27.命题、证明及平行线的判定定理(基础)知识讲解
平行线的性质与判定
平行线的性质与判定平行线在几何学中具有重要的性质和判定方法。
本文将介绍平行线的定义、性质以及常见的判定方法,并且给出相应的几何证明。
一、平行线的定义平行线是位于同一平面内并且不会相交的两条直线。
平行线之间的距离在任意两点上保持恒定。
二、平行线的性质1. 平行线具有等夹角性质:当一条直线与两条平行线相交时,所形成的内错角(夹角在两条平行线之间)互相相等,外错角(夹角在两条平行线之外)互相相等。
2. 平行线具有内错角性质:当一条直线与两条平行线相交时,内错角(夹角在两条平行线之间)之和等于180度。
3. 平行线具有对应角性质:当两条平行线被一条交线切割时,所形成的对应角(位于两条平行线的同一侧,一条在交线上,另一条在交线外)互相相等。
4. 平行线具有平行四边形性质:在平行四边形中,对边平行且相等,对角线互相等分。
三、平行线的判定方法1. 通过角度判定:若两条直线被一条第三线切割时,相应角、内错角或外错角相等,则可以判定这两条直线是平行的。
2. 通过距离判定:若两条直线上的任意两点之间的距离相等,则可以判定这两条直线是平行的。
3. 通过斜率判定:若两条直线的斜率相等,则可以判定这两条直线是平行的。
四、性质与判定的应用举例1. 平行线的性质在证明中常被用来推导其他几何结论。
例如,在证明三角形相似时,可以利用平行线的对应角性质。
2. 平行线的判定方法在几何问题中起到重要的作用。
例如,在解决平行四边形问题时,可以通过判定四边形的对边平行来证明它是平行四边形。
举例一:判断两条直线是否平行已知直线l1过点A(2, 4)和点B(6, 9),直线l2过点C(-1, 1)和点D(3, 5)。
通过斜率判定来判断直线l1和l2是否平行。
解:直线的斜率可以通过两点的坐标计算得到。
计算直线l1的斜率m1,可以用点斜式公式:m1 = (y2 - y1) / (x2 - x1),代入A(2, 4)和B(6, 9)的坐标:m1 = (9 - 4) / (6 - 2) = 5 / 4同理,计算直线l2的斜率m2,代入C(-1, 1)和D(3, 5)的坐标:m2 = (5 - 1) / (3 - (-1)) = 4 / 4 = 1由于斜率m1 ≠ m2,所以直线l1和l2不平行。
《平行线的判定》的数学知识点
《平行线的判定》的数学知识点《平行线的判定》的数学知识点在我们的学习时代,大家最熟悉的就是知识点吧?知识点就是一些常考的内容,或者考试经常出题的地方。
掌握知识点有助于大家更好的学习。
下面是店铺为大家收集的《平行线的判定》的'数学知识点,仅供参考,大家一起来看看吧。
1、平行线的概念在同一个平面内,不相交的两条直线叫做平行线。
平行用符号‖表示,如AB‖CD,读作AB平行于CD。
同一平面内,两条直线的位置关系只有两种:相交或平行。
注意:(1)平行线是无限延伸的,无论怎样延伸也不相交。
(2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行。
2、平行线公理及其推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
3、平行线的判定平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。
简称:同位角相等,两直线平行。
平行线的两条判定定理:(1)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。
简称:内错角相等,两直线平行。
(2)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。
简称:同旁内角互补,两直线平行。
补充平行线的判定方法:(1)平行于同一条直线的两直线平行。
(2)垂直于同一条直线的两直线平行。
(3)平行线的定义。
4、平行线的性质(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
【《平行线的判定》的数学知识点】。
平行线的性质与判定
平行线的性质与判定平行线是几何学中的一个重要概念,我们都知道平行线永不相交。
在本文中,我们将介绍平行线的性质以及如何判定两条线是否平行。
同时,我们还会探讨平行线与其他图形之间的关系。
一、平行线的性质平行线的性质是几何学中的基础知识,下面我们将讨论几个与平行线相关的重要性质。
1. 对应角相等性质:当一条直线与两条平行线相交时,所形成的对应角相等。
这个性质在解决几何问题中具有重要意义,可以通过对应角的等量关系简化问题的解决过程。
2. 内错角相等性质:当两条平行线被一条截线所切割时,所产生的内错角相等。
这个性质常用于解决与平行线相关的证明问题。
3. 外错角相等性质:当两条平行线被一条截线所切割时,所产生的外错角相等。
这个性质也常用于证明和解决几何问题。
4. 交替内角相等性质:当两条平行线被一条截线所切割时,所形成的交替内角相等。
这个性质在证明平行线的存在性和解决几何问题中经常使用。
以上是平行线的一些重要性质,它们在几何学中被广泛应用,并且有助于解决各种类型的几何问题。
二、平行线的判定在几何学中,判定两条线是否平行是一种常见问题。
下面我们将介绍一些常用的判定方法。
1. 垂直判定:如果两条直线的斜率的乘积为-1,则它们互为垂直线,即相互垂直。
2. 角度判定:当一条直线与另一条直线所形成的内错角或外错角相等时,这两条直线是平行线。
3. 距离判定:如果两条直线上的任意两个点之间的距离在任意位置都相等,那么这两条直线是平行线。
这些判定方法都是基于几何学中的一些基本原理,通过应用这些原理,我们可以快速准确地判断两条线是否平行。
三、平行线与其他图形的关系平行线与其他图形之间存在着一些特殊的关系,下面我们将介绍一些常见的关系。
1. 平行线与平面角:当两条平行线被一条截线所切割时,所形成的平面角相等。
2. 平行线与四边形:在一个平行四边形中,两对相对的边是平行线,且两对相对的角相等。
3. 平行线与三角形:当一条直线平行于三角形的一边时,它将与另外两条边各自形成相似三角形。
5.26 平行线的判定与性质 讲解
平行线的判定与性质要点一、平行线1.定义:在同一平面内,不相交的两条直线叫做平行线,如果直线a与b平行,记作a∥b。
要点诠释:(1)平行线的定义有三个特征:一是在同一个平面内;二是两条直线;三是不相交,三者缺一不可;(2)有时说两条射线平行或线段平行,实际是指它们所在的直线平行,两条线段不相交并不意味着它们就平行。
(3)在同一平面内,两条直线的位置关系只有相交和平行两种。
特别地,重合的直线视为一条直线,不属于上述任何一种位置关系。
2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
3.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
要点诠释:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质。
(2)公理中“有”说明存在;“只有”说明唯一。
(3)“平行公理的推论”也叫平行线的传递性。
要点二、直线平行的判定判定方法1:同位角相等,两直线平行.如上图,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形。
要点三、平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”。
(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质。
要点四、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.要点五、命题、定理、证明1.命题:判断一件事情的语句,叫做命题。
平行线的性质定理和判定定理课件
简单说成:同旁内角互补,两直线平行. ∵ ∠1+ ∠2=180°, ∴ a∥b.
证明一个命题的一般步骤: (1)弄清题设和结论;
a1 b2
c
(2)根据题意画出相应的图形;
(3)根据题设和结论写出已知,求证;
(4)分析证明思路,写出证明过程.
【议一议】 据说,人类知识的75%是在操作中学到的.
小明用下面的方法作出平行线,你认为他的作法对吗?为 什么? 通过这个操作活动,得 到了什么结论?
每一个命题都有逆命题,只要将原命题的条件改成 结论,并将结论改成条件,便可得到原命题的逆命题.
但是原命题正确,它的逆命题未必正确.例如真命 题“对顶角相等”的逆命题为“相等的角是对顶角”, 此命题就是假命题.
【跟踪训练】
1.举例说明下列命题的逆命题是假命题. (1)如果一个整数的个位数字是5 ,那么这个整数能被 5整除. 逆命题:如果一个整数能被5整除,那么这个整数的个位 数字是5. 例如,10能被5整除,但它的个位数字是0. (2)如果两个角都是直角,那么这两个角相等. 逆命题:如果两个角相等,那么这两个角是直角. 例如,60°= 60°,但这两个角不是直角.
4.到一个角的两边距离相等的点,在这个角的平分线上.
条件:到一个角的两边距离相等的点. 结论:它在这个角的平分线上. 逆命题:角平分线上的点到角两边的距离相等. 5.线段的垂直平分线上的点到这条线段的两个端点的距离相等. 条件:线段垂直平分线上的点. 结论:它到这条线段的两个端点的距离相等. 逆命题:到一条线段的两个端点的距离相等的点在这条线段 的垂直平分线上.
a
∵∠1+∠2=180°, ∴ a∥b.
b
c
1
2
c
初中数学 平行线的判定定理有哪些
初中数学平行线的判定定理有哪些平行线的判定定理是初中数学中的一个重要概念,用于判断两条直线是否平行。
在本文中,我将详细介绍平行线的判定定理,包括定义、相关定理以及实际应用。
同时,我还会提供一些示例和习题,以帮助读者更好地理解和应用这一概念。
1. 同位角定理:如果两条直线被一条横截线所切,且同位角相等,则这两条直线是平行线。
即如果两条直线l和m被一条直线n所切,且∠A=∠B,则l||m。
2. 平行线的性质:如果两条直线l和m都与第三条直线n平行,那么l和m也是平行线。
即如果l||n且m||n,则l||m。
3. 垂直定理的逆定理:如果两条直线l和m在同一个平面内,且l和m的任意一条垂线相互垂直,则l||m。
即如果l∠n且m∠n,则l||m。
4. 对顶角定理:如果两条直线l和m被一条横截线所切,且对顶角相等,则这两条直线是平行线。
即如果两条直线l和m被一条直线n所切,且∠A=∠C,则l||m。
5. 平行线的传递性:如果直线l||m,且直线m||n,那么直线l||n。
即如果l||m且m||n,则l||n。
6. 锐角等于直角的定理:如果两条直线l和m在同一个平面内,且l和m的任意一条垂线与另一条直线的某一角度相等,则l||m。
即如果l∠n且∠A=90°,则l||m。
7. 平行线的平行线定理:如果两条直线l和m被同一条直线n所切,且其中一条直线与n 的某一角度为锐角,另一条直线与n的某一角度为钝角,则l||m。
8. 平行线的交角定理:如果两条直线l和m被同一条直线n所切,且其中一条直线与n的某一角度为锐角,另一条直线与n的某一角度为钝角,则l与m不平行。
9. 平行线的平行截线定理:如果两条直线l和m被同一条直线n所切,且直线l与n的交点A与直线m与n的交点B之间的线段AB与直线n的某一条垂线相交于点C,则直线l和直线m平行。
以上是一些常见的平行线的判定定理,可以根据不同的条件来判断两条直线是否平行。
平行线的证明知识点总结(共10篇)
平行线的证明知识点总结(共10篇) :知识点平行线证明平行线的证明知识树平行线证明定义平行线的证明思维导图篇一:命题与证明的知识点总结命题与证明的知识点总结一、知识结构梳理二、知识点归类知识点一定义的概念对于一个概念特征性质的描述叫做这个概念的定义。
如:“两点之间线段的长度,叫做这两点之间的距离”是“两点之间的距离”的定义。
注意:定义必须严密的,一般避免使用含糊不清的语言,例如“一些”、“大概”、“差不多”等不能在定义中出现。
知识点二命题的概念叙述一件事情的句子(陈述句),要么是真的,要么是假的,那么称这个陈述句是一个命如“你是一个学生”、“我们所使用是教科书是华东师大版的”等。
注意:(1)命题必须是一个完整的句子。
(2)这个句子必须对某事情作出肯定或者否定的判断,二者缺一不可。
知识点三命题的结构每个命题都有条件和结论两部分组成。
条件是已知的事项,结论是由已知事项推断出的事项。
一般地,命题都可以写出“如果------,那么-------”的形式。
有的命题表面上看不具有“如果------,那么-------”的形式,但可以写成这种形式。
如:“对顶角相等”,改写成“如果两个角是对顶角,那么这两个角相等”。
例把下列命题改写成“如果------,那么-------”的形式,并指出条件与结论。
1、同角的余角相等2、两点确定一条直线知识点四真命题与假命题如果一个命题叙述的事情是真的,那么称它是真命题;如果一个命题叙述的事情是假的,那么称它是假命题注意:真、假命题的区别就在于其是否是正确的,在判断命题的真假时,要注意把握这点。
知识点五证明及互逆命题的定义1、从一个命题的条件出发,通过讲道理(推理),得出它的结论成立,这个过程叫作证明。
注意:证明一个命题是假命题的方法是举反例,即找出一个例子,它符合命题条件,但它不满足命题的结论,从而判断这个命题是假命题。
2、一个命题的条件和结论分别是另一个命题的结论和条件,这两个命题称为互逆的命题,其中的一个命题叫作另一个命题的逆命题。
平行线及其判定知识点总结
平行线及其判定知识点1:平行线的定义及平面内两直线的位置关系定义:在同一平面内,的两条直线叫做平行线,直线a,b平行,记作。
在同一平面内,不重合的两条直线只有两种位置关系: 。
说明1(1)在同一平面内,两条直线的位置关系只有平行与相交两种,若没有特别说明,“重合”视为一条直线。
(2)平常所说的“两条射线平行,两条线段平行”都是指它们所在的直线平行(3)平行线的定义有三个特征:一是在同一平面内;二是两条直线;三是不相交。
三者缺一不可。
例题:下列说法中,正确的是()A.两条不相交的直线叫做平行线B.一条直线的平行线有且只有一条C.若直线a∥b,b∥c,则a∥eD.若两条线段不相交,则它们互相平行【分析】根据平行线的定义、平行公理的推论来判断【解析】A选项中缺少“在同一平面内”这个条件,故A选项错误。
若没有其条件限制,一条直线的平行线有无数条,故B选项错误。
平行于同一直线的两条直线平行,故C选项正确。
根据平行线的定义可知D选项错误.故选C知识点2:平行公理平行公理:经过一点.有且只有一条直线与这条直线平行。
(注意:①平行公理特别强调“经过直线外一点”,而非直线上的点,它和垂线的性质不同②“有且只有"强调直线的存在性和唯一性)如图,经过直线a外一点P,能且只能画出一条直线与直线a平行·Pa例题:下列说法正确的是()A.在同一平面内,过直线外一点有一条直线与已知直线平行B.过一点有且只有一条直线与已知直线平行C.经过一点有且只有一条线段与已知线段平行D.过一点有且只有一条直线与己知直线垂直【解析】A选项中“在同一平面内”这个条件,不影响后半向的对错。
“过直线外一点有一条直线与已知直线平行”说的是存在性,即过直线外一点肯定有一条直线与已知直线平行,故A选项正确。
B选项错误,因为若经过直线上一点,则没有直线与已知直线平行。
C选项错误,道理同B选项。
D选项错误,因为缺少“在同一平面内”这个大前提,D选项中结论不成立,如图,AB,BC,BD是正方体的三条棱,它们两两垂直,且都经过点B,若把AB看作已知直线,则经过点B有两条直线BC,BD与已知直线AB垂直知知识点3:平行公理的推论平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也。
七下数学平行线的判定知识点
七下数学平行线的判定知识点
嘿,朋友!今天咱来聊聊七下数学里超重要的平行线的判定知识点呀!
比如说同位角相等,两直线平行。
就像你走路,同方向的两条路,如果起始角度一样,那肯定是平行的嘛。
比如你看,像这两条线,它们的同位角相等,那不就平行啦?
还有内错角相等,两直线平行呢。
哎呀,这就好像两个人在走不同的路,但他们迈错脚的角度一样,那这两条路也是平行的呀!像这样的例子,嘿,这两条线的内错角相等,它们不就平行了嘛!
还有同旁内角互补,两直线平行。
这就好比是两个一起做事的人,他们合起来的力量能互补,那他们走的路也就是平行的咯。
看这里,这两个同旁内角互补呀,所以这两条线就平行啦!
总之呢,这些判定方法就像是一把把钥匙,能帮我们打开平行线的秘密大门呀!
我的观点结论就是:平行线的判定知识点很重要,掌握了它们能让我们更好地理解和解决数学问题呀!。
初中数学平行线知识点归纳总结(两篇)2024
初中数学平行线知识点归纳总结(二)引言:平行线是初中数学中重要的基础概念之一,它们在几何图形的性质和运算中有着广泛的应用。
对平行线的理解及运用不仅能够帮助学生建立几何思维,还能够培养学生的逻辑推理和证明能力。
本文将系统地总结初中数学中关于平行线的知识点,并从几何性质、证明方法、运算应用等方面进行详细阐述。
概述:平行线是指在同一平面内,没有交点的两条直线。
平行线具有一些重要的性质,如平行线上的任意两点与另一条直线交点处的对应角相等等。
通过学习平行线的知识,学生可以解决课本中的平行线定理题目,提高几何思维能力和数学运算水平。
正文内容:1. 平行线的性质1.1 平行线的定义平行线是指在同一平面内,永远不会相交的两条直线。
1.2 平行线的判定定理(1)直线与直线判定两条直线在同一平面内,如果它们的斜率相等,则它们是平行线。
(2)线段与直线判定如果一条直线与另一直线上两点连线的线段都平行,则这两条直线是平行线。
(3)角与直线判定两条直线被一条截线分成两组相互对应的内角或外角,如果这些对应的角相等,则这两条直线是平行线。
1.3 平行线的性质(1)平行线上的任意两点与另一条直线交点处的对应角相等。
(2)平行线上的任意两条线段的比例相等。
(3)平行线与平行线之间的距离是恒定的。
2. 平行线的证明方法2.1 数学归纳法利用数学归纳法可以证明一些平行线的性质。
首先证明性质对于一个特殊情况成立,然后假设性质对于前n个情况成立,再证明对于第n+1个情况也成立。
2.2 等腰三角形法利用等腰三角形的特性,可以辅助进行平行线的证明。
当两个角相等时,可以通过证明边对应相等来推导出线段平行。
2.3 反证法利用反证法可以证明平行线的性质。
先假设平行线上的一些性质不成立,然后推导出矛盾,从而得出结论。
2.4 使用辅助线通过添加一些辅助线,可以改变原有构图,使问题更容易解决。
通过巧妙选择辅助线,可以推导出平行线的性质。
2.5 利用平行线的性质已知一些条件,可以利用平行线的性质进行推导。
《平行线的证明》全章复习与巩固知识讲解
平行线的证明》全章复习与巩固(提高)知识讲解学习目标】了解定义及命题的概念与构成,并能通过证明或举反例判定命题的真假;理解并能灵活运用三角形的内角和定理及其推论 知识网络】【要点梳理】 要点一、定义、命题及证明1. 定一般地,用来说明一个名词或者一个术语的意义的句子叫做定义 . 2.命题: 判断一件事情的句子,叫做命题 .要点诠释:(1)命题一般由条件和结论组成 .( 2)正确的命题称为真命题,不正确的命题称为假命题 .(3)公认的真命题叫做公理 .(4) 经过证明的真命题称为定理 .3.证明 : 除了公理外, 其它的真命题的正确性都要通过推理的方法进行证实, 这种演绎推理 的过程叫做证明 .要点诠释: 实验、观察、 操作所得出的结论不一定都正确,必须推理论证后才能得出正确的 结论.要点二、平行线的判定与性质1.平行线的判定判定方法 1: 同位角相等,两直线平行.判定方法 2: 内错角相等,两直线平行.判定方法 3: 同旁内角互补,两直线平行.要点诠释: 根据平行线的定义和平行公理的推论,平行线的判定方法还有:(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交) ,那么两直线平行 (2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性).( 3)在同一平面内,垂直于同一直线的两条直线平行 .( 4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行 .2.平行线的性质 2. 区别平行线的判定与性质,并能灵活运用;1.3.性质 1: 两直线平行,同位角相等;性质 2: 两直线平行,内错角相等;性质 3: 两直线平行,同旁内角互补 . 要点诠释: 根据平行线的定义和平行公理的推论,平行线的性质还有:(1)若两条直线平行,则这两条直线在同一平面内,且没有公共点.(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直. 要点三、三角形的内角和定理及推论三角形的内角和定理: 三角形的内角和等于 180°.推论:( 1)三角形的一个外角等于和它不相邻的两个内角的和. ( 2)三角形的一个外角大于任何一个和它不相邻的内角.要点诠释: (1)由一个公理或定理直接推出的真命题,叫做这个公理或定理的推论. (2)推论可以当做定理使用 .【典型例题】 类型一、定义、命题及证明1. 我们知道任何一个命题都由条件和结论两部分组成 ,? 如果我们把一个命题的条件 变结论 , 结论变条件 , 那么所得的是不是一个命题 ?试举例说明 .【答案与解析】解:是一个命题 ,? 例如“对顶角相等”条件结论互换就变为“相等的角是对顶角” . 【总结升华】 如果将一个命题的条件与结论互换, 则得到这个命题的逆命题, 但原命题正确, 逆命题不一定正确 .举一反三: 【变式】下列命题中 , 真命题有 ( ) .① 若 x = a ,则 x 2- (a+b )x+ab = 0② 直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离x 2 4③ 如果 =0, 那么 x =± 2x2④ 如果 a = b,那么 a 3= b 3A.1 个B.2 个C.3 个D.4 个 【答案】 C2. 如图所示, O 是直线 AB 上一点,射线OC 、OD 在AB 的两侧,且∠ AOC =∠ BOD , 试证明∠ AOC 与∠ BOD 是对顶角.证明:因为∠ AOC+ ∠ COB =180°( 平角定义 ),又因为∠ AOC =∠ BOD ( 已知 ),所以∠ BOD+ ∠COB =180°,即∠ COD = 180°.所以 C 、O 、D 三点在一条直线上 ( 平角定义 ) ,即直线 AB 、CD 相交于点 O , 所以∠ AOC 与∠BOD 是对顶角 ( 对顶角定义 ).总结升华】 证三点共线的方法,通常采用证这三点组成的角为平角,即∠ COD =180 类型二、平行线的性质与判定3. (2016春?胶州市期中) 将一副三角板中的两根直角顶点 C 叠放在一起 (如图 ① ), 其中∠ A=30 °,∠ B=60 °,∠ D= ∠E=45°.(1)若∠ BCD=150 °,求∠ ACE 的度数; (2)试猜想∠ BCD 与∠ ACE 的数量关系,请说明理由;(3)若按住三角板 ABC 不动,绕顶点 C 转动三角板 DCE ,试探究∠ BCD 等于多少度时, CD ∥AB ,并简要说明理由.的度数; (2)根据( 1)中的结论可提出猜想,再由∠ BCD= ∠ ACB +∠ ACD ,∠ ACE= ∠DCE ﹣∠ ACD 可得出结论;(3)根据平行线的判定定理,画出图形即可求解. 【答案与解析】 解:( 1)∵∠ BCA= ∠ECD=90 °,∠ BCD=150 °, ∴∠ DCA= ∠BCD ﹣∠ BCA=150 °﹣90°=60°, ∴∠ ACE= ∠ECD ﹣∠ DCA=90 °﹣60°=30°; (2)∠ BCD +∠ACE=180 °,理由如下:∵∠BCD=∠ACB+∠ACD=90 °+∠ACD ,,可得出∠ DCA 的度数,进而得出∠ ACE 思路点拨】 ( 1)由∠ BCD=150 °,∠∠ACE= ∠ DCE ﹣∠ ACD=90 °﹣∠ ACD ,∴∠ BCD +∠ ACE=180 °;(3)当∠ BCD=120 °或 60°时, CD ∥ AB .如图 ② ,根据同旁内角互补,两直线平行,当∠ B+∠BCD=180 °时, CD ∥AB ,此时∠ BCD=180°﹣∠B=180°﹣60°=120°;如图③ ,根据内错角相等,两直线平行, 当∠ B=∠BCD=60 °时, CD ∥ AB .【总结升华】 本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平 行;同旁内角互补,两直线平行.熟练掌握定理并且能够准确识图是解题的关键.思路点拨】 欲证∠ 3+∠4=180°,需证 BE ∥DF ,而由 AD ∥BC ,易得∠ 1=∠3,又∠ 1=∠2, 所以∠ 2=∠3,即可求证.答案与解析】证明:∵ AD ∥BC ,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴BE ∥DF , ∴∠3+∠4=180°.【总结升华】 此题考查平行线的判定和性质:同位角相等,两直线平行;两直线平行,内错 角相等;两直线平行,同旁内角互补.要灵活应用.举一反三:【变式 1】( 2015 春?大名)如图: AD ∥ BC ,∠ DAC=60 °,∠ ACF=25 °,∠EFC=145 °,则直 线 EF 与 BC 的位置关系是 .如图,已知 AD ∥BC ,∠ 1=∠2,求证:∠ 3+∠4=180°.【答案】解:平行.∵AD ∥BC,∴∠ACB= ∠DAC=60 °,∵∠ACF=25 °,∴∠FCB=35 °,∴∠EFC+ ∠FCB=145 °+35 °=180 °,∴EF∥BC,故答案为:平行.【变式2】已知:如图,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC,且∠1=∠3. 求证:AB∥DC.【答案】证明:∵∠ABC=∠ADC,11∴ABC =ADC (等式性质).22又∵BF、DE分别平分∠ABC与∠ADC,11∴∠1=ABC ,∠2=ADC (角平分线的定义).22∴∠1=∠2 (等量代换).又∵∠1=∠3(已知),∴∠2=∠3(等量代换).∴AB∥DC(内错角相等,两直线平行).类型三、三角形的内角和定理及推论5. 如图,P是△ABC 内一点,请用量角器量出∠ABP.∠ACP.∠A和∠BPC的大小,再计算一下,∠ABP+∠ACP+∠A是多少度?这三个角的和与∠BPC有什么关系?你能用学到的知识来解释其中的道理吗?你能判断∠BPC和∠A的大小吗?【答案与解析】解:∠ABP+∠ACP+∠A=∠BPC,∠BPC>∠A。
平行线的性质(基础)知识讲解
平行线的性质(基础)知识讲解【学习目标】1. 掌握平行线的性质公理、定理,并能依据平行线的性质公理、定理进行简单的推解;2. 了解并掌握平行线的性质定理的探究过程;3. 了解平行线的判定与性质的区别和联系.【要点梳理】要点一、平行线的公理、定理公理:两条平行线被第三条直线所截,得到的同位角相等.(简记为:两直线平行,同位角相等).定理:两条平行线被第三条直线所截,得到的内错角相等(简记为:两直线平行,内错角相等).定理:两条平行线被第三条直线所截,得到的同旁内角互补(简记为:两直线平行,同旁内角互补).要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点二、平行线的性质定理的探究过程1.两条平行线被第三条直线所截,得到的内错角相等(简记为:两直线平行,内错角相等).321cba因为a∥b,所以∠1=∠2(两直线平行,同位角相等),又∠3=∠1 (对顶角相等)所以∠2=∠3.2.两条平行线被第三条直线所截,得到的同旁内角互补(简记为:两直线平行,同旁内角互补).因为a∥b,所以∠3=∠2(两直线平行,内错角相等),又∠3+∠1=180°(补角的定义),所以∠2+∠1=180°.要点诠释:平行线性质定理的证明,要借助平行线线性质公理,因为公理是人们在生产和生活中总结出来的正确的结论,不需要证明,但是定理、性质或推论到的证明其正确性. 要点三、平行线的性质与判定(1)平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.(2)应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.(3)平行线的判定与性质的联系与区别区别:性质由形到数,用于推导角的关系并计算;判定由数到形,用于判定两直线平行.联系:性质与判定的已知和结论正好相反,都是角的关系与平行线相关.(4)辅助线规律,经常作出两平行线平行的直线或作出联系两直线的截线,构造出三类角.【典型例题】类型一、平行线的性质公理、定理的应用1.如图所示,如果AB∥DF,DE∥BC,且∠1=65°.那么你能说出∠2、∠3、∠4的度数吗?为什么.【思路点拨】本题已知条件中,包含了两个层次:第一层次是由DE∥BC,可得∠1=∠4,∠1+∠2=180°;第二层次是由DF∥AB,可得∠3=∠2或∠3+∠4=180°,从而解出∠2、∠3、∠4的度数.【答案与解析】解:∵ DE∥BC,∴∠4=∠1=65°(两直线平行,内错角相等).∠2+∠1=180°(两直线平行,同旁内角互补).∴∠2=180°-∠1=180°-65°=115°.又∵ DF∥AB(已知),∴∠3=∠2(两直线平行,同位角相等).∴∠3=115°(等量代换).【总结升华】平行线的性质:由两条直线平行的位置关系得到两个相关角的数量关系.举一反三:【变式】(2015•永州)如图,∠1=∠2,∠A=60°,则∠ADC=度.【答案】解:∵∠1=∠2,∴AB∥CD,∴∠A+∠ADC=180°,∵∠A=60°,∴∠ADC=120°.故答案为:120°2. 如图,一条铁路修到一个村子边时,需拐弯绕道而过,如果第一次拐的角∠A是105度,第二次拐的角∠B是135度,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,那么∠C应为多少度?【思路点拨】过点B作直线BE∥CD,用“两直线平行内错角相等”和“两直线平行同旁内角互补”解答.【答案与解析】解:过点B作直线BE∥CD.∵CD∥AF,∴BE∥CD∥AF.∴∠A=∠ABE=105°.∴∠CBE=∠ABC-∠ABE=30°.又∵BF∥CD,∴∠CBE+∠C=180°.∴∠C=150°.【总结升华】此题是一道生活实际问题,根据题目信息,转化为关于平行线性质的数学问题.3. 已知,如图,AB∥CD,BE∥FD.求证:∠B+∠D=180°【思路点拨】根据平行线的性质可得∠B=∠1,∠1+∠D=180°,等量代换即可证明∠B+∠D=180°.【答案与解析】证明:∵AB∥CD(已知),∴∠B=∠1(两直线平行,内错角相等).∵BE∥FD(已知),∴∠1+∠D=180°(两直线平行,同旁内角互补).∴∠B+∠D=180°(等量代换).【总结升华】此题主要考查平行线的性质:两直线平行,同旁内角互补;两直线平行,内错角相等.举一反三【变式】如图,AB∥CD,CE平分∠ACD,若∠1=25°,求∠2的度数.【答案】解:∵CE平分∠ACD,∠1=25°,∴∠ECD=∠1=25°,∵AB∥CD,∴∠ECD+∠2=180°,∴∠2=180°-∠ECD=155°.4.(2016春•秦皇岛期末)如图,AB∥CD,分别探讨下面四个图形中∠APC与∠PAB、∠PCD的关系,请你从所得到的关系中任选一个加以说明.(适当添加辅助线,其实并不难)【思路点拨】关键过转折点作出平行线,根据两直线平行,内错角相等,或结合三角形的外角性质求证即可.【答案与解析】如图:(1)∠APC=∠PAB+∠PCD;证明:过点P作PF∥AB,则AB∥CD∥PF,∴∠APC=∠PAB+∠PCD(两直线平行,内错角相等).(2)∠APC+∠PAB+∠PCD=360°;(3)∠APC=∠PAB﹣∠PCD;(4)∵AB∥CD,∴∠POB=∠PCD,∵∠POB是△AOP的外角,∴∠APC+∠PAB=∠POB,∴∠APC=∠POB﹣∠PAB,∴∠APC=∠PCD﹣∠PAB.【总结升华】两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.5. 如图是大众汽车的标志图案,其中蕴涵着许多几何知识.根据下面的条件完成证明.已知:如图,BC∥AD,BE∥AF.(1)求证:∠A=∠B;(2)若∠DOB=135°,求∠A的度数.【思路点拨】(1)由平行线的性质(两直线平行,同位角相等)可得∠A=∠B.(2)由平行线的性质(两直线平行,同旁内角互补)可得∠A=180°-∠DOE.【答案与解析】解:(1)∵BC∥AD,∴∠B=∠DOE,又∵BE∥AF,∴∠DOE=∠A,∴∠A=∠B.(2)∵∠DOB=∠EOA,由BE∥AF,得∠EOA+∠A=180°又∠DOB=135°,∴∠A=45°.【总结升华】本题考查的是平行线的性质,主要是考查学生把实际问题转化成数学问题的能力,要结合实际图象画出数学图形,再运用平行线的性质来解决.举一反三【变式】已知:如图,BD∥AF∥CE,∠ABD=60°,∠ACE=36°,AP是∠BAF的平分线,求∠PAC的度数.类型二、平行的性质与判定综合应用6、如图所示,AB∥EF,那么∠BAC+∠ACE+∠CEF=( )A.180° B.270° C.360° D.540°【答案】C【解析】过点C作CD∥AB,∵ CD∥AB,∴∠BAC+∠ACD=180°(两直线平行,同旁内角互补)又∵ EF∥AB∴ EF∥CD.∴∠DCE+∠CEF=180°(两直线平行,同旁内角互补)又∵∠ACE=∠ACD+∠DCE∴∠BAC+∠ACE+∠CEF=∠BAC+∠ACD+∠DCE+∠CEF=180°+180°=360°【总结升华】这是平行线性质与平行公理的综合应用,利用“两直线平行,同旁内角互补,”可以得到∠BAC +∠ACE+∠CEF=360°。
平行线的判定及性质
授课主题平行线教学目的1.理解平行线的概念,掌握平行公理及其推论;2.掌握平行线的判定方法及性质,并能进行简单的推理3.掌握命题的定义,知道一个命题是由“题设”和“结论”两部分组成,对于给定的命题,能找出它的题设和结论;教学重点平行线的判定及性质教学内容知识梳理要点一、平行线1.定义:在同一平面内,不相交的两条直线叫做平行线,如果直线a与b平行,记作a∥b.要点诠释:1平行线的定义有三个特征:一是在同一个平面内;二是两条直线;三是不相交,三者缺一不可;2有时说两条射线平行或线段平行,实际是指它们所在的直线平行,两条线段不相交并不意味着它们就平行.3在同一平面内,两条直线的位置关系只有相交和平行两种.特别地,重合的直线视为一条直线,不属于上述任何一种位置关系.2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.3.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.要点诠释:1平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.2公理中“有”说明存在;“只有”说明唯一.3“平行公理的推论”也叫平行线的传递性.要点二、直线平行的判定判定方法1:同位角相等,两直线平行.如上图,几何语言:∵∠3=∠2∴AB∥CD同位角相等,两直线平行判定方法2:内错角相等,两直线平行.如上图,几何语言:∵∠1=∠2∴AB∥CD内错角相等,两直线平行判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵∠4+∠2=180°∴AB∥CD同旁内角互补,两直线平行要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.要点三、平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:1“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.2从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点四、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点诠释:1求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.2两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.要点五、命题、定理、证明1.命题:判断一件事情的语句,叫做命题.要点诠释:1命题的结构:每个命题都由题设、结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.2命题的表达形式:“如果……,那么…….”,也可写成:“若……,则…….”3真命题与假命题:真命题:题设成立结论一定成立的命题,叫做真命题.假命题:题设成立而不能保证结论一定成立的命题,叫做假命题.2.定理:定理是从真命题公理或其他已被证明的定理出发,经过推理证实得到的另一个真命题,定理也可以作为继续推理的依据.3.证明:在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明.要点诠释:1证明中的每一步推理都要有根据,不能“想当然”,这些根据可以是已知条件,学过的定义、基本事实、定理等.2判断一个命题是正确的,必须经过严格的证明;判断一个命题是假命题,只需列举一个反例即可.要点六、平移1.定义:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移.要点诠释:1图形的平移的两要素:平移的方向与平移的距离.2图形的平移不改变图形的形状与大小,只改变图形的位置.2.性质:图形的平移实质上是将图形上所有点沿同一方向移动相同的距离,平移不改变线段、角的大小,具体来说:1平移后,对应线段平行且相等;2平移后,对应角相等;3平移后,对应点所连线段平行且相等;4平移后,新图形与原图形是一对全等图形.典型例题类型一、平行线例1.下列说法正确的是A.不相交的两条线段是平行线.B.不相交的两条直线是平行线.C.不相交的两条射线是平行线.D.在同一平面内,不相交的两条直线叫做平行线.答案D例2.在同一平面内,下列说法:1过两点有且只有一条直线;2两条直线有且只有一个公共点;3过一点有且只有一条直线与已知直线垂直;4过一点有且只有一条直线与已知直线平行;其中正确的个数为:A.1个B.2个C.3个D.4个答案B解析正确的是:13.变式1下列说法正确的个数是1直线a、b、c、d,如果a∥b、c∥b、c∥d,则a∥d.2两条直线被第三条直线所截,同旁内角的平分线互相垂直.3两条直线被第三条直线所截,同位角相等.4在同一平面内,如果两直线都垂直于同一条直线,那么这两直线平行.A.1个个C.3个D.4个答案B类型二、两直线平行的判定例3.如图,给出下列四个条件:1AC=BD;2∠DAC=∠BCA;3∠ABD=∠CDB;4∠ADB=∠CBD,其中能使AD∥BC的条件有.A.12B.34C.24D.134答案C变式2一个学员在广场上驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向右拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130°例4.如图所示,已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°.试说明AB∥EF的理由.解法1:如图所示,在∠BCD的内部作∠BCM=25°,在∠CDE的内部作∠EDN=10°.∵∠B=25°,∠E=10°已知,∴∠B=∠BCM,∠E=∠EDN等量代换.∴AB∥CM,EF∥DN内错角相等,两直线平行.又∵∠BCD=45°,∠CDE=30°已知,∴∠DCM=20°,∠CDN=20°等式性质.∴∠DCM=∠CDN等量代换.∴CM∥DN内错角相等,两直线平行.∵AB∥CM,EF∥DN已证,∴AB∥EF平行线的传递性.解法2:如图所示,分别向两方延长线段CD交EF于M点、交AB于N点.∵∠BCD=45°,∴∠NCB=135°.∵∠B=25°,∴∠CNB =180°-∠NCB-∠B =20°三角形的内角和等于180°.又∵∠CDE =30°,∴∠EDM =150°.又∵∠E =10°,∴∠EMD =180°-∠EDM-∠E =20°三角形的内角和等于180°.∴∠CNB =∠EMD 等量代换.所以AB ∥EF 内错角相等,两直线平行.变式3已知,如图,BE 平分ABD,DE 平分CDB,且1与2互余,试判断直线AB 、CD 的位置关系,请说明理由. 解:AB ∥CD,理由如下:∵BE 平分∠ABD,DE 平分∠CDB,∴∠ABD =2∠1,∠CDB =2∠2.又∵∠1+∠2=90°,∴∠ABD+∠CDB =180°.∴AB ∥CD 同旁内角互补,两直线平行.变式4已知,如图,ABBD 于B,CDBD 于D,1+2=180°,求证:CD 1234//,//l l l l 答案48°,132°,48°变式6如图所示,直线l 1∥l 2,点A 、B 在直线l 2上,点C 、D 在直线l 1上,若△ABC 的面积为S 1,△ABD 的面积为S 2,则A .S 1>S 2B .S 1=S 2C .S 1<S 2D .不确定答案B 类型四、命题例6.判断下列语句是不是命题,如果是命题,是正确的还是错误的①画直线AB ;②两条直线相交,有几个交点;③若a ∥b,b ∥c,则a ∥c ;④直角都相等;⑤相等的角都是直角;⑥如果两个角不相等,那么这两个角不是对顶角.答案①②不是命题;③④⑤⑥是命题;③④⑥是正确的命题;⑤是错误的命题.变式8把下列命题改写成“如果……,那么……”的形式.1两直线平行,同位角相等;2对顶角相等;3同角的余角相等.答案解:1如果两直线平行,那么同位角相等.2如果两个角是对顶角,那么这两个角相等.3如果有两个角是同一个角的余角,那么它们相等.类型四、平移例7.湖南益阳如图所示,将△ABC 沿直线AB 向右平移后到达△BDE 的位置,若∠CAB =50°,∠ABC =100°,则∠CBE 的度数为________.答案30°变式9上海静安区一模如图所示,三角形FDE 经过怎样的平移可以得到三角形ABCA .沿EC 的方向移动DB 长B .沿BD 的方向移动BD 长C .沿EC 的方向移动CD 长D .沿BD 的方向移动DC 长答案A类型五、平行的性质与判定综合应用例8、如图所示,AB∥EF,那么∠BAC+∠ACE+∠CEF=A.180°B.270°C.360°D.540°答案C解析过点C作CD∥AB,∵CD∥AB,∴∠BAC+∠ACD=180°两直线平行,同旁内角互补又∵EF∥AB∴EF∥CD.∴∠DCE+∠CEF=180°两直线平行,同旁内角互补又∵∠ACE=∠ACD+∠DCE∴∠BAC+∠ACE+∠CEF=∠BAC+∠ACD+∠DCE+∠CEF=180°+180°=360°课后作业一、选择题1.下列说法中正确的有①一条直线的平行线只有一条.②过一点与已知直线平行的直线只有一条.③因为a∥b,c∥d,所以a∥d.④经过直线外一点有且只有一条直线与已知直线平行.A.1个B.2个C.3个D.4个2.如果两个角的一边在同一直线上,另一边互相平行,则这两个角A.相等B.互补C.互余D.相等或互补3.如图,能够判定DE∥BC的条件是A.∠DCE+∠DEC=180°B.∠EDC=∠DCBC.∠BGF=∠DCBD.CD⊥AB,GF⊥AB4.一辆汽车在广阔的草原上行驶,两次拐弯后,行驶的方向与原来的方向相同,那么这两次拐弯的角度可能是.A.第一次向右拐40°,第二次向右拐140°.B.第一次向右拐40°,第二次向左拐40°.C.第一次向左拐40°,第二次向右拐140°.D.第一次向右拐140°,第二次向左拐40°.5.如图所示,下列条件中,不能推出AB∥CE成立的条件是A.∠A=∠ACEB.∠B=∠ACEC.∠B=∠ECDD.∠B+∠BCE=180°6.绍兴学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的如图,1—4:从图中可知,小敏画平行线的依据有①两直线平行,同位角相等.②两直线平行,内错角相等.③同位角相等,两直线平行.④内错角相等,两直线平行.A.①②B.②③C.③④D.④①二、填空题7.在同一平面内的三条直线,它们的交点个数可能是________.8.如图,DF平分∠CDE,∠CDF=55°,∠C=70°,则________∥________.9.规律探究:同一平面内有直线a1,a2,a3…,a100,若a1⊥a2,a2∥a3,a3⊥a4…,按此规律,a1和a100的位置是________.10.已知两个角的两边分别平行,其中一个角为40°,则另一个角的度数是11.直线l同侧有三点A、B、C,如果A、B两点确定的直线l'与B、C两点确定的直线l''都与l平行,则A、B、C 三点,其依据是12.如图,AB⊥EF于点G,CD⊥EF于点H,GP平分∠EGB,HQ平分∠CHF,则图中互相平行的直线有.三、解答题13.如图,∠1=60°,∠2=60°,∠3=100°,要使AB∥EF,∠4应为多少度说明理由.14.小敏有一块小画板如图所示,她想知道它的上下边缘是否平行,而小敏身边只有一个量角器,你能帮助她解决这一问题吗15.如图,把一张长芳形纸条ABCD沿AF折叠,已知∠ADB=20°,那么∠BAF为多少度时,才能使AB′∥BD16.如图所示,由∠1=∠2,BD平分∠ABC,可推出哪两条线段平行,写出推理过程,如果推出另两条线段平行,则应将以上两条件之一作如何改变答案与解析一、选择题1.答案A解析只有④正确,其它均错.2.答案D3.答案B解析内错角相等,两直线平行.4.答案B5.答案B解析∠B和∠ACE不是两条直线被第三条直线所截所得到的角.6.答案C解析解决本题关键是理解折叠的过程,图中的虚线与已知的直线垂直,过点P的折痕与虚线垂直.二、填空题7.答案0或1或2或3个;8.答案BC,DE;解析∠CFD=180°-70°-55°=55°,而∠FDE=∠CDF=55°,所以∠CFD=∠FDE.9.答案a1∥a100;解析为了方便,我们可以记为a1⊥a2∥a3⊥a4∥a5⊥a6∥a7⊥a8∥a9⊥a10…∥a97⊥a98∥a99⊥a100,因为a1⊥a2∥a3,所以a1⊥a3,而a3⊥a4,所以a1∥a4∥a5.同理得a5∥a8∥a9,a9∥a12∥a13,…,接着这样的规律可以得a1∥a97∥a100,所以a1∥a100.10.答案40°或140°11.答案共线,平行公理;解析此题考查是平行公理,它是论证推理的基础,应熟练应用.12.答案AB∥CD,GP∥HQ;。
平行线判定定理
平行线判定定理平行线判定定理是几何学中的重要定理之一,用于判定两条直线是否平行。
它提供了一种简单快捷的方法来确定直线的平行性,为几何相关问题的解决提供了基础。
1. 定理简介平行线判定定理是基于平行线的性质而提出的,它可以根据直线与任一平行线所形成的角度关系来判断两条直线是否平行。
根据平行线性质的定义,如果直线L1与直线L2之间的对应角或同位角相等,则L1与L2平行。
2. 平行线判定根据平行线判定定理,我们可以通过以下几种方法来判断两条直线是否平行:(1)同位角判定法:如果直线L1和直线L2的同位角相等,则L1与L2平行。
(2)内错角判定法:如果直线L1和直线L2所形成的内错角相等,则L1与L2平行。
(3)外错角判定法:如果直线L1和直线L2所形成的外错角相等,则L1与L2平行。
(4)夹角相等判定法:如果直线L1和直线L2之间的夹角与另一条直线(与L1或L2相交于同一点)的夹角相等,则L1与L2平行。
3. 应用举例为了更好地理解平行线判定定理的应用,以下举例说明:例1:已知直线L1与直线L2各自与直线a相交于不同的两个点P和Q,如果∠APQ = ∠BQP,则可以得出直线L1 || L2。
例2:已知直线L1和直线L2分别与直线a相交于不同的两个点P和Q,同时∠MPQ = ∠NQP,其中M和N分别是直线L1和直线L2上的任意一点,则可以推断直线L1 || L2。
4. 注意事项在使用平行线判定定理时,需要注意以下两点事项:(1)判定条件的正确性:判断两直线平行的关键在于所选择的判定条件是否成立,需要确保所使用的角度关系正确。
(2)其他条件的排除:有时候两条直线可能同时满足多个判定条件,但并非所有条件都能提供准确判断,需要排除其他可能导致两条直线交叉的条件。
总结:平行线判定定理是几何学中的重要定理,它为判定两条直线是否平行提供了便捷的方法。
通过同位角判定、错角判定或夹角判定等方法,我们可以快速准确地判断直线的平行性。
平行线的判定和性质知识点详解
平行线的判定和性质〔综合篇〕一、重点和难点:重点:平行线的判定性质。
难点:①平行线的性质与平行线的判定的区分②掌握推理论证的格式。
二、例题:这局部容所涉及的题目主要是从图形中识别出对顶角、同位角、错角或同旁角。
解答这类题目的前提是熟练地掌握这些角的概念,关键是把握住这些角的根本图形特征,有时还需添加必要的辅助线,用以突出根本图形的特征。
上述类型题目大致可分为两大类。
一类题目是判断两个角相等或互补及与之有关的一些角的运算问题。
其方法是“由线定角〞,即运用平行线的性质来推出两个角相等或互补。
另一类题目主要是“由角定线〞,也就是根据某些角的相等或互补关系来判断两直线平行,解此类题目必须要掌握好平行线的判定方法。
例1.如图,直线a,b,c被直线d所截,假设∠1=∠2,∠2+∠3=180°,求证:∠1=∠7分析:运用综合法,证明此题的思路是由角的关系推证出两直线平行,然后再由两直线平行解决其它角的关系。
∠1与∠7是直线a和c被d所截得的同位角。
须证a//c。
法〔一〕证明:∵d是直线〔〕∴∠1+∠4=180°〔平角定义〕∵∠2+∠3=180°,∠1=∠2〔〕∴∠3=∠4〔等角的补角相等〕∴a//c〔同位角相等,两直线平行〕∴∠1=∠7〔两直线平行,同位角相等〕法〔二〕证明:∵∠2+∠3=180°,∠1=∠2〔〕∴∠1+∠3=180°〔等量代换〕∵∠5=∠1,∠6=∠3〔对顶角相等〕∴∠5+∠6=180°〔等量代换〕∴a//c 〔同旁角互补,两直线平行〕∴∠1=∠7〔两直线平行,同位角相等〕。
例2.如图,∠1+∠2=180°,∠A=∠C,AD平分∠BDF,求证:BC平分∠DBE。
分析:只要求得∠EBC=∠CBD,由∠1+∠2=180°推出∠1=∠BDC,从而推出AE//FC,从而推出∠C=∠EBC而∠C=∠A于是可得∠A=∠EBC。
初步认识平行线的性质和判定方法
初步认识平行线的性质和判定方法平行线是初中数学中一个非常重要的概念,它在几何学中占据着重要的地位。
初步认识平行线的性质和判定方法,能够帮助我们更好地理解和运用这一概念。
本文将从平行线的定义、性质以及判定方法三个方面进行论述。
一、平行线的定义在几何学中,我们称两条直线为平行线,意味着它们在同一平面上,并且永远不会相交。
这是平行线最基本的定义。
需要注意的是,两条平行线之间的距离始终相等,在图形排列中有很重要的应用。
二、平行线的性质1. 平行线具有等角折射性质:当两条平行线被一条横线(称为割线)切割时,所产生的对应角相等。
这是平行线最重要的性质之一,也是判定平行线的基础。
2. 平行线具有交错性质:当一条直线与两条平行线相交时,所产生的内错角互为补角,外错角互为补角。
这一性质在证明平行线相关定理时经常使用。
3. 平行线具有等比例性质:当两条平行线被一条斜线切割时,所产生的截线与平行线之间的长度比例保持不变。
这个性质在割线定理中有广泛的应用。
三、平行线的判定方法根据平行线的性质,我们可以利用不同的条件来判定两条直线是否平行。
1. 定理一:同位角相等法则同位角是指两条平行线被一条割线切割所形成的对应角。
如果两个对应角相等,那么这两条直线就是平行线。
这个方法在证明平行线定理时经常使用。
2. 定理二:内错角补角法则当两条平行线被一条割线切割时,所形成的内错角互为补角。
如果两个内错角互为补角,那么这两条直线是平行线。
3. 定理三:等角斜线法则当两条平行线被一条斜线切割时,所产生的截线与平行线之间的长度比例相等。
根据这一比例关系,我们可以判定两条直线是否平行。
通过以上三个判定方法,我们可以初步认识平行线的性质和判定方法。
在实际应用中,我们可以结合具体的问题和知识点,灵活运用这些方法,解决与平行线相关的几何问题。
综上所述,平行线是几何学中的重要概念,具有丰富的性质和判定方法。
通过对平行线的初步认识,我们可以更好地理解、运用和证明涉及平行线的问题。
平行线的判定及性质课件
05
总结与展望
总结
01
02
03
04
05
直线平行的定义
直线平行的判定 方法
直线平行的性质
平行线在实际生 活中的应用
平行线在数学中 的地位
在同一平面内,不相交的 两条直线叫做平行线。
同位角相等,两直线平行 ;内错角相等,两直线平 行;同旁内角互补,两直 线平行。
两直线平行,同位角相等 ;两直线平行,内错角相 等;两直线平行,同旁内 角互补。
在几何图形中,平行线具 有非常重要的应用价值, 如矩形、菱形、正方形等 都有平行线的性质。
平行线是数学几何学中的 重要概念之一,是研究平 面图形性质的基础之一。 掌握平行线的判定方法和 性质对于学习数学几何学 非常重要。
展望
进一步探索平行线的性质
加强实际应用
除了已经学习的平行线的基本性质外,还 有许多复杂的性质和定理,值得进一步探 索和学习。
详细描述
在制造业中,机器人使用平行线来定位和移动物体,进行高效和精确的生产操作。例如 ,在汽车制造中,机器人通过使用平行线来定位和抓取车辆部件,以提高生产效率和质 量。在医疗领域,手术机器人使用平行线来精确控制手术器械,提高手术的准确性和安
全性。
04
平行线在数学问题中 的应用
代数中与平行线相关的知识点
在道路交通中,平行线是确保车辆安全行驶的重要标志。它们被用来划分车道、标识道路边缘以及引 导驾驶员在正确的车道上行驶。在高速公路上,平行线被用来表示应急车道和车道分隔线,帮助驾驶 员在紧急情况下做出正确的反应。
机器人在工作中的应用
总结词
机器人广泛应用于生产制造、医疗服务和军事等领域,平行线在机器人的工作中发挥着 重要作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
命题、证明及平行线的判定定理(基础)知识讲解
【学习目标】
1.了解定义、命题的含义,会区分命题的条件(题设)和结论;
2.体会检验数学结论的常用方法:实验验证、举出反例、推理;
4.了解公理和定理的定义,并能正确的写出已知和求证,掌握证明的基本步骤和书写格式;
5.掌握平行线的判定方法,并能简单应用这些结论.
【要点梳理】
要点一、定义与命题
1.定义:一般地,用来说明一个名词或者一个术语的意义的句子叫做定义.
要点诠释:
(1)定义实际上就是一种规定.
(2)定义的条件和结论互换后的命题仍是真命题.
2.命题:判断一件事情的句子叫做命题.
真命题:正确的命题叫做真命题.
假命题:不正确的命题叫做假命题.
要点诠释:
(1)命题的结构:命题通常由条件(或题设)和结论两部分组成.条件是已知事项,结论是由已知事项推出的事项,一般地,命题都可以写成”如果……那么……”的形式,其中“如果”开始的部分是条件,“那么”后面是结论.
(2)命题的真假:对于真命题来说,当条件成立时,结论一定成立;对于假命题来说,当条件成立时,不能保证结论正确,即结论不成立.
要点二、证明的必要性
要判断一个命题是不是真命题,仅仅依靠经验、观察、实验和猜想是不够的,必须一步一步、有根有据地进行推理.推理的过程叫做证明.
要点三、公理与定理
1.公理:通过长期实践总结出来,并且被人们公认的真命题叫做公理.
要点诠释:欧几里得将“两点确定一条直线”等基本事实作为公理.
2.定理:通过推理得到证实的真命题叫做定理.
要点诠释:
证明一个命题的正确性要按已知、求证、证明的顺序和格式写出.其中“已知”是命题的条件,“求证”是命题的结论,而“证明”则是由条件(已知)出发,根据已给出的定义、公理、已经证明的定理,经过一步一步的推理,最后证实结论(求证)的过程.
要点四、平行公理及平行线的判定定理
1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.
推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.
要点诠释:
(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.
(2)公理中“有”说明存在;“只有”说明唯一.
(3)“平行公理的推论”也叫平行线的传递性.
2.平行线的判定定理
判定方法1:同位角相等,两直线平行.如上图,几何语言:
∵∠3=∠2
∴AB∥CD(同位角相等,两直线平行)
判定方法2:内错角相等,两直线平行.如上图,几何语言:
∵∠1=∠2
∴AB∥CD(内错角相等,两直线平行)
判定方法3:同旁内角互补,两直线平行.如上图,几何语言:
∵∠4+∠2=180°
∴AB∥CD(同旁内角互补,两直线平行)
要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.
【典型例题】类型一、定义与命题
1.请说出下列名词的定义:
(1)无理数(2)直角三角形
【答案与解析】
解:(1)无理数:无限不循环小数叫做无理数.
(2)直角三角形:有一个角是直角的三角形叫做直角三角形.
【总结升华】对学过的定义要准确地牢记.
举一反三:
【变式】指出下列句子哪些是定义.
(1)两直线平行,内错角相等;
(2)两腰相等的梯形叫等腰梯形;
(3)有一个角是钝角的三角形是钝角三角形;
(4)等腰三角形的两底角相等;
(5)平行四边形的对角线互相平分;
(6)连结三角形两边中点的线段叫做三角形的中位线.
【答案】(2),(3),(6)是定义.
2.说出下列命题的条件和结论,并判断它是真命题还是假命题:
(1)如果,>>a b b c ,那么>a c ;
(2)如果两个角相等,那么它们是对顶角.
【答案与解析】
解:(1)条件:,>>a b b c ;结论:>a c .它是真命题.
(2)条件:两个角相等;结论:这两个角是对顶角.它是假命题.反例,你书的左下角和右下角两个角都是直角,相等,但不是对顶角.
【总结升华】要判断一个命题是假命题,只要能够举出一个例子,使之具备命题的条件,而不具备命题的结论,就可以说明这一命题是假命题,这种例子通常称为反例.
举一反三:
【变式】(2013•贵港)下列四个命题中,属于真命题的是().
=B.若a>b,则am>bm
=,则a m
m
C.两个等腰三角形必定相似D.位似图形一定是相似图形
【答案】D
类型二、公理、定理及证明
3.证明:等角的余角相等.
【思路点拨】如果题目中没有明确指出“条件”和“结论”,应先写出已知、求证、证明,如果需要的话并画出图形,再证明.
【答案与解析】
已知:∠1=∠2,∠1+∠3=90°,∠2+∠4=90°.
求证:∠3=∠4.
证明:∵∠1+∠3=90°,∠2+∠4=90°,(已知)
∴∠3=90°-∠1,∠4=90°-∠2.(等式的性质)
∵∠1=∠2(已知),
∴∠3=∠4(等量代换).
【总结升华】“等角的余角相等”与“等角的补角相等”可以作为今后证明的依据.此外,在等式或不等式中,一个量可以用它的等量来代替,简称为“等量代换”.
举一反三:
【变式】“垂线段最短”是().
A.定义B.定理C.公理D.不是命题
【答案】B
类型三、平行线的判定定理
4.(2016•淄博)如图,一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由.
【思路点拨】根据同位角相等,两直线平行证明OB∥AC,根据同旁内角互补,两直线平行证明OA∥BC.
【答案与解析】
解:OA∥BC,OB∥AC.
∵∠1=50°,∠2=50°,
∴∠1=∠2,
∴OB∥AC,
∵∠2=50°,∠3=130°,
∴∠2+∠3=180°,
∴OA∥BC.
【总结升华】本题考查的是平行线的判定,掌握平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解题的关键.
举一反三:
【变式】(2015•宁城)如图,下列能判定AB∥CD的条件有()个.
(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.
A.1B.2C.3D.4
【答案】
解:(1)利用同旁内角互补判定两直线平行,故(1)正确;
(2)利用内错角相等判定两直线平行,∵∠1=∠2,∴AD∥BC,而不能判定AB∥CD,故(2)错误;
(3)利用内错角相等判定两直线平行,故(3)正确;
(4)利用同位角相等判定两直线平行,故(4)正确.
∴正确的为(1)、(3)、(4),共3个;
故选:C.
5.(2015•日照期末)如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,
∠CFE=∠E.求证:AD∥BC.
【答案与解析】
证明:∵AE平分∠BAD,
∴∠1=∠2,
∵AB∥CD,∠CFE=∠E,
∴∠1=∠CFE=∠E,
∴∠2=∠E,
∴AD∥BC.
【总结升华】主要考查角平分线的性质以及平行线的判定定理.
举一反三:
【变式】已知,如图,EF⊥EG,GM⊥EG,∠1=∠2,AB与CD平行吗?请说明理由.
【答案】
解:AB∥CD.理由如下:如图:
∵EF⊥EG,GM⊥EG(已知),
∴∠FEQ=∠MGE=90°(垂直的定义).
又∵∠1=∠2(已知),
∴∠FEQ-∠1=∠MGE-∠2(等式性质),
即∠3=∠4.
∴AB∥CD(同位角相等,两直线平行).。