高一级数学上学期复习练习一

合集下载

高一数学函数周期性和对称性复习练习题

高一数学函数周期性和对称性复习练习题

函数周期性和对称性高一数学一•定义:若T为非零常数,对于定义域内的任一x,使f(x T) f(x)恒成立则f(x)叫做周期函数,T叫做这个函数的一个周期。

二•重要结论1、f x f x a,则y f x是以T a为周期的周期函数;2、若函数y=f(x)满足f(x+a)=-f(x) (a>0),则f(x)为周期函数且2a是它的一个周期。

3、若函数f x a f x a,贝U f x是以T 2a为周期的周期函数14、y=f(x)满足f(x+a) = (a>0),则f(x)为周期函数且2a是它的一个周期。

f x15、若函数y=f(x)满足f(x+a) = (a>0),则f(x)为周期函数且2a是它的一个周期。

f x6、f (x a) 1一3,则fx是以T 2a为周期的周期函数.1 f(x)7、f(x a)1一L(x),则f x是以T 4a为周期的周期函数•1 f(x)8、若函数y=f(x)的图像关于直线x=a,x=b(b>a)都对称,则f(x)为周期函数且2 ( b-a)是它的一个周期。

9、函数y f(x) x R的图象关于两点 A a, y0、B b, y0 a b都对称,则函数 f (x)是以2 b a为周期的周期函数;10、函数y f(x) x R的图象关于A a, y。

和直线x b a b都对称,则函数f(x)是以4 b a为周期的周期函数;11、若偶函数y=f(x)的图像关于直线x=a对称,贝U f(x)为周期函数且2 a是它的一个周期。

12、若奇函数y=f(x)的图像关于直线x=a对称,则f(x)为周期函数且4 a是它的一个周期。

13、若函数y=f(x)满足f(x)=f(x-a)+f(x+a)( a>0),则f(x)为周期函数,6a是它的一个周期。

14、若奇函数y=f(x)满足f(x+T)=f(x) (x € R, 0),则f(-)=0.2函数的轴对称:a b定理1 :如果函数y f x满足fax f b x,则函数y f x的图象关于直线x 对2 称•推论1:如果函数y f x满足fax fax,则函数y f x的图象关于直线x a对称•推论2:如果函数y f x满足f x f x ,则函数y f x的图象关于直线x 0 (y轴)对称. 特别地,推论2就是偶函数的定义和性质.它是上述定理1的简化.一、函数的点对称:定理2:如果函数y f x满足fax fax 2b,则函数y f x的图象关于点a,b对称. 推论3:如果函数y f x满足fax fax 0,则函数y f x的图象关于点a,0对称.推论4 :如果函数y f x满足f x f x 0,则函数y f x的图象关于原点0,0对称.特别地,推论4就是奇函数的定义和性质.它是上述定理2的简化.二、函数周期性的性质:定理若函数f x在R上满足f (a x)fax,且f(b x) f b x (其中a b),则函数3:y f x以2 a b为周期.定理4:若函数f x在R上满足f(a x) f a x,且f(b x) f b x (其中 a b),则函数y f x以2 a b为周期.定理5:若函数f x在R上满足f(a x)fax,且f(b x) f b x (其中a b),则函数y fx以4a b为周期.以上几类情形具有一定的迷惑性,但读者若能区分是考查单一函数还是两个函数,同时分析条件特征必能拨开迷雾,马到成功.下面以例题来分析.例1.已知定义为R的函数f x满足f x f x 4,且函数f x在区间2, 上单调递增.如果x-i 2 x2,且x-i x2 4,则f % f x2的值().A.恒小于0 B .恒大于0 C .可能为0 D .可正可负.分析:f x f x 4形似周期函数f x f x 4,但事实上不是,不过我们可以取特殊值代入,通过适当描点作出它的图象来了解其性质.或者,先用x 2代替x,使f x f x 4变形为f 2 x f x 2 .它的特征就是推论 3.因此图象关于点2,0对称.f x在区间2, 上单调递增,在区间,2上也单调递增.我们可以把该函数想象成是奇函数向右平移了两个单位.(如图)2 X2 4 x-,且函数在2, 上单调递增,所以f x2 f 4 X!,又由f x f x 4 ,有 f (4 x 1) f x 1 4 f x 1 4 4 f x 1 ,[3,4] 上是增函数f x 1 f x 2 f x 1 f 4 x 1 f x 1 f x 10.选 A.当然,如果已经作出大致图象后,用特殊值代人也可猜想出答案为A.练1:在R 上定义的函数f (x)是偶函数,且f(x) f (2 x).若f (x)在区间[1,2]上是减函数,则f(x)()A. 在区间[2, 1]上是增函数,在区间[3,4]上是减函数B. 在区间[2, 1]上是增函数,在区间[3,4]上是减函数上是减函数,在区间C.在区间[2, 1][3, 4]上是增函数分析:由f(x) f(2 x)可知f(x)图象关于x 1对称,即推论1的应用.又因为f(x)为偶函数图象关于 x 0对称,可得到f(x)为周期函数且最小正周期为 2,结合f (x)在区间[1,2]上是减函数,可得如右 f(x)草图.故选B例2 •已知函数y f x 的图象关于直线 x 2和x 4都对称,且当0x1时,f X x .在闭区间T,T 上的根的个数记为n ,贝U n 可能为(: )A.0B.1C.3D.5分析:f(T)f( T) 0 ,f( T )f (T ) f( ~T)f (T ),2 222•- f( 匸)f(T ) 0 ,则n 可能为5 ?练2.定义在R 上的函数f(x)既是奇函数,又是周期函数, 2 2D.在区间[2, 1]上是减函数,在区间T 是它的一个正周期•若将方程f(x)求f 19.5的值.分析:由推论1可知, y f x 的图象关于直线 2对称,即f 2 x同样, 满足f 4 x ,现由上述的定理 X 是以4为周期的函数.f 19.5 f 4 4 3.5 f 3.5 0.5 0.5, 同时还知f X 是偶函数,所以0.5 f 0.5 0.5. 例3. f f 398 x f 2158 x f 3214 x ,则f f 999 中最多有()个不同的值. A.165 B.177 C.183 D.199分析:由已知f x f 398 f 2158 x f 3214 x f x 1056f x 1760 f x 704352 . 又有 f x f 398 x2158 x f 3214 x 1056f 2158 1056 xf 1102 x f 1102 x1056f 46 x ,于是f (x)有周期352,于是f o ,f 1 , L ,f 999能在 ,f 351中找到. 又f (x)的图像关于直线x 23对称,故这些值可以在23 , f 24 丄,f 351中找到.又f(x)的图像关于直线x 199对称,故这些值可以在 f 23 , f 24 ,L , f 199 中找到.共有177个.选B. 练3 :已知 1 x1 3x ,x ,…, 则 f 2004 2 分析:由f ,可令 x=f (x )知 f , x 1 3x ,f 2 x3x 13x 1 f(x)为迭代周期函数,故 f 3n x 2004 f x, f 2004练4:函数f (x)在R 上有定义,且满足 f(x)是偶函数,且f 0 2005, g x x 1是奇函数,则f 2005的值为函数的定义域为[—1 , 0 ) U ( 0 , 1 ]故f ( x ) 是奇函数4、抽象函数奇偶性的判定与证明例4•已知函数f (x)对一切x, y R ,都有f (x y) f (x) f (y),(1)求证: f (x)是奇函数;(2)若f( 3) a ,用a 表示f(12)解:(1)显然f(x)的定义域是R ,它关于原点对称•在 f(x y) f (x) f (y)中,令 yx ,得 f(0) f(x) f( x),令 x y 0,得 f (0)f(0) f (0) ,「.f(0)0 ,••• f (x) f ( x) 0,即 f( x) f (x),••• f (x)是奇函数.f y fy 2,即有f :x f x 20,令 a nf x ,则 a n a n 2 0 ,其中 a 。

第一章三角函数复习题高一上学期数学人教版必修

第一章三角函数复习题高一上学期数学人教版必修

三角函数1.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.sin780︒的值为( )A .23-B .23 C .21- D .21 2.下列说法中正确的是( )A .第一象限角都是锐角B .三角形的内角必是第一、二象限的角C 不相等的角终边一定不相同D .},90180|{},90360|{Z k k Z k k ∈︒+︒•==∈︒±︒•=ββαα3.已知角3π的终边上有一点P (1,a ),则a 的值是 ( ) A .3- B .3± C .33 D .34.已知α是第三象限1.已知角α的终边经过点P (m ,4),且cos α=﹣,则m 等于( ) A .﹣ B . ﹣3 C . D 35.已知cos(75°+α)=13,则sin(α-15°)+cos(105°-α)的值是( ).A.13 B .23 C .-13 D .-236.若f (sin x )=3-cos 2x ,则f (co s x )=( ).A .3-cos 2xB .3-sin 2xC .3+cos 2xD .3+sin 2x7.函数是( ) A .周期为π的奇函数 B .周期为π的偶函数C .周期为2π的奇函数D .周期为2π的偶函数8.第三 象限的角,若1tan 2α=,则cos α=( ) A. 5 B. 25 C. 5259.已知角θ的顶点在坐标原点,始边与x 轴正半轴重合,终边在直线20x y -=上,则221sin2cos sin 2θθθ+-=( )A. 15B. 15-C. 25D. 25- 10.已知21tan -=α,则αααα22cos sin cos sin 2-的值是( ) A .34- B .3 C .34 D .3- 11.若函数x y 2sin =的图象向左平移4π个单位得到)(x f y =的图象,则( ) A .x x f 2cos )(= B .x x f 2sin )(=C .x x f 2cos )(-= D .x x f 2sin )(-=12..函数0)(sin(2)(>+=ωϕωx x f ,<-2π)2πϕ<的部分图象如图所示,则ϕω,的值分别是( ) A .2,3π-B .2,6π- C .4,6π- D .4,3π 13.已知函数()()2sin (0,0)f x x ωϕωϕπ=+><<的最小正正期为π,若将()f x 的图象向左平移3π个单位后得到函数()g x 的图象关于y 轴对称,则函数()f x 的图象( )A. 关于直线2x π=对称 B. 关于直线3x π=对称C. 关于点,02π⎛⎫ ⎪⎝⎭对称D. 关于点,03π⎛⎫ ⎪⎝⎭对称 14.已知函数>><+=ωϕω,0)sin()(A x A x f )2||,0πϕ<在一个周期内的图象如图所示.若方程m x f =)(在区间],0[π上有两个不同的实数解21,x x ,则21x x +的值为( )A .3πB .π32C .π34D .3π或π34 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上 ) 15、 =︒300tan _________.16.函设函数()cos f x x =,先将()y f x =纵坐标不变,横坐标变为原来的2倍,再将图象向右平移3π个单位长度后得()y g x =,则()y g x =的对称中心为________17.()tan f x x =在,34ππ⎡⎤-⎢⎥⎣⎦上的最小值为__________. 18...把51999π-表示成)(2Z k k ∈+πθ的形式,使||θ最小的θ的值是______. 19..已知32sin =α,),2(ππα∈,则-αsin(=)2π_______. 三、解答题(本大题共6小题,共60分.解答题应写出文字说明,证明过程或演算步骤) 20.已知函数f (α)=. (1)化简f (α);(2)若α是第三象限角,且cos (α﹣π)=,求f (α).21.已知函数).32sin(2)(π+=x x f(1)求)(x f 的最小正周期;(2)求)(x f 的最小值及取最小值时相应的x 值;(3)求函数)(x f 的单调递增区间.22. (本题8分)设关于x 的函数22cos 2cos (21)y x a x a =--+的最小值为()f a , 试确定满足1()2f a =的a 的值,并对此时的a 值求y 的最大值及对应x 的集合。

高中必修一高一数学集合复习课随堂练习及答案

高中必修一高一数学集合复习课随堂练习及答案

高中必修一高一数学集合复习课随堂练习及答案1.已知A={x|x<3},B={x|x<a}(1)若B ⊆A ,求a 的取值范围(2)若A ⊆B ,求a 的取值范围(3)若C R A C R B ,求a 的取值范围2.若P={y|y=x 2,x ∈R},Q={y| y=x 2+1,x ∈R },则P ∩Q =3.若P={y|y=x 2,x ∈R},Q={(x ,y )| y=x 2,x ∈R },则P ∩Q =4.满足{a ,b} A ⊆{a ,b ,c ,d ,e}的集合A 的个数是[巩固提高]1.已知集合M={x|x 3—2x 2—x+2=0},则下列各数中不属于M 的一个是 ( )A .—1B .1C .2D .—22.设集合A= {x|—1≤x <2},B={ x|x<a },若A ∩B ≠φ,则a 的取值范围是( )A .a <2B .a >—2C .a >—1D .—1≤a ≤23.集合A 、B 各有12个元素,A ∩B 中有4个元素,则A ∪B 中元素个数为4.数集M={x|N k k x ∈+=,41},N={ x|N k k x ∈-=,412},则它们之间的关系是 5.已知集合M={(x,y )|x+y=2 },N={(x,y )|x —y=4},那么集合M ∩N=6.设集合A={x|x 2—px+15=0},B={x|x 2—5x+q=0},若A ∪B={2,3,5},则A= B=7.已知全集U=R ,A={x|x ≤3},B={ x|0≤x ≤5},求(C U A )∩B8.已知集合A={x|x 2—3x+2=0},B={x|x 2—mx+(m —1)=0},且B A ,求实数m 的值⊂ ≠ ⊂ ≠ ⊂ ≠9.已知A={x|x 2+x —6=0},B={x|mx+1=0},且A ∪B=A ,求实数m 的取值范围10.已知集合A={x|—2<x <—1或x >0},集合B={ x|a ≤x ≤b},满足A ∩B={x|0<x ≤2},A ∪B={x|x >—2},求a 、b 的值答案:1、(1)a ≤3 ,(2)a ≥3,(3)a <32、{y|y ≥1}3、φ4、7个[巩固提高]1、 D2、C3、20个4、M N5、{(3,—1)}6、{3,5},{2,3} 7、]5,3( 8、2 9、0,31或21- 10、—1,0⊂ ≠。

高一数学复习考点题型专题讲解与练习1 集合的概念(解析版)

高一数学复习考点题型专题讲解与练习1 集合的概念(解析版)

高一数学复习考点题型专题讲解与练习专题1 集合的概念题型一判断元素与集合的关系1.下面有四个语句:①集合N*中最小的数是0;②-a∉N,则a∈N;③a∈N,b∈N,则a+b的最小值是2;④x2+1=2x的解集中含有两个元素.其中说法正确的个数是()A.0B.1 C.2 D.3【答案】A【解析】因为N*是不含0的自然数,所以①错误;取a=2,则-2∉N,2∉N,所以②错误;对于③,当a=b=0时,a+b取得最小值是0,而不是2,所以③错误;对于④,解集中只含有元素1,故④错误.故选:A2.下列四个命题:①{0}是空集;②若a∈N,则-a∉N;③集合{x∈R|x2-2x+1=0}含有两个元素;④集合6|x Q Nx⎧⎫∈∈⎨⎬⎩⎭是有限集.其中正确命题的个数是()A.1 B.2C .3D .0【答案】D【解析】①{0}是含有一个元素0的集合,不是空集,所以①不正确; ②当a =0时,0∈N ,所以②不正确;③因为由x 2-2x +1=0,得x 1=x 2=1,所以{x ∈R |x 2-2x +1=0}={1},所以③不正确;④当x 为正整数的倒数时,6x∈N ,所以6|x Q N x⎧⎫∈∈⎨⎬⎩⎭是无限集,所以④不正确.故选:D3.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{}5k n k n Z =+∈,0,1,2,3,4k =,给出如下四个结论:①[]20111∈;②[]33-∈;③若整数,a b 属于同一“类”,则[]0a b -∈;④若[]0a b -∈,则整数,a b 属于同一“类”.其中,正确结论的个数是(). A .1B .2 C .3 D .4【答案】C【解析】对于①,201154021÷=⋅⋅⋅,[]20111∴∈,①正确; 对于②,352-=-+,即3-被5除余2,[]33∴-∉,②错误; 对于③,设15a n k =+,25b n k =+,()125a b n n ∴-=-,能被5整除,[]0a b ∴-∈,③正确;对于④,设5a b n -=,n Z ∈,即5a n b =+,n Z ∈, 不妨令5b m k =+,m Z ∈,0,1,2,3,4k =,则()555a n m k m n k =++=++,m Z ∈,n Z ∈,0,1,2,3,4k =,,a b ∴属于同一“类”, ④正确;综上所述:正确结论的个数为3个. 故选:C .4.已知集合{10}A x x =,23a =+,则a 与集合A 的关系是() A .a A ∈ B .a A ∉ C .a A = D .{}a A ∈【答案】A【解析】解:{|10}A x x =,23224a =+<+=,10a <,a A ∴∈,故选:A .5.下列三个命题:①集合N 中最小的数是1;②a N -∉,则a N ∈;③a N ∈,N b ∈,则+a b 的最小值是2.其中正确命题的个数是() A .0B .1 C .2 D .3【答案】A【解析】①N 表示自然数集,最小的数为0,①错误; ②若32a N -=-∉,则32a N =∉,②错误; ③若0a =,1b =,则1a b +=,③错误.∴正确命题的个数为0个故选:A6.用符号“∈”或“∉”填空:(1)0________N *,5________Z ;(2)23________{x |x <11},32________{x |x >4};(3)(-1,1)________{y |y =x 2},(-1,1)________{(x ,y )|y =x 2}.【答案】∉ ∉ ∉ ∈ ∉ ∈ 【解析】(1)*0N ∉5∉Z ;(2)22(23)(11)>,2311∴>,∴23{|11}∉<x x ;22(32)4>,即324>,∴32{|4}∈>x x ;(3)(-1,1)为点,{y |y =x 2}中元素为数,故(-1,1) ∉{y |y =x 2}. 又∵(-1)2=1,∴(-1,1)∈{(x ,y )|y =x 2}. 故答案为:∉;∉;∉;∈;∉;∈ 题型二根据元素与集合的关系求参数1.若由a 2,2019a 组成的集合M 中有两个元素,则a 的取值可以是() A .0 B .2019 C .1 D .0或2019【答案】C【解析】若集合M 中有两个元素,则a 2≠2 019a .即a ≠0且a ≠2 019.故选:C. 2.若集合2{|320}A x R ax x =∈-+=中只有一个元素,则(a =) A .92B .98C .0D .0或98【答案】D【解析】解:集合2{|320}A x R ax x =∈-+=中只有一个元素, 当0a =时,可得23x =,集合A 只有一个元素为:23. 当0a ≠时:方程2320ax x -+=只有一个解:即980a ∆=-=, 可得:98a =. 故选:D .3.已知集合A 是由a ﹣2,2a 2+5a ,12三个元素组成的,且﹣3∈A ,求a =________. 【答案】32-【解析】解:由﹣3∈A ,可得﹣3=a ﹣2,或﹣3=2a 2+5a , 由﹣3=a ﹣2,解得a =﹣1,经过验证a =﹣1不满足条件,舍去.由﹣3=2a 2+5a ,解得a =﹣1或32-,经过验证:a =﹣1不满足条件,舍去. ∴a =32-. 故答案为:﹣32.4.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 的值为________. 【答案】3 【解析】∵2{0,,32}A m m m =-+,且2A ∈,∴2m =或2322m m -+=,即2m =或0m =或3m =,当2m =时,与元素的互异性相矛盾,舍去;当0m =时,与元素的互异性相矛盾,舍去;当3m =时,{}032A =,,满足题意,∴3m =,故答案是3. 5.已知集合2{|320}A x ax x =-+=,其中a 为常数,且a R ∈. (1)若A 中至少有一个元素,求a 的取值范围; (2)若A 中至多有一个元素,求a 的取值范围. 【答案】(1)89≤a ;(2)89≤a 或0=a 【解析】解:(1)0a =,由320x -+=,解得23x =,满足题意,因此0a =.0a ≠时,A 中至少有一个元素,∴980a ∆=-,解得89≤a ,0a ≠. 综上可得:a 的取值范围是89≤a . (2)0a =,由320x -+=,解得23x =,满足题意,因此0a =.0a ≠时,A 中至多有一个元素,∴980a ∆=-,解得89≤a . 综上可得:a 的取值范围是89≤a 或0=a . 题型三利用集合互异性求参数1.含有三个实数的集合既可表示为{,,0}b b a,也可表示为{,,1}a a b +,则+a b 的值为____. 【答案】0【解析】由题意{,,0}{,,1}bb a a b a=+,可得0a ≠,根据集合相等和元素的互异性,可得0a b +=且1b =,解得1,1a b =-=, 此时集合{,,0}{1,1,0},{,,1}{1,1,0}b b a a b a=-+=- 所以0a b +=. 故答案为0. 2.已知集合22{2,(1),33}Aa a a =+++,且1A ∈,则实数a 的值为________.【答案】1-或0【解析】若()211,a +=则0a =或2,a =- 当0a =时,{}2,1,3A =,符合元素的互异性;当2a =-时,{}2,1,1A =,不符合元素的互异性,舍去 若2a 3a 31,++=则1a =-或2,a =-当1a =-时,{}2,0,1A =,符合元素的互异性; 当2a =-时,{}2,1,1A =,不符合元素的互异性,舍去; 故答案为:1-或0.3.已知集合{}2411A a a a =+++,,{}2|0B x x px q =++=,若1A ∈. (1)求实数a 的值;(2)如果集合A 是集合B 的列举表示法,求实数p q ,的值. 【答案】(1)4a =-;(2)23p q ==-,.【解析】解:(1)∵1A ∈,∴2411a a ++=或者11a += 得4a =-或0a =,验证当0a =时,集合{}11A =,,集合内两个元素相同,故舍去0a = ∴4a =-(2)由上4a =-得{}13A =-,,故集合B 中,方程20x px q ++=的两根为1、-3. 由一元二次方程根与系数的关系,得[1(3)]21(3)3p q =-+-==⨯-=-,. 4.已知{}20,1,1a a a ∈--,求a 的值. 【答案】1a =-【解析】由已知条件得:若a =0,则集合为{0,﹣1,﹣1},不满足集合元素的互异性,∴a ≠0; 若a ﹣1=0,a =1,则集合为{1,0,0},显然a ≠1;若a 2﹣1=0则a =±1,由上面知a =1不符合条件;a =﹣1时,集合为{﹣1,﹣2,0}; ∴a =﹣1.5.含有三个实数元素的集合既可表示成,,1b a a ⎧⎫⎨⎬⎩⎭,又可表示成2{,,0}a a b +,求20172018a b +的值. 【答案】-1【解析】由题意得,,1ba a ⎧⎫⎨⎬⎩⎭与2{,,0}a a b +表示同一个集合,所以0ba=且0a ≠,1a ≠,即0b =,则有{,0,1}a 与2{,,0}a a 表示同一个集合,所以21a =,解得1a =-,所以()2017201720182018101a b +=-+=-,故答案为:1- 题型四集合的描述方法 1.给出下列说法:①集合{}3x x x ∈=N 用列举法表示为{}1,0,1-;②实数集可以表示为{|x x 为实数}或{}R ; ③方程组3,1x y x y +=⎧⎨-=-⎩的解组成的集合为{}1,2x y ==.其中不正确的有______.(把所有不正确说法的序号都填上) 【答案】①②③【解析】①由3x x =,即()210x x -=,得0x =或1x =或1x =-.因为1-∉N ,所以集合{}3x xx ∈=N 用列举法表示为{}0,1.②实数集正确的表示为{|x x 为实数}或R .③方程组3,1x y x y +=⎧⎨-=-⎩的解组成的集合正确的表示应为(){}1,2或()1,,2x x y y ⎧⎫=⎧⎪⎪⎨⎨⎬=⎩⎪⎪⎩⎭.故①②③均不正确. 2.定义集合运算(){}|,,A B z z xy x y x A y B ==+∈∈,集合{}{}0,1,2,3A B ==,则集合A B 所有元素之和为________ 【答案】18【解析】当0,2,0==∴=x y z 当1,2,6==∴=x y z 当0,3,0==∴=x y z 当1,3,12==∴=x y z 和为0+6+12=18 故答案为:183.设数集A 由实数构成,且满足:若x A ∈(1x ≠且0x ≠),则11A x∈-. (1)若2A ∈,试证明集合A 中有元素1-,12; (2)判断集合A 中至少有几个元素,并说明理由; (3)若集合A 中的元素个数不超过8,所有元素的和为143,且集合A 中有一个元素的平方等于所有元素的积,求集合A .【答案】(1)证明见解析;(2)至少有3个元素.理由见解析(3)112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭【解析】(1)由题意,因为2A ∈,可得1112A =-∈-. 因为1A -∈,则()11112A =-∈-.所以集合A 中有元素1-,12. (2)由题意,可知若x A ∈(1x ≠且0x ≠), 则11A x ∈-,1x A x -∈,且11x x ≠-,111x x x -≠-,1x x x-≠, 故集合A 中至少有3个元素.(3)由集合A 中的元素个数不超过8,所以由(2)知A 中有6个元素.设1111,,,,,11x m A x m x x m m --⎧⎫=⎨⎬--⎩⎭,m x ≠,1x ≠且0x ≠,1m ≠且0m ≠, 因为集合A 中所有元素的积为1,不妨设21x =,或2111x ⎛⎫= ⎪-⎝⎭,或211x x -⎛⎫= ⎪⎝⎭.当21x =时,1x =(舍去)或1x =-;若1x =-,则1,22A ∈. ∵集合A 中所有元素的和为143,∴1111421213m m m m -+-+++=-, ∴3261960m m m -++=,即()32261860m m m m ----=,即()()23620m m m ---=,即()()()321320m m m -+-=,∴12m =-或3或23,∴112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭.当2111x ⎛⎫= ⎪-⎝⎭或211x x -⎛⎫= ⎪⎝⎭时,同理可得112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭. 综上,112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭.题型五元素个数的求解及参数问题1.用()d A 表示集合A 中的元素个数,若集合()(){}2210A x x ax x ax =--+=,{}0,1B =,且()()1d A d B -=.设实数a 的所有可能取值构成集合M ,则()d M =()A .3B .2C .1D .4【答案】A【解析】由题意,()()1d A d B -=,()2d B =,可得()d A 的值为1或3,若()1d A =,则20x ax -=仅有一根,必为0,此时a =0,则22110x ax x -+=+=无根,符合题意若()3d A =,若20x ax -=仅有一根,必为0,此时a =0,则22110x ax x -+=+=无根,不合题意,故20x ax -=有二根,一根是0,另一根是a ,所以210x ax -+=必仅有一根,所以2Δ40a =-=,解得2a =±,此时210x ax -+=的根为1或1-,符合题意,综上,实数a 的所有可能取值构成集合{0,2,2}M =-,故()3d M =.故选:A .2.已知集合{}2,,M m m a b a b Q ==+∈,则下列四个元素中属于M 的元素的个数是() ①12π+;②1162+;③122+;④2323-++ A .4B .3C .2D .1 【答案】C【解析】①当212a b π+=+时,可得1,a b π==,这与,a b Q ∈矛盾,②()211623232+=+=+232a b ∴+=+,可得3,1a b ==,都是有理数,所以正确,③122212222-==-+, 2212a b ∴+=-,可得11,2a b ==-,都是有理数,所以正确, ④()22323426-++=+= 而()2222222a b a b ab +=++,,a b Q ∈,()22a b ∴+是无理数,2323∴-++不是集合M 中的元素,只有②③是集合M 的元素.故选:C3.已知集合{}22(,)|1,,A x y x y x y Z =+≤∈,{}(,)|2,2,,B x y x y x y Z =≤≤∈,定义集合{}12121122(,)|(,),(,)A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为A .77B .49C .45D .30 【答案】C【解析】因为集合,所以集合中有5个元素(即5个点),即图中圆中的整点,集合中有25个元素(即25个点):即图中正方形中的整点,集合的元素可看作正方形中的整点(除去四个顶点),即个.4.选择适当的方法表示下列集合:(1)被5除余1的正整数组成的集合;(2)由直线y =-x +4上的横坐标和纵坐标都是自然数的点组成的集合;(3)方程(x 2-9)x =0的实数解组成的集合;(4)三角形的全体组成的集合.【答案】(1){x|x=5k+1,k ∈N };(2){(x ,y )|y =-x +4,x ∈N ,y ∈N };(3){-3,0,3};(4){x|x 是三角形}或{三角形}.【解析】(1){|51,}x x k k N =+∈;(2){(,)|4,,}x y y x x N y N =-+∈∈;(3)2(9)00x x x -=⇒=或3x =±,解集为{3,0,3}-, (4){|x x 是三角形}或写成{三角形}. 5.设A 是由一些实数构成的集合,若a ∈A ,则11a - ∈A ,且1∉A , (1)若3∈A ,求A .(2)证明:若a ∈A ,则11A a -∈.【答案】(1)123,,23A ⎧⎫=-⎨⎬⎩⎭;(2)证明见解析. 【解析】(1)因为3∈A ,所以11132A =-∈-, 所以12131()2A =∈--,所以13213A =∈-,所以123,,23A ⎧⎫=-⎨⎬⎩⎭. (2)因为a ∈A ,所以11A a∈-, 所以1111111a A a a a-==-∈---.。

高一上学期数学复习题

高一上学期数学复习题

高一上学期数学复习题导读:我根据大家的需要整理了一份关于《高一上学期数学复习题》的内容,具体内容:以下是我为大家整理推荐关于高一数学的上学期期末复习试题和答案分析,欢迎大家参阅!一、选择题1.随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,且含氧...以下是我为大家整理推荐关于高一数学的上学期期末复习试题和答案分析,欢迎大家参阅!一、选择题1.随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,且含氧量y(g/m3)与大气压强x(kPa)成正比例函数关系. 当x=36 kPa时,y=108 g/m3,则y与x的函数解析式为()A.y=3x(x0)B.y=3xC.y=13x(x0)D.y=13x[答案] A2.某厂日产手套总成本y(元)与手套日产量x(副)的关系式为y=5x+4000,而手套出厂价格为每副10元,则该厂为了不亏本日产手套量至少为()A.200副B.400副C.600副D.800副[答案] D[解析] 由10x-y=10x-(5x+4000)0,得x800.3.甲、乙两人在一次赛跑中,路程s与时间t的函数关系如图所示,则下列说法正确的是()A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲先到达终点[答案] D[解析] 由图象知甲所用时间短,所以甲先到达终点.4.某个体企业的一个车间有8名工人,以往每人年薪为1万元,从今年起,计划每人的年薪比上一年增加20%;另外,每年新招3名工人,每名新工人的第一年年薪为8千元,第二年起与老工人的年薪相同.若以今年为第一年,那么,将第n年企业付给工人的工资总额y(万元)表示成n的函数,其解析式为()A.y=(3n+5)×1.2n+2.4B.y=8×1.2n+2.4nC.y=(3n+8)×1.2n+2.4D.y=(3n+5)×1.2n-1+2.4[答案] A5.(2020~2020潍坊高一检测)下表显示出函数值y随自变量x变化的一组数据,由此判断它最可能的函数模型是()x 4 5 6 7 8 9 10y 15 17 19 21 23 25 27A.一次函数模型B.二次函数模型C.指数函数模型D.双数函数模型[答案] A[解析] 由表知自变量x变化1个单位时,函数值y变化2个单位,所以为一次函数模型.6.一天,亮亮发烧了,早晨6时他烧得很厉害,吃过药后感觉好多了,中午12时亮亮的体温基本正常,但是下午18时他的体温又开始上升,直到半夜24时亮亮才感觉身上不那么发烫了.则下列各图能基本上反映出亮亮一天(0~24时)体温的变化情况的是()[答案] C[解析] 从0时到6时,体温上升,图象是上升的,排除选项A;从6时到12时,体温下降,图象是下降的,排除选项B;从12时到18时,体温上升,图象是上升的,排除选项D.二、填空题7.现测得(x,y)的两组值为(1,2),(2,5),现有两个拟合模型,甲:y=x2+1,乙:y=3x-1,若又测得(x,y)的一组对应值为(3,10.2),则应选用________作为拟合模型较好.[答案] 甲[解析] 代入x=3,可得甲y=10,乙,y=8.显然选用甲作为拟合模型较好.8.(2020~2020徐州高一检测)用清水洗衣服,若每次能洗去污垢的34,要使存留的污垢不超过1%,则至少要清洗的次数是________(lg20.3010).[答案] 4[解析] 设至少要洗x次,则(1-34)x1100,x1lg23.322,所以需4次.9.为了预防流感,某学校对教室用药熏消毒法进行消毒,已知药物释放过程中,室内每立方米空气中的含药量y(mg)与时间t(h)成正比;药物释放完毕后,y与t的函数关系为y=(116)t-a(a为常数)其图象如图.根据图中提供的信息,回答问题:(1)从药物释放开始,每立方米空气中的含药量y(mg)与时间t(h)之间的关系式为________.(2)据测定,当空气中每立方米的含药量降到0.25mg以下时,学生才可进入教室,那么从药物释放开始至少经过______小时,学生才能回到教室.[答案] (1)y=10t0t110116t-110 t>110 (2)0.6[解析] (1)设0t110时,y=kt,将(0.1,1)代入得k=10,又将(0.1,1)代入y=(116)t-a中,得a=110,y=10t0t110116t-110t>110.(2)令(116)t-1100.25得t0.6,t的最小值为0.6.三、解答题10.为了保护学生的视力,课桌椅子的高度都是按一定的关系配套设计的.研究表明:假设课桌的高度为ycm,椅子的高度为xcm,则y 应是x的一次函数,下表列出了两套符合条件的课桌椅的高度:第一套第二套椅子高度x(cm) 40.0 37.0桌子高度y(cm) 75.0 70.2(1)请你确定y与x的函数关系式(不必写出x的取值范围).(2)现有一把高42.0cm的椅子和一张高78.2cm的课桌,它们是否配套?为什么?[解析] (1)根据题意,课桌高度y是椅子高度x的一次函数,故可设函数关系式为y=kx+b.将符合条件的两套课桌椅的高度代入上述函数关系式,得40k+b=75,37k+b=70.2,k=1.6,b=11.y与x的函数关系式是y=1.6x+11.(2)把x=42代入上述函数关系式中,有y=1.6×42+11=78.2.给出的这套桌椅是配套的.[点评] 本题是应用一次函数模型的问题,利用待定系数法正确求出k,b是解题的关键.11.某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q(单位:元/102kg)与上市时间t(单位:天)的数据如下表:时间t 50 110 250种植成本Q 150 108 150(1)根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q与上市时间t的变化关系.Q=at+b,Q=at2+bt+c,Q=abt,Q=alogbt.(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.[解析] (1)由提供的数据知道,描述西红柿种植成本Q与上市时间t的变化关系的函数不可能是常数函数,从而用函数Q=at+b,Q=abt,Q=alogbt中的任意一个进行描述时都应有a0,而此时上述三个函数均为单调函数,这与表格所提供的数据不吻合.所以,选取二次函数Q=at2+bt+c进行描述.以表格所提供的三组数据分别代入Q=at2+bt+c得到,150=2500a+50b+c,108=12 100a+110b+c,150=62 500a+250b+c.解得a=1200,b=-32,c=4252.所以,描述西红柿种植成本Q与上市时间t的变化关系的函数为Q=1200t2-32t+4252.(2)当t=--322×1200=150天时,西红柿种植成本最低为Q=12001502-32150+4252=100 (元/102kg).12.某企业生产A,B两种产品,根据市场调查与与预测,A产品的利润与投资成正比,其关系如图1;B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润和投资单位:万元).(1)分别将A,B两种产品的利润表示为投资的函数关系式;(2)已知该企业已筹集到18万元资金,并将全部投入A,B两种产品的生产.①若平均投入生产两种产品,可获得多少利润?②问:如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?[解析] (1)设A,B两种产品分别投资x万元,x0,所获利润分别为f(x)万元、g(x)万元.由题意可设f(x)=k1x,g(x)=k2x.根据图象可解得f(x)=0.25x(x0).g(x)=2x(x0).(2)①由(1)得f(9)=2.25,g(9)=29=6.总利润y=8.25万元.②设B产品投入x万元,A产品投入(18-x)万元,该企业可获总利润为y万元.则y=14(18-x)+2x,0x18.令x=t,t[0,32],则y=14(-t2+8t+18)=-14(t-4)2+172.当t=4时,ymax=172=8.5,此时x=16,18-x=2.当A,B两种产品分别投入2万元、16万元时,可使该企业获得最大利润,约为8.5万元.。

高一上学期数学复习题

高一上学期数学复习题

第1页 共10页 选择题专题 1.已知下列四个条件,其中能够组成集合的是( ) ①数轴上到原点距离大于3的点的全体 ②大于10且小于100的全体素数

③与3非常接近的实数的全体 ④实数中不是无理数的所有数的全体 A. ①②③ B. ①②④ C. ①③④ D. ①②③④ 2.集合ZkkxxA,2,集合ZkkxxB,24,则有( )

A.BA B. BA C. AB D. 以上都不是 3.满足关系式5,4,3,2,12,1A的集合A的个数为( ) A. 4 B.6 C. 7 D. 8 4.设集合21xxM,0kxxN,若MNM,则k取值范围( )

A.(1,2) B.[2,) C.(2,) D.]2,1[ 5. 已知集合12,,1,xyyxBxyyxA,则BA ( ) A. 3,2 B.3,2 C.1,xyyx或12xy D.3,2yx 6. 已知集合1,12xyyBxyyA,则BA ( ) A. 2,1,0 B.2,1,1,0 C.1xx D.R 7.设集合,,则( ) A. B. C. D. 8.下列表示①②③ ④中,正确的个数为( ) A.1 B.2 C.3 D.4

9.如果集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是( ) A. 0 B. 0 或1 C. 1 D. 不能确定

10.已知全集,,,那么 是( )

A. B. C. D. 第2页 共10页

11.已知集合,则等于( ) A. B. C. D. 12. 如图所示,,,是的三个子集,则阴影部分所表示的集合是( ) A. B. C. D. 13.集合{1,2,3}的真子集共有( ) A.5个 B.6个 C.7个 D.8个 14.下列集合中表示同一集合的是( ) A.{3,2},{2,3}MN B.{1,2},{(1,2)}MN C.{(,)|1},{|1}MxyxyNyxy D.{(3,2)},{(2,3)}MN 15.下列五个写法:①}3,2,1{}0{;②}0{;③{0,1,2}}0,2,1{;④0;⑤0,其中错误..写法的个数为( ) A. 1 B. 2 C . 3 D. 4 16.下列哪组中的两个函数是同一函数

1-4 充分条件与必要条件 期中复习专项训练-高一上学期数学人教A版必修第一册

1-4 充分条件与必要条件 期中复习专项训练-高一上学期数学人教A版必修第一册

新教材必修一期中复习充分条件与必要条件专项训练模块一:选择题1.已知命题:p x R ∀∈,210x ax ++>,命题q :函数()1xy a =-+是减函数,则命题p 成立是q 成立的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件2.设x ∈R ,则“12x <<”是“21x -<”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.已知x 是实数,则“6x ≥”是“24120x x +-≥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.“0a <”是“函数()|(1)|f x x ax =+在区间(,0)-∞上单调递减”的() A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.设x ∈R ,则21x -<的必要不充分条件是( )A .2430x x -+<B .103x x -≤- C .112x >- D .20x -=6.设,x y R ∈,则“1x ≠或1y ≠”是“2x y +≠”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .非充分非必要条件7.设R x ∈,则“1>x ”是“13>x ”的( )A. 充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 8.}23|{-≤∈a a a 是方程03=+ax 有实数根0x 且}21|{0≤≤-∈x x x 的() A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件 9.}23|{-≤∈a a a 是方程03=+ax 有实数根0x 且}21|{0≤≤-∈x x x 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10.设b a ,是实数,则“b a >”是“22b a >”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件11.(多选题)已知:p x m ≥,2:20q x x +-<,下列给出的实数m 的值,能使p 是q 的充分不必要条件的是( )A .2m =B .52m =C .3m =D .1m =-12.(多选题)下列命题中,真命题的是( )A .0a b +=的充要条件是1a b=- B .1a >,1b >是1ab >的充分条件C .命题“R x ∃∈,使得210x x ++<”的否定是“R x ∀∈都有210x x ++≥”D .“1x >”是“220x x +->”的充分不必要条件13.(多选题)下列说法中错误的是( )A .命题“x R ∃∈,213x x +>”的否定是“x R ∀∈,213x x +<”B .命题“x ∀,y R ∈,220≥+x y ”的否定是“x ∃,y R ∈,220+<x y ”C .“2a >”是“5a >”的充分不必要条件D .对任意x ∈R ,总有20x >模块二:解答题14.已知集合206x A x x +⎧⎫=<⎨⎬-⎩⎭,{}22|210,0B x x x m m =<+->-.(1)求集合,A B ;(2)请在:①充分不必要条件,②必要不充分条件,③充要条件这三个条件中任选一个,补充在下面的问题中,若问题中的实数m 存在,求出m 的取值范围;若不存在,说明理由.若x A ∈是x B ∈成立的___________条件,判断实数m 是否存在?(注:如果选择多个条件分别解答,按第一个解答计分)15.已知2:2350p x x --≤,2:3(21)(1)0q x mx m m -+-+≤.(其中实数2m >)(1)设命题p ,q 中关于x 的不等式的解集A ,B ,且,求实数m 的取值范围;(2)若命题p 是命题q 的必要不充分条件,求实数m 的取值范围.16.设p :实数x 满足22430x ax a -+<,其中0a >,命题:q 实数满足{}12x x <<.(1)若1a =,且p q ∧为真,求实数x 的取值范围;(2)若p 是q 的必要不充分条件,求实数a 的取值范围.17.已知命题p :2680x x -+<,命题q :21m x m -<<+.(1)当5m =时,若命题p q ∧为真命题,求实数x 的取值范围.(2)若p 是q 的充分条件,求实数m 的取值范围;18.设:p 实数x 满足22430x ax a -+<,其中0a >.:q 实数x 满足2260280x x x x ⎧--≤⎨+->⎩. (1)若1a =,且p q ∧为真,求实数x 的取值范围;(2)非p 是非q 的充分不必要条件,求实数a 的取值范围.19.已知全集为R ,集合{}503x A x R x -=∈>+,()2{|21050}B x R x a x a =∈-++≤. (1)若R B A ⊆,求实数a 的取值范围;(2)从下面所给的三个条件中选择一个,说明它是R B A ⊆的什么条件(充分必要性).①[)7,10a ∈-;②(]7,10a ∈-;③(]6,10a ∈.20.下列各题中,p 是q 的什么条件?(在“充分不必要”“必要不充分”“充要”“既不充分也不必要”中选一个作答)(1);11:;21:-=-==x x q x x p 或(2);0:;11:>><y x q yx p(3).04:;14:<≥-<>x x q x x p 或或。

(word完整版)高一数学上学期习题

(word完整版)高一数学上学期习题

练习题21设集合A = {1,2},则满足A U B = {1,2,3}的集合B 的个数是( )A . 1B . 3C . 4D . 8 2.若集合P = {x|3<x w 22},非空集合 Q = {x|2a + K x<3a — 5},则能使Q? (P Q Q)成立的所有实数 a 的取值范围为( ) A . (1,9) B . [1,9] C . [6,9) D . (6,9]3.函数y = 2_的定义域是()lg xA . {x|0<x<2}B . {x|0<x<1 或 1<x<2}C . {x|0<x < 2}D . {x|0<x<1 或 1<x < 2}log 3x ,x>0,4•已知 f(x)=x 且 f(0) = 2, f(— 1)= 3,则 f(f( — 3))等于()a x+ b , x < 0A . — 2B . 2C . 3D . — 31 5•已知函数f(x)是定义在区间[0,+^)上的函数,且在该区间上单调递增, 则满足f(2x — 1)<f (3)1 2 1 2 1 2 1 2 的 x 的取值范围是( )A .(3 3) B . [3 2 C . $,3) D .【?,3)11 16 已知 a = 2 3 , b = log 2-, c = log 1 ,则( )3 “7.在同一直角坐标系中,函数f (x ) = x (x > 0) ,g (x ) = log a x 的图象可能是()A . a>b>cB . a>c>bC . c>a>bD . c>b>a8•已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是(B . sin 2 c.話 D . 2 sin 19.已知角 a 的终边过点 P( — 8m ,— 6sin 30 ),且 cos 4a= — 4,贝y m 的值为()510.若a 是第三象限角,则a a|sin2| |cos2ly = 2 + 红的值为( a asin§ cos^A . 0B . 2C . — 2D . 2 或—211.已知 sin( — a = log 8^ 且 a€ ( —n, 0),则 tan(2 — a 的值为()3A •—竽B •攀C 土竿D¥5 5 5 25115512.a 是第四象限角,tan a=- 12,则 sin a 等于() A.-B 5 C.y3D 乜13•客车从甲地以60 km/h 的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以 80 km/ h 的速度匀速行驶1小时到达丙地•客车从甲地出发,经过乙地,最后到达丙地所经 过的路程s 与时间t 的函数解析式是 ___________ .14.已知f(x)是定义域为 R 的偶函数,当x >0时,f(x)= x 2— 4x ,那么,不等式 f(x + 2)<5的 解集是 _________ .匚n2 .2 n15 已知 cos 6— a =3,贝卩 sin a — —17化简:.2sin a+ n c os n+ a •os ——a ——2 n n tan n+ a sin 3 2 + a sin — a — 2 n18已知:a>0 且 1.设 p :函数 y = log a (x + 1)在(0, +^ )内是减函数;q :曲线 y = x 2+ (2a —3)x + 1与x 轴交于不同的两点.若 p V q 为真,p A q 为假,求a 的取值范围.19. 已知y = f(x)是定义域为 R 的奇函数,当x € [0,+^ )时,f(x) = x 2 — 2x. (1) 写出函数y = f(x)的解析式;(2) 若方程f(x)= a 恰有3个不同的解,求a 的取值范围.20. 已知函数 f(x)= log 4(ax 2+ 2x + 3). (1)若 f(1) = 1,求 f(x)的单调区间;(2) 是否存在实数a ,使f(x)的最小值为0?若存在,求出a 的值;若不存在,说明理由.21已知扇形的圆心角是 a,半径为R ,弧长为I. (1)若a= 60° R = 10 cm ,求扇形的弧长l. ⑵若扇形的周长为20 cm ,当扇形的圆心角a 为多少弧度时,这个扇形的面积最大?16已知sin a 是方程5x 2— 7x — 6 = 0的根,a 是第三象限角, 33sin — a —2 n cos 2 n — a 则 -------- 2 -------- 2—— n . ncos 2 — a sin -+ atan 2( nn(3) 若a= 3,R= 2 cm,求扇形的弧所在的弓形的面积.3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
高一级数学上学期复习练习1(集合)
班别 学号 姓名
一.选择题

1.下列选项中元素的全体可以组成集合的是 ( )
A.学校篮球水平较高的学生 B.校园中长的高大的树木
C.2007年所有的欧盟国家 D.中国经济发达的城市
2.若{1,2}A{1,2,3,4,5},则集合A的个数是( )
(A)8 (B)7 (C)4 (D)3

3.下列五个写法中①2,1,00,②0,③0,2,12,1,0,④0,

⑤0,错误的写法个数是( )
A、1个 B、2个 C、3个 D、4个

4.方程组11yxyx的解集是 ( )

A 0,1xy B 1,0 C )1,0( D (,)|01xyxy或
5.设集合P、S满足PS=P,则必有 ( )
(A)P S; (B)PS; (C)S P; (D)S=P。
6.设集合{|32}MmmZ,{|13}NnnMNZ则,≤≤ ( )
A.01, B.101,, C.012,, D.1012,,,
二、填空题

7. 用适当的符号填空:

(1) }01{2xx; (2){1,2,3} N;
(3){1} }{2xxx; (4)0 }2{2xxx.
8.设集合{32}Axx,{2121}Bxkxk,且AB,
则实数k的取值范围是 。
9. 设集合}043|{2xxxA,}01|{axxB,若BBA,
则实数a= 。

三、解答题
110. 设全集U=R,集合A=14xx,B=1,yyxxA,试求CUB, A∪B, A∩B,A∩(CUB),
( CU A) ∩(CUB).
2

相关文档
最新文档