件的是( ) A .任意数的绝对值都是正数B .两直线被第三条直线所截,同位角相等C .如果a 、b 都是实数,那么a +b =b +aD .抛掷1个均匀的骰子,出现6点朝上 11.函数y=x 2+bx+c 与y=x 的图象如图所示,有以下结论:①b 2﹣4c >0;②b+c+1=0;③3b+c+6=0;④当1<x <3时,x 2+(b ﹣1)x+c <0. 其中正确的个数为A .1B .2C .3D .4 12.四边形ABCD 的对角线互相平分,要使它变为矩形,需要添加的条件是( )A .AB=CDB .AB=BC C .AC ⊥BD D .AC=BD 二、填空题13.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为____.14.某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.15.新园小区计划在一块长为20米,宽12米的矩形场地上修建三条互相垂直的长方形甬路(一条橫向、两条纵向,且横向、纵向的宽度比为3:2),其余部分种花草.若要使种花草的面积达到144米2.则横向的甬路宽为_____米.16.若关于x 的一元二次方程()22 26k x kx k --+=有实数根,则k 的最小整数值为__________.17.已知1x =是关于x 的方程2230ax x -+=的一个根,则a =__________.18.已知点C 在以AB 为直径的半圆上,连结AC 、BC ,AB =10,BC :AC =3:4,阴影部分的面积为_____.19.如图,AD 为ABC 的外接圆O 的直径,如果50BAD ∠=︒,那么ACB =∠__________.20.将一元二次方程x 2﹣6x +5=0化成(x ﹣a )2=b 的形式,则ab =__.三、解答题21.若关于x 的一元二次方程x 2﹣3x +a ﹣2=0有实数根.(1)求a 的取值范围;(2)当a 为符合条件的最大整数,求此时方程的解.22.已知△ABC 是⊙O 的内接三角形,∠BAC 的平分线交⊙O 于点D .(I )如图①,若BC 是⊙O 的直径,BC =4,求BD 的长;(Ⅱ)如图②,若∠ABC 的平分线交AD 于点E ,求证:DE =DB .23.如图,AB 是⊙O 的直径,△ABC 内接于⊙O .点D 在⊙O 上,BD 平分∠ABC 交AC 于点E ,DF ⊥BC 交BC 的延长线于点F .(1)求证:FD 是⊙O 的切线;(2)若BD=8,sin∠DBF=35,求DE的长.24.某店铺经营某种品牌童装,购进时的单价是40元,根据市场调查,当销售单价是60元时,每天销售量是200件,销售单价每降低1元,就可多售出20件.(1)求出销售量y件)与销售单价x(元)之间的函数关系式;(2)求出销售该品牌童装获得的利润W(元)与销售单价x元)之间的函数关系式;(3)若装厂规定该品牌童装的销售单价不低于56元且不高于60元,则此服装店销售该品牌童装获得的最大利润是多少?25.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B,(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=12,求⊙O 的半径.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:根据事件发生的可能性大小判断相应事件的类型即可.详解:A.是随机事件,故A不符合题意;B.是随机事件,故B不符合题意;C.是随机事件,故C不符合题意;D.是必然事件,故D符合题意.故选D.点睛:本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.2.B解析:B【解析】【分析】将函数解析式化为顶点式,即可得到顶点坐标.【详解】解:∵y=﹣x2﹣4x﹣3=﹣(x2+4x+4﹣4+3)=﹣(x+2)2+1∴顶点坐标为(﹣2,1);故选:B.【点睛】本题考查了二次函数,解题关键是能将一般式化为顶点式.3.B解析:B【解析】【分析】设QP的中点为F,圆F与AB的切点为D,连接FD,连接CF,CD,则有FD⊥AB;由勾股定理的逆定理知,△ABC是直角三角形,FC+FD=PQ,由三角形的三边关系知,FC+FD>CD;只有当点F在CD上时,FC+FD=PQ有最小值,最小值为CD的长,即当点F在直角三角形ABC的斜边AB的高CD上时,PQ=CD有最小值,由直角三角形的面积公式知,此时CD=BC•AC÷AB=4.8.【详解】如图,设QP的中点为F,圆F与AB的切点为D,连接FD、CF、CD,则FD⊥AB.∵AB=10,AC=8,BC=6,∴∠ACB=90°,FC+FD=PQ,∴FC+FD>CD,∵当点F在直角三角形ABC的斜边AB的高CD上时,PQ=CD有最小值,∴CD=BC•AC÷AB=4.8.故选B.【点睛】本题利用了切线的性质,勾股定理的逆定理,三角形的三边关系,直角三角形的面积公式求解.4.D解析:D【解析】【分析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm ,根据草坪的面积是570m 2,即可列出方程.【详解】解:设道路的宽为xm ,根据题意得:(32-2x )(20-x )=570,故选D .【点睛】本题考查的知识点是由实际问题抽象出一元二次方程,解题关键是利用平移把不规则的图形变为规则图形,进而即可列出方程.5.D解析:D【解析】【分析】【详解】解:连接AO ,并延长交⊙O 于点D ,连接BD ,∵∠C=45°,∴∠D=45°,∵AD 为⊙O 的直径,∴∠ABD=90°,∴∠DAB=∠D=45°,∵AB=2,∴BD=2,∴22222222AB BD +=+=∴⊙O 的半径AO=22AD =. 故选D .【点睛】 本题考查圆周角定理;勾股定理.6.D解析:D【解析】【分析】设x 2﹣2x +1=a ,则(x 2﹣2x +1)2+2(x 2﹣2x +1)﹣3=0化为a 2+2a ﹣3=0,求出方程的解,再判断即可.【详解】解:设x 2﹣2x +1=a ,∵(x 2﹣2x +1)2+2(x 2﹣2x +1)﹣3=0,∴a 2+2a ﹣3=0,解得:a =﹣3或1,当a =﹣3时,x 2﹣2x +1=﹣3,即(x ﹣1)2=﹣3,此方程无实数解;当a =1时,x 2﹣2x +1=1,此时方程有解,故选:D .【点睛】此题考查换元法解一元二次方程,借助另外设未知数的方法解一元二次方程使理解更容易,计算更简单.7.D解析:D【解析】【分析】移项后两边配上一次项系数一半的平方即可得.【详解】解:∵x 2-8x=5,∴x 2-8x+16=5+16,即(x-4)2=21,故选D .【点睛】本题考查的知识点是解一元二次方程的能力,解题关键是熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法.8.B解析:B【解析】【分析】根据题意,把x a =代入方程,得22019a a +=,再由根与系数的关系,得到1a b +=-,即可得到答案.【详解】解:∵设a b ,是方程220190x x +-=的两个实数根,∴把x a =代入方程,得:22019a a +=,由根与系数的关系,得:1a b +=-,∴222()201912018a a b a a a b ++=+++=-=;故选:B.【点睛】本题考查了一元二次方程的解,以及根与系数的关系,解题的关键是熟练掌握根与系数的关系,正确求出代数式的值.9.B解析:B【解析】试题解析:∵抛物线开口向上,∴a>0.∵抛物线对称轴是x=1,∴b<0且b=-2a.∵抛物线与y轴交于正半轴,∴c>0.∴①abc>0错误;∵b=-2a,∴3a+b=3a-2a=a>0,∴②3a+b>0正确;∵b=-2a,∴4a+2b+c=4a-4a+c=c>0,∴④4a+2b+c<0错误;∵直线y=kx+c经过一、二、四象限,∴k<0.∵OA=OD,∴点A的坐标为(c,0).直线y=kx+c当x=c时,y>0,∴kc+c>0可得k>-1.∴③-1<k<0正确;∵直线y=kx+c与抛物线y=ax2+bx+c的图象有两个交点,∴ax2+bx+c=kx+c,得x1=0,x2=k b a -由图象知x2>1,∴k ba->1∴k>a+b,∴⑤a+b<k正确,即正确命题的是②③⑤.故选B.10.C解析:C【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A. 任意数的绝对值都是正数是随机事件,错误;B. 两直线被第三条直线所截,内错角相等是随机事件,错误;C. 如果a、b都是实数,那么a+b=b+a是必然事件,正确;D. 抛掷1个均匀的骰子,出现6点朝上是随机事件,错误;故选D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.11.B解析:B【解析】分析:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<0;故①错误。
2020-2021成都市九年级数学上期中试卷(附答案)
2020-2021成都市九年级数学上期中试卷(附答案)一、选择题1.如图是抛物线y=ax 2+bx+c (a≠0)的部分图象,其顶点是(1,n ),且与x 的一个交点在点(3,0)和(4,0)之间,则下列结论:①a-b+c >0;②3a+b=0;③b 2=4a (c-n );④一元二次方程ax 2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是( )A .1B .2C .3D .42.如图在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…若点A (32,0),B (0,2),则点B 2018的坐标为( )A .(6048,0)B .(6054,0)C .(6048,2)D .(6054,2)3.已知抛物线y=x 2-2mx-4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( )A .(1,-5)B .(3,-13)C .(2,-8)D .(4,-20) 4.用配方法解方程2680x x --=时,配方结果正确的是( ) A .2(3)17x -=B .2(3)14-=xC .2(6)44x -=D .2(3)1x -= 5.已知关于x 的方程()211230mm x x +-+-=是一元二次方程,则m 的值为( ) A .1B .-1C .±1D .2 6.抛物线y =2(x -3)2+4的顶点坐标是( ) A .(3,4)B .(-3,4)C .(3,-4)D .(2,4) 7.若关于x 的一元二次方程(m ﹣1)x 2+5x+m 2﹣5m+4=0有一个根为0,则m 的值等于( )A .1B .1或4C .4D .08.如图,从一张腰长为90cm ,顶角为120︒的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为( )A .15cmB .12cmC .10cmD .20cm9.解一元二次方程 x 2﹣8x ﹣5=0,用配方法可变形为( )A .(x +4)2=11B .(x ﹣4)2=11C .(x +4)2=21D .(x ﹣4)2=21 10.函数y=x 2+bx+c 与y=x 的图象如图所示,有以下结论:①b 2﹣4c >0;②b+c+1=0;③3b+c+6=0;④当1<x <3时,x 2+(b ﹣1)x+c <0. 其中正确的个数为A .1B .2C .3D .4 11.如图,函数221y ax x =-+和y ax a =-(a 是常数,且0a ≠)在同一平面直角坐标系的图象可能是( )A .B .C .D .12.如图,在⊙O 中,AB 是⊙O 的直径,AB =10,AC CD DB ==,点E 是点D 关于AB 的对称点,M 是AB 上的一动点,下列结论:①∠BOE =60°;②∠CED =12∠DOB ;③DM ⊥CE ;④CM +DM 的最小值是10,上述结论中正确的个数是( )A .1B .2C .3D .4二、填空题13.已知x 1,x 2是一元二次方程x 2+2(m +1)x +m 2﹣1=0的两实数根,且满足(x 1﹣x 2)2=16﹣x 1x 2,实数m 的值为________.14.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC 与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M,绕中点M转动上面的三角尺ABC,使其直角顶点C恰好落在三角尺A′B′C′的斜边A′B′上.当∠A=30°,AC=10时,两直角顶点C,C′间的距离是_____.15.已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是________cm2.16.如图,直线l经过⊙O的圆心O,与⊙O交于A、B两点,点C在⊙O上,∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点Q,且PQ=OQ,则满足条件的∠OCP的大小为_______.17.关于x的方程ax²-(3a+1)x+2(a+1)=0有两个不相等的实数根x1,x2,且x1-x1x2+x2=1-a,则a=18.小明同学测量一个光盘的直径,他只有一把直尺和一块三角尺,他将直尺、光盘和三角尺按图所示方法放置于桌面上,并量出AB=3 cm,则此光盘的直径是________cm.19.女生小琳所在班级共有40名学生,其中女生占60%.现学校组织部分女生去市三女中参观,需要从小琳所在班级的女生当中随机抽取一名女生参加,那么小琳被抽到的概率是.20.如图,是一个长为30m,宽为20m的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为米.三、解答题21.已知关于x的方程(x﹣3)(x﹣2)﹣p2=0.(1)求证:方程总有两个不相等的实数根;(2)当p=2时,求该方程的根.22.如图,点C 是⊙O 的直径AB 延长线上的一点,且有BO=BD=BC .(1)求证:CD 是⊙O 的切线;(2)若半径OB=2,求AD 的长.23.小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的.(1)如果有2个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用“画树状图”或“列表”等方法写出分析过程)(2)如果有n 个路口,则小明在每个路口都没有遇到红灯的概率是 . 24.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.25.如图,在ABC ∆中,90B ∠=︒,5cm AB =,7cm BC =,点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,同时,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度移动(到达点C ,移动停止).(1)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PQ 的长度等于210cm ?(2)在(1)中,PQB ∆的面积能否等于27cm ?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】利用抛物线的对称性得到抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间,则当x=-1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=-2b a =1,即b=-2a ,则可对②进行判断;利用抛物线的顶点的纵坐标为n 得到244ac b a-=n ,则可对③进行判断;由于抛物线与直线y=n 有一个公共点,则抛物线与直线y=n-1有2个公共点,于是可对④进行判断.【详解】∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间.∴当x=-1时,y >0,即a-b+c >0,所以①正确;∵抛物线的对称轴为直线x=-2b a=1,即b=-2a , ∴3a+b=3a-2a=a ,所以②错误;∵抛物线的顶点坐标为(1,n ), ∴244ac b a-=n , ∴b 2=4ac-4an=4a (c-n ),所以③正确;∵抛物线与直线y=n 有一个公共点,∴抛物线与直线y=n-1有2个公共点,∴一元二次方程ax 2+bx+c=n-1有两个不相等的实数根,所以④正确.故选C .【点睛】本题考查了二次函数图像与系数的关系,熟练掌握二次函数性质是解题的关键.2.D解析:D【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B 、B 2、B 4…每偶数之间的B 相差6个单位长度,根据这个规律可以求得B 2018的坐标.【详解】∵A (32,0),B (0,2), ∴OA =32,OB =2,∴Rt △AOB 中,AB 52=, ∴OA +AB 1+B 1C 2=32+2+52=6, ∴B 2的横坐标为:6,且B 2C 2=2,即B 2(6,2),∴B 4的横坐标为:2×6=12, ∴点B 2018的横坐标为:2018÷2×6=6054,点B 2018的纵坐标为:2, 即B 2018的坐标是(6054,2).故选D .【点睛】此题考查了点的坐标规律变换以及勾股定理的运用,通过图形旋转,找到所有B 点之间的关系是解决本题的关键.3.C解析:C【解析】【分析】【详解】解:22224=()4y x mx x m m =-----,∴点M (m ,﹣m 2﹣4),∴点M′(﹣m ,m 2+4),∴m 2+2m 2﹣4=m 2+4.解得m=±2.∵m >0,∴m=2,∴M (2,﹣8). 故选C .【点睛】本题考查二次函数的性质. 4.A解析:A【解析】【分析】利用配方法把方程2680x x --=变形即可.【详解】用配方法解方程x 2﹣6x ﹣8=0时,配方结果为(x ﹣3)2=17,故选A .【点睛】本题考查了解一元二次方程﹣配方法,熟练掌握配方法解一元二次方程的基本步骤是解本题的关键.5.B解析:B【解析】【分析】根据一元二次方程的定义得出m-1≠0,m 2+1=2,求出m 的值即可.【详解】∵关于x 的方程()211230mm x x +-+-=是一元二次方程,∴m 2+1=2且m-1≠0,解得:m=-1,故选:B .【点睛】本题考查了对一元二次方程的定义的理解和运用,注意:①是整式方程,②只含有一个未知数,③所含未知数的项的最高次数是2,且二次项系数不为0. 6.A解析:A【解析】根据2()y a x h k =-+ 的顶点坐标为(,)h k ,易得抛物线y=2(x ﹣3)2+4顶点坐标是(3,4).故选A.7.C解析:C【解析】【分析】先把x =0代入方程求出m 的值,然后根据一元二次方程的定义确定满足条件的m 的值.【详解】解:把x =0代入方程得m²−5m +4=0,解得m ₁=4,m ₂=1,而a−1≠0,所以m =4.故选C .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.注意一元二次方程的定义.8.A解析:A【解析】【分析】根据等腰三角形的性质得到OE 的长,再利用弧长公式计算出弧CD 的长,设圆锥的底面圆半径为r ,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长可得到r .【详解】过O 作OE AB ⊥于E ,90120OA OB cm AOB ︒∠==,=,30A B ︒∴∠∠==,1452OE OA cm ∴==, ∴弧CD 的长1204530180ππ⨯==, 设圆锥的底面圆的半径为r ,则230r ππ=,解得15r =.故选:A .【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.9.D解析:D【解析】【分析】移项后两边配上一次项系数一半的平方即可得.【详解】解:∵x 2-8x=5,∴x 2-8x+16=5+16,即(x-4)2=21,故选D .【点睛】本题考查的知识点是解一元二次方程的能力,解题关键是熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法.10.B解析:B【解析】分析:∵函数y=x 2+bx+c 与x 轴无交点,∴b 2﹣4c <0;故①错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020~2021学年四川成都天府新区成都市实验外国语学
校(西区)初三上学期期中数学试卷
一、选择题
(本大题共10小题,每小题3分,共30分)1.
A. B. C. D.
如图是由长方体和圆柱组成的几何体,它的俯视图是( ).
2.
A.
B.
C.
D.
下列方程中,是关于的一元二次方程的是( ).3.
A.
B.
C.
D.
已知,下列变形错误的是( ).
4.
A. B. C. D.
如图,是
以点为位似中心经过位似变换得到的,若
的周长与
的周长比是
,则
为( ).
5.
A.
B.
C.
D.
如果是方程的一个根,则常数的值是( ).
6.
A.B.C.D.下列说法中错误的是( ).
一组对边平行且一组对角相等的四边形是平行四边形每组邻边都相等的四边形是菱形四个角相等的四边形是矩形
对角线互相垂直的平行四边形是正方形
7.
A.一组对边平行而另一组对边不平行
B.对角线相等
C.对角线互相垂直
D.对角线互相平分
如图,,,,分别是四边形四条边的中点,要使四边形为矩形,则四边
形
应具备的条件是( ).
8.
A. B.
C. D.
如图所示,小正方形的边长均为,则下列选项中阴影部分的三角形与相似的是( ).
9.
A. B. C. D.
如图直线、、被直线、所截,若,,,
,下列结论错误的是( ).
10.
A. B. C. D.
如图,在长为米、宽为米的矩形草地上修同样宽的路,余下部分种植草坪.要使草坪的面
积为
平方米,设道路的宽为米,则可列方程为( ).
二、填空题
(本大题共4小题,每小题4分,共16分)11.已知,是一元二次方程
的两个不相等的实数根,则
的值
为 .
12.一个不透明的布袋里装有个只有颜色不同的球,其中个白球,个红球,个黄球,从布袋里
任意摸出个球,是红球的概率是 .
13.已知菱形的对角线,的长分别为和,则该菱形面积是 .
14.如图,一束平行光线从教室窗户射入教室的平面示意图,测得光线与地面所成的
,窗户的高从教室地面上的影长米,窗户的下沿到教室地面的距离米(点
,
,
在同一直线上),则窗户的高
为 .
三、解答题
(本大题共6小题,共54分)15.(1)(2)
解方程:
.
.
16.
(1)(2)已知关于的一元二次方程有实根.
求
的取值范围.
如果方程的两个实数根为,
,且
,求的值.
17.(1)(2)(3)
方格纸中每个小正方形的边长都是单位长度,
在平面直角坐标系中的位置如图所示,解
答问题:
请按要求对
作变换:以点
为位似中心,相似比为,将在位似中心的
异侧进行放大得到
.
写出点的坐标: .的面积为 .
18.(1)(2)如图,在正方形
中,为边的中点,点在边上,且,延长交
的延长线于点
.
求证: .若
,求
的长.
19.为了遏制新型冠状病毒疫情的蔓延势头,各地教育部门在推迟各级学校开学时间的同时提出“停课
不停学”的要求,各地学校也都开展了远程网络教学,某校集合为学生提供四类在线学习方式;在线阅读、在线听课、在线答疑、在线讨论,为了了解学生的需求,该校通过网络对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.
(1)(2)(3)(4)人数人
在线阅读
在线听课
在线答疑在线讨论
方式图
在线讨论在线答疑
在线听课在线阅读
图
本次调查的人数有多少人?请补全条形图.
请求出“在线答疑”在扇形图中的圆心角度数.
小宁和小娟都参加了远程网络教学活动,请求出小宁和小娟选择同一种学习方式的概率.
20.(1)(2)(3)如图,
中,,是上一点,连接交于,作交于点
.
如图,与相似三角形是: .(直接写出答案)
图
如图,若,,求的值.如图,连接
并延长交
于点,交
于
,连接
,则一定有
,请
说明理由.
图
四、填空题
(本大题共5小题,每小题4分,共20分)21.若关于的一元二次方程
的常数项为,则
的值等
22.已知点和点均为线段的黄金分割点,,则 .
23.在三张分别标有数字,,的不透明卡片,它们除数字不同外其余均相同,现将它们背面
朝上,洗匀后从中任取一张将该卡片上的数字记为后放回,再次洗匀从中任取一张,将数字记为,则方程
有解的概率是 .
24.正方形内有一点,且是面积为的正三角形,在对角线上有一点,当
的值最小时,则这个最小值为 .
25.如图,正方形
中,,,分别交
,于,.下
列结论:①
.②
.③
.④
.其中正
确的结论的序号是 .
四边形
四边形
五、解答题
(本大题共3小题,共30分)26.(1)(2)某宾馆有
个房间供游客居住,当每个房间每天的定价为
元时,房间会全部住满;当每个房
间每天的定价每增加元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天
支出
元的各种费用.
若每个房间定价增加元,则这个宾馆这一天的利润为多少元?若宾馆某一天获利
元,则房价定为多少元?
27.(1)如图,为等腰直角三角形,,于.
图
点
、分别在
、
的延长线上,且
,连接
、
.猜想线段
和
(2)(3)如图,连接
.将绕点顺时针旋转角(
),连接、
,若四边形
恰为平行四边形,求
与
的数量关系.
图
如图,连接
,将绕点
逆时针旋转,当点落在线段上时,设
与
交于点
,若
,求
的值.
图
28.(1)(2)(3)如图,在平面直角坐标系中,
为坐标原点,点、在坐标轴上,点在第一象限,把线段
平移,使点与点
对应,点
与点
对应,连接
、
.
图
用含的式子表示点坐标:
( , ).
点由
出发沿线段向终点匀速运动,点的横、纵坐标每秒都减少个单位长度,作
垂直轴于点
,作
垂直轴于点
,点
从点
出发沿轴负方向运
动,速度为每秒个单位长度,、两点同时出发,同时停止运动.当
为
中点
时,
,求
点坐标.
在()的条件下,连接
、
,在整个运动过程中,当时,求
的面积.
备用图。