北师大版九年级上册数学 1.2 矩形的性质和判定课堂讲义及练习(含答案)
1.2 矩形的性质和判定 课时练习(含答案解析)
北师大版数学九年级上册第一章第二节矩形的性质与判定课时练习一、单选题(共15题)1.如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B 与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是()A.四边形ABCD由矩形变为平行四边形B.BD的长度增大C.四边形ABCD的面积不变D.四边形ABCD的周长不变答案:C解析:解答:∵矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,∴AD=BC,AB=DC,∴四边形变成平行四边形,故A正确;BD的长度增加,故B正确;∵拉成平行四边形后,高变小了,但底边没变,∴面积变小了,故C错误;∵四边形的每条边的长度没变,∴周长没变,故D正确,故选C.分析: 由将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,由平行四边形的判定定理知四边形变成平行四边形,由于四边形的每条边的长度没变,所以周长没变;拉成平行四边形后,高变小了,但底边没变,所以面积变小了,BD的长度增加了2.如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A.∠ABC=90°B.AC=BD C.OA=OB D.OA=AD 答案:D解析:解答: ∵四边形ABCD是矩形,∴∠ABC=∠BCD=∠CDA=∠BAD=90°,AC=BD,OA=12AC,OB=12BD,∴OA=OB,∴A、B、C正确,D错误,故选:D.分析: 矩形的性质:四个角都是直角,对角线互相平分且相等;由矩形的性质容易得出结论3.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为()A.17 B.18 C.19 D.20答案:D解析:解答: ∵O是矩形ABCD的对角线AC的中点,M是AD的中点,∴∠ABC=∠D=90°,CD=AB=5,BC=AD=12,OA=OB,OM为△ACD的中位线,∴OM=12CD=2.5,AC=22512=13,∵O是矩形ABCD的对角线AC的中点,∴BO=12AC=6.5,∴四边形ABOM的周长为AB+AM+BO+OM=5+6+6.5+2.5=20,故选:D.分析: 本题考查了矩形的性质、三角形的中位线的性质以及直角三角形斜边上的中线等于斜边的一半这一性质,题目的综合性很好4. 如图,矩形的两条对角线的一个交角为60°,两条对角线的长度的和为20cm,则这个矩形的一条较短边的长度为()A.10cm B.8cm C.6cm D.5cm 答案:D解析:解答: ∵四边形ABCD是矩形,∴OA=OC=12AC,OD=OB=12BD,AC=BD,∴OA=OB,∵AC+BD=20,∴AC=BD=10cm,∴OA=OB=5cm,∵OA=OB,∠AOB=60°,∴△OAB是等边三角形,∴AB=OA=5cm,故选D.分析:根据矩形的性质求出OA=OB,AC=BD,求出AC的长,求出OA和OB的长,推出等边三角形OAB,求出AB=OA,代入求出即可5.如图,矩形ABCD的两条对角线交于点O,若∠AOD=120°,AB=6,则AC等于()A.8 B.10 C.12 D.18答案:C解析:解答: ∵矩形ABCD的两条对角线交于点O,∴OA=OB=12 AC,∵∠AOD=120°,∴∠AOB=180°-∠AOD=180°-120°=60°,∴△AOB是等边三角形,∴OA=AB=6,∴AC=2OA=2×6=12.故选C.分析: 本题考查了矩形的性质,等边三角形的判定与性质,熟记矩形的对角线互相平分且相等是解题的关键6.如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠ACB=30°,AB=2,则BD的长为()A.4 B.3 C.2 D.1答案:A解析:解答: 在矩形ABCD中,∠ABC=90°,∵∠ACB=30°,AB=2,∴AC=2AB=2×2=4,∵四边形ABCD是矩形,∴BD=AC=4.故选A.分析: 根据直角三角形30°角所对的直角边等于斜边的一半可得AC=2AB,再根据矩形的对角线相等解答7.一个矩形被分成不同的4个三角形,其中绿色三角形的面积占矩形面积的15%,黄色的三角形的面积是212,则该矩形的面积为()A.602B.702 C.1202 D.1402答案:A解析:解答:∵黄色三角形与绿色三角形面积之和是矩形面积的50%;∴矩形的面积=21÷(50%-15%)=21÷35%=60(2).故选:A.分析: 黄色三角形与绿色三角形面积之和是矩形面积的50%,而绿色三角形面积占矩形面积的15%,所以黄色三角形面积占矩形面积的(50%-15%)=35%,已知黄色三角形面积是21平方厘米,用除法即可得出矩形的面积8.如图,矩形ABCD中,AC交BD于点O,∠AOD=60°,OE⊥AC.若AD=3,则OE=()A.1 B.2 C.3 D.4答案:A解析:解答: ∵四边形ABCD是矩形,∠AOD=60°,∴△ADO是等边三角形,∴OA=3,∠OAD=60°,∴∠OAE=30°,∵OE⊥AC,∴△OAE是一个含30°的直角三角形,∴OE=1,故选A分析: 先根据等边三角形的性质得出OA=3,根据△OAE是一个含30°的直角三角形,进而得出OE的长度9.矩形的一内角平分线把矩形的一条边分成3和5两部分,则该矩形的周长是()A.16 B.22或16 C.26 D.22或26答案:D解析:解答: ∵四边形ABCD是矩形,∴AD=BC,AB=CD,AD∥BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠AEB=∠ABE,∴AE=AB,①当AE=3,DE=5时,AD=BC=3+5=8,AB=CD=AE=3,即矩形ABCD的周长是AD+AB+BC+CD=8+3+8+3=22;②当AE=5,DE=3时,AD=BC=3+5=8,AB=CD=AE=5,即矩形ABCD的周长是AD+AB+BC+CD=8+5+8+5=26;即矩形的周长是22或26分析: 根据矩形性质得出AD=BC,AB=CD,AD∥BC,求出AE=AB,分为当AE=3或AE=5两种情况,求出即可10.矩形具有而菱形不具有的性质是()A.对角线相等B.两组对边分别平行C.对角线互相平分D.两组对角分别相等答案:A解析:解答: ∵矩形具有的性质是:对角线相等且互相平分,两组对边分别平行,两组对角分别相等;菱形具有的性质是:两组对边分别平行,对角线互相平分,两组对角分别相等;∴矩形具有而菱形不具有的性质是:对角线相等.故选A.分析: 根据矩形与菱形的性质求解即可求得答案.注意矩形与菱形都是平行四边形.11.矩形的一内角平分线把矩形的一条边分成3cm和5cm的两部分,则此矩形的周长为()A.16cm B.22cm C.26cm D.22cm或26cm答案:D解析:解答: ∵四边形ABCD是矩形,∴AD=BC,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AB=AE,当AE=3cm时,AB=AE=3=CD,AD=3cm+5cm=8cm=BC,∴此时矩形ABCD的周长是AB+BC+CD+AD=3cm+8cm+3cm+8cm=22cm;当AE=5cm时,AB=AE=5cm=CD,AD=3cm+5cm=8cm=BC,∴此时矩形ABCD的周长是AB+BC+CD+AD=5cm+8cm+5cm+8cm=26cm;故选D.分析: 根据矩形的性质得出AD=BC,AB=CD,AD∥BC,推出∠AEB=∠CBE,求出∠ABE=∠CBE=∠AEB,推出AB=AE=CD,分为两种情况,代入求出即可12. 矩形的对角线所成的角之一是65°,则对角线与各边所成的角度是()A.57.5°B.32.5°C.57.5°,23.5°D.57.5°,32.5°答案:D解析:解答: ∵四边形ABCD是矩形,∴∠ABC=90°,AD∥BC,AB∥CD,AC=BD,AO=OC,OB=OD,∴OB=OA=OC=OD,∠OAB=∠OCD,∠DAO=∠OCB,∴∠OAD=∠ODA,∠OCB=∠OBC,∠ODC=∠OCD,∠OAB=∠OBA=12×(180°-∠AOB)=12×(180°-65°)=57.5°,∵∠ABC=90°,∴∠ACB=90°-57.5°=32.5°,即∠OAD=∠ODA=∠OBC=∠OCB=32.5°,∠OAB=∠OBA=∠ODC=∠OCD=57.5°,对角线与各边所成的角度是57.5°和32.5°,故选D.分析: 根据矩形的性质得出∠ABC=90°,AD∥BC,AB∥CD,AC=BD,AO=OC,OB=OD,推出OB=OA=OC=OD,∠OAB=∠OCD,∠DAO=∠OCB,求出∠OAD=∠ODA,∠OCB=∠OBC,∠ODC=∠OCD,根据三角形内角和定理求出即可13.矩形具有而菱形不具有的性质是()A.对角线相等B.对角线平分一组对角C.对角线互相平分D.对角线互相垂直答案:A解析:解答:矩形的对角线互相平分且相等;菱形的对角线互相垂直平分,并且每一条对角线平分一组对角;根据矩形和菱形的性质得出:矩形具有而菱形不具有的性质是:对角线相等;故选:A.分析: 根据矩形好菱形的性质,容易得出结论.14.过四边形的各个顶点分别作对角线的平行线,若这四条平行线围成一个矩形,则原四边形一定是()A.对角线相等的四边形B.对角线垂直的四边形C.对角线互相平分且相等的四边形D.对角线互相垂直平分的四边形答案:B解析:解答:如图所示:∵四边形EFGH是矩形,∴∠E=90°,∵EF∥AC,EH∥BD,∴∠E+∠EAG=180°,∠E+∠EBO=180°,∴∠EAO=∠EBO=90°,∴四边形AEBO是矩形,∴∠AOB=90°,∴AC⊥BD,故选:B.分析: 由矩形的性质得出∠E=90°,由平行线的性质得出∠EAO=∠EBO=90°,证出四边形AEBO是矩形,得出∠AOB=90°即可15. 若矩形的一条对角线与一边的夹角是40°,则两条对角线所夹的锐角的度数为()A.80°B.60°C.45°D.40°答案:A解析:解答:图形中∠1=40°,∵矩形的性质对角线相等且互相平分,∴OB=OC,∴△BOC是等腰三角形,∴∠OBC=∠1,则∠AOB=2∠1=80°.故选A.分析: 根据矩形的性质,得△BOC是等腰三角形,再由等腰三角形的性质进行答题.二、填空题(共5题)16.如图,平行四边形ABCD的对角线相交于点O,请你添加一个条件__________(只添一个即可),使平行四边形ABCD是矩形.答案: AC=BD.答案不唯一解析:解答: 添加的条件是AC=BD,理由是:∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故答案为:AC=BD.答案不唯一分析:根据矩形的判定定理(对角线相等的平行四边形是矩形)推出即可17.平行四边形ABCD的对角线相交于点O,分别添加下列条件:①∠ABC=90°;②AC⊥BD;③AB=BC;④AC平分∠BAD;⑤AO=DO.使得四边形ABCD是矩形的条件有________答案:①⑤解析:解答: 要使得平行四边形ABCD为矩形添加:①∠ABC=90°;⑤AO=DO2个即可分析:四边形ABCD是平行四边形,要成为矩形加上一个角为直角或对角线相等即可18.如图,要使平行四边形ABCD是矩形,则应添加的条件是________(只填一个).答案:∠ABC=90°或AC=BD(不唯一)解析:解答: 根据矩形的判定定理:对角线相等的平行四边形是矩形,有一个角是直角的平行四边形是矩形故添加条件:∠ABC=90°或AC=BD.故答案为:∠ABC=90°或AC=BD分析: 根据矩形的判定定理:①对角线相等的平行四边形是矩形,②有一个角是直角的平行四边形是矩形,直接添加条件即可19.如图,在四边形ABCD中,对角线AC,BD相交于点O,且AO=CO,BO=DO,在不添加任何辅助线的前提下,要想该四边形成为矩形,只需再加上一个条件是________(填上你认为正确的一个答案即可)答案:∠DAB=90°解析:解答:可以添加条件∠DAB=90°,∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∵∠DAB=90°,∴四边形ABCD是矩形,故答案为:∠DAB=90°分析: 根据对角线互相平分线的四边形为平行四边形可得四边形ABCD是平行四边形,添加条件∠DAB=90°可根据有一个角是直角的平行四边形是矩形进行判定20.木工做一个长方形桌面,量得桌面的长为15cm,宽为8cm,对角线为17cm,这个桌面_________(填”合格”或”不合格”)答案:合格解析:解答:∵AB=DC=8cm,BC=AD=15cm,∴四边形ABCD是平行四边形,∵AC=17cm,AB=8cm,BC=15cm,∴AC2=AB2+BC2,∴∠B=90°,∴四边形ABCD是矩形,即四边形是长方形,故答案为:合格.分析: 先退出思想是平行四边形,根据勾股定理的逆定理求出∠B=90°,根据矩形的判定推出即可三、解答题(共5题)21.如图,平行四边形ABCD中,点E、F、G、H分别在AB、BC、CD、AD边上且AE=CG,AH=CF.(1)求证:四边形EFGH是平行四边形;答案:解答: (1)在平行四边形ABCD中,∠A=∠C,又∵AE=CG,AH=CF,∴△AEH≌△CGF.∴EH=GF.在平行四边形ABCD中,AB=CD,AD=BC,∴AB-AE=CD-CG,AD-AH=BC-CF,即BE=DG,DH=BF.又∵在平行四边形ABCD中,∠B=∠D,∴△BEF≌△DGH.∴GH=EF.∴四边形EFGH是平行四边形.(2)如果AB=AD,且AH=AE,求证:四边形EFGH是矩形答案:解答: (2)证明:连接BD,AC.∵AH=AE,AD=AB,∴AH AE AD AB∴HE∥BD,同理可证,GH∥AC,∵四边形ABCD是平行四边形且AB=AD,∴平行四边形ABCD是菱形,∴AC⊥BD,∴∠EHG=90°.又∵四边形EFGH是平行四边形,∴四边形EFGH是矩形解析:分析: (1)易证得△AEH≌△CGF,从而证得BE=DG,DH=BF.故有,△BEF≌△DGH,根据两组对边分别相等的四边形是平行四边形而得证.(2)由题意知,平行四边形ABCD是菱形,连接AC,BD,则有AC⊥BD,由AB=AD,且AH=AE可证得HE∥BD,同理可得到HG∥AC,故HG⊥HE,又由1知四边形HGFE是平行四边形,故四边形HGFE 是矩形. 22.如图,在△ABC 中,AB =AC =5,BC =6,AD 为BC 边上的高,过点A 作AE ∥BC ,过点D 作DE ∥AC ,AE 与DE 交于点E ,AB 与DE 交于点F ,连结BE .求四边形AEBD 的面积答案: 解答:∵AE ∥BC ,BE ∥AC ,∴四边形AEDC 是平行四边形.∴AE =CD .在△ABC 中,AB =AC ,AD 为BC 边上的高,∴∠ADB =90°,BD =CD . ∴BD =AE .∴平行四边形AEBD 是矩形.在Rt △ADC 中,∠ADB =90°,AC =5,CD =12BC =3, ∴AD =2253 =4.∴四边形AEBD 的面积为:BD •AD =CD •AD =3×4=12.解析:分析:利用平行四边形的性质和矩形的判定定理推知平行四边形AEBD 是矩形.在Rt △ADC 中,由勾股定理可以求得AD 的长度,由等腰三角形的性质求得CD (或BD )的长度,则矩形的面积=长×宽=AD •BD =AD •CD23.如图,在平行四边形ABCD 中,∠BAD 的平分线交CD 于点E ,交BC 的延长线于点F ,连接BE ,∠F =45°.求证:四边形ABCD 是矩形答案:解答:证明:∵四边形ABCD 是平行四边形,∴AD∥BC.∴∠DAF=∠F.∵∠F=45°,∴∠DAE=45°.∵AF是∠BAD的平分线,∴∠EAB=∠DAE=45°.∴∠DAB=90°.又∵四边形ABCD是平行四边形,21世纪教育网∴四边形ABCD是矩形.解析:分析: 欲证明四边形ABCD是矩形,只需推知∠DAB是直角24.有一块形状如图所示的玻璃,不小心把DEF部分打碎,现在只测得AB=60cm,BC=80cm,∠A=120°,∠B=60°,∠C=150°,你能设计一个方案,根据测得的数据求出AD的长吗?答案:AD=140cm.解析:解答:过C作CM∥AB,交AD于M,∵∠A=120°,∠B=60°,∴∠A+∠B=180°,∴AM∥BC,∵AB∥CM,∴四边形ABCM是平行四边形,∴AB=CM=60cm,BC=AM=80cm,∠B=∠AMC=60°,∵AD∥BC,∠C=150°,∴∠D=180°-150°=30°,∴∠MCD=60°-30°=30°=∠D,∴CM=DM=60cm,∴AD=60cm+80cm=140cm.分析: 过C作CM∥AB,交AD于M,推出平行四边形ABCM,推出AM=BC=80cm,AB=CM=60cm,∠B=∠AMC,求出∠D=∠MCD,求出CM=DM=60cm,代入AD=AM+DM 求出即可25.如图,△ABC中,AB=AC,AD、AE分别是∠BAC与∠BAC的外角的平分线,BE⊥AE.求证:AB=DE答案:见解答解析:解答:∵AD、AE分别是∠BAC与∠BAC的外角的平分线,∴∠BAD+∠EAB=12(∠BAC+∠FAB)=90°,∵BE⊥AE,∴DA∥BE,∵AB=AC,∴∠ABC=∠ACB,∵∠FAB=∠ABC+∠ACB=2∠ABC,且∠FAB=2∠EAB,∴∠ABC=∠EAB,∴AE∥BD,∴四边形AEBD为平行四边形,且∠BEA=90°,∴四边形AEBD为矩形,∴AB=DE.分析: 先由角平分线和等腰三角形的性质证明AE∥BD,再由AD、AE分别是∠BAC与∠BAC 的外角的平分线可证得DA⊥AE,可得AD∥BE,可证得四边形ADBE为矩形,可得结论。
1.2矩形的性质与判定+课件+2023-2024学年北师大版数学九年级上册
C.AD=AB
D.∠BAD=∠ADC
2.如图,BO是Rt△ABC斜边上的中线,延长BO到点D,使DO=BO,
连接AD,CD.四边形ABCD是矩形吗?请说明理由.
解:四边形ABCD是矩形.理由如下:
∵BO是Rt△ABC斜边上的中线,
∴OA=OC=OB=OD.
∴四边形ABCD是平行四边形,且AC=BD.
∴DE∥AC,DF∥AB.
∴四边形AEDF是平行四边形.
又∠A=90°,
∴四边形AEDF是矩形.
典例3
如图,在□ ABCD是矩形ABCD中,∠ACB=90°,过点D作
DE⊥BC交BC的延长线于点E.求证:四边形ACED是矩形.
证明:∵四边形ABCD为平行四边形,
∴AD∥BC.
∴∠DAC=∠ACB=90°.
不一定成立的是( C )
A.AB∥CD
B.AC=BD
C.AC⊥BD
D.OA=OC
变式1
矩形具有而平行四边形不一定具有的性质是( C )
A.对角相等
B.对边相等
C.对角线相等
D.对角线互相平分
典例2
如图,在矩形ABCD中,E是CD边的中点.求证:AE=BE.
证明:∵四边形ABCD是矩形,
∴AD=BC,∠D=∠C=90°.
∴∠ABD= ∠ABC,∠ABE= ∠ABP.
∵∠ABC+∠ABP=180°,
∴∠ABD+∠ABE= ×180°=90°,
即∠DBE=90°.
∵AE⊥BE,AD⊥BD,
∴∠E=∠D=90°.
∴四边形AEBD是矩形.
1.如图,四边形ABCD的对角线AC与BD相交于点O,下列条件中,能
九年级数学上册《1.2矩形的性质与判定》同步练习含答案解析
《1.2 矩形的性质与判定》一、选择题(本大题共10小题,每小题4分,满分40分)1.矩形具有而菱形不具有的性质是()A.对角线相等B.两组对边分别平行C.对角线互相平分D.两组对角分别相等2.下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分3.如图,矩形ABCD的对角线交于点O,若∠ACB=30°,AB=2,则OC的长为()A.2 B.3 C.2 D.44.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为()A.4 B.8 C.10 D.125.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCE B.AF=AD C.AB=AF D.BE=AD﹣DF6.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P 到矩形的两条对角线AC和BD的距离之和是()A.4.8 B.5 C.6 D.7.27.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.8.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30° B.45° C.60° D.75°9.如图,矩形ABCD的对角线AC与BD相交于点O,CE∥BD,DE∥AC,AD=2,DE=2,则四边形OCED 的面积()A.2 B.4 C.4 D.810.如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个二、填空题11.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为.12.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE= 度.13.如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件,使四边形DBCE是矩形.14.如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为.15.已知矩形的对角线AC与BD相交于点O,若AO=1,那么BD= .16.如图,矩形ABCD中,对角线AC=2,E为BC边上一点,BC=3BE,将矩形ABCD沿AE所在的直线折叠,B点恰好落在对角线AC上的B′处,则AB= .17.如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E= 度.18.如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,M为斜边AB上一动点,过M作MD⊥AC,过M作ME⊥CB于点E,则线段DE的最小值为.三、解答题19.如图,菱形ABCD的对角线AC,BD相交于点O,且DE∥AC,AE∥BD.求证:四边形AODE是矩形.20.如图,已知BD是矩形ABCD的对角线.(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.21.已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.22.如图,矩形ABCD的对角线AC,BD相交于点O,若AB=AO,求∠ABD的度数.23.如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.(1)求证:△BEF≌△CDF;(2)连接BD、CE,若∠BFD=2∠A,求证:四边形BECD是矩形.24.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.25.如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q 两点.(1)求证:CP=AQ;(2)若BP=1,PQ=2,∠AEF=45°,求矩形ABCD的面积.26.阅读下面材料:在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?小敏在思考问题是,有如下思路:连接AC.结合小敏的思路作答(1)若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?说明理由;参考小敏思考问题方法解决一下问题:(2)如图2,在(1)的条件下,若连接AC,BD.①当AC与BD满足什么条件时,四边形EFGH是菱形,写出结论并证明;②当AC与BD满足什么条件时,四边形EFGH是矩形,直接写出结论.《1.2 矩形的性质与判定》参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.矩形具有而菱形不具有的性质是()A.对角线相等B.两组对边分别平行C.对角线互相平分D.两组对角分别相等【考点】矩形的性质;菱形的性质.【分析】根据矩形与菱形的性质求解即可求得答案.注意矩形与菱形都是平行四边形.【解答】解:∵矩形具有的性质是:对角线相等且互相平分,两组对边分别平行,两组对角分别相等;菱形具有的性质是:两组对边分别平行,对角线互相平分,两组对角分别相等;∴矩形具有而菱形不具有的性质是:对角线相等.故选A.【点评】此题考查了矩形与菱形的性质.注意熟记定理是解此题的关键.2.下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分【考点】矩形的判定与性质.【分析】根据矩形的性质和判定定理逐个判断即可.【解答】解:A、对角线相等的平行四边形才是矩形,故本选项错误;B、矩形的对角线相等且互相平分,故本选项正确;C、对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;D、矩形的对角线互相平分且相等,不一定垂直,故本选项错误;故选B.【点评】本题考查了矩形的性质和判定的应用,能熟记矩形的性质和判定定理是解此题的关键.3.如图,矩形ABCD的对角线交于点O,若∠ACB=30°,AB=2,则OC的长为()A.2 B.3 C.2 D.4【考点】矩形的性质.【分析】根据直角三角形30°角所对的直角边等于斜边的一半可得AC=2AB=4,再根据矩形的对角线互相平分解答.【解答】解:在矩形ABCD中,∠ABC=90°,∵∠ACB=30°,AB=2,∴AC=2AB=2×2=4,∵四边形ABCD是矩形,∴OC=OA=AC=2.故选A.【点评】本题考查了矩形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质是解题的关键.4.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为()A.4 B.8 C.10 D.12【考点】矩形的性质;菱形的判定与性质.【专题】计算题;矩形菱形正方形.【分析】由四边形ABCD为矩形,得到对角线互相平分且相等,得到OD=OC,再利用两对边平行的四边形为平行四边形得到四边形DECO为平行四边形,利用邻边相等的平行四边形为菱形得到四边形DECO为菱形,根据AC的长求出OC的长,即可确定出其周长.【解答】解:∵四边形ABCD为矩形,∴OA=OC,OB=OD,且AC=BD,∴OA=OB=OC=OD=2,∵CE∥BD,DE∥AC,∴四边形DECO为平行四边形,∵OD=OC,∴四边形DECO为菱形,∴OD=DE=EC=OC=2,则四边形OCED的周长为2+2+2+2=8,故选B【点评】此题考查了矩形的性质,以及菱形的判定与性质,熟练掌握判定与性质是解本题的关键.5.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCE B.AF=AD C.AB=AF D.BE=AD﹣DF【考点】矩形的性质;全等三角形的判定.【分析】先根据已知条件判定△AFD≌△DCE(AAS),再根据矩形的对边相等,以及全等三角形的对应边相等进行判断即可.【解答】解:(A)由矩形ABCD,AF⊥DE可得∠C=∠AFD=90°,AD∥BC,∴∠ADF=∠DEC.又∵DE=AD,∴△AFD≌△DCE(AAS),故(A)正确;(B)∵∠ADF不一定等于30°,∴直角三角形ADF中,AF不一定等于AD的一半,故(B)错误;(C)由△AFD≌△DCE,可得AF=CD,由矩形ABCD,可得AB=CD,∴AB=AF,故(C)正确;(D)由△AFD≌△DCE,可得CE=DF,由矩形ABCD ,可得BC=AD ,又∵BE=BC ﹣EC ,∴BE=AD ﹣DF ,故(D )正确;故选B .【点评】本题主要考查了矩形和全等三角形,解决问题的关键是掌握矩形的性质:矩形的四个角都是直角,矩形的对边相等.解题时注意:在直角三角形中,若有一个锐角等于30°,则这个锐角所对的直角边等于斜边的一半.6.如图,点P 是矩形ABCD 的边AD 上的一动点,矩形的两条边AB 、BC 的长分别是6和8,则点P 到矩形的两条对角线AC 和BD 的距离之和是( )A .4.8B .5C .6D .7.2【考点】矩形的性质.【分析】首先连接OP ,由矩形的两条边AB 、BC 的长分别为3和4,可求得OA=OD=5,△AOD 的面积,然后由S △AOD =S △AOP +S △DOP =OA •PE+OD •PF 求得答案.【解答】解:连接OP ,∵矩形的两条边AB 、BC 的长分别为6和8,∴S 矩形ABCD =AB •BC=48,OA=OC ,OB=OD ,AC=BD=10,∴OA=OD=5,∴S △ACD =S 矩形ABCD =24,∴S △AOD =S △ACD =12,∵S △AOD =S △AOP +S △DOP =OA •PE+OD •PF=×5×PE+×5×PF=(PE+PF )=12,解得:PE+PF=4.8.故选:A.【点评】此题考查了矩形的性质以及三角形面积问题.此题难度适中,注意掌握辅助线的作法以及掌握整体数学思想的运用是解题的关键.7.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.【考点】矩形的性质;翻折变换(折叠问题).【分析】连接BF,根据三角形的面积公式求出BH,得到BF,根据直角三角形的判定得到∠BFC=90°,根据勾股定理求出答案.【解答】解:连接BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴AE==5,∴BH=,则BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF==.故选:D.【点评】本题考查的是翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.8.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30° B.45° C.60° D.75°【考点】矩形的性质;平行线的性质.【分析】首先过点D作DE∥a,由∠1=60°,可求得∠3的度数,易得∠ADC=∠2+∠3,继而求得答案.【解答】解:过点D作DE∥a,∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故选C.【点评】此题考查了矩形的性质以及平行线的性质.注意准确作出辅助线是解此题的关键.9.如图,矩形ABCD的对角线AC与BD相交于点O,CE∥BD,DE∥AC,AD=2,DE=2,则四边形OCED 的面积()A.2 B.4 C.4 D.8【考点】矩形的性质;菱形的判定与性质.【专题】计算题;矩形菱形正方形.【分析】连接OE,与DC交于点F,由四边形ABCD为矩形得到对角线互相平分且相等,进而得到OD=OC,再由两组对边分别平行的四边形为平行四边形得到ODEC为平行四边形,根据邻边相等的平行四边形为菱形得到四边形ODEC为菱形,得到对角线互相平分且垂直,求出菱形OCEF的面积即可.【解答】解:连接OE,与DC交于点F,∵四边形ABCD为矩形,∴OA=OC,OB=OD,且AC=BD,即OA=OB=OC=OD,∵OD∥CE,OC∥DE,∴四边形ODEC为平行四边形,∵OD=OC,∴四边形ODEC为菱形,∴DF=CF,OF=EF,DC⊥OE,∵DE∥OA,且DE=OA,∴四边形ADEO为平行四边形,∵AD=2,DE=2,∴OE=2,即OF=EF=,在Rt△DEF中,根据勾股定理得:DF==1,即DC=2,=OE•DC=×2×2=2.则S菱形ODEC故选A【点评】此题考查了矩形的性质,菱形的判定与性质,以及勾股定理,熟练掌握矩形的性质是解本题的关键.10.如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个【考点】矩形的性质;全等三角形的判定与性质;角平分线的性质;等腰三角形的判定与性质.【专题】几何图形问题.【分析】①根据角平分线的定义可得∠BAE=∠DAE=45°,然后利用求出△ABE是等腰直角三角形,根据等腰直角三角形的性质可得AE=AB,从而得到AE=AD,然后利用“角角边”证明△ABE和△AHD 全等,根据全等三角形对应边相等可得BE=DH,再根据等腰三角形两底角相等求出∠ADE=∠AED=67.5°,根据平角等于180°求出∠CED=67.5°,从而判断出①正确;②求出∠AHB=67.5°,∠DHO=∠ODH=22.5°,然后根据等角对等边可得OE=OD=OH,判断出②正确;③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角边角”证明△BEH和△HDF全等,根据全等三角形对应边相等可得BH=HF,判断出③正确;④根据全等三角形对应边相等可得DF=HE,然后根据HE=AE﹣AH=BC﹣CD,BC﹣CF=BC﹣(CD﹣DF)=2HE,判断出④正确;⑤判断出△ABH不是等边三角形,从而得到AB≠BH,即AB≠HF,得到⑤错误.【解答】解:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,在△ABE和△AHD中,,∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵AB=AH,∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=67.5°=∠AED,∴OE=OH,∵∠DHO=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠DHO=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,在△BEH和△HDF中,,∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;∵HE=AE﹣AH=BC﹣CD,∴BC﹣CF=BC﹣(CD﹣DF)=BC﹣(CD﹣HE)=(BC﹣CD)+HE=HE+HE=2HE.故④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选:C.【点评】本题考查了矩形的性质,全等三角形的判定与性质,角平分线的定义,等腰三角形的判定与性质,熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.二、填空题11.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为3.【考点】矩形的性质;线段垂直平分线的性质;等边三角形的判定与性质.【分析】由矩形的性质和线段垂直平分线的性质证出OA=AB=OB=3,得出BD=2OB=6,由勾股定理求出AD即可.【解答】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD===3;故答案为:3.【点评】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.12.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE= 22.5 度.【考点】矩形的性质.【分析】首先证明△AEO是等腰直角三角形,求出∠OAB,∠OAE即可.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB═OC,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠AOE=∠OAC+∠OCA=2∠OAC,∵∠EAC=2∠CAD,∴∠EAO=∠AOE,∵AE⊥BD,∴∠AEO=90°,∴∠AOE=45°,∴∠OAB=∠OBA==67.5°,∴∠BAE=∠OAB﹣∠OAE=22.5°.故答案为22.5°.【点评】本题考查矩形的性质、等腰直角三角形的性质等知识,解题的关键是发现△AEO是等腰直角三角形这个突破口,属于中考常考题型.13.如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件EB=DC ,使四边形DBCE是矩形.【考点】矩形的判定;平行四边形的性质.【分析】利用平行四边形的判定与性质得到四边形DBCE为平行四边形,结合“对角线相等的平行四边形为矩形”来添加条件即可.【解答】解:添加EB=DC.理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴DE∥BC,又∵DE=AD,∴DE=BC,∴四边形DBCE为平行四边形.又∵EB=DC,∴四边形DBCE是矩形.故答案是:EB=DC.【点评】本题考查了矩形的判定,平行四边形的判定与性质.解题时,也可以根据“有一内角为直角的平行四边形为矩形”填空.14.如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为4或2.【考点】矩形的性质;等腰三角形的性质;勾股定理.【专题】分类讨论.【分析】要求直线AD上满足△PBC是等腰三角形的点P有且只有3个时的AB长,则需要分类讨论:①当AB=AD时;②当AB<AD时,③当AB>AD时.【解答】解:①如图,当AB=AD时满足△PBC是等腰三角形的点P有且只有3个,△P1BC,△P2BC是等腰直角三角形,△P3BC是等腰直角三角形(P3B=P3C),则AB=AD=4.②当AB<AD,且满足△PBC是等腰三角形的点P有且只有3个时,如图,∵P2是AD的中点,∴BP2==,易证得BP1=BP2,又∵BP1=BC,∴=4∴AB=2.③当AB>AD时,直线AD上只有一个点P满足△PBC是等腰三角形.故答案为:4或2.【点评】本题考查矩形的性质,等腰三角形的性质等知识,解题的关键是理解题意,属于中考常考题型.15.已知矩形的对角线AC与BD相交于点O,若AO=1,那么BD= 2 .【考点】矩形的性质.【分析】根据矩形的性质:矩形的对角线互相平分且相等,求解即可.【解答】解:在矩形ABCD中,∵角线AC与BD相交于点O,AO=1,∴AO=CO=BO=DO=1,∴BD=2.故答案为:2.【点评】本题考查了矩形的性质,解答本题的关键是掌握矩形的对角线互相平分且相等的性质.16.如图,矩形ABCD中,对角线AC=2,E为BC边上一点,BC=3BE,将矩形ABCD沿AE所在的直线折叠,B点恰好落在对角线AC上的B′处,则AB= .【考点】矩形的性质;翻折变换(折叠问题).【分析】先根据折叠得出BE=B′E,且∠AB′E=∠B=90°,可知△EB′C是直角三角形,由已知的BC=3BE得EC=2B′E,得出∠ACB=30°,从而得出AC与AB的关系,求出AB的长.【解答】解:由折叠得:BE=B′E,∠AB′E=∠B=90°,∴∠EB′C=90°,∵BC=3BE,∴EC=2BE=2B′E,∴∠ACB=30°,在Rt△ABC中,AC=2AB,∴AB=AC=×2=,故答案为:.【点评】本题考查了矩形的性质和翻折问题,明确翻折前后的图形全等是本题的关键,同时还运用了直角三角形中如果一条直角边是斜边的一半,那么这条直角边所对的锐角是30°这一结论,是常考题型.17.如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E= 15 度.【考点】矩形的性质.【分析】连接AC,由矩形性质可得∠E=∠DAE、BD=AC=CE,知∠E=∠CAE,而∠ADB=∠CAD=30°,可得∠E度数.【解答】解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=30°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=30°,即∠E=15°,故答案为:15.【点评】本题主要考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.18.如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,M为斜边AB上一动点,过M作MD⊥AC,过M作ME⊥CB于点E,则线段DE的最小值为.【考点】矩形的判定与性质;垂线段最短.【分析】连接CM,先证明四边形CDME是矩形,得出DE=CM,再由三角形的面积关系求出CM的最小值,即可得出结果.【解答】解:连接CM,如图所示:∵MD⊥AC,ME⊥CB,∴∠MDC=∠MEC=90°,∵∠C=90°,∴四边形CDME是矩形,∴DE=CM,∵∠C=90°,BC=3,AC=4,∴AB===5,当CM⊥AB时,CM最短,此时△ABC的面积=AB•CM=BC•AC,∴CM的最小值==,∴线段DE的最小值为;故答案为:.【点评】本题考查了矩形的判定与性质、勾股定理、直角三角形面积的计算方法;熟练掌握矩形的判定与性质,并能进行推理论证与计算是解决问题的关键.三、解答题19.如图,菱形ABCD的对角线AC,BD相交于点O,且DE∥AC,AE∥BD.求证:四边形AODE是矩形.【考点】矩形的判定;菱形的性质.【专题】证明题.【分析】根据菱形的性质得出AC⊥BD,再根据平行四边形的判定定理得四边形AODE为平行四边形,由矩形的判定定理得出四边形AODE是矩形.【解答】证明:∵四边形ABCD为菱形,∴AC⊥BD,∴∠AOD=90°,∵DE∥AC,AE∥BD,∴四边形AODE为平行四边形,∴四边形AODE是矩形.【点评】本题考查了矩形的判定以及菱形的性质,还考查了平行四边形的判定,掌握平行四边形的判定方法是解题的关键.20.如图,已知BD是矩形ABCD的对角线.(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.【考点】矩形的性质;作图—基本作图.【专题】矩形菱形正方形.【分析】(1)分别以B、D为圆心,比BD的一半长为半径画弧,交于两点,确定出垂直平分线即可;(2)连接BE,DF,四边形BEDF为菱形,理由为:由EF垂直平分BD,得到BE=DE,∠DEF=∠BEF,再由AD与BC平行,得到一对内错角相等,等量代换及等角对等边得到BE=BF,再由BF=DF,等量代换得到四条边相等,即可得证.【解答】解:(1)如图所示,EF为所求直线;(2)四边形BEDF为菱形,理由为:证明:∵EF垂直平分BD,∴BE=DE,∠DEF=∠BEF,∵AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,∵BF=DF,∴BE=ED=DF=BF,∴四边形BEDF为菱形.【点评】此题考查了矩形的性质,菱形的判定,以及作图﹣基本作图,熟练掌握性质及判定是解本题的关键.21.已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.【考点】矩形的性质;全等三角形的判定与性质.【专题】证明题;图形的全等;矩形菱形正方形.【分析】由四边形ABCD为矩形,得到四个角为直角,再由EF与FD垂直,利用平角定义得到一对角互余,利用同角的余角相等得到一对角相等,利用ASA得到三角形BEF与三角形CFD全等,利用全等三角形对应边相等即可得证.【解答】证明:∵四边形ABCD是矩形,∴∠B=∠C=90°,∵EF⊥DF,∴∠EFD=90°,∴∠EFB+∠CFD=90°,∵∠EFB+∠BEF=90°,∴∠BEF=∠CFD,在△BEF和△CFD中,,∴△BEF≌△CFD(ASA),∴BF=CD.【点评】此题考查了矩形的性质,以及全等三角形的判定与性质,熟练掌握矩形的性质是解本题的关键.22.如图,矩形ABCD的对角线AC,BD相交于点O,若AB=AO,求∠ABD的度数.【考点】矩形的性质.【分析】首先证明OA=OB,再证明△ABO是等边三角形即可解决问题.【解答】解:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∴AO=OB,∵AB=AO,∴AB=AO=BO,∴△ABO是等边三角形,∴∠ABD=60°.【点评】本题考查矩形的性质、等边三角形的判定和性质等知识,熟练掌握矩形的性质是解题的关键,属于基础题,中考常考题型.23.如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.(1)求证:△BEF≌△CDF;(2)连接BD、CE,若∠BFD=2∠A,求证:四边形BECD是矩形.【考点】矩形的判定;全等三角形的判定与性质;平行四边形的性质.【专题】证明题.【分析】(1)先根据平行四边形的性质得出AB=CD,AB∥CD,再由BE=AB得出BE=CD,根据平行线的性质得出∠BEF=∠CDF,∠EBF=∠DCF,进而可得出结论;(2)根据平行四边形的性质可得AB∥CD,AB=CD,∠A=∠DCB,再由AB=BE,可得CD=EB,进而可判定四边形BECD是平行四边形,然后再证明BC=DE即可得到四边形BECD是矩形【解答】(1)证明:∵四边形ABCD是平行四边形,∵AB=CD,AB∥CD.∵BE=AB,∴BE=CD.∵AB∥CD,∴∠BEF=∠CDF,∠EBF=∠DCF,在△BEF与△CDF中,∵,∴△BEF≌△CDF(ASA);(2)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠A=∠DCB,∵AB=BE,∴CD=EB,∴四边形BECD是平行四边形,∴BF=CF,EF=DF,∵∠BFD=2∠A,∴∠BFD=2∠DCF,∴∠DCF=∠FDC,∴DF=CF,∴DE=BC,∴四边形BECD是矩形.【点评】此题主要考查的值矩形的判定及平行四边形的性质,关键是掌握平行四边形的对边相等;对角相等;对角线互相平分.24.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.【考点】矩形的性质;平行四边形的判定与性质;翻折变换(折叠问题).【分析】(1)首先由矩形的性质和折叠的性质证得AB=CD,AD∥BC,∠ANF=90°,∠CME=90°,易得AN=CM,可得△ANF≌△CME(ASA),由平行四边形的判定定理可得结论;(2)由AB=6,AC=10,可得BC=8,设CE=x,则EM=8﹣x,CM=10﹣6=4,在Rt△CEM中,利用勾股定理可解得x,由平行四边形的面积公式可得结果.【解答】(1)证明:∵折叠,∴AM=AB,CN=CD,∠FNC=∠D=90°,∠AME=∠B=90°,∴∠ANF=90°,∠CME=90°,∵四边形ABCD为矩形,∴AB=CD,AD∥BC,∴AM=CN,∴AM﹣MN=CN﹣MN,即AN=CM,在△ANF和△CME中,,∴△ANF≌△CME(ASA),∴AF=CE,又∵AF∥CE,∴四边形AECF是平行四边形;(2)解:∵AB=6,AC=10,∴BC=8,设CE=x,则EM=8﹣x,CM=10﹣6=4,在Rt△CEM中,(8﹣x)2+42=x2,解得:x=5,∴四边形AECF的面积的面积为:EC•AB=5×6=30.【点评】本题主要考查了折叠的性质、矩形的性质、平行四边形的判定定理和勾股定理等,综合运用各定理是解答此题的关键.25.如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q 两点.(1)求证:CP=AQ;(2)若BP=1,PQ=2,∠AEF=45°,求矩形ABCD的面积.【考点】矩形的性质;全等三角形的判定与性质.【分析】(1)由矩形的性质得出∠A=∠ABC=∠C=∠ADC=90°,AB=CD,AD=BC,AB∥CD,AD∥BC,证出∠E=∠F,AE=CF,由ASA证明△CFP≌△AEQ,即可得出结论;(2)证明△BEP、△AEQ是等腰直角三角形,得出BE=BP=1,AQ=AE,求出PE=BP=,得出EQ=PE+PQ=3,由等腰直角三角形的性质和勾股定理得出AQ=AE=3,求出AB=AE﹣BE=2,DQ=BP=1,得出AD=AQ+DQ=4,即可求出矩形ABCD的面积.【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠ABC=∠C=∠ADC=90°,AB=CD,AD=BC,AB∥CD,AD∥BC,∴∠E=∠F,∵BE=DF,∴AE=CF,在△CFP和△AEQ中,,∴△CFP≌△AEQ(ASA),∴CP=AQ;(2)解:∵AD∥BC,∴∠PBE=∠A=90°,∵∠AEF=45°,∴△BEP、△AEQ是等腰直角三角形,∴BE=BP=1,AQ=AE,∴PE=BP=,∴EQ=PE+PQ=+2=3,∴AQ=AE=3,∴AB=AE﹣BE=2,∵CP=AQ,AD=BC,∴DQ=BP=1,∴AD=AQ+DQ=3+1=4,∴矩形ABCD的面积=AB•AD=2×4=8.【点评】本题考查了矩形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理等知识;熟练掌握矩形的性质,证明三角形全等是解决问题的关键.26.阅读下面材料:在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?小敏在思考问题是,有如下思路:连接AC.结合小敏的思路作答(1)若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?说明理由;参考小敏思考问题方法解决一下问题:(2)如图2,在(1)的条件下,若连接AC,BD.①当AC与BD满足什么条件时,四边形EFGH是菱形,写出结论并证明;②当AC与BD满足什么条件时,四边形EFGH是矩形,直接写出结论.【考点】矩形的判定与性质;平行四边形的判定;菱形的判定与性质.【分析】(1)如图2,连接AC,根据三角形中位线的性质得到EF∥AC,EF=AC,然后根据平行四边形判定定理即可得到结论;(2)由(1)知,四边形EFGH是平行四边形,且FG=BD,HG=AC,于是得到当AC=BD时,FG=HG,即可得到结论;(3)根据平行线的性质得到GH⊥BD,GH⊥GF,于是得到∠HGF=90°,根据矩形的判定定理即可得到结论.【解答】解:(1)是平行四边形,证明:如图2,连接AC,∵E是AB的中点,F是BC的中点,∴EF∥AC,EF=AC,同理HG∥AC,HG=AC,综上可得:EF∥HG,EF=HG,故四边形EFGH是平行四边形;(2)AC=BD.理由如下:由(1)知,四边形EFGH是平行四边形,且FG=BD,HG=AC,∴当AC=BD时,FG=HG,∴平行四边形EFGH是菱形,(3)当AC⊥BD时,四边形EFGH为矩形;理由如下:同(2)得:四边形EFGH是平行四边形,∵AC⊥BD,GH∥AC,∴GH⊥BD,∵GF∥BD,∴GH⊥GF,∴∠HGF=90°,∴四边形EFGH为矩形.【点评】此题主要考查了中点四边形,关键是掌握三角形中位线定理,三角形的中位线平行于第三边且等于第三边的一半.。
北师大版九年级数学上册--第一章 1.2《矩形的性质和判定》同步练习题(含答案)
1.2《矩形的性质和判定》同步练习1、矩形的对边 ,对角线 且 ,四个角都是 ,即是 图形又是 图形。
2、四边形ABCD 的对角线AC 、BD 互相平分,要使它成为矩形,需要添加的条件是________。
3、已知矩形ABCD 的对角线相交于O ,对角线长8cm ,∠AOD=60°,则AD=________,AB=________。
4、如图,四边形ABCD 是平行四边形,AC 、BD 交于点O ,∠1=∠2,∠BOC=120°,AB=4,则四边形ABCD 的面积=________。
5、矩形的面积是60,一边长为5,则它的一条对角线长等于 。
6、如果矩形的一边长为8,一条对角线长为10,那么这个矩形面积是__________。
7、 矩形的一内角平分线把矩形的一条边分成3和5两部分,则该矩形的周长是___________。
8、已知,如图:在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A 、C 的坐标分别为A (10,0)、C (0,4),点D 是OA 的中点,点P 在BC 边上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为 。
题4图 题8图9、若一个直角三角形的两条直角边分别为5和12,则斜边上的中线等于 。
10、平行四边形没有而矩形具有的性质是( )A 、对角线相等B 、对角线互相垂直C 、对角线互相平分D 、对角相等 11、下列叙述错误的是( )A.平行四边形的对角线互相平分B.平行四边形的四个内角相等。
C.矩形的对角线相等。
D.有一个角是90º的平行四边形是矩形12、下列检查一个门框是否为矩形的方法中正确的是( )A .测量两条对角线是否相等B .用曲尺测量对角线是否互相垂直C .用曲尺测量门框的三个角是否都是直角 D.测量两条对角线是否互相平分13、矩形ABCD 的对角线相交于点O ,如果ABC ∆的周长比AOB ∆的周长大10cm ,则AD 的长是( )A 、5cmB 、7.5cmC 、10cmD 、12.5cm14、下列图形中既是轴对称图形,又是中心对称图形的是( )A 、平行四边形B 、等边三角形C 、矩形D 、直角三角形15、如图,四边形的对角线互相平分,要使它成为矩形,需要添加的条件是( )A.B. C. D.题15图 题16图16、如图,在矩形ABCD 中,两条对角线AC 与BD 相交于点O ,AB=6,OA=4,则AD 的长为( )A 、4B 、8C 、33D 、72yxP D CB A O解答题:1、如图,已知矩形ABCD的两条对角线相交于O,︒=∠120AOD,AB=4cm,求此矩形的面积。
最新北师大版九年级上册1.2 矩形的性质与判定导学案及答案
第1课时矩形的性质1.掌握矩形的的定义,理解矩形与平行四边形的关系.2.理解并掌握矩形的性质定理;会用矩形的性质定理进行推导证明;3.会初步运用矩形的定义、性质来解决有关问题,进一步培养学生的分析能力.自学指导:阅读课本P11~14,完成下列问题.1.有一个角是直角的平行四边形叫做矩形.2.生活中你见到过的矩形有五星红旗、毛巾.3.矩形是特殊的平行四边形,具有平行四边形的一切性质.4.矩形的四个角都是直角.5.矩形的对角线相等.6.直角三角形斜边上的中线等于斜边的一半.知识探究1.在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(作出对角线),拉动一对不相邻的顶点,改变平行四边形的形状.(1)随着∠α的变化,两条对角线的长度分别是怎样变化的?(2)当∠α是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?操作、思考、交流、归纳后得到矩形的性质.矩形性质1 矩形的四个角都是直角.矩形性质2 矩形的对角线相等.2.如图,在矩形ABCD中,AC、BD相交于点O,OB与AC是什么关系?解:由矩形性质2得:AC=BD,再由平行四边形性质得:AO=OC,BO=OD,所以AO=BO=CO=DO=12AC=12BD.因此可得直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.3.请同学们拿出准备好的矩形纸片,折一折,观察并思考。
(1)矩形是不是中心对称图形? 如果是,那么对称中心是什么?(2)矩形是不是轴对称图形?如果是,那么对称轴有几条?解:矩形是轴对称图形,它有两条对称轴.自学反馈1.矩形是轴对称图形吗?如果是的话它有几条对称轴?2.请用所学的知识诊断下面的语句,若正确请在括号里打“√”,若“有病”请开药方:(1).矩形是特殊的平行四边形,特殊之处就是有一个角是直角.( )(2).平行四边形是矩形.( )(3).平行四边形具有的性质(如平行四边形的对边平行且相等;平行四边形的对角相等;平行四边形的对角线互相平分)矩形也具有.( )3.已知△ABC 是Rt △,∠ABC=90°,BD 是斜边AC 上的中线.若BD=3㎝,则AC =_____㎝;活动1 小组讨论例1 如图,在矩形ABCD 中,两条对角线相交于点O ,∠AOD=120°,AB=2.5cm ,求矩形对角线的长.证明:∵四边形ABCD 是矩形,∴ AC=BD(矩形的对角线相等),OA=OC=21AC ,OB=OD=21BD. ∴OA=OD.∵∠AOD=120°,∴∠ODA=∠OAD=21(180°-120°)= 30°. 又∵∠DAB=90°(矩形的四个角都是直角),∴BD=2AB =2×2.5=5.活动2 跟踪训练1.矩形具有一般平行四边形不具有的性质是( )A .对边相互平行B .对角线相等C .对角线相互平分D .对角相等2.如果矩形的两条对角线所成的钝角是120°,那么对角线与矩形短边的长度之比为( )A.3∶2B.2∶1C.1.5∶1D.1∶13.如图,在矩形ABCD 中,AB <BC ,AC ,BD 相交于点O ,则图中等腰三角形的个数是( )A.8B.6C.4D.24.在Rt △ABC 中,∠ACB =90°,D 、E 为AB 、AC 的中点.则下列结论中错误的是( )A.CD =ADB.∠B =∠BCDC.∠AED =90°D.AC =2DEA B CDE5.在直角三角形中,两条直角边的长分别为12和5,则斜边上中线长为 .6.矩形的一条对角线长10cm ,且两条对角线的一个夹角为60°,则矩形的宽为 cm .7.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则△AEF 的周长= cm .8.如图,矩形ABCD 中,E 为AD 上一点,EF ⊥CE 交AB 于F ,若DE =2,矩形的周长为16,且CE =EF ,则AE =_______.A BCDEF9.在矩形ABCD 中,点E 是BC 上一点,AE=AD ,DF ⊥AE ,垂足为F.求证:DF=DC .课堂小结1.矩形的定义及性质.2.矩形是角特殊的平行四边形,决定了矩形的四个角都是直角,对角线相等.3.直角三角形斜边上的中线等于斜边的一半.教学至此,敬请使用《名校课堂》相应课时部分.【预习导学】自学反馈1.解:既是轴对称图形,也是中心对称图形,对称轴有两条.2.(1)√ (2)× (3)√3.6【合作探究】活动2 跟踪训练1.B2.B3.C4.D5.6.5 6.57.98.39.解:连接DE.∵AD=AE,∴∠AED=∠ADE.∵矩形ABCD,∴AD∥BC,∠C=90°.∴∠ADE=∠DEC,∴∠DEC=∠AED.又∵DF⊥AE,∴∠DFE=∠C=90°.∵DE=DE,∴△DFE≌△DCE.∴DF=DC.第2课时矩形的判定1.能够运用综合法和严密的数学语言证明矩形的性质和判定定理以及其他相关结论;2.经历探索、猜测、证明的过程,发展学生的推理论证能力,培养学生找到解题思路的能力,使学生进一步体会证明的必要性以及计算与证明在解决问题中的作用;3.学生通过对比前面所学知识,体会证明过程中所运用的归纳、概括以及转化等数学思想方法;4.通过学生独立完成证明的过程,让学生体会数学是严谨的科学,增强学生对待科学的严谨治学态度,从而养成良好的习惯。
北师大版九年级数学上册《1.2 矩形的性质与判定》同步练习题-附答案
北师大版九年级数学上册《1.2 矩形的性质与判定》同步练习题-附答案一、选择题1.如图,在矩形ABCD中,两条对角线AC、BD相交于点O,若OB=5.则AC=()A.10 B.8 C.5√3D.52.如图,矩形纸片ABCD中,点E是AD的中点,且AE=1,BE的垂直平分线MN恰好过点C.则AB的长度为()A.1 B.√2C.√3D.23.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD于点E,若∠DAE∶∠BAE=3∶1,则∠EAC 的度数是()A.18°B.36°C.45°D.72°4.如图,在矩形ABCD中E,F分别是AD,CD的中点,连接BE,BF,且G,H分别是BE,BF的中点,已知BD=20,则GH的长为( )A.4B.5C.8D.105.如图∠BAC=90°,AB=6,AC=8,P为边BC上一动点(点P不与点B,C重合),PE⊥AB于点E,PF⊥AC 于点F,则EF的最小值为()A.4 B.4.8C.5.2D.66.如图,在矩形纸片ABCD中AB=10,AD=6点E为AD边上一点,将△ABE沿BE翻折,点A恰好落在CD边上点F处,则AE长为()A.83B.72C.103D.1347.如右图,A,B为5×5的正方形网格中的两个格点,称四个顶点都是格点的矩形为格点矩形,则在此图中以A,B为顶点的格点矩形共可以画出()A.1个B.2个C.3个D.4个8.如图,在矩形ABCD中,AB=10,BC=6,点M是AB边的中点,点N是AD边上任意一点,将线段MN绕点M顺时针旋转90°,点N旋转到点N',则△MBN'周长的最小值为()A.15 B.5+5√5C.10+5√2D.18二、填空题9.在矩形ABCD中AB=2,对角线AC与BD相交于点 O,若∠BAO=60°,则边BC的长为.10.如图,矩形ABCD的对角线AC,BD相交于点O,∠AOD=120°若AB=3cm,则AC=cm.11.如图所示的长方形纸条ABCD,将纸片沿MN折叠,MB与DN交于点K,若∠1=70°,则∠KNC=°12.如图,在矩形ABCD中AB=2AD=6,点P为AB边上一点,且AP≤3,连接DP,将ΔADP沿DP折叠,点A落在点M处,连接CM,BM,当ΔBCM为等腰三角形时,BP的长为.13.如图,在矩形ABCD中AB=8,BC=12,E为BC上一点,CE=4,M为BC的中点.动点P,Q从E出发,分别向点B,C运动,且PE=2QE.若PD和AQ交于点F,连接MF,则MF的最小值为.三、解答题14.如图,折叠长方形纸片ABCD的一边,使点D落在BC边的D′处AB=6cm,BC=10cm求CE的长.15.如图,在矩形ABCD中,点E在BC边上,点F在CD边上,且AB=4,BE=3,EF=6,AF=√61求三角形AEF的面积.16.如图,在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,且AE=CG,BF=DH,连接EG、FH.(1)求证:△AEH≌△CGF;(2)若EG=FH,∠AHE=35°,求∠DHG的度数.17.如图,四边形ABCD中∠DAB=45°,AB=8,AD=3√2,E为AB中点,且CD⊥DE,连接CE.(1)求DE的长度;(2)若∠BEC=∠ADE,求BC的长度.18.已知:如图,四边形ABCD的对角线AC,BD交于点O,BE⊥AC于E,DF⊥AC于F,点O既是AC的中点,又是EF的中点。
2023学年九年级上学期数学同步精讲精练(北师大版)1-2 矩形的性质与判定(习题)(含详解)
1.2矩形的性质及判定分层训练提分要义【基础题】1.下列说法中正确的是( )A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是菱形C. 平行四边形的对角线平分一组对角D. 矩形的对角线相等且互相平分2.若矩形对角线相交所成钝角为120°,短边长3.6cm ,则对角线的长为( ).A. 3.6cmB. 7.2cmC. 1.8cmD. 14.4cm3.矩形邻边之比3∶4,对角线长为10cm ,则周长为( ).A.14cmB.28cmC.20cmD.22cm4.如图,矩形ABCD 的顶点A 、C 分别在直线a 、b 上,且a ∥b ,∠1=60°,则∠2的度数为( )A .30°B .45°C .60°D .75°5. 矩形一个角的平分线分矩形一边为1cm 和3cm 两部分,则它的面积为( )A.32cmB. 42cmC. 122cmD. 42cm 或122cm 6. 如图,矩形ABCG(AB <BC)与矩形CDEF 全等,点B 、C 、D 在同一条直线上,∠APE 的顶点P 在线段BD 上移动,使∠APE 为直角的点P 的个数是( )A.0B.1C.2D.37. 把一张长方形的纸片按如图所示的方式折叠,EM 、FM 为折痕,折叠后的C 点落在B ′M 或B ′M 的延长线上,那么∠EMF 的度数是( )A.85°B.90°C.95°D.100°8.如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD 的面积为8,则BE=( )2A.2B.3C.22D.39.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是AB的中点,CD=DE=a,则AB的长为()A. 2aB. 22a C. 3a D.10.如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=10,则OB的长为()A. 5B. 4C.D.【中档题】11.如图,矩形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC于点E、F,连结CE,则CE的长______.12. 如图所示,矩形ABCD的两条对角线相交于点O,∠AOD=120°,AB=4cm,则矩形对角线AC长为________cm.13.如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F 处,折痕为AE,且EF=3,则AB的长为_______.14.如图,矩形ABCD中,AB=3,BC=4,P是边AD上的动点,PE⊥AC于点E,PF⊥BD于点F,则PE+PF的值为_________.15.在矩形ABCD中,AB=6,AD=3,E是AB边上一点,AE=2,F是直线CD上一动点,将△AEF沿直线EF折叠,点A的对应点为点A',当点E、A'、C三点在一条直线上时,DF的长度为.16.已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,E,F分别为垂足.(1)求证:△ABE≌△CDF;(2)求证:四边形AECF是矩形.17.如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD 的中点,过点O的直线分别交AB、CD边于点E、F.(1)求证:四边形DEBF是平行四边形;(2)当DE=DF时,求EF的长.【综合题】18. 如图在矩形ABCD中,AB=3,BC=4,M,N在对角线AC上,且AM=CN,E,F分别是AD,BC的中点.(1)求证:△ABM≌△CDN;(2)点G是对角线AC上的点,∠EGF=90°,求AG的长.19.如图1,矩形ABCD中,点E为AB边上的动点(不与A,B重合),把△ADE沿DE翻折,点A的对应点为A1,延长EA1交直线DC于点F,再把∠BEF折叠,使点B的对应点B1落在EF上,折痕EH交直线BC于点H.(1)求证:△A1DE∽△B1EH;(2)如图2,直线MN是矩形ABCD的对称轴,若点A1恰好落在直线MN上,试判断△DEF 的形状,并说明理由;(3)如图3,在(2)的条件下,点G为△DEF内一点,且∠DGF=150°,试探究DG,EG,FG的数量关系.20.如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.1.2矩形的性质及判定分层训练提分要义【基础题】1.下列说法中正确的是()A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是菱形C. 平行四边形的对角线平分一组对角D. 矩形的对角线相等且互相平分【答案】D;【解析】∵对角线相等的平行四边形是矩形,∴A不正确;∵对角线互相垂直的四边形不一定是菱形,∴B不正确;∵平行四边形的对角线互相平分,菱形的对角线平分一组对角,∴C不正确;∵矩形的对角线互相平分且相等,∴D正确;2.若矩形对角线相交所成钝角为120°,短边长3.6cm,则对角线的长为( ).A. 3.6cmB. 7.2cmC. 1.8cmD. 14.4cm【答案】B;【解析】直角三角形中,30°所对的边等于斜边的一半.3.矩形邻边之比3∶4,对角线长为10cm,则周长为( ).A.14cmB.28cmC.20cmD.22cm【答案】B;【解析】由勾股定理,可算得邻边长为6cm和8cm,则周长为28cm.4.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45° C.60° D.75°【答案】C.【解析】过点D作DE∥a,∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故选C .5. 矩形一个角的平分线分矩形一边为1cm 和3cm 两部分,则它的面积为( )A.32cmB. 42cmC. 122cmD. 42cm 或122cm 【答案】D ;【解析】矩形的短边可能是1,也可能是3,所以面积为4×1或4×3.6. 如图,矩形ABCG(AB <BC)与矩形CDEF 全等,点B 、C 、D 在同一条直线上,∠APE 的顶点P 在线段BD 上移动,使∠APE 为直角的点P 的个数是( )A.0B.1C.2D.3【答案】C ;【解析】当BP=AB 或BP=BC 时,∠APE 是直角.7. 把一张长方形的纸片按如图所示的方式折叠,EM 、FM 为折痕,折叠后的C 点落在B ′M 或B ′M 的延长线上,那么∠EMF 的度数是( )A.85°B.90°C.95°D.100°【答案】B ;【解析】∠EMF =∠EMB ′+∠FMB ′=21∠BMC ′+21∠CMC ′=21×180°=90°. 8.如图,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为8,则BE =( )A.2B.3C.22D.32【答案】C ;【解析】过点C 做BE 垂线,垂足为F ,易证△BAE ≌△CBF ,所以BF =AE ,BE =CF ,所以总面积=AE ×BE +CF ×EF = AE ×BE +BE ×(BE -AE )=28BE =,22BE =.9.如图,在△ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D ,点E 是AB的中点,CD=DE=a ,则AB 的长为( )A. 2aB. 22a C. 3a D.【答案】 B 【考点】直角三角形斜边上的中线【解析】 【解答】解:∵CD ⊥AB ,CD=DE=a ,∴CE= a ,∵在△ABC 中,∠ACB=90°,点E 是AB 的中点,∴AB=2CE=2 a , 故选B .【分析】根据勾股定理得到CE= a ,根据直角三角形的性质即可得到结论10.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM=3,BC=10,则OB 的长为( )A. 5B. 4C.D.【答案】 D 【考点】矩形的性质【解析】【解答】解:∵四边形ABCD 是矩形,∴∠D=90°,∵O 是矩形ABCD 的对角线AC 的中点,OM ∥AB ,∴OM 是△ADC 的中位线,∴OM=3,∴DC=6,∵AD=BC=10,∴AC==2 , ∴BO= AC= ,故选D .【分析】已知OM 是△ADC 的中位线,再结合已知条件则DC 的长可求出,所以利用勾股定理可求出AC 的长,由直角三角形斜边上中线的性质则BO 的长即可求出.【中档题】11.如图,矩形ABCD 中,AB =2,BC =3,对角线AC 的垂直平分线分别交AD ,BC 于点E 、F ,连结CE ,则CE 的长______. 【答案】136; 【解析】设AE =CE =x ,DE =3x -,()22232x x =-+,136x =. 12. 如图所示,矩形ABCD 的两条对角线相交于点O ,∠AOD =120°,AB =4cm ,则矩形对角线AC 长为________cm .【答案】8;【解析】由矩形的性质可知△AOB 是等边三角形,∴ AC =2AO =2AB =8cm .14. 如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为_______.【答案】6;【解析】设AB =AF =x ,BE =EF =3,EC =5,则CF =4,()22284x x +=+,解得6x =.14.如图,矩形ABCD 中,AB =3,BC =4,P 是边AD 上的动点,PE ⊥AC 于点E ,PF ⊥BD 于点F ,则PE +PF 的值为_________. 【答案】125; 【解析】BD =5,利用面积法,PE +PF =△AOD 中OD 边上的高=345⨯. 15.在矩形ABCD 中,AB =6,AD =3,E 是AB 边上一点,AE =2,F 是直线CD 上一动点,将△AEF 沿直线EF 折叠,点A 的对应点为点A ',当点E 、A '、C 三点在一条直线上时,DF 的长度为 .【答案】1或11;【解析】在旋转过程中A 有两次和E ,C 在一条直线上,第一次在EC 线段上,第二次在CE 线段的延长线上,利用平行的性质证出CF =CE ,即可求解;如图1:将△AEF 沿直线EF 折叠,点A 的对应点为点A ',∴∠AEF =∠EA 'F ,AE =A 'E ,∵AB ∥CD ,∴∠AEF =∠CFE ,∴CF =CE ,∵AB =6,AD =3,AE =2,∴CF =CE =6﹣DF ,A 'E =2,BE =4,BC =3,∴EC =5,∴6﹣DF =5,∴DF =1;如图2:由折叠∠FEA '=∠FEA ,∵AB ∥CD ,∴∠CFE=∠CEF,∴CF=CE,∴CF=5,∴DF=11;故答案为1或11;16.已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,E,F分别为垂足.(1)求证:△ABE≌△CDF;(2)求证:四边形AECF是矩形.【答案】(1)见解析;(2)见解析.【解析】(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,AD∥BC,∵AE⊥BC,CF⊥AD,∴∠AEB=∠AEC=∠CFD=∠AFC=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS);(2)证明:∵AD∥BC,∴∠EAF=∠AEB=90°,∴∠EAF=∠AEC=∠AFC=90°,∴四边形AECF是矩形.17.如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O的直线分别交AB、CD边于点E、F.(1)求证:四边形DEBF是平行四边形;(2)当DE=DF时,求EF的长.【答案】见解析。
北师大版九年级数学上册《1.2矩形的性质与判定》同步练习题-附答案
北师大版九年级数学上册《1.2矩形的性质与判定》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.如图,在矩形ABCD中,AC、BD相交于点O,AE平分∠BAD交BC于点E,若∠CAE=15°,则∠BOE的度数为()A.60°B.75°C.72° D2.关于矩形的性质、下面说法错误的是()A.矩形的四个角都是直角B.矩形的两组对边分别相等C.矩形的两组对边分别平行D.矩形的对角线互相垂直平分且相等3.在矩形ABCD中,以A为圆心,AD长为半径画弧,交AB于F点,以C为圆心,CD长为半径画弧,交AB于E点,若AD=2,CD=√5则EF=()A.1B.4−√5C.√5−2 D4.顺次连接矩形各边中点得到的四边形是()A.梯形B.矩形C.菱形D.正方形5.如图,在矩形ABCD中,对角线AC、BD相交于点O,AE平分∠BAD交BC边于点E,点F是AE的中点,连接OF,若∠BDC=2∠ADB,AB=1则FO的长度为()A.√32B.12C.√3−1 D6.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=2,则四边形CODE的周长是()A.2.5B.3C.4D.57.如图,已知平行四边形ABCD的对角线AC与BD相交于点O,下列结论中,不正确...的是()A.当AB⊥AD时,四边形ABCD是矩形B.当AC⊥BD时,四边形ABCD是菱形C.当OA=OB时,四边形ABCD是矩形D.当AB=AC时,四边形ABCD是菱形8.依据所标数据,下列四边形不一定为矩形的是()A.B.C.D.二、填空题9.如图,要使平行四边形ABCD是矩形,则应添加的条件是(添加一个条件即可)10.如图,矩形ABCD中,点A坐标是(﹣1,0),点C的坐标是(2,4),则BD的长是;11.如图,在矩形ABCD中,对角线AC与BD相交于点O,CE⊥BD,垂足为点E,CE=5且OE=2DE,则DE的长为.12.矩形一个角的平分线分矩形一边为1cm和3cm两部分,则这个矩形的面积为cm213.如图,在矩形ABCD中AD=4,AB=6作AE平分∠BAD,若连接BF,则BF的长度为。
2021-2022学年九年级数学北师大版上册《矩形的性质与判定》训练含答案
2021年北师大版九年级数学上册《1.2矩形的性质与判定》训练一.矩形的性质1.菱形和矩形都具有的性质是()A.对角线互相垂直B.对角线长度相等C.对角线平分一组对角D.对角线互相平分2.矩形具有而一般平行四边形不一定具有的性质是()A.对角线互相平分B.邻角互补C.对边相等D.对角线相等3.在▱ABCD中,O为AC的中点,点E,M为AD边上任意两个不重合的动点(不与端点重合),EO的延长线与BC交于点F,MO的延长线与BC交于点N.下面四个推断:①EF=MN;②EN∥MF;③若▱ABCD是菱形,则至少存在一个四边形ENFM是菱形;④对于任意的▱ABCD,存在无数个四边形ENFM是矩形.其中,所有正确的有()A.①③B.②③C.①④D.②④4.已知矩形的对角线为1,面积为m,则矩形的周长为()A.B.C.2D.25.如图、在平面直角坐标系xOy中,矩形OABC的顶点A,C的坐标分别是(4,﹣2),(1,2),点B在x轴上,则点B的横坐标是()A.4B.2C.5D.46.如图,在矩形ABCD中,对角线AC,BD相交于点O,DE⊥AC于点E,∠EDC:∠EDA =1:2,且AC=8,则EC的长度为()A.2B.2C.4D.7.如图,在▱ABCD中,BD⊥AD,AB=10,AD=6,作矩形DEBF,则其对角线EF的长为()A.8B.9C.10D.118.如图,在矩形ABCD中,AD>AB,AB=5cm,AC,BD交于点O,∠AOD=2∠AOB=120°,则BC=()A.5cm B.5cm C.5cm D.5cm9.如图,在矩形ABCD中,AB=4,AD=6,点P在AD上,点Q在BC上,且AP=CQ,连接CP,QD,则PC+QD的最小值为()A.8B.10C.12D.2010.如图,在矩形ABCD中,E是AB的中点,动点F从点B出发,沿BC运动到点C时停止,以EF为边作▱EFGH,且点G、H分别在CD、AD上.在动点F运动的过程中,▱EFGH 的面积()A.逐渐增大B.逐渐减小C.不变D.先增大,再减小11.如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥BC,垂足为点E,过点A作AF⊥OB,垂足为点F.若BC=2AF,OD=6,则BE的长为.12.如图,矩形ABCD中,AB=3,AD=2,点E是BC的中点,点F在AB上,FB=1,P是矩形上一动点.若点P从点F出发,沿F→A→D→C的路线运动,当∠FPE=30°时,FP的长为.13.如图,矩形ABCD中,AB=6,AD=8,E是AD边上的中点,P是AB边上的一动点,M、N分别是PE、PC的中点,则线段MN的长为.二.矩形的判定14.如图,已知平行四边形ABCD的对角线AC,BD相交于点O,下列选项能使平行四边形ABCD成为矩形的条件是()A.AB=AD B.∠AOB=60°C.AC⊥BD D.∠OBC=∠OCB三.矩形的判定与性质15.下列语句正确的是()A.对角线互相垂直的四边形是菱形B.对角线相等的四边形是矩形C.矩形的对角线相等D.平行四边形是轴对称图形16.如图,在直角三角形ABC中,∠ACB=90°,AC=3,BC=4,点M是边AB上一点(不与点A,B重合),作ME⊥AC于点E,MF⊥BC于点F,若点P是EF的中点,则CP 的最小值是()A.1.2B.1.5C.2.4D.2.517.如图,菱形ABCD的对角线AC,BD相交于点O,P为AB边上一动点(不与点A,B 重合),PE⊥OA于点E,PF⊥OB于点F,若AB=4,∠BAD=60°,则EF的最小值为.18.如图,在Rt△ABC中,AC=3,BC=4,D为斜边AB上一动点,DE⊥BC,DF⊥AC,垂足分别为E、F,则线段EF的最小值为.19.如图,在△ABC中,AB=AC,D是BC中点,过点A作AE∥BC,使AE=BD.(1)求证:四边形AEBD是矩形;(2)取AB中点F,作GF⊥AB,交EB于点G,若AD=8,BD=4,求EG的长.20.如图,在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,CF=AE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)已知∠DAB=60°,AF是∠DAB的平分线,若AD=3,求AB的长.21.如图所示,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F.(1)求证:四边形OBEC为矩形;(2)如果OC:OB=1:2,OE=2,求菱形ABCD的面积.22.如图,菱形ABCD的对角线AC、BD相交于点O,E是AD的中点,点F、G在CD边上,EF⊥CD,OG∥EF.(1)求证:四边形OEFG是矩形;(2)若FG=5,EF=4,求CG的长.23.如图,已知在△OAB中AO=BO,分别延长AO,BO到点C、D,使得OC=AO,OD =BO,连接AD,DC,CB.(1)求证:四边形ABCD是矩形;(2)以AO,BO为一组邻边作平行四边形AOBE,连接CE.若CE⊥AE,求∠AOB的度数.24.如图,已知平行四边形ABCD中,M,N是BD上两点,且BM=DN,AC=2OM.(1)求证:四边形AMCN是矩形;(2)若∠BAD=135°,CD=2,AB⊥AC,求对角线MN的长.25.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=4,∠ABC=60°,求矩形AEFD的面积.26.如图1,已知AD∥BC,AB∥CD,∠B=∠C.(1)求证:四边形ABCD为矩形;(2)如图2,M为AD的中点,N为AB中点,∠BNC=2∠DCM,BN=2,求CN的长参考答案一.矩形的性质1.解:∵矩形的对角线相等且互相平分,菱形的对角线垂直且互相平分,∴菱形和矩形都具有的性质为对角线互相平分,故选:D.2.解:A、平行四边形与矩形都具有两条对角线互相平分的性质,故A不符合题意;B、平行四边形与矩形都不具有邻角互补的性质,故B不符合题意;C、平行四边形与矩形都具有两组对边分别相等的性质,故C不符合题意;D、平行四边形的两条对角线不相等,矩形具有两条对角线相等的性质,故D符合题意.故选:D.3.解:如图,连接EN,MF,∵四边形ABCD是平行四边形,∴AO=CO,AD∥BC,∴∠EAC=∠FCA,在△EAO和△FCO中,,∴△EAO≌△FCO(ASA),∴EO=FO,同理可得OM=ON,∴四边形EMFN是平行四边形,∴EN∥MF,EF与MN不一定相等,故①错误,②正确,若四边形ABCD是菱形,∴AC⊥BD,∵点E,M为AD边上任意两个不重合的动点(不与端点重合),∴∠EOM<∠AOD=90°,∴不存在四边形ENFM是菱形,故③错误,当EO=OM时,则EF=MN,又∵四边形ENFM是平行四边形,∴四边形ENFM是矩形,故④正确,故选:D.4.解:设矩形的长、宽分别为a、b,∵矩形的对角线为1,面积为m,∴a²+b²=1,ab=m,∴a+b===,∴矩形的周长为2(a+b)=2,故选:C.5.解:连接AC,∵点A(4,﹣2),点C(1,2),∴AC==5,∵四边形ABCO是矩形,∴OB=AC=5,∴点B的横坐标为5,故选:C.6.解:∵四边形ABCD是矩形,∴∠ADC=90°,AC=BD=8,OA=OC=AC=4,OB=OD=BD=4,∴OC=OD,∴∠ODC=∠OCD,∵∠EDC:∠EDA=1:2,∠EDC+∠EDA=90°,∴∠EDC=30°,∠EDA=60°,∵DE⊥AC,∴∠DEC=90°,∴∠DAC=30°,∴DC=AC=4,∴EC=DC=2,故选:B.7.解:∵BD⊥AD,AB=10,AD=6,∴DB=8,∵矩形DEBF,∴EF=DB=8,故选:A.8.解:∵四边形ABCD是矩形,∴∠ABC=90°,OA=AC,OB=BD,AC=BD,∴OA=OB,∵∠AOD=2∠AOB=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=5cm,∴AC=2OA=10(cm),∴BC===5(cm),故选:C.9.解:如图,连接BP,在矩形ABCD中,AD∥BC,AD=BC=6,∵AP=CQ,∴AD﹣AP=BC﹣CQ,∴DP=QB,DP∥BQ,∴四边形DPBQ是平行四边形,∴PB∥DQ,PB=DQ,则PC+QD=PC+PB,则PC+QD的最小值转化为PC+PB的最小值,在BA的延长线上截取AE=AB=4,连接PE,CE,则BE=2AB=8,∵P A⊥BE,∴P A是BE的垂直平分线,∴PB=PE,∴PC+PB=PC+PE,连接CE,则PC+QD=PC+PB=PC+PE≥CE,∵BE=2AB=12,∴CE===10,∴PC+PB的最小值为10,即PC+QD的最小值为10,故选:B.10.解:设AB=a,BC=b,BE=c,BF=x,连接EG,∵四边形EFGH为平行四边形,∴EF=HG,EF∥HG,∴∠FEG=∠HGE,∵四边形ABCD为矩形,∴AB∥CD,∴∠BEG=∠DGE,∴∠BEG﹣∠FEG=∠DGE﹣∠EGH,∴∠BEF=∠HGD∵EF=HG,∠B=∠D,∴Rt△BEF≌Rt△DGH(AAS),同理Rt△AEH≌Rt△GFC,∴S平行四边形EFGH=S矩形ABCD﹣2(S△BEF+S△AEH)=ab﹣2[cx+(a﹣c)(b﹣x)]=ab﹣(cx+ab﹣ax﹣bc+cx)=ab﹣cx﹣ab+ax+bc﹣cx=(a﹣2c)x+bc,∵E是AB的中点,∴a=2c,∴a﹣2c=0,∴S平行四边形EFGH=bc=ab,故选:C.11.解:∵四边形ABCD是矩形,∴OA=OB=OC=OD,∵OE⊥BC,∴BE=CE,∠BOE=∠COE,又∵BC=2AF,∵AF=BE,在Rt△AFO和Rt△BEO中,,∴Rt△AFO≌Rt△BEO(HL),∴∠AOF=∠BOE,∴∠AOF=∠BOE=∠COE,又∵∠AOF+∠BOE+∠COE=180°,∴∠BOE=60°,∵OB=OD=6,∴BE=OB•sin60°=6×=3,故答案为:3.12.解:如图,连接DF,AE,DE,取DF的中点O,连接OA、OE.以O为圆心OE的长度为半径,画⊙O交CD于P3.∵四边形ABCD是矩形,∴∠BAD=∠B=90°,∵AB=3,AD=2,点E是BC的中点,FB=1,∴BE=,AF=2,∴tan∠FEB=tan∠ADF=,∴∠ADF=∠FEB=30°,∵EF===2,DF===4,∴OE=OF=EF=2,∴△OEF是等边三角形,∴∠EP1F=∠FP2F=∠FP3E=30°,∴FP1=2,FP2=4,FP3=2,故答案为2或4或2.13.解:连接CE,如图所示:∵四边形ABCD是矩形,∴CD=AB=6,∠D=90°,∵E是AD边上的中点,∴DE=AD=4,∴CE===2,∵M,N分别是PE、PC的中点,∴MN是△PCE的中位线,∴MN=CE=,故答案为:.二.矩形的判定14.解:A、∵四边形ABCD是平行四边形,AB=AD,∴平行四边形ABCD是菱形,故选项A不符合题意;B、由四边形ABCD是平行四边形,∠AOB=60°,不能判定平行四边形ABCD为矩形,故选项B不符合题意;C、∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形,故选项C不符合题意;D、∵四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,∵∠OBC=∠OCB,∴OB=OC,∴AC=BD,∴平行四边形ABCD是矩形,故选项D符合题意;故选:D.三.矩形的判定与性质15.解:A、∵对角线互相垂直的平行四边形是菱形,∴选项A不符合题意;B、∵对角线相等的平行四边形是矩形,∴选项B不符合题意;C、∵矩形的对角线相等,∴选项C符合题意;D、∵平行四边形是中心对称图形,不是轴对称图形,∴选项D不符合题意;故选:C.16.解:连接CM,如图所示:∵∠ACB=90°,AC=3,BC=4,∴AB===5,∵ME⊥AC,MF⊥BC,∠ACB=90°,∴四边形CEMF是矩形,∴EF=CM,∵点P是EF的中点,∴CP=EF,当CM⊥AB时,CM最短,此时EF也最小,则CP最小,∵△ABC的面积=AB×CM=AC×BC,∴CM===2.4,∴CP=EF=CM=1.2,故选:A.17.解:连接OP,∵四边形ABCD是菱形,∴AC⊥BD,∠CAB=DAB=30°,∵PE⊥OA于点E,PF⊥OB于点F,∴∠EOF=∠OEP=∠OFP=90°,∴四边形OEPF是矩形,∴EF=OP,∵当OP取最小值时,EF的值最小,∴当OP⊥AB时,OP最小,∵AB=4,∴OB=AB=2,OA=AB=2,∴S△ABO=OA•OB=AB•OP,∴OP==,∴EF的最小值为,故答案为:.18.解:如图,连接CD,∵DE⊥BC,DF⊥AC,∠ACB=90°,∴四边形CEDF是矩形,∴EF=CD,由垂线段最短可得:CD⊥AB时,线段CD的长最小,在Rt△ABC中,AC=3,BC=4,∴AB===5,当CD⊥AB时,∵△ABC的面积=AB×CD=AC×BC,∴CD===,∴EF的最小值为,故答案为:.19.(1)证明:AE∥BC,AE=BD,∴四边形AEBD是平行四边形,∵AB=AC,D是BC中点,∴AD⊥BC,∴∠ADB=90,∴四边形AEBD是矩形;(2)解:连接AG,∵F是AB的中点,GF⊥AB,∴GA=GB,∵四边形AEBD是矩形,AD=8,BD=4,∴EB=AD=8,EA=BD=4,设EG=x,则GB=GA=8﹣x,∵四边形AEBD是矩形,∴∠E=90°,在Rt△AEG中,∵EA2+EG2=AG2,∴42+x2=(8﹣x)2,∴x=3,即EG=3.20.证明(1)∵四边形ABCD是平行四边形,∴DC∥AB,DC=AB,∵CF=AE,∴DF=BE且DC∥AB,∴四边形DFBE是平行四边形,又∵DE⊥AB,∴四边形DFBE是矩形;(2)∵∠DAB=60°,AD=3,DE⊥AB,∴AE=,DE=AE=,∵四边形DFBE是矩形,∴BF=DE=,∵AF平分∠DAB,∴∠F AB=∠DAB=30°,且BF⊥AB,∴AB=BF=.21.(1)证明:∵CE∥BD,EB∥AC,∴四边形OBEC为平行四边形.∵四边形ABCD为菱形,∴AC⊥BD,∴∠BOC=90°,∴四边形OBEC为矩形;(2)解:由(1)得:四边形OBEC为矩形,∴OE=CB,设OC=x,则OB=2x,∴BC===x,∵BC=OE=2,∴x=2,∴OC=2,OB=4,∴AC=2OC=4,BD=2OB=8,∴S菱形ABCD=AC•BD=×4×8=16.22.(1)证明:∵四边形ABCD是菱形,∴OA=OC,∵E是AD的中点,∴OE是△ACD的中位线,∴OE∥CD,∵OG∥EF,∴四边形OEFG是平行四边形,∵EF⊥CD,∴∠EFG=90°,∴平行四边形OEFG是矩形;(2)解:由(1)得:四边形OEFG是矩形,∴OE=FG=5,∵四边形ABCD是菱形,∴AD=CD,AC⊥BD,∴∠AOD=90°,∵E是AD的中点,∴OE=AD=DE=5,CD=AD=2OE=10,在Rt△DEF中,DF===3,∴CG=CD﹣FG﹣DF=10﹣5﹣3=2.23.证明:(1)∵OC=AO,OD=BO,∴四边形ABCD是平行四边形,∴AO=AC,BO=BD,∵AO=BO,∴AC=BD,∴四边形ABCD是矩形;(2)连接OE交AB于F,∵EC⊥BD,∴∠CFD=90°,∵四边形AEBO是平行四边形,∴AE∥BO,∴∠AEC=∠CFD=90°,即△AEC是直角三角形,∵EO是Rt△AEC中AC边上的中线,∴EO=AO,∵四边形AEBO是平行四边形,∴OB=AE,∵OA=OB,∴AE=OA=OE,∴△AEO是等边三角形,∴∠OAE=60°,∵∠OAE+∠AOB=180°,∴∠AOB=120°.24.(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵对角线BD上的两点M、N满足BM=DN,∴OB﹣BM=OD﹣DN,即OM=ON,∴四边形AMCN是平行四边形,∵AC=2OM,∴MN=AC,∴平行四边形AMCN是矩形;(2)解:由(1)得:MN=AC,∵四边形ABCD是平行四边形,∴AB=CD=2,AD∥BC,∴∠ABC+∠BAD=180°,∴∠ABC=45°,∵AB⊥AC,∴∠BAC=90°,∴△ABC是等腰直角三角形,∴AC=AB=2,∴MN=2.25.(1)证明:∵四边形ABCD是菱形,∴AD∥BC,AD=BC,∵CF=BE,∴BC=EF,∴AD∥EF,AD=EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴平行四边形AEFD是矩形;(2)∵AB=CD,BE=CF,∠AEB=∠DFC=90°,∴Rt△ABE≌Rt△DCF(HL),∴矩形AEFD的面积=菱形ABCD的面积,∵∠ABC=60°,∴△ABC是等边三角形,∵AC=4,∴AO=AC=2,AB=4,BO=2,∴矩形AEFD的面积=菱形ABCD的面积=×4×4=8.26.证明:(1)∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵AB∥CD,∴∠B+∠C=180°,又∵∠B=∠C,∴∠B=∠C=90°,∴四边形ABCD为矩形;(2)如图2,延长BA,CM交于点E,∵M为AD的中点,N为AB中点,∴AN=BN=2,AM=MD,∴AB=CD=4,∵AE∥DC,∴∠E=∠MCD,在△AEM和△DCM中,,∴△AME≌△DMC(AAS),∴AE=CD=4,∵∠BNC=2∠DCM=∠NCD,∴∠NCE=∠ECD=∠E,∴CN=EN=AE+AN=4+2=6.。
北师大版数学九年级上册1.2矩形的性质与判定同步练习有答案
2018-2019学年度北师大版数学九年级上册同步练习1.2 矩形的性质与判定学校:___________姓名:___________班级:___________一.选择题(共15小题)1.已知一矩形的周长是24cm,相邻两边之比是1:2,那么这个矩形的面积是()A.24cm2B.32cm2C.48cm2D.128cm22.下面对矩形的定义正确的是()A.矩形的四个角都是直角B.矩形的对角线相等C.矩形是中心对称图形D.有一个角是直角的平行四边形3.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD 于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.184.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC,若AC=6cm,则四边形CODE的周长为()A.6 B.8 C.10 D.125.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为()A.6 B.5 C.2 D.36.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE垂直平分BO,AE=cm,则OD=()A.1cm B.1.5cm C.2cm D.3cm7.下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是矩形C.对角线相等的平行四边形是矩形D.对角线互相垂直的平行四边形是矩形8.如图,在平行四边形ABCD中,AC、BD是它的两条对角线,下列条件中,能判断这个平行四边形是矩形的是()A.∠BAC=∠ACB B.∠BAC=∠ACD C.∠BAC=∠DAC D.∠BAC=∠ABD9.如图,平行四边形ABCD的对角线AC与BD相交于点O,要使它成为矩形,需再添加的条件是()A.AO=OC B.AC=BD C.AC⊥BD D.BD平分∠ABC10.如图,为了检验教室里的矩形门框是否合格,某班的四个学习小组用三角板和细绳分别测得如下结果,其中不能判定门框是否合格的是()A.AB=CD,AD=BC,AC=BD B.AC=BD,∠B=∠C=90°C.AB=CD,∠B=∠C=90°D.AB=CD,AC=BD11.在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形12.如图,在Rt△ABC中,AC=3,BC=4,D为斜边AB上一动点,DE⊥BC,DF⊥AC,垂足分别为E、F.则线段EF的最小值为()A.B.C.D.13.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3 B.C. D.414.如图,D、E、F分别是△ABC各边的中点.添加下列条件后,不能得到四边形ADEF 是矩形的是()A.∠BAC=90°B.BC=2AE C.DE平分∠AEB D.AE⊥BC15.已知四边形ABCD中,对角线AC与BD相交于点O,AD∥BC,下列判断中错误的是()A.如果AB=CD,AC=BD,那么四边形ABCD是矩形B.如果AB∥CD,AC=BD,那么四边形ABCD是矩形C.如果AD=BC,AC⊥BD,那么四边形ABCD是菱形D.如果OA=OC,AC⊥BD,那么四边形ABCD是菱形二.填空题(共6小题)16.矩形ABCD中,AB=3,BC=4,则AC=,矩形的面积为.17.如图,在▱ABCD中,再添加一个条件(写出一个即可),▱ABCD是矩形(图形中不再添加辅助线)18.如图,设矩形ABCD和矩形AEFC的面积分别为S1、S2,则二者的大小关系是:S1 S2.19.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=5cm,BC=12cm,则EF=cm.20.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加条件,才能保证四边形EFGH是矩形.21.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF ⊥AC于F,M为EF中点,则AM的最小值为.三.解答题(共5小题)22.如图,在矩形ABCD中,对角线AC与BD相交于点O,∠AOD=120°,BD=6,求矩形ABCD的面积.23.如图,DB∥AC,且DB=AC,E是AC的中点.(1)求证:BC=DE;(2)连接AD、BE,若∠BAC=∠C,求证:四边形DBEA是矩形.24.已知:如图,菱形ABCD,分别延长AB,CB到点F,E,使得BF=BA,BE=BC,连接AE,EF,FC,CA.(1)求证:四边形AEFC为矩形;(2)连接DE交AB于点O,如果DE⊥AB,AB=4,求DE的长.25.如图,四边形ABCD为平行四边形纸片.把纸片ABCD折叠,使点B恰好落在CD 边上,折痕为AF.且AB=10cm、AD=8cm、DE=6cm.(1)求证:平行四边形ABCD是矩形;(2)求BF的长;(3)求折痕AF长.26.已知矩形ABCD 和点P ,当点P 在图1中的位置时,则有结论:S △PBC =S △PAC +S △PCD 理由:过点P 作EF 垂直BC ,分别交AD 、BC 于E 、F 两点.∵S △PBC +S △PAD =BC•PF +AD•PE=BC (PF +PE )=BC•EF=S 矩形ABCD .(1)请补全以上证明过程.(2)请你参考上述信息,当点P 分别在图1、图2中的位置时,S △PBC 、S △PAC 、S PCD 又有怎样的数量关系?请写出你对上述两种情况的猜想,并选择其中一种情况的猜想给予证明.参考答案一.选择题(共15小题)1.B.2.D.3.C.4.D.5.C.6.C.7.C.8.D.9.B.10.D.11.D.12.D.13.C.14.D.15.A.二.填空题(共6小题)16.5,12.17.AC=BD18.=.19..20.AC⊥BD.21..三.解答题(共5小题)22.解:∵四边形ABCD是矩形,∴∠BAD=90°,AC=BD,OA=AC,OD=BD,∴OA=OD,∵∠AOD=120°,∴∠ADO=30°∴AB=BD.在直角三角形ABD中,由勾股定理,得AD===3=AB•AD=3×3=9.∴S矩形ABCD23.(1)证明:∵E是AC中点,∴EC=AC.∵DB=AC,∴DB=EC.又∵DB∥EC,∴四边形DBCE是平行四边形.∴BC=DE.(2)证明:∵DB∥AE,DB=AE,∴四边形DBEA是平行四边形.∵∠BAC=∠C,∴BA=BC,∵BC=DE,∴AB=DE.∴▭ADBE是矩形.24.证明:(1)∵BF=BA,BE=BC,∴四边形AEFC为平行四边形,∵四边形ABCD为菱形,∴BA=BC,∴BE=BF,∴BA+BF=BC+BE,即AF=EC,∴四边形AEFC为矩形;(2)连接DB,由(1)可知,AD∥EB,且AD=EB,∴四边形AEBD为平行四边形,∵DE⊥AB,∴四边形AEBD为菱形,∴AE=EB,AB=2AG,ED=2EG,∵矩形ABCD中,EB=AB,AB=4,∴AG=2,AE=4,∴在Rt△AEG中,EG=2,∴ED=4.25.(1)证明:∵把纸片ABCD折叠,使点B恰好落在CD边上,∴AE=AB=10,AE2=102=100,又∵AD2+DE2=82+62=100,∴AD2+DE2=AE2,∴△ADE是直角三角形,且∠D=90°,又∵四边形ABCD为平行四边形,∴平行四边形ABCD是矩形(有一个角是直角的平行四边形是矩形);(2)解:设BF=x,则EF=BF=x,EC=CD﹣DE=10﹣6=4cm,FC=BC﹣BF=8﹣x,在Rt△EFC中,EC2+FC2=EF2,即42+(8﹣x)2=x2,解得x=5,故BF=5cm;(3)解:在Rt△ABF中,由勾股定理得,AB2+BF2=AF2,∵AB=10cm,BF=5cm,∴AF==5cm.26.证明:(1)∵S△PAC+S△PCD+S△PAD=S矩形ABCD∴S△PBC +S△PAD=S△PAC+S△PCD+S△PAD,∴S△PBC=S△PAC+S△PCD;(2)猜想结果:图2结论S△PBC=S△PAC+S△PCD;图3结论S△PBC=S△PAC﹣S△PCD.证明:如图,过点P作EF垂直AD,分别交AD、BC于E、F两点.∵S△PBC=BC•PF=BC•PE+BC•EF=AD•PE+BC•EF=S△PAD+S矩形ABCDS△PAC+S△PCD=S△PAD+S△ADC=S△PAD+S矩形ABCD∴S△PBC=S△PAC+S△PCD.。
1.2 矩形的性质与判定 北师大版九年级数学上册解答专项练习(含解析)
2022-2023学年北师大版九年级数学上册《1.2矩形的性质与判定》解答专项练习题(附答案)1.如图,点E为矩形ABCD内一点,且EA=EB.求证:∠ECD=∠EDC.2.如图,在矩形ABCD中,点M在CD上,AM=AB,BN⊥AM,垂足为N.(1)求证:△ABN≌△MAD;(2)若AD=3,MN=1,求AB的长.3.如图,在矩形ABCD中,O是对角线AC的中点,过点O作EF⊥AC分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)若AB=8,BC=16,求CF的长.4.如图,在平行四边形ABCD中,过点D作DE⊥AB于点E,点F在边CD上,且FC=AE,连接AF、BF.(1)求证:四边形DEBF是矩形;(2)若AF平分∠DAB,FC=3,DF=5,求BF的长.5.如图,在平行四边形ABCD中,CE⊥AD于点E,延长DA至点F,使得EF=DA,连接BF,CF.(1)求证:四边形BCEF是矩形;(2)若AB=3,CF=4,DF=5,求EF的长.6.如图,在▱ABCD中,点E、F在AD边上,且BF=CE,AE=DF.(1)求证:△ABF≌△DCE;(2)求证:四边形ABCD是矩形.7.已知:如图,四边形ABCD是平行四边形,CE∥BD交AD的延长线于点E,CE=AC.(1)求证:四边形ABCD是矩形;(2)若AB=4,AD=3,求四边形BCED的周长.8.如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若∠BDE=15°,求∠DOE;(3)在(2)的条件下,若AB=2,求△BOE的面积.9.如图,在四边形ABCD中,AC、BD相交于点O,AD∥BC,∠ADC=∠ABC,OA=OB.(1)如图1,求证:四边形ABCD为矩形;(2)如图2,P是AD边上任意一点,PE⊥BD,PF⊥AC,E、F分别是垂足,若AD=12,AB=5,求PE+PF的值.10.如图,在矩形ABCD中,E为DC边的中点,连接AB,AE的延长线和BC的延长线相交于点F.(1)求证:△ADE≌△FCE;(2)连接AC,与BE相交于点G,若△GEC的面积为2,求矩形ABCD的面积.11.如图,在矩形ABCD中,O为对角线BD的中点,过点O作直线分别与矩形的边AB,CD交于E,F两点,连接BF,DE.(1)求证:四边形BEDF为平行四边形;(2)若AD=1,AB=3,且EF⊥BD,求AE的长.12.已知:如图,平行四边形ABCD中,M、N分别为AB和CD的中点.(1)求证:四边形AMCN是平行四边形;(2)当△ABC的边AC、BC满足什么数量关系时,四边形AMCN是矩形,请说明理由.13.如图,过△ABC边AC的中点O,作OE⊥AC,交AB于点E,过点A作AD∥BC,与BO的延长线交于点D,连接CD,CE,若CE平分∠ACB,CE⊥BO于点F.(1)求证:OC=BC.(2)四边形ABCD是矩形.14.已知,在四边形ABCD中,AD∥BC,点E为BC的中点,连接AC,DE交于点F,AB =AC,AF=CF.(1)如图1,求证:四边形AECD是矩形;(2)如图2,连接BF,在不添加任何辅助线的情况下,请直接写出图2中与△BEF面积相等的三角形.15.如图,AD是▱ABDE的对角线,∠ADE=90°,延长ED至点C,使DC=ED,连接AC 交BD于点O,连接BC.(1)求证:四边形ABCD是矩形;(2)连接OE,若AD=4,AB=2,求OE的长.16.如图,矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1(1)判断△BEC的形状,并说明理由;(2)求证:四边形EFPH是矩形.17.如图△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=4,CF=3,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.18.如图,在平行四边形ABCD中,已知对角线AC、BD相交于点O,若E、F是AC上两动点,分别从A、C两点以相同的速度1cm/s向点O运动.(1)当E与F不重合时,四边形DEBF是否是平行四边形?请说明理由;(2)若AC=16cm,BD=12cm,点E,F在运动过程中,四边形DEBF能否为矩形?如能,求出此时的运动时间t的值,如不能,请说明理由.19.如图,在矩形ABCD中,AB=5,AD=3,点P是AB边上一点(不与A,B重合),连接CP,过点P作PQ⊥CP交AD边于点Q,连接CQ.(1)当△CDQ≌△CPQ时,求AQ的长;(2)取CQ的中点M,连接MD,MP,MD⊥MP,求AQ的长.20.如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.21.如图,在长方形ABCD中,BC=20cm,P、Q、M、N分别从A、B、C、D出发沿AD、BC、CB、DA方向在长方形的边上同时运动,当有一个点先到达所在运动边的另一个端点时即停止,已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm.(1)当x为何值时,点的运动停止?(2)点P与点N可能相遇吗?点Q与点M呢?请通过计算说明理由.(3)当x为何值时,以P、Q、M、N为顶点的四边形是平行四边形?22.如图,AC为矩形ABCD的对角线,BE⊥AC于点E,DF⊥AC于点F.(1)求证:△ABE≌△CDF.(2)求证:四边形BFDE是平行四边形.23.如图,矩形ABCD中,AB=4cm,BC=8cm,动点M从点D出发,按折线D→C→B→A→D方向以2cm/s的速度运动,动点N从点D出发,按折线DABCD方向以1cm/s的速度运动.(1)若动点M、N同时出发,经过几秒钟两点相遇?(2)若点E在线段BC上,且BE=3cm,若动点M、N同时出发,相遇时停止运动,经过几秒钟,点A、E、M、N组成平行四边形?24.如图,长方形ABCD中,AB=4cm,BC=6cm,现有一动点P从A出发以2cm/秒的速度,沿矩形的边A﹣B﹣C﹣D回到点A,设点P运动的时间为t秒.(1)当t=3秒时,求△ABP的面积;(2)当t为何值时,点P与点A的距离为5cm?(3)当t为何值时(2<t<5),以线段AD、CP、AP的长度为三边长的三角形是直角三角形,且AP是斜边.参考答案1.证明:∵EA=EB,∴∠EAB=∠EBA,在矩形ABCD中,∠DAB=∠CBA=90°,AD=BC,∴∠DAB﹣∠EAB=∠CBA﹣∠EBA,即∠EAD=∠EBC,在△ADE和△BCE中,AD=BC∠DAE=∠CBE,EA=EB∴△ADE≌△BCE(SAS).∴ED=EC,∴∠ECD=∠EDC.2.(1)证明:在矩形ABCD中,∠D=90°,DC∥AB,∴∠BAN=∠AMD,∵BN⊥AM,∴∠BNA=90°,在△ABN和△MAD中,∠BAN=∠AMD∠BNA=∠D=90°,AB=AM∴△ABN≌△MAD(AAS);(2)解:∵△ABN≌△MAD,∴BN=AD=3,∵AB2=AN2+BN2,∴AB2=(AB﹣1)2+9,∴AB=5,3.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠BCA,∵点O是AC的中点,∴AO=CO,在△AEO和△CFO中,∠DAC=∠ACBAO=CO,∠AOE=∠COF∴△AEO≌△CFO(ASA);(2)解:如图,连接AF,∵AO=CO,EF⊥AC,∴AF=FC,∵AF2=AB2+BF2,∴CF2=(16﹣CF)2+64,∴CF=10.4.(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,DC=AB,∵FC=AE,∴CD﹣FC=AB﹣AE,即DF=BE,∴四边形DEBF是平行四边形,又∵DE⊥AB,∴∠DEB=90°,∴平行四边形DEBF是矩形;(2)解:∵AF平分∠DAB,∴∠DAF=∠BAF,∵DC∥AB,∴∠DFA=∠BAF,∴∠DFA=∠DAF,∴AD=DF=5,在Rt△AED中,由勾股定理得:DE=AD2―AE2=52―32=4,由(1)得:四边形DEBF是矩形,∴BF=DE=4.5.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵EF=DA,∴EF=BC,EF∥BC,∴四边形BCEF是平行四边形,又∵CE⊥AD,∴∠CEF=90°,∴平行四边形BCEF是矩形;(2)解:∵四边形ABCD是平行四边形,∴CD=AB=3,∵CF=4,DF=5,∴CD2+CF2=DF2,∴△CDF是直角三角形,∠DCF=90°,∴△CDF的面积=12DF×CE=12CF×CD,∴CE=CF×CDDF=4×35=125,由(1)得:EF=BC,四边形BCEF是矩形,∴∠FBC=90°,BF=CE=12 5,∴BC=CF2―BF2=42―(125)2=165,∴EF=16 5.6.证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵AE=FD,∴AE+EF=FD+EF,即AF=DE,在△ABF和△DCE中,AB=CDBF=CE,AF=DE∴△ABF≌△DCE(SSS);(2)由(1)可知:△ABF≌△DCE,∴∠A=∠D,∵AB∥CD,∴∠A+∠D=180°,∴2∠A=180°,∴∠A=90°,∴▱ABCD为矩形.7.(1)证明:∵四边形ABCD是平行四边形,∴AE∥BC,∵CE∥BD,∴四边形BCED是平行四边形,∴CE=BD.∵CE=AC,∴AC=BD.∴▱ABCD是矩形;(2)解:∵AB=4,AD=3,∠DAB=90°,∴BD=AB2+AD2=42+32=5.∵四边形BCED是平行四边形,∴四边形BCED的周长为2(BC+BD)=2×(3+5)=16.8.(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC=90°,∴∠BAD=90°,∴∠BAD=∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,DE平分∠ADC,∴∠CDE=∠CED=45°,∴EC=DC,又∵∠BDE=15°,∴∠CDO=60°,又∵矩形的对角线互相平分且相等,∴OD=OC,∴△OCD是等边三角形,∴∠DOC=∠OCD=60°,∴∠OCB=90°﹣∠DCO=30°,∵CO=CE,∴∠COE=(180°﹣30°)÷2=75°,∴∠DOE=∠DOC+∠COE=60°+75°=135°;(3)解:作OF⊥BC于F.∵四边形ABCD是矩形,∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴BF=FC,∴OF=12CD=1,∵∠OCB=30°,AB=2,∴BC=23,∵DE平分∠ADC,∠ADC=90°,∴∠EDC=45°,在Rt△EDC中,EC=CD=2,∴△BOE的面积=12•EB•OF=12×(23―2)×1=3―1.9.证明:(1)∵AD∥BC,∴∠ABC+∠BAD=180°,∠ADC+∠BCD=180°,∵∠ABC=∠ADC,∴∠BAD=∠BCD,∴四边形ABCD是平行四边形,∴OA=OC=12AC,OB=OD=12BD,∵OA=OB,∴AC=BD,∴四边形ABCD是矩形;(2)如图,连接OP,∵AD=12,AB=5,∴BD=AB2+AD2=144+25=13,∴BO=OD=AO=CO=13 2,∵S△AOD=14S矩形ABCD=14×12×5=15,∴S△AOP+S△POD=15,∴12×132×FP+12×132×EP=15,∴PE+PF=60 13.10.(1)证明:∵四边形ABCD是矩形,∴AD∥CB,AD=BC,∴∠D=∠FCE;∵E为DC中点,∴ED=EC,在△ADE与△FCE中,∠D=∠FCEDE=CE∠AED=∠FEC,∴△ADE≌△FCE(ASA);(2)解:∵四边形ABCD是矩形,∴AB∥CD,AB=DC,∴ABEC=BGEG,S△ABGS△CEG=(ABEC)2,∵DE=CE,∴AB=2CE,∴BGEG=2,S△ABGS△CEG=(ABEC)2=4,∵△GEC的面积为2,∴S△BGC=2S△CEG=4,S△ABG=4S△CEG=8,∴S△ABC=S△BGC+S△ABG=4+8=12,∴矩形ABCD的面积=2S△ABC=24.11.(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠OBE=∠ODF,∵O为对角线BD的中点,∴OB=OD,在△OBE和△ODF中,∠OBE=∠ODFOB=OD∠BOE=∠DOF,∴△OBE≌△ODF(ASA),∴BE=DF,又∵BE∥DF,∴四边形BEDF为平行四边形;(2)解:∵四边形ABCD是矩形,∴∠A=90°,由(1)得:四边形BEDF为平行四边形,∵EF⊥BD,∴平行四边形BEDF为菱形,∴BE=DE,设AE=x,则DE=BE=3﹣x,在Rt △ADE 中,由勾股定理得:AD 2+AE 2=DE 2,即12+x 2=(3﹣x )2,解得:x =43,即AE 的长为43.12.(1)证明∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∵M ,N 分别为AB 和CD 的中点,∴AM =12AB ,CN =12CD ,∴AM =CN ,∵AB ∥CD ,∴四边形AMCN 是平行四边形;(2)解:AC =BC 时,四边形AMCN 是矩形,证明∵AC =BC ,且M 是BC 的中点,∴CM ⊥AB ,即∠AMC =90°,∴四边形AMCN 是矩形.13.证明:(1)∵CE 平分∠ACB ,∴∠OCE =∠BCE ,∵BO ⊥CE ,∴∠CFO =∠CFB =90°,在△OCF 与△BCF 中,∠OCE =∠BCE CF =CF ∠CFO =∠CFB,△OCF ≌△BCF (ASA ),∴OC =BC ;(2)∵点O 是AC 的中点,∴OA =OC ,∵AD ∥BC ,∴∠DAO =∠BCO ,∠ADO =∠CBO ,在△OAD与△OCB中,∠DAO=∠BCOOA=OC,∠ADO=∠CBO∴△OAD≌△OCB(ASA),∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵OE⊥AC,∴∠EOC=90°,在△OCE与△BCE中,CE=CE∠OCE=∠BEC,OC=BC∴△OCE≌△BCE(SAS),∴∠EBC=∠EOC=90°,∴四边形ABCD是矩形.14.(1)证明:∵AD∥BC,∴∠FAD=∠FCE,∠FDA=∠FEC,在△ADF和△CEF中,∠FAD=∠FCE∠FDA=∠FEC,AF=CF∴△ADF≌△CEF(AAS),∴AD=CE,∵AD∥CE,∴四边形AECD为平行四边形,∵AB=AC,点E为BC的中点,∴AE⊥BC,∴∠AEC=90°,∴平行四边形AECD为矩形;(2)解:图2中与△BEF面积相等的三角形为△AEF,△ADF,△CDF,△CEF.理由如下:∵点E为BC的中点,∴S△CEF=S△BEF,∵AF=CF,∴S△AEF=S△CEF,S△ADF=S△CDF,由(1)可知,四边形AECD是矩形,∴EF=DF,∴S△AEF=S△ADF,∴S△CEF=S△BEF=S△AEF=S△ADF=S△CDF,即与△BEF面积相等的三角形为△AEF,△ADF,△CDF,△CEF.15.(1)证明:∵四边形ABDE是平行四边形,∴AB∥DE,AB=ED,∵DC=ED,∴DC=AB,DC∥AB,∴四边形ABCD是平行四边形,∵DE⊥AD,∴∠ADC=90°,∴四边形ABCD是矩形;(2)解:过O作OF⊥CD于F,∵四边形ABCD是矩形,AD=4,AB=2∴DE=CD=AB=2,AD=BC=4,AC=BD,AO=OC,BO=DO,∴OD=OC,∵OF⊥CD,∴DF=CF=12CD=12×2=1,∴OF=12BC=12×4=2,EF=DE+DF=2+1=3,∴OE=EF2+OF2=32+22=13.16.解:(1)△BEC是直角三角形:理由是:∵矩形ABCD,∴∠ADC=∠ABP=90°,AD=BC=5,AB=CD=2,由勾股定理得:CE=CD2+DE2=22+12=5,同理BE=25,∴CE2+BE2=5+20=25,∵BC2=52=25,∴BE2+CE2=BC2,∴∠BEC=90°,∴△BEC是直角三角形.(2)∵矩形ABCD,∴AD=BC,AD∥BC,∵DE=BP,∴四边形DEBP是平行四边形,∴BE∥DP,∵AD=BC,AD∥BC,DE=BP,∴AE=CP,∴四边形AECP是平行四边形,∴AP∥CE,∴四边形EFPH是平行四边形,∵∠BEC=90°,∴平行四边形EFPH是矩形.17.(1)证明:∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF;(2)解:∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°,∵CE=4,CF=3,∴EF=42+32=5,∴OC=12EF=52;(3)当点O在边AC上运动到AC中点时,四边形AECF是矩形.证明:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.18.解:(1)当E与F不重合时,四边形DEBF是平行四边形.理由:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD;∵E、F两动点,分别从A、C两点以相同的速度向点O运动,∴AE=CF;∴OE=OF;∴BD、EF互相平分;∴四边形DEBF是平行四边形;(2)四边形DEBF能是矩形.理由:∵四边形DEBF是平行四边形,∴当BD=EF时,四边形DEBF是矩形;∵BD=12cm,∴EF=12cm;∴OE=OF=6cm;∵AC=16cm;∴OA=OC=8cm;∴AE=2cm,由于动点的速度都是1cm/s,所以t=2(s)故当运动时间t=2s时,以D、E、B、F为顶点的四边形是矩形.19.解:(1)∵△CDQ≌△CPQ,∴DQ=PQ,PC=DC,∵AB=DC=5,AD=BC=3,∴PC=5,在Rt△PBC中,PB=PC2―BC2=4,∴PA=AB﹣PB=5﹣4=1,设AQ=x,则DQ=PQ=3﹣x,在Rt△PAQ中,(3﹣x)2=x2+12,解得x=4 3,∴AQ=4 3.(2)方法1,如图2,过M作EF⊥CD于F,则EF⊥AB,∵MD⊥MP,∴∠PMD=90°,∴∠PME+∠DMF=90°,∵∠FDM+∠DMF=90°,∴∠MDF=∠PME,∵M是QC的中点,∴DM=12QC,PM=12QC,∴DM=PM,在△MDF和△PME中,∠MDF=∠PME∠DFM=∠MEPDM=PM,∴△MDF≌△PME(AAS),∴ME=DF,PE=MF,∵EF⊥CD,AD⊥CD,∴EF∥AD,∵QM=MC,∴DF=CF=12DC=52,∴ME=5 2,∵ME是梯形ABCQ的中位线,∴2ME=AQ+BC,即5=AQ+3,∴AQ=2.方法2、∵点M是Rt△CDQ的斜边CQ中点,∴DM=CM,∴∠DMQ=2∠DCQ,∵点M是Rt△CPQ的斜边的中点,∴MP=CM,∴∠PMQ=2∠PCQ,∵∠DMP=90°,∴2∠DCQ+2∠PCQ=90°,∴∠PCD=45°,°∠BCP=90°﹣45°=45°,∴∠BPC=45°=∠BCP,∴BP=BC=3,∵∠CPQ=90°,∴∠APQ=180°﹣90°﹣45°=45°,∴∠AQP=90°﹣45°=45°=∠APQ,∴AQ=AP=2.20.(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF,∵点E,F分别为OB,OD的中点,∴BE=12OB,DF=12OD,∴BE=DF,在△ABE和△CDF中,AB=CD∠ABE=∠CDFBE=DF,∴△ABE≌△CDF(SAS);(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB,∴AB=OA,∵E是OB的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,由(1)得:△ABE≌△CDF,∴AE=CF,∵EG=AE,∴EG=CF,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.21.解:(1)由题意得x2=20,∴x=25,∴当x为25时,点的运动停止;(2)当点P与点N相遇时,2x+x2=20,解得x=221―1或﹣1﹣221(舍去),当点Q与点M相遇时,x+3x=20,解得x=5,当x=5时,x2=25>20,∴点Q与点M不能相遇;(3)∵当点N到达A点时,x2=20,∴x=25,∴BQ=25cm,CM=65cm,∵BQ+CM=85<20,∴此时M点与Q点还未相遇,∴点Q只能在点M的左侧,①如图,当点P在点N的左侧时,20﹣(x+3x)=20﹣(2x+x2),解得x=0(舍去)或x=2,∴当x=2时,以P、Q、M、N为顶点的四边形是平行四边形;②如图,当点P在点N的右侧时,20﹣(x+3x)=(2x+x2)﹣20,解得x=4或﹣10(舍去),∴当x=4时,以P、Q、M、N为顶点的四边形是平行四边形,综上,当x=2或4时,以P、Q、M、N为顶点的四边形是平行四边形.22.证明:(1)∵四边形ABCD是矩形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF,又∵BE⊥AC,DF⊥AC,∴∠AEB=∠CFD=90°,在△ABE和△CDF中,∠AEB=∠CFD∠BAE=∠DCF,AB=CD∴△ABE≌△CDF(AAS);(2)由(1)得:△ABE≌△CDF,∴BE=DF,又∵BE⊥AC,DF⊥AC,∴BE∥DF,∴四边形BFDE是平行四边形.23.解:(1)设t秒时两点相遇,根据题意得,t+2t=2(4+8),解得t=8,答:经过8秒两点相遇;(2)观察图象可知,点M不可能在AB或DC上.①如图1,点M在E点右侧时,当AN=ME时,四边形AEMN为平行四边形,得:8﹣t=9﹣2t,解得t =1,∵t =1时,点M 还在DC 上,∴t =1舍去;②如图2,点M 在E 点左侧时,当AN =ME 时,四边形AEMN 为平行四边形,得:8﹣t =2t ﹣9,解得t =173.所以,经过173秒钟,点A 、E 、M 、N 组成平行四边形.24.解:(1)当t =3时,点P 的路程为2×3=6cm ,∵AB =4cm ,BC =6cm∴点P 在BC 上,∴S △ABP =12AB ⋅BP =4(cm 2).(2)(Ⅰ)若点P 在BC 上,∵在Rt △ABP 中,AP =5,AB =4∴BP =2t ﹣4=3,∴t =72;(Ⅱ)若点P 在DC 上,则在Rt △ADP 中,AP 是斜边,∵AD =6,∴AP >6,∴AP ≠5;(Ⅲ)若点P 在AD 上,AP =5,则点P的路程为20﹣5=15,∴t=15 2,综上,当t=72秒或t=152时,AP=5cm.(3)当2<t<5时,点P在BC边上,∵BP=2t﹣4,CP=10﹣2t,∴AP2=AB2+BP2=42+(2t﹣4)2由题意,有AD2+CP2=AP2∴62+(10﹣2t)2=42+(2t﹣4)2∴t=133<5,即t=13 3.。
北师版九上数学1.2矩形的性质与判定 同步练习(含答案)
北师版九上数学1.2矩形的性质与判定同步练习(含答案)一、选择题(共10题;共20分)1.(2分)下列说法正确的是()A.对角线互相垂直的四边形是菱形B.四边相等的四边形是菱形C.一组对边平行的四边形是平行四边形D.矩形的对角线互相垂直2.(2分)如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S△ABC=2S△ABF.其中正确的结论有()A.4个B.3个C.2个D.1个3.(2分)如图,在ABC中,AB=10,AC=8,BC=12,AD⊥BC于D,点E、F分别在AB、AC边上,把ABC沿EF折叠,使点A与点D恰好重合,则DEF的周长是().A.14B.15C.16D.174.(2分)如图,将正方形ABCD的一角折叠,折痕为AE,∠FAD比∠FAE大48°,设∠FAE和∠FAD的度数分别为x°,y°,那么x,y所适合的一个方程组是()A.B.C.D.5.(2分)如图,在2×2正方形网格中,以格点为顶点的△ABC的面积等于,则sin∠CAB=()A.B.C.D.6.(2分)如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB 上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°7.(2分)如图,在中,,平分.若则的长为()A.B.C.D.8.(2分)(2011•朝阳)如图,沿Rt△ABC的中位线DE剪切一刀后,用得到的△ADE 和四边形DBCE拼图,下列图形:①平行四边形;②菱形;③矩形;④等腰梯形.一定能拼出的是()A.只有①②B.只有③④C.只有①③④D.①②③④9.(2分)如图,已知⊙O的半径为5,AB⊥CD,垂足为P,且AB=CD=8,则OP的长为()A.3B.4C.3D.410.(2分)如图,矩形ABCD的对角线AC与数轴重合(点C在正半轴上),AB=5,BC=12,点A表示的数是﹣1,则对角线AC、BD的交点表示的数是()A. 5.5B.5C.6D. 6.5二、填空题(共5题;共5分)11.(1分)如图,▱ABCD的对角线AC,BD相交于点O,点E是CD的中点,△ABD的周长为16cm,则△DOE的周长是________cm.12.(1分)如图,在△ABD中,∠ADB=90°,C是BD上一点,若E、F分别是AC、AB 的中点,△DEF的面积为3.5,则△ABC的面积为________.13.(1分)如图,在四边形ABCD中,,M、N分别是AC、BD的中点,则线段MN的长为________14.(1分)如图,等边三角形AOB的顶点A的坐标为(﹣4,0),顶点B在反比例函数y=(x<0)的图象上,则k=________.15.(1分)如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是________.三、解答题(共5题;共50分)16.(5分)如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.17.(20分)如图,在矩形ABCD中,AB=4,BC=3,点O为对角线BD的中点,点P从点A出发,沿折线AD﹣DO﹣OC以每秒1个单位长度的速度向终点C运动,当点P与点A不重合时,过点P作PQ⊥AB于点Q,以PQ为边向右作正方形PQMN,设正方形PQMN与△ABD 重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒).(1)求点N落在BD上时t的值;(2)直接写出点O在正方形PQMN内部时t的取值范围;(3)当点P在折线AD﹣DO上运动时,求S与t之间的函数关系式;(4)直接写出直线DN平分△BCD面积时t的值.18.(10分)猜想与证明:如图,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM,EM.(1)试猜想写出DM与EM的数量关系,并证明你的结论.拓展与延伸:(2)若将“猜想与证明”中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则(1)中的结论是否仍然成立?请直接写出你的判断.19.(6分)如图,中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,BF =AC.(1)求证:△BDF≌ADC(2)若∠CAD=20°,则∠ABE=________°.(直接写出结果)20.(9分)一位同学拿了两块45°的三角尺△MNK,△ACB做了一个探究活动:将△MNK 的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=a.(1)如图1,两个三角尺的重叠部分为△ACM,则重叠部分的面积为________,周长为________;(2)将图1中的△MNK绕顶点M逆时针旋转45°,得到图2,此时重叠部分的面积为________,周长为________;(3)如果将△MNK绕M旋转到不同于图1,图2的位置,如图3所示,猜想此时重叠部分的面积为多少?并试着加以验证.参考答案一、选择题(共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题(共5题;共50分)16-1、17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、20-3、。
北师大版九年级上册数学1.2《矩形的性质与判定》课时练习(简单答案)
九年级北师大版数学1.2《矩形的性质与判定》课时练习一、选择题:1、顺次连接矩形ABCD 各边中点,所得四边形必定是( )A . 邻边不等的平行四边形B . 矩形C . 正方形D . 菱形2、矩形具有而平行四边形不具有...的性质是( ) A .对角线互相平分 B .邻角互补 C .对角相等 D .对角线相等3、把一张长方形的纸片按图所示的方式折叠,EM 、FM 为折痕,折叠后的C 点落在B ′M 的延长线上,那么∠EMF 的读度为( )A .85°B .90°C .95°D .100°4、如图,在矩形ABCD 中,AB=3,BC=5,在CD 上任取一点E ,连接BE ,将△BCE 沿BE 折叠,使点C 恰好落在AD 边上的点F 处,则CE 的长为( ).A. 53B. 43C. 52D.3 5、在下列图形性质中,矩形不一定...具有的是( ) A .对角线互相平分且相等 B .四个角相等C .既是轴对称图形,又是中心对称图形D .对角线互相垂直平分6、如图,矩形ABCD 中,AB=3,BC=4,则图中五个小矩形的周长之和为( )A. 16B.8C. 14D. 127、如图,矩形ABCD 中,AB=8,BC=4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( )A .2√5B . 3√5C . 5D .68、如图,矩形ABCD 中,F 是DC 上一点,BF ⊥AC ,垂足为E ,AD AB =12,△CEF 的面积为S 1,△AEB 的面积为S2,则S1S 2的值等于( ).A. 1:16B.1:8C. 1:4D. 1:2二、填空题:9、如图,矩形ABCD 的两条对角线相交于点O ,∠AOD =120°,AB =2,则矩形的对角线AC 的长是______.10、在四边形ABCD 中,已知AB ∥DC ,AB =DC .要想该四边形成为矩形,只需再加上一个条件是____ _ .11、如图所示,把两个大小完全一样的矩形拼成“L ”形图案,则∠FAC=_______, ∠FCA=________.12、如图,在一张长为7cm ,宽为5cm 的矩形纸片上,现要剪下一个腰长为4cm 的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为 .13、如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C'处,BC'交AD于点E,则线段DE的长为.14、如图,矩形ABCD中,E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG 交CD于点F.若AB=6,BC=4√6,则FD的长为 .三、解答题:15、如图,在矩形ABCD中,两条对角线AC和BD相交于点O,AB=OA=4 cm,求BD与AD的长.16、如图所示,矩形ABCD中,M是BC的中点,且MA⊥MD,若矩形的周长为36 cm,求此矩形的面积。
北师大版九年级上册矩形的性质与判定课时精练(附答案)
北师大版九年级上册矩形的性质与判定课时精练(附答案)一、单选题1.能判定四边形是平行四边形的是()A. 对角线互相垂直B. 对角线相等C. 对角线互相垂直且相等D. 对角线互相平分2.已知▱ABCD,其对角线的交点为O,则下面说法正确的是()A. 当OA=OB时▱ABCD为矩形B. 当AB=AD时▱ABCD为正方形C. 当∠ABC=90°时▱ABCD为菱形D. 当AC⊥BD时▱ABCD为正方形3.下列说法正确的是()A. 平行四边形的对角线互相平分且相等B. 矩形的对角线相等且互相平分C. 菱形的对角线互相垂直且相等D. 正方形的对角线是正方形的对称轴4.现有14米长的木材,要做成一个如图所示的窗户,若窗户横档的长度为a米,则窗户中能射进阳光的部分的面积(窗框面积忽略不计)是()A. a(7﹣a)米2B. a(7﹣a)米2C. a(14﹣a)米2D. a(7﹣3a)米25.如图,下列条件中,能使平行四边形ABCD成为矩形的是()A. AB=BCB. AB=CDC. AC⊥BDD. AC=BD6.如图,在矩形纸片ABCD中,已知AD=8,折叠纸片,使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A. 3B. 4C. 5D. 67.在▱ABCD 中,增加下列条件中的一个,就能断定它是矩形的是( )A. ∠A+∠C=180°B. AB=BCC. AC⊥BDD. AC=2AB8.如图,在平面直角坐标系中,矩形OABC的顶点A,B在反比例函数的图像上,纵坐标分别为1和3,则k的值为()A. B. C. 2 D. 39.直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3,把一块含有45°角的直角三角形如图放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为()A. B. C. D.二、填空题10.如图所示,已知平行四边形ABCD ,下列条件:①AC=BD ,②AB=AD ,③∠1=∠2,④AB⊥BC 中,能说明平行四边形ABCD是矩形的有(填写序号)________ .11.如图,要使平行四边形ABCD是矩形,则应添加的条件是________(添加一个条件即可).12.已知矩形,给出三个关系式:① ② ③ 如果选择关系式________作为条件(写出一个即可),那么可以判定矩形为正方形,理由是________ .13.若矩形的面积为a2+ab,宽为a,则长为________.14.矩形ABCD的对角线相交于O ,AC=2AB ,则△COD为________三角形.15.把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB=3cm,BC=5cm,则重叠部分△DEF的面积是________ cm2.16.如图,点A在轴的负半轴上,点B在轴的正半轴上,∠BAO=30°,将△ABO绕点A逆时针旋转得到△ACD,点O的对应点D刚好落在AB上,直线CB交轴于点E,已知E ,则点C的坐标是________.17.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有下列结论:①FC=HE;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2 .其中正确的是________.(把所有正确结论的序号都选上)18.如图,在矩形中,分别为边,的中点,与,分别交于点M,N.已知,,则的长为________.三、解答题19.如图,在▱ABCD中,∠ABD=90°,延长AB至点E,使BE=AB,连接CE.求证:四边形BECD是矩形.20.在矩形ABCD中,点O是AC的中点,AC=2AB,延长AB至G,使BG=AB,连接GO交BC于E,延长GO 交AD于F.(1)求证:△ABC≌△AOG;(2)猜测四边形AECF的形状并证明你的猜想.21.如图,在矩形ABCD中,以点D为圆心,DA长为半径画弧,交CD于点E,以点A为圆心,AE长为半径画弧,恰好经过点B,连结BE、AE.求∠EBC的度数.22.如图,菱形ABCD的对角线AC和BD交于点O,分别过点C、D作CE∥BD,DE∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)当∠ADB=60°,AD=2时,求tan∠EAD的值.答案一、单选题1. D2. A3. B4. B5. D6. D7. A8. B9. A二、填空题10. ①④ 11. ∠ABC=90°或AC=BD.12. ①;一组邻边相等的矩形是正方形13. a+b 14. 等边15. 5.1 16. 17. ①③④ 18.三、解答题19. 证明:∵四边形ABD是平行四边形,∴CD=AB,CD∥AB,∵BE=AB,∴BE=CD,∴四边形BECD是平行四边形,∵∠ABD=90°,∴∠DBE=90°,∴四边形BECD是矩形.20. (1)证明:∵点O是AC的中点,∴AO=CO=AC,∵AC=2AB,BG=AB,∴AB=AO,AC=AG,在△ABC和△AOG中,,∴△ABC≌△AOG(SAS);(2)解:四边形AECF是菱形;理由如下:∵四边形ABCD是矩形,∴∠ABC=90°,AD∥BC,∴∠OAF=∠COE,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴OF=OE,∴四边形AECF是平行四边形,∵△ABC≌△AOG,∴∠AOG=∠ABC=90°,∴AC⊥EF,∴四边形AECF是菱形.21. 解:由题意得:AD=DE,AE=AB,∵四边形ABCD是矩形,∴∠D=∠ABC=∠DAB=90°,∵AD=DE,∴∠DAE=45°,∴∠EAB=45°,∵AE=AB,∴∠EBA=∠AEB= =67.5°,∴∠EBC=90°﹣67.5°=22.5°.22. (1)证明:∵CE∥BD,DE∥AC,∴四边形ODEC是平行四边形.又∵菱形ABCD,∴AC⊥BD,∴∠DOC=90°.∴四边形ODEC是矩形.(2)如图,过点E作EF⊥AD,交AD的延长线于F.∵AC⊥BD,∠ADB=60°,AD=2,∴OD=,AO=OC=3.∵四边形ODEC是矩形,∴DE=OC=3,∠ODE=90°.又∵∠ADO+∠ODE+∠EDF=180°,∴∠EDF=30°.在Rt△DEF中,∠F=90°,∠EDF=30°.∴EF=.∴DF=.在Rt△AFE中,∠DFE=90°,∴tan∠EAD=.。
北师大版九年级上册数学1.2矩形的性质和判定课堂讲义及练习(含答案)
【矩形的性质】 1矩形的定义有一个角是直角的平行四边形叫做矩形 温馨提示 ①对于矩形的定义要注意两点 a.是平行四边形.b.有一个角是直角;②定义说有一个角是直角的平行四边形才是矩形,不要错误地理解为有一个角是直角的四边形是矩形;③矩形的定义既是矩形的性质,也提供了矩形的种判定方法。
形的性质(1) 矩形具有平行四边形的所有性质 (2) 矩形的四个角都是直角 (3) 矩形的对角线相等• (4)矩形是轴对称图形,它有两条对称轴,对角线所在直线就是它的对称轴•矩形又是中心对称图形,对角线的交点为对称中心,过中心的任意直线可将矩形分成完全全等的两部分 矩形中相等的线段:AC=BD OA = OC=OB = OD .矩形中相等的角: / ABC = / BCD = / CDA = / DAB = 90 ° 矩形中的全等三角形: 全等的等腰三角形有: 全等的 直角 三角形有:■' "二 WU 二小点拨:有关矩形问题可转化为直角三角形或等腰三角形的问题来解决 温馨提示:①矩形具有平行四边形的一切性质;矩形练习1.2矩形的性质和判定2. 矩(转化思想).②利用矩形的性质可以推出直角三角形斜边中线的性质,即:在直角三角形中,斜边上的中线等于斜边的一半;③ “矩形的四个角都是直角”这一性质可用来证两条线段互相垂直或角相等,“矩形的对角线相等”这一性质可用来证线段相等;4. 在矩形ABCD 中,对角线AC, BD 相交于点 0, E , F 分别是AQ AD 的中点,若AB= 6 cm, BC = 8 cm,则EF= ___________ cm.5. △ ABC 中,/ ACB= 90°,/ B = 55°, D 是斜边AB 的中点,那么/ ACD 的度数为( ) A. 15° B . 25° C . 35° D . 45°9.如图,在矩形 ABCD 中 ,连接对角线 AC, BD,将厶ABC 沿BC 方向平移,使点 B 移到点C ,得到△ DCE. (1) 求证:△ ACD^A EDC(2) 请探究△ BDE 的形状,并说明理由.【矩形的判定】1. 矩形的判定定理(1) 有三个角是直角的四边形是矩形 (2) 对角线相等的平行四边形是矩形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版九年级上册数学1.2 矩形的性质和判定课堂讲义及练习(含答案)【矩形的性质】1.矩形的定义有一个角是直角的平行四边形叫做矩形.温馨提示①对于矩形的定义要注意两点a.是平行四边形.b.有一个角是直角;②定义说有一个角是直角的平行四边形才是矩形,不要错误地理解为有一个角是直角的四边形是矩形;③矩形的定义既是矩形的性质,也提供了矩形的种判定方法。
2. 矩形的性质(1)矩形具有平行四边形的所有性质 .(2)矩形的四个角都是直角.(3)矩形的对角线相等.(4)矩形是轴对称图形,它有两条对称轴,对角线所在直线就是它的对称轴. 矩形又是中心对称图形,对角线的交点为对称中心,过中心的任意直线可将矩形分成完全全等的两部分..矩形中相等的线段:AC=BD, OA = OC=OB = OD.矩形中相等的角:∠ABC = ∠BCD = ∠CDA = ∠DAB = 90°.矩形中的全等三角形:全等的等腰三角形有:,全等的直角三角形有:点拨:有关矩形问题可转化为直角三角形或等腰三角形的问题来解决 (转化思想).温馨提示:①矩形具有平行四边形的一切性质;②利用矩形的性质可以推出直角三角形斜边中线的性质,即:在直角三角形中,斜边上的中线等于斜边的一半;③“矩形的四个角都是直角”这一性质可用来证两条线段互相垂直或角相等,“矩形的对角线相等”这一性质可用来证线段相等;④矩形的两条对角线分矩形为面积相等的四个等腰三角形。
【练习】1.如图,在矩形ABCD中,E是BC边的中点,且AE平分∠BAD,CE=2,则CD的长是( )A.2 B.3 C.4 D.5如图,在矩形ABCD中,AB=2BC,在CD上取一点E,使AE=AB,则∠EBC的度数是( )A.30° B.22.5° C.15° D.10°3.如图,在矩形ABCD中,点O在边AB上,∠AOC=∠BOD.求证:AO=BO.第4题第5题第6题第7题4.在矩形ABCD中,对角线AC,BD相交于点O,E,F分别是AO,AD的中点,若AB=6 cm,BC=8 cm,则EF=________cm.5.△ABC中,∠ACB=90°,∠B=55°,D是斜边AB的中点,那么∠ACD的度数为( )A.15° B.25° C.35° D.45°6.已知矩形ABCD沿着直线BD折叠,使点C落在点C′处,BC′交AD于点E,AD=8,AB=4,则DE的长为( ) A.3 B.4 C.5 D.67.在矩形ABCD中,E,F分别是AB,CD的中点,连接DE,BF,分别取DE,BF的中点M,N,连接AM,CN,MN,若AB=5,BC=8,则图中阴影部分的面积为( )A.5 B.8 C.13 D.208.如图,已知△ABC和△ABD均为直角三角形,其中∠ACB=∠ADB=90°,E为AB的中点.求证:CE=DE.9.如图,在矩形ABCD中,连接对角线AC,BD,将△ABC沿BC方向平移,使点B移到点C,得到△DCE.(1)求证:△ACD≌△EDC;(2)请探究△BDE的形状,并说明理由.【矩形的判定】1.矩形的判定定理(1)有三个角是直角的四边形是矩形.(2)对角线相等的平行四边形是矩形。
(3)有一个角是直角的平行四边形是矩形.温馨提示②四个角均相等的四边形是矩形;③有两条对角线相等的四边形不一定是矩形,必须加上“平行四边形”这个条件,它才是矩形;④对角线相等且互相平分的四边形是矩形。
4.下列命题错误的是( )A.有三个角是直角的四边形是矩形 B.有一个角是直角且对角线互相平分的四边形是矩形C.对角线相等且有一个角是直角的四边形是矩形 D.对角线相等且互相平分的四边形是矩形5.如图,四边形ABCD的对角线AC,BD相交于点O,已知下列6个条件:①AB∥DC;②AB=DC;③AC=BD;④∠ABC=90°;⑤OA=OC;⑥OB=OD.下列组合中,不能使四边形ABCD成为矩形的是( )A.①②③ B.②③④ C.②⑤⑥ D.④⑤⑥6.如图,AB∥CD,PM,PN,QM,QN分别为角平分线.求证:四边形PMQN是矩形.7.如图,在△ABC中,AB=AC,D为BC的中点,E是△ABC外一点且四边形ABDE是平行四边形.求证:四边形ADCE是矩形.8.如图,四边形ABCD的对角线AC,BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.【矩形的性质与判定的综合应用练习】1.在矩形纸片ABCD中,AD=4 cm,AB=10 cm,按如图所示方式折叠,使点B与点D重合,折痕为EF,则DE=_______cm.4.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B,C重合),PE⊥AB于点E,PF ⊥AC于点F,则EF长的最小值为( )A.4 B.4.8 C.5.2 D.65.如图,矩形ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD,BC于点E,F,已知AD=4 cm,图中阴影部分的面积总和为6 cm2,则对角线AC的长为________cm.6.如图,M是矩形ABCD的边AD的中点,P为BC上一点,PE⊥MC于点E,PF⊥MB于点F,当AB,BC满足条件____________时,四边形PEMF为矩形.7.如图,在矩形ABCD中,AB=2,BC=5,点E,P分别在AD,BC上,且DE=BP=1.求证:四边形EFPH为矩形.8.如图,在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,折痕DF交BC于点F.(1)求证:四边形BFDE为平行四边形;(2)若四边形BFDE为菱形,且AB=2,求BC的长.【折叠问题专项】1.如图,将矩形纸片ABCD沿EF折叠(E,F分别是AD、BC上的点),使点B与四边形CDEF内一点重合,若°,则等于()A. 110°B. 115°C. 120°D. 130°第1题第2题第3题2.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A. 6B. 10C. 8D. 123.如图,矩形ABCD中,AB=4,BC=2,把矩形ABCD沿过点A的直线AE折叠点D落在矩形ABCD内部的点D处,则CD′的最小值是()A. 2B.C. 2 -2D. 2 +24.如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E.(1)求证:△AFE ≌△CDF;(2)若AB=4,BC=8,求图中阴影部分的面积.5.如图5,将矩形ABCD沿着对角线BD折叠,使点C落在点处,交AD于E。
已知AD=8,AB=4,求⊿BDE的面积。
6.在矩形ABCD中,AB=6,BC=8,将矩形ABCD沿CE折叠,使点D恰好落在对角线AC上的点F处。
①求EF的长;②求梯形ABCE的面积.【课后练习】1.如图,在△ABC中,CD⊥AB于点D,且E是AC的中点.若AD=6,DE=5,则CD的长等于()A. 5B. 6C. 7D. 8第1题第2题第3题第4题2.如图,矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AC=8,则EF=________.3.如图,△ABC中,AC=5,BC=12,AB=13,CD是AB边上的中线.则CD=________.4.如图,矩形ABCD中,,,CE是的平分线与边AB的交点,则BE的长为________.5.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF,(1)求证:AE=CF;(2)若AB=3,∠AOD=120°,求矩形ABCD的面积.6.如图,在Rt△ABC中,∠BAC=90°,AD是BC边上的中线,ED⊥BC于D,交BA延长线于点E,若∠E=35°,求∠BDA 的度数.7.如图,菱形ABCD的对角线AC,BD相交于点O,且DE∥AC,AE∥BD.求证:四边形AODE是矩形.8.如图所示,EF 过矩形ABCD 对角线的交点O ,且分别交AB ,CD 于点E ,F ,若AB=3,BC=4,那么阴影部分的面积为( )A. 4B. 12C. 6D. 3第8题 第9题 第12题 第13题 第14题9.如图,矩形ABCD 沿着AE 折叠,使D 点落在BC 边上的F 点处,如果等于( ) A.B.C.D.10.下列识别图形不正确的是( )A. 有一个角是直角的平行四边形是矩形B. 有三个角是直角的四边形是矩形C. 对角线相等的四边形是矩形D. 对角线互相平分且相等的四边形是矩形 11.顺次连接菱形各边中点所形成的四边形是( )A. 平行四边形B. 菱形C. 矩形D. 正方形12.已知:如图,在▱ABCD 中,点E 在AD 上,连接BE ,DF ∥BE 交BC 于点F ,AF 与BE 交于点M ,CE 与DF 交于点N ,AF ,BE 分别平分∠BAD ,∠ABC ;CE ,DF 分别平分∠BCD ,∠ADC ,则四边形MFNE 是( ) A. 菱形 B. 矩形 C. 平行四边形 D. 正方形13.如图,点O 是菱形ABCD 对角线的交点,DE ∥AC ,CE ∥BD ,连接OE ,已知菱形ABCD 的周长为20 cm ,则 OE 长为________cm .14.如图,矩形ABCD 中,AB=8cm ,BC=3cm ,E 是DC 的中点,BF=21FC ,则四边形DBFE 的面积为________cm 2 .15. 如图,DB ∥AC ,且DB=AC ,E 是AC 的中点. (1)求证:BC=DE ;(2)连接AD 、BE ,若∠BAC=∠C ,求证:四边形DBEA 是矩形.16.如图所示,△ABC 中,D 是BC 边上一点,E 是AD 的中点,过点A 作BC 的平行线交CE 的延长线于F ,且AF=BD ,连接BF .(1)求证:D 是BC 的中点;(2)若AB=AC ,试判断四边形AFBD 的形状,并证明你的结论.17.如图,在矩形ABCD中,AB=2,BC=3,M为BC中点,连接AM,过D作DE⊥AM于E,则DE的长度为( )A. 2B.C. 3D.第17题第18题第19题第20题18.如图,E,F分别是矩形ABCD的边AD、AB上的点,若EF=EC,EF⊥EC,DC= ,则BE的长为()A. B. C. 4 D. 219.如图,E,F分别是矩形ABCD边AD,BC上的点,且△ABG,△DCH的面积分别为15和20,则图中阴影部分的面积为()A.15B.20C.35D.4020.如图,点E是矩形ABCD内任一点,若AB=3,BC=4.则图中阴影部分的面积为________.21.如图,在矩形ABCD中,M,N分别是AD,BC的中点,E,F分别是线段BM,CM的中点,若AB=8,AD=12,则四边形ENFM的周长是多少?22.如图,已知□ABCD,延长AB到E使BE=AB,连接BD,ED,EC,若ED=AD.(1)求证:四边形BECD是矩形;(2)连接AC,若AD=4,CD= 2,求AC的长23.如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.答案【矩形的性质】 1.A 2.C3.证明:∵四边形ABCD 是矩形,∴∠A =∠B =90°,AD =BC.∵∠AOC =∠BOD ,∴∠AOC -∠DOC =∠BOD -∠DOC , 即∠AOD =∠BOC.在△AOD 和△BOC 中,∠A =∠B ,∠AOD =∠BOC ,AD =BC ,∴△AOD ≌△BOC ,∴AO =BO. 4. 2.5 5.C 6.C 7.D8.在Rt △ABC 中,∵E 为斜边AB 的中点,∴CE =12AB.在Rt △ABD 中,∵E 为斜边AB 的中点,∴DE =12AB.∴CE =DE.9.(1)证明:∵四边形ABCD 是矩形,∴AB =DC ,AC =BD ,AD =BC ,∠ADC =∠ABC =90°.由平移的性质得:DE =AC ,EC =BC ,∠DCE =∠ABC =90°,DC =AB ,∴AD =EC. 在△ACD 和△EDC 中,AD =EC ,∠ADC =∠ECD ,CD =DC ,∴△ACD ≌△EDC.(2)△BDE 是等腰三角形.理由如下:∵AC =BD ,DE =AC ,∴BD =DE ,∴△BDE 是等腰三角形. 【矩形的判定】1.答案不唯一,如∠BAC =90°2.B3.解:∵四边形ABCD 是平行四边形,∴AC =2OA ,BD =2OB .∵△OAB 为等边三角形,∴OA =OB =AB ,∴AC =BD , ∴四边形ABCD 为矩形∴∠ABC =90°.在Rt △ABC 中,AC =2OA =2AB ,BC =3,由勾股定理,得AB =AC 2-BC 2=1,∴四边形ABCD 的周长=2(AB +BC )=2(1+3). 4.C 5.C6.证明:∵PM ,PN 分别平分∠APQ ,∠BPQ ,∴∠MPQ =12∠APQ ,∠NPQ =12∠BPQ .∵∠APQ +∠BPQ =180°,∴∠MPQ +∠NPQ =90°,即∠MPN =90°.同理可证∠MQN =90°.∵AB ∥CD ,∴∠APQ +∠CQP =180°,∴∠MPQ +∠MQP =90°,即∠PMQ =90°,∴四边形PMQN 是矩形.7.证明:∵四边形ABDE 是平行四边形,∴AE ∥BC ,AB =DE ,AE =BD .∵D 为BC 的中点,∴CD =BD .∴CD ∥AE ,CD =AE ,∴四边形ADCE 是平行四边形.∵AB =AC ,AB =DE ,∴AC =DE ,∴平行四边形ADCE 是矩形. 8.解:(1)证明:∵DF ∥BE ,∴∠FDO =∠EBO ,∠DFO =∠BEO .∵O 为AC 的中点,∴OA =OC .∵AE =CF , ∴OA -AE =OC -CF ,即OE =OF .在△BOE 和△DOF 中,∠EBO =∠FDO ,∠BEO =∠DFO ,OE =OF ,∴△BOE ≌△DOF (AAS).(2)若OD =12AC ,则四边形ABCD 是矩形.证明:∵△BOE ≌△DOF ,∴OB =OD .∵OD =12AC ,∴OA =OB =OC =OD ,且BD =AC ,∴四边形ABCD 是矩形.【矩形的性质与判定的综合应用练习】 1.5.8 2. 4 3.如图,过点B 作BF ⊥CE 于点F .∵CE ⊥AD ,∴∠D +∠DCE =90°.∵∠BCD =90°,∴∠BCF +∠DCE =90°,∴∠BCF =∠D .在△BCF 和△CDE 中,∠BCF =∠D ,∠BFC =∠CED =90°,BC =CD ,∴△BCF ≌△CDE (AAS),∴BF =CE .∵∠A =90°,CE ⊥AD ,BF ⊥CE ,∴四边形AEFB 是矩形,∴AE =BF ,∴AE =CE .4.B5. 56.2AB =BC7.证明:∵四边形ABCD 是矩形,∴AD =BC ,AD ∥BC .又∵DE =BP ,∴四边形DEBP 是平行四边形,∴BE ∥DP . ∵AD =BC ,DE =BP ,∴AE =CP .又∵AD ∥BC ,即AE ∥CP ,∴四边形AECP 是平行四边形,∴AP ∥CE ,∴四边形EFPH 是平行四边形.∵在矩形ABCD 中,∠ADC =∠ABP =90°,AD =BC =5,CD =AB =2,DE =BP =1, ∴CE =5,同理BE =2 5,∴BE 2+CE 2=BC 2,∴∠BEC =90°,∴四边形EFPH 为矩形.8.解:(1)证法一:∵四边形ABCD 是矩形,∴∠A =∠C =90°,AB =CD ,AB ∥CD ,∴∠ABD =∠CDB .由折叠的性质可得:∠ABE =12∠ABD ,∠CDF =12∠CDB ,∴∠ABE =∠CDF .在△ABE 和△CDF 中,⎩⎪⎨⎪⎧∠A =∠C ,AB =CD ,∠ABE =∠CDF ,∴△ABE ≌△CDF (ASA),∴AE =CF .∵四边形ABCD 是矩形,∴AD =BC ,AD ∥BC ,∴DE =BF ,DE ∥BF ,∴四边形BFDE 为平行四边形.1∠FDB =12∠CDB ,∴∠EBD =∠FDB ,∴BE ∥DF .又∵DE ∥BF ,∴四边形BFDE 为平行四边形. (2)∵四边形BFDE 为菱形,∴BE =DE ,∠FBD =∠EBD =∠ABE .∵四边形ABCD 是矩形,∴AD =BC ,∠A =∠ABC =90°, ∴∠ABE =∠FBD =∠EBD =30°.在Rt △ABE 中,∵AB =2,∴AE =23=2 33,BE =2AE =43 3, ∴BC =AD =AE +DE =AE +BE =2 33+43 3=2 3. 【折叠问题专项】1.B2.B3.C4.(1)证明:∵四边形ABCD 是矩形,∴AB=CD ,∠B=∠D=90°,∵将矩形ABCD 沿对角线AC 翻折,点B 落在点E 处,∴∠E=∠B ,AB=AE ,∴AE=CD ,∠E=∠D ,在△AEF 与△CDF 中,∵∠E=∠D ,∠AFE=∠CFD ,AE=CD ,∴△AEF ≌△CDF(2)解:∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF ≌△CDF ,∴AF=CF ,EF=DF ,∴DF 2+CD 2=CF 2 , 即DF 2+42=(8﹣DF )2 , ∴DF=3,∴EF=3,∴图中阴影部分的面积=S △ACE ﹣S △AEF =21 ×4×8﹣ 21 ×4×3=10 5.10 6.① 3 ②S ABCE =S ABCD -S △PEC =39【课后练习】5.(1)证明:∵四边形ABCD 是矩形,∴OA=OC ,OB=OD ,AC=BD ,∠ABC=90°,∵BE=DF ,∴OE=OF ,在△AOE 和△COF 中, ,∴△AOE ≌△COF ,∴AE=CF(2)解:∵OA=OC ,OB=OD ,AC=BD ,∴OA=OB ,∵∠AOB=∠COD=60°,∴△AOB 是等边三角形,∴OA=AB=3,∴AC=2OA=6,在Rt △ABC 中,BC= ,∴矩形ABCD 的面积=AB•BC=3×3 =96.解:∵ED ⊥BC ,∴∠BDE=90°,又∵∠E=35°,∴∠B=90°-∠E=55°,∵在Rt △ABC 中,∠BAC=90°,AD 是BC 边上的中线,∴AD=BD ,∴∠BAD=∠B=55°,∴∠BDA=180°-∠B-∠BAD=70°7.证明:∵DE ∥AC ,AE ∥BD ,∴四边形AODE 为平行四边形,∵四边形ABCD 为菱形,∴AC ⊥BD ,∴∠AOD=90°,∴四边形AODE 是矩形. 8.D9.B 10.C 11.C 12.B 13. 5 14.8 15.(1)证明:∵E 是AC 中点,∴EC=AC .∵DB=AC ,∴DB=EC .又∵DB ∥EC ,∴四边形DBCE 是平行四边形,∴BC=DE(2)证明:连接AD 、BE .∵DB ∥AE ,DB=AE ,∴四边形DBEA 是平行四边形.∵∠BAC=∠C ,∴BA=BC .∵BC=DE ,∴AB=DE ,∴▭DBEA 是矩形.16. (1)证明:∵AF ∥BC ,∴∠AFE=∠DCE ,∵点E 为AD 的中点,∴AE=DE , 在△AEF 和△DEC 中, ,∴△AEF ≌△DEC (AAS ),∴AF=CD ,∵AF=BD ,∴CD=BD ,∴D 是BC 的中点(2)解:若AB=AC ,则四边形AFBD 是矩形.理由如下:∵△AEF ≌△DEC ,∴AF=CD ,∵AF=BD ,∴CD=BD ;∵AF ∥BD ,AF=BD ,∴四边形AFBD 是平行四边形,∵AB=AC ,BD=CD ,∴∠ADB=90°,∴平行四边形AFBD 是矩形.17.B 18.D 19.C 20. 621.解:∵M 、N 分别是边AD 、BC 的中点,AB=8,AD=12,∴AM=DM=6,∵四边形ABCD 为矩形,∴∠A=∠D=90°, ∴BM=CM=10,∵E 、F 分别是线段BM 、CM 的中点,∴EM=FM=5,∴EN ,FN 都是△BCM 的中位线,∴EN=FN=5,∴四边形ENFM 的周长为5+5+5+5=2022.(1)证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB=CD . ∵BE=AB , ∴BE=CD .∴四边形BECD 是平行四边形. ∵AD=BC ,AD =DE , ∴BC=DE . ∴平行四边形BECD 是矩形(2)解:如下图,连接AC ,∵AD=4,CD=2,四边形ABCD 是平行四边形,四边形BECD 是矩形,∴AB=BE=CD=2,BC=AD=4,∠AEC=90°,∴AE=AB+BE=4,在Rt △BCE 中,CE= ,∴在Rt △ACE 中,AC= .23.(1)证明:∵AD ∥BC ,∴∠ABC+∠BAD=180°,∵∠ABC=90°,∴∠BAD=90°,∴∠BAD=∠ABC=∠ADC=90°,∴四边形ABCD 是矩形(2)解:作OF ⊥BC 于F .∵四边形ABCD 是矩形,∴CD=AB=2,∠BCD=90°,AO=CO ,BO=DO ,AC=BD ,∴AO=BO=CO=DO ,∴BF=FC ,∴OF= 21CD=1,∵DE 平分∠ADC ,∠ADC=90°,∴∠EDC=45°,在Rt △EDC 中,EC=CD=2,∴△OEC 的面积= 21•EC•OF=1。