第28届全国中学生物理竞赛复赛试题参考解答及评分标准
第28届全国中学生物理竞赛预赛试卷参考解答与评分标准
第28届全国中学生物理竞赛预赛试卷参考解答与评分标准一、选择题.答案:1.C 2.C 3.BC 4.A 5.D评分标准:本题共5小题,每小题6分.全部选对的得6分,选对但不全的得3分,有选错或不答的得0分.二、填空题答案与评分标准:6.2.5m ( 6分)7.35s (10 分) 8.2lk C ke E E - ( 6分) 2.0×10-9 (2分) 9.9 ( 10 分)10.i .如图所示.( 8分)(图错不给分,图不准确酌情评分.)ii .并联电阻两端的电压U 0=2.3V (2分),通过电阻1的电流I 10=1.2A (3分),通过电阻2的电流I 20= 2.2A ( 3分)(读数第一位必须正确,第二位与答案不同,可酌情评分.)iii .2.5 W ( 2 分), 4 .9W ( 2 分)11.参考解答:i .设空间站离地面的高度为H, 因为同步卫星的周期和地球自转周期相同,根据开普勒第三定律以及题意有323200)()R H T R H T +=+( (1) 即 2/300()()T H R H R T =+- (2) 代人数据得 H= 376km (3)卫星的高度 h =H 一l =356km (4)卫星在细绳的拉力 F 和地球引力作用下跟随空间站一起绕地球作周期为 T 的圆周运动,有222()()()Mm G F m R h R h Tπ-=++ (5) 式中G 为万有引力常量, M 为地球质量.空间站在地球引力作用下绕地球作周期为 T 的圆周运动故有 222()()()Mm G m R h R h Tπ''=++ (6) 式中m ’为空间站的质量.由(5)、(6)两式得2222()()()[1]()R H F m R h T R h π+=+-+ (7) 将(3)、(4)式及其他有关数据代人(7)式得 F=38.2N (8)ii .细绳脱落后,卫星在地球引力作用下绕地球运动的轨道为一椭圆.在脱落的瞬间,卫星的速度垂直于卫星与地心的连线,所以脱落点必是远地点(或近地点),由( 4)式可知,此点到地面的高度h =356km (9) 设卫星在近地点(或远地点)的高度为h ',速度为v ',根据开普勒第二定律,有22()()R h v R h T π''+=+ (10) 根据机械能守恒,有222112()()22Mm Mm mv G m R h G R h T R hπ'-=+-'++ (11) 联立(10)、(11)两式并利用(6)式得433()2()()R h h R H R h +'=+-+ (12) 代人有关数据有 h ' = 238km(13 ) 由(9)、(13)两式可知,远地点到地面的高度为356km ,近地点到地面的高度为238km .设卫星的周期为T ',根据开普勒第三定律,卫星的周期3/22()22R h h T T R H'++'=+ (14) 代人数据T '= 90 . 4min (15) 评分标准:本题 17 分.第i 小题9分. ( l )式2分, ( 5)式3分, ( 6)式2分, (8)式2分.第ii 小题8分. (9)、(10)式各l 分, (11)式 2 分, (12)、(13)、(14)、(15)式各1分.12.参考解答:解法一因为下坡时自行车匀速行驶,可知阻力大小f=mgsinθ (1)由题意,自行车沿斜坡匀速向上行驶时,轮盘的角速度2N tπω= (2) 设轮盘边缘的线速度为v 1,由线速度的定义有v 1=ωR 1 (3) 设飞轮边缘的线速度为v 2,后车轮边缘的线速度为v 3,因为轮盘与飞轮之间用链条连结,它们边缘上的线速度相同,即v 1=v 2 (4)因飞轮与后车轮的转动角速度相同,故有2233v R v R = (5) 因车轮与坡面接触处无滑动,在车后轮绕其中心轴转动一周的时间T 内,车后轮中心轴前进的路程32s R π∆= (6 )而 332R T v π= (7) 车后轮的中心轴前进的速度即自行车行驶速度的大小s V T∆= (8) 由以上有关各式得1322NR R V R tπ= (9) 人骑自行车上坡的功率为克服阻力f 的功率加上克服重力沿斜面分力的功率,即P=fV+mgVsin θ (10) 由(l )、(9)、(10)式得1324sin mg NR R P R tπθ= (11) 评分标准:本题 17 分.( l )式 3 分,求得(9 式共 8 分, (10)式5分, (11)式1分.解法二因下坡时自行车匀速行驶,若自行车出发点的高度为h ,则克服阻力所做的功W f 等于势能的减少,有W f =mgh (1) 用s 表示自行车行驶的路程,有h =s sin θ (2 )自行车沿斜坡匀速向上行驶时,骑车者所做的功W ,等于克服阻力的功W f 与势能增量mgh 之和,即W=W f +mgh (3) 设骑车者蹬踩踏板N 圈到达下坡时的出发点,因踏板转N 圈可使后轮转NR 1/R 2圈,所以自行车行驶的距离s 为122NR s R R π=⋅ (4) 由(1)到(4)式,得1324sin NR R W mg R tπθ=⋅ (5) 上式除以所用时间t ,即得骑车者功率 1324sin mg NR R W P t R t πθ== (6) 评分标准:本题17分.( I )式3分, ( 2)式l 分, (3)式4分, (4)式6分, (5)式 l 分, (6)式 2 分.13.参考解答:当环的角速度到达ω0时,环的动能201()2k E m R ω= ( l ) 若在时刻t ,环转动的角速度为ω,则环上电荷所形成的等效电流 22qq I R R ωωππ== (2) 感应电动势 I k t tφε∆∆==∆∆ (3) 由(2)、(3)式得 2q k t ωεπ∆=∆ (4) 环加速转动时,要克服感应电动势做功,功率为P 1=εI (5) 因为是匀加速转动,所以ω和I 都随时间t 线性增加.若角速度从零开始增加到ω0经历的时间为t 0,则有00t tωω∆=∆ (6) 若与ω0对应的等效电流为I 0,则在整个过程中克服感到电动势做的总功10012W I t ε= (7) 由以上有关各式得220128q W k ωπ= (8) 外力所做的总功22201021()82k q W W E k m R ωωπ=+=+ (9) 评分标准:本题20分.(1)式3分,(2)式4分,(3)式2分,(5)式3分, (6)式2分, (7)式3分,(8) 式l 分,(9)式2 分14.参考解答:i .由于子弹射人摆球至停留在球内经历的时间极短,可以认为在这过程中摆球仅获得速度但无位移.设摆球(包括停留在球内的子弹)向前(指垂直于图面向里)的速度为u ,由动量守恒定律有mv 0=2mu (l)摆球以速度u 开始向前摆动,木块亦发生运动.当摆球上升至最高时,摆球相对木块静止,设此时木块的速度为V ,摆球上升的高度为h ,因水平方向动量守恒以及机械能守恒有 2mu =(2m +M)V (2)221(2)22mu m M V mgh =++ (3) 解(l )、(2)、(3)三式得208(2)Mv h g m m =+ (4) ii .摆球升到最高后相对木块要反向摆动.因为在摆球从开始运动到摆线返回到竖直位置前的整个过程中,摆线作用于支架的拉力始终向斜前方,它使木块向前运动的速度不断增大;摆线经过竖直位置后,直到摆线再次回到竖直位置前,摆线作用于支架的拉力将向斜后方,它使木块速度减小,所以在摆线(第一次)返回到竖直位置的那一时刻,木块的速度最大,方向向前以V ’表示摆线位于竖直位置时木块的速率,u ’表示此时摆球的速度(相对桌面),当u' >0,表示其方向水平向前,反之,则水平向后.因水平方向动量守恒以及机械能守恒,故有22mu mu MV ''=+ (5)22212mu mu MV ''=+ (6) 解(1)、(5)、(6)三式可得摆线位于竖直位置时木块速度的大小0V '= (7)022mv V m M'=+ (8) (7)式对应于子弹刚射人摆球但木块尚未运动时木块的速度,它也是摆球在以后相对木块往复运动过程中摆线每次由后向前经过竖直位置时木块的速度;而题中要求的木块的最大速率为(8)式,它也是摆球在以后相对木块的往复运动过程中摆线每次由前向后经过竖直位置时木块的速度.iii .在整个运动过程中,每当摆线处于竖直位置时,小球便位于最低处.当子弹刚射人摆球时,摆球位于最低处,设这时摆球的速度为u ,由(l )式得 012u v = (9) 方向水平向前.当摆球第一次回到最低处时,木块速度最大,设这时摆球的速度为u',由 (l )、(5)、(6)三式和(8)式可得0122m M u v M m-'=+ (10)其方向向后.当摆球第二次回到最低处时,由(7)式木块速度减至0,设这时摆球的速度为u'', 由(l )、(5)、(6)式可得u''=012u v = (11) 方向向前,开始重复初始的运动.评分标准:本题20分.第i 小题 8 分.(1) 式 1 分,(2)、(3)式各3分, (4)式l 分第ii 小题 7 分.(5)、(6)式各3分,(8)式 l 分第iii 小题 5 分. ( 9 )式l 分, (10)式3.分, (11)式l 分.15.参考解答:先设磁感应强度为B 的匀强磁场方向垂直xy 平面向里,且无边界.考察从粒子源发出的速率为v 、方向与x轴夹角为θ的粒子,在磁场的洛仑兹力作用下粒子做圆周运动,圆轨道经过坐标原点O ,且与速度方向相切,若圆轨道的半径为R ,有2v qvB mR= (1) 得 mv R qB= (2) 圆轨道的圆心O ’在过坐标原点O 与速度方向垂直的直线上,至原点的距离为R ,如图1所示.通过圆心 O ’作平行于y 轴的直线与圆轨道交于P 点,粒子运动到P点时其速度方向恰好是沿x 轴正方向,故P 点就在磁场区域的边界上.对于不同人射方向的粒子,对应的P 点的位置不同,所有这些P 点的连线就是所求磁场区域的边界线.P 点的坐标为x =—Rsin θ (3 )y =一R + Rcos θ (4)这就是磁场区域边界的参数方程,消去参数θ,得x 2 +(y+R)2=R 2 (5)由(2)、(5)式得222222()mv m v x y qB q B ++= (6) 这是半径为R 圆心 O ’’的坐标为(0,一R ) 的圆,作为题所要求的磁场区域的边界线,应是如图 2 所示的半个圆周,故磁场区域的边界线的方程为222222()mv m v x y qB q B ++= 0x ≤0y ≤ (7)若磁场方向垂直于xy 面向外,则磁场的边界线为如图3示的半圆,磁场区域的边界线的方程为x 2 +(y —R)2=R 2 0x ≥ 0y ≥ (8 )或 222222()mv m v x y qB q B +-= 0x ≥ 0y ≥ (9) 证明同前评分标准:本题20分.( l )或(2)式 2 分, (3)、(4)式各 4 分, (7)式 3 分,图(图 2 ) 2分(只要半圆的位置正确就给2分), (9)式3分,图(图 3 ) 2 分(只要半圆的位置正确就给2分)16.参考解答:以t =0时刻船A 所在的位置为坐标原点O ,作如图1所示平面直角坐标系O xy ,x 轴指向正东,y 轴指向正北.可以把船C 的速度分解成沿正东方向的分速度v x 和沿正北方向的分速度v y 两个分量.根据题意有v x =v y =2u (1)在t 时刻,三船的位置如图1所示.B 、C 二船在y 方向位移相等,两船的连线BC 与x 轴平行,两船间的距离2BC a ut =+ (2)BC 的中点到B 点的距离为12a ut +.中点M 的坐标分别为 1322M x a a ut a ut =++=+ (3) 2M y ut = (4)可见M 点沿x 方向的速度为u ,沿y 方向的速度为2u ,在t = 0时刻BC 的中点在x 轴上,其x 坐标为3a /2.在与M 点固连的参考系中考察,并建立以M 为原点的直角坐标系M x 'y' , x '轴与x 轴平行,y'轴与y 轴平行,则相对M ,船A 的速度只有沿负y'方向的分量,有u AM =u AM y'=—2u (5)在时刻t ,船A 在坐标系M x 'y'的坐标为32A x a '=- (6) A AM y u t '= (7)可以把A 船的速度分解为沿连线MA 方向的分量u AM1 和垂直于连线 MA 方向的分量u AM2两个分量,u AM1使连线MA 的长度增大,u AM2使连线 MA 的方向改变,如图2所示.若用R 表示t 时刻连线MA 的长度,则连线MA 绕M 点转动的角速度2AM u Rω= (8) 若MA 与x '轴的夹角为θ,则有2cos AM AM u u θ= (9) 而 cos A x Rθ'= (10)R =(11) 由(5)到(10)各式得22212916aua u t ω=+(12) 评分标准:本题20分.求得(5)式共6分, ( 6)、(7)式各l 分, (8)式6分, (9)式2分,(10)、 (11)式各l 分,( 12 ) 式2分。
第29届全国中学生物理竞赛复赛试卷答案与评分标准
p
A b
P
=
将(10)、(13)和(14)式分别代人(8)和(9)式得
P
X(t) =—;bcos[心t亠■■|
(13)
(14)
(15)
V(t)〒gbsin .t
(16)
由(15)式可知,物块再次返回到初始位置时恰好完成一个振动周期;但物块的 运动始终由(15)表示是有条件的,那就是在运动过程中物块始终没有完全浸没 在湖水中•若物块从某时刻起全部浸没在湖水中,则湖水作用于物块的浮力变 成恒力,物块此后的运动将不再是简谐振动,物块再次返回到初始位置所需的 时间也就不再全由振动的周期决定•为此,必须研究物块可能完全浸没在湖水 中的情况.显然,在x系中看,物块下底面坐标为b时,物块刚好被完全浸没; 由⑸式知在X系中这一临界坐标值为
L\ LtL3LaP
A
/ \
f i
h
Q
\
f
T 1 27.5cm T 1 26.0cm T
25cm5.0cm
1.厶焦距的大小为cm,乙焦距的大小为cm.
2.现保持Q、厶、d和P位盖不变,而沿光轴平移匚和厶,最后在屏上成倒立的实
像,像高为1.82cm,此时厶到厶的距离为cm,0到厶的距离为cm.
绘后结果保留至小数点后一位.
用数值方法求解高次方程.
已知^地球质<M = 6.OxlO24kg,半径^=6.4xl06m的球体;引力恒ftCx6.7x 10~N・m2・kg-2;地球自转周期T.=24小时;假设卫星与太空电梯脱离后只受地球引 力作用.
三、(25分)如图所示,两根刚性轻 杆佔和BC在B端牢固粘接在一起, 肋延长线与BC的夹角a为锐角,杆BC长为“杆AS长为!cosa.在杆的
第28届全国中学生物理竞赛预赛、复赛试题及参考答案(WORD精校版)
第28届全国中学生物理竞赛预赛、复赛试题及答案第28届全国中学生物理竞赛预赛试题 2011一、选择题(本题共5小题,每小题6分)1、如图28预—1所示,常用示波器中的扫描电压u 随时间t 变化的图线是( )2、下面列出的一些说法中正确的是( )A .在温度为20ºC 和压强为1个大气压时,一定量的水蒸发为同温度的水蒸气,在此过程中,它所吸收的热量等于其内能的增量。
B .有人用水银和酒精制成两种温度计,他都把水的冰点定为0度,水的沸点定为100度,并都把0刻度与100刻度之间均匀等分成同数量的刻度,若用这两种温度计去测量同一环境的温度(大于0度小于 100度)时,两者测得的温度数值必定相同。
C .一定量的理想气体分别经过不同的过程后,压强都减小了,体积都增大了,则从每个过程中气体与外界交换的总热量看,在有的过程中气体可能是吸收了热量,在有的过程中气体可能是放出了热量,在有的过程中气体与外界交换的热量为零.D .地球表面一平方米所受的大气的压力,其大小等于这一平方米表面单位时间内受上方作热运动的空气分子对它碰撞的冲量,加上这一平方米以上的大气的重量。
3、如图28预—2所示,把以空气为介质的两个平行板电容器a 和b 串联,再与电阻R 和电动势为E 的直流电源如图连接。
平衡后,若把一块玻璃板插人电容器a 中,则再达到平衡时,有( )A .与玻璃板插人前比,电容器a 两极间的电压增大了B .与玻璃板插人前比,电容器a 两极间的电压减小了C .与玻璃板插入前比,电容器b 贮存的电能增大了D .玻璃板插人过程中电源所做的功等于两电容器贮存总电能的增加量 4、多电子原子核外电子的分布形成若干壳层,K 壳层离核最近,L壳层次之,M 壳层更次之,……,每一壳层中可容纳的电子数是一定的,当一个壳层中的电子填满后,余下的电子将分布到次外的壳层。
当原子的内壳层中出现空穴时,较外壳层中的电子将跃迁至空穴,并以发射光子(X 光)的形式释放出多余的能量,但亦有一定的概率将跃迁中放出的能量传给另一个电子,使此电子电离,这称为俄歇(Auger )效应,这样电离出来的电子叫俄歇电子。
第28届全国中学生物理竞赛复赛试题参考解答及评分标准
σ=
πab T
b
rP
S
由(9) 、 (13) 、 (14) 、 (15)式并代入有关数据可 得
θP
P0
ϕ
x
a
O
ϕ = 127D
(16) 图2
解法二 取极坐标,极点位于太阳 S 所在的焦点处,由 S 引向近日点的射线为极轴,极角为 θ ,取逆 时针为正向,用 r、 θ 表示彗星的椭圆轨道方程为
r=
p 1 + e cos θ
第 28 届全国中学生物理竞赛复赛试题参考解答及评分标准
一、参考解答: 解法一 取直角坐标系 Oxy,原点 O 位于椭圆的中心,则哈雷彗星的椭圆轨道方程为
x2 y 2 + =1 a 2 b2
a、b 分别为椭圆的半长轴和半短轴,太阳 S 位于椭圆的一个焦点处,如图 1 所示.
(1)
以 Te 表示地球绕太阳运动的周期,则 Te = 1.00年 ;以 ae 表示地球到太阳的距离(认为地球 绕太阳作圆周运动) ,则 ae = 1.00AU ,根据开普勒第三定律,有
取杆 CD 为研究对象,由平衡条件有
(4)
N 4 + N 2 cos θ − f 2 sin θ = 0 N 2 sin θ + f 2 cos θ − mg = 0
以及对 C 点的力矩
(5) (6)
1 N 4l cos α − mgl sin α = 0 2
解以上各式可得
(7)
N4 =
1 mg tan α 2
T
v
v1
P
v2
1 1 1 1 2 2 2 2 M ( Rω0 ) + m ( Rω0 ) = M ( Rω ) + m ( v12 + v 2 ) 2 2 2 2
第28届全国中学生物理竞赛复赛试卷(含答案)汇总
第28届全国中学生物理竞赛复赛试题一、(20分)如图所示,哈雷彗星绕太阳S 沿椭圆轨道逆时针方向运动,其周期T 为76.1年,1986年它过近日点P 0时与太阳S 的距离r 0=0.590AU ,AU 是天文单位,它等于地球与太阳的平均距离,经过一段时间,彗星到达轨道上的P 点,SP 与SP 0的夹角θP =72.0°。
已知:1AU=1.50×1011m ,引力常量G=6.67×10-11Nm 2/kg 2,太阳质量m S =1.99×1030kg ,试求P 到太阳S 的距离r P 及彗星过P 点时速度的大小及方向(用速度方向与SP 0的夹角表示)。
二、(20分)质量均匀分布的刚性杆AB 、CD 如图放置,A 点与水平地面接触,与地面间的静摩擦系数为μA ,B 、D 两点与光滑竖直墙面接触,杆AB 和CD 接触处的静摩擦系数为μC ,两杆的质量均为m ,长度均为l 。
1、已知系统平衡时AB 杆与墙面夹角为θ,求CD 杆与墙面夹角α应该满足的条件(用α及已知量满足的方程式表示)。
2、若μA =1.00,μC =0.866,θ=60.0°。
求系统平衡时α的取值范围(用数值计算求出)。
三、(25分)在人造卫星绕星球运行的过程中,为了保持其对称转轴稳定在规定指向,一种最简单的办法就是让卫星在其运行过程中同时绕自身的对称轴转,但有时为了改变卫星的指向,又要求减慢或者消除卫星的旋转,减慢或者消除卫星旋转的一种方法就是所谓消旋法,其原理如图所示。
一半径为R ,质量为M 的薄壁圆筒,,其横截面如图所示,图中O 是圆筒的对称轴,两条足够长的不可伸长的结实的长度相等的轻绳的一端分别固定在圆筒表面上的Q 、Q ′(位于圆筒直径两端)处,另一端各拴有一个质量为2m的小球,正常情况下,绳绕在圆筒外表面上,两小球用插销分别锁定在圆筒表面上的P 0、P 0′处,与卫星形成一体,绕卫星的对称轴旋转,卫星自转的角速度为ω0。
第28届全国中学生物理竞赛复赛试题及答案
第28届全国中学生物理竞赛复赛试题2011 一、(20分)如图所示,哈雷彗星绕太阳S沿椭圆轨道逆时针方向运动,其周期T为76.1年。
1986年它过近日点P0时,与太阳S的距离r0=0.590AU,AU是天文单位,它等于地球与太阳的平均距离。
经过一段时间,彗星到达轨道上的P点,SP与SP0的夹角θP=72.0°.已知:1AU=1.50×1011m,引力常量G=6.67×10-11m3•kg-1•s-2,太阳质量m S=1.99×1030kg.试求P到太阳S的距离r P及彗星过P点时速度的大小及方向(用速度方向与SP0的夹角表示)。
二、(20分)质量均匀分布的刚性杆AB、CD如图放置,A点与水平地面接触,与地面间的静摩擦因数为μA,B、D两点与光滑竖直墙面接触,杆A B和CD接触处的静摩擦因数为μC,两杆的质量均为m,长度均为l.(1)已知系统平衡时AB杆与墙面夹角θ,求CD杆与墙面的夹角α应满足的条件(用α及已知量满足的方程式表示)。
(2)若μA=1.00,μC=0.866,θ=60.0°,求系统平衡时α的取值范围(用数值计算求出)。
三、(25分)人造卫星绕星球运行的过程中,为了保持其对称轴稳定在规定指向,一种最简单的办法就是让卫星在其运行过程中同时绕自身的对称轴旋转。
但有时为了改变卫星的指向,又要求减慢或者消除卫星的旋转。
减慢或者消除卫星旋转的一种方法是所谓的“YO—YO”消旋法,其原理如图。
设卫星是一半径为R、质量为M的薄壁圆筒,其横截面如图所示。
图中O是圆筒的对称轴。
两条足够长的不可伸长的结实的长度相等的轻绳的一端分别固定在圆筒表面上的Q、Q'(位于圆筒直径两端)处,另一端各拴有一质量为m/2的小球。
正常情况下,绳绕在圆筒外表面上,两小球用插销分别锁定在圆筒表面上的P0、P0'处,与卫星形成一体,绕卫星的对称轴旋转。
卫星自转的角速度为ω0.若要使卫星减慢或停止旋转(消旋),可瞬间撤去插销释放小球,让小球从圆筒表面甩开,在甩开的整个过程中,从绳与圆筒表面相切点到小球的那段绳都是拉直的。
2011年第28届CPhO复赛试题+答案
第28届全国中学生物理竞赛复赛试题2011 一、(20分)如图所示,哈雷彗星绕太阳S沿椭圆轨道逆时针方向运动,其周期T为76.1年。
1986年它过近日点P0时,与太阳S的距离r0=0.590AU,AU是天文单位,它等于地球与太阳的平均距离。
经过一段时间,彗星到达轨道上的P点,SP与SP0的夹角θP=72.0°.已知:1AU=1.50×1011m,引力常量G=6.67×10-11m3•kg-1•s-2,太阳质量m S=1.99×1030kg.试求P到太阳S的距离r P及彗星过P点时速度的大小及方向(用速度方向与SP0的夹角表示)。
二、(20分)质量均匀分布的刚性杆AB、CD如图放置,A点与水平地面接触,与地面间的静摩擦因数为μA,B、D两点与光滑竖直墙面接触,杆A B和CD接触处的静摩擦因数为μC,两杆的质量均为m,长度均为l.(1)已知系统平衡时AB杆与墙面夹角θ,求CD杆与墙面的夹角α应满足的条件(用α及已知量满足的方程式表示)。
(2)若μA=1.00,μC=0.866,θ=60.0°,求系统平衡时α的取值范围(用数值计算求出)。
三、(25分)人造卫星绕星球运行的过程中,为了保持其对称轴稳定在规定指向,一种最简单的办法就是让卫星在其运行过程中同时绕自身的对称轴旋转。
但有时为了改变卫星的指向,又要求减慢或者消除卫星的旋转。
减慢或者消除卫星旋转的一种方法是所谓的“YO—YO”消旋法,其原理如图。
设卫星是一半径为R、质量为M的薄壁圆筒,其横截面如图所示。
图中O是圆筒的对称轴。
两条足够长的不可伸长的结实的长度相等的轻绳的一端分别固定在圆筒表面上的Q、Q'(位于圆筒直径两端)处,另一端各拴有一质量为m/2的小球。
正常情况下,绳绕在圆筒外表面上,两小球用插销分别锁定在圆筒表面上的P0、P0'处,与卫星形成一体,绕卫星的对称轴旋转。
卫星自转的角速度为ω0.若要使卫星减慢或停止旋转(消旋),可瞬间撤去插销释放小球,让小球从圆筒表面甩开,在甩开的整个过程中,从绳与圆筒表面相切点到小球的那段绳都是拉直的。
2011年全国中学生物理竞赛第28届复赛试题与解答
第28届全国中学生物理竞赛复赛试题(28届复赛)一、(20分)如图所示,哈雷彗星绕太阳S沿椭圆轨道逆时针方向运动,其周期T为76.1年,1986年它过近日点P0时与太阳S的距离r0=0.590AU,AU是天文单位,它等于地球与太阳的平均距离,经过一段时间,彗星到达轨道上的P点,SP与SP0的夹角θP=72.0°。
已知:1AU=1.50×1011m,引力常量G=6.67×10-11Nm2/kg2,太阳质量m S=1.99×1030kg,试求P到太阳S的距离r P及彗星过P点时速度的大小及方向(用速度方向与SP0的夹角表示)。
一、参考解答: 解法一取直角坐标系Oxy ,原点O 位于椭圆的中心,则哈雷彗星的椭圆轨道方程为22221x y a b+= (1) a 、b 分别为椭圆的半长轴和半短轴,太阳S 位于椭圆的一个焦点处,如图1所示.以e T 表示地球绕太阳运动的周期,则e 1.00T =年;以e a 表示地球到太阳的距离(认为地球绕太阳作圆周运动),则e 1.00AU a =,根据开普勒第三定律,有SPP θP rabO0P xy3232a T a T =e e(2) 设c 为椭圆中心到焦点的距离,由几何关系得c a r =-0 (3)22c a b -= (4)由图1可知,P 点的坐标cos P P x c r θ=+ (5)sin P P y r θ= (6)把(5)、(6)式代入(1)式化简得()2222222222sin cos 2cos 0P P P P P ab r b cr bc a b θθθ+++-= (7)根据求根公式可得()22222cos sin cos P P P Pb ac r a b θθθ-=+ (8) 由(2)、(3)、(4)、(8)各式并代入有关数据得 0.896AU P r = (9) 可以证明,彗星绕太阳作椭圆运动的机械能为s2Gmm E =a-(10) 式中m 为彗星的质量.以P v 表示彗星在P 点时速度的大小,根据机械能守恒定律有2s s 122P P Gmm Gmm m r a ⎛⎫+-=- ⎪⎝⎭v (11) 得P =v (12) 代入有关数据得 414.3910m s P -⨯⋅v = (13)设P 点速度方向与0SP 的夹角为ϕ(见图2),根据开普勒第二定律[]sin 2P P P r ϕθσ-=v (14)其中σ为面积速度,并有πabTσ=(15) 由(9)、(13)、(14)、(15)式并代入有关数据可得127ϕ=o (16)解法二取极坐标,极点位于太阳S 所在的焦点处,由S 引向近日点的射线为极轴,极角为θ,取逆时针为正向,用r 、θ表示彗星的椭圆轨道方程为1cos pr e θ=+ (1)其中,e 为椭圆偏心率,p 是过焦点的半正焦弦,若椭圆的半长轴为a ,根据解析几何可知()21p a e =- (2)将(2)式代入(1)式可得()θcos 112e e a r +-= (3)以e T 表示地球绕太阳运动的周期,则e 1.00T =年;以e a 表示地球到太阳的距离(认为地球绕太阳作圆周运动),则e 1.00AU a =,根据开普勒第三定律,有3232a T a T =e e(4)在近日点0=θ,由(3)式可得 1r e a=-0(5) 将P θ、a 、e 的数据代入(3)式即得0.895AU P r = (6) 可以证明,彗星绕太阳作椭圆运动的机械能 s2Gmm E =a-(7) 式中m 为彗星的质量.以P v 表示彗星在P 点时速度的大小,根据机械能守恒定律有2s s 122P P Gmm Gmm m r a ⎛⎫+-=- ⎪⎝⎭v (8)可得P =v (9) 代入有关数据得414.3910m s P -⨯⋅v = (10)设P 点速度方向与极轴的夹角为ϕ,彗星在近日点的速度为0v ,再根据角动量守恒定律,有()sin P P P r r ϕθ-=v v 00 (11)根据(8)式,同理可得=0v (12) 由(6)、(10)、(11)、(12)式并代入其它有关数据 127ϕ=o(13)评分标准: 本题20分解法一(2)式3分,(8)式4分,(9)式2分,(11)式3分,(13) 式2分,(14)式3分,(15)式1分,(16)式2分.解法二(3)式2分,(4)式3分,(5)式2分,(6)式2分,(8)式3分,(10) 式2分,(11)图2式3分,(12)式1分,(13)式2分.(28届复赛)二、(20分)质量均匀分布的刚性杆AB、CD如图放置,A点与水平地面接触,与地面间的静摩擦系数为μA,B、D两点与光滑竖直墙面接触,杆AB和CD接触处的静摩擦系数为μC,两杆的质量均为m,长度均为l。
第28届全国中学生物理竞赛复赛试题及参考答案(WORD精校版)
第28届全国中学生物理竞赛复赛试题一、(20分)如图所示,哈雷彗星绕太阳S 沿椭圆轨道逆时针方向运动,其周期T 为76.1年,1986年它过近日点P 0时与太阳S 的距离r 0=0.590AU ,AU 是天文单位,它等于地球与太阳的平均距离,经过一段时间,彗星到达轨道上的P 点,SP 与SP 0的夹角θP =72.0°。
已知:1AU=1.50×1011m ,引力常量G=6.67×10-11Nm 2/kg 2,太阳质量m S =1.99×1030kg ,试求P 到太阳S 的距离r P 及彗星过P 点时速度的大小及方向(用速度方向与SP 0的夹角表示)。
二、(20分)质量均匀分布的刚性杆AB 、CD 如图放置,A 点与水平地面接触,与地面间的静摩擦系数为μA ,B 、D 两点与光滑竖直墙面接触,杆AB 和CD 接触处的静摩擦系数为μC ,两杆的质量均为m ,长度均为l 。
1、已知系统平衡时AB 杆与墙面夹角为θ,求CD 杆与墙面夹角α应该满足的条件(用α及已知量满足的方程式表示)。
2、若μA =1.00,μC =0.866,θ=60.0°。
求系统平衡时α的取值范围(用数值计算求出)。
三、(25分)在人造卫星绕星球运行的过程中,为了保持其对称转轴稳定在规定指向,一种最简单的办法就是让卫星在其运行过程中同时绕自身的对称轴转,但有时为了改变卫星的指向,又要求减慢或者消除卫星的旋转,减慢或者消除卫星旋转的一种方法就是所谓消旋法,其原理如图所示。
一半径为R ,质量为M 的薄壁圆筒,,其横截面如图所示,图中O 是圆筒的对称轴,两条足够长的不可伸长的结实的长度相等的轻绳的一端分别固定在圆筒表面上的Q 、Q ′(位于圆筒直径两端)处,另一端各拴有一个质量为2m的小球,正常情况下,绳绕在圆筒外表面上,两小球用插销分别锁定在圆筒表面上的P 0、P 0′处,与卫星形成一体,绕卫星的对称轴旋转,卫星自转的角速度为ω0。
第28届全国中学生物理竞赛复赛模拟试卷及参考答案与评分标准
第28届全国中学生物理竞赛复赛模拟试卷题号-一--二二三四五六七八总分得分复核本卷共八题,满分160分。
计算题的解答应写出必要的文字说明、方程式和重要的演算步 骤。
只写出最后结果的不能得分。
有数字计算的题,答案中必须明确写出数值和单位。
填 空题把答案填在题中的横线上,只要给出结果,不需写出求解的过程。
一、填空题.(本题共4小题,共25分)1•图1所示的电阻丝网络,每一小段电阻同为 r ,两个端点 A 、B 间等效电阻R i = 。
若在图1网络中再引入3段斜电阻丝, 每一段电阻也为r ,如图2所示,此时A 、B 间等效电阻R 2= ____________________________得分 阅卷复核 — —图1图22 •右图为开尔文滴水起电机示意图。
从三通管左右两管口 形成的水滴分别穿过铝筒 厲、A ?后滴进铝杯B 1、B 2,当滴了一段 时间后,原均不带电的两铝杯间会有几千伏的电势差。
试分析其 原理。
图中铝筒 厲用导线与铝杯B 2相连;铝筒A 2用导线与B 1相连。
3.受迫振动的稳定状态由下式给出x =Acos (・t •「),A- _________ h , 二 arcta n「2。
其中 h =H ,而 H cos (,t )为胁迫力,v '(Oo 一⑷2)2 +4目2国2国-国m2一:=—,其中-dX是阻尼力。
有一偏车轮的汽车上有两个弹簧测力计,其中一条的固 mdt有振动角频率为 「0 =39.2727s ,,另外一条的固有振动角频率为 「0二78.5454s 」,在汽车运行的过程中,司机看到两条弹簧的振动幅度之比为7。
设1为小量,计算中可以略去,已知汽车轮子的直径为1m ,则汽车的运行速度为 ___________________ 。
4 •核潜艇中U 238核的半衰期为4.5 109年,衰变中有0.7%的概率成为U 234核,同时 放出一个高能光子,这些光子中的93%被潜艇钢板吸收。
届物理奥赛复赛详细答案评分标准
将 x 系 坐 标 原 点 向 下 移 动 b / 而 建 立 新 坐 标 系 , 简 称 X 系 . 新 旧 坐 标 的 关
系为
X x b
(5)
把 (5)式 代 入 (4)式 得
a g X
(6)
b
(6) 式 表 示 物 块 的 运 动 是 简 谐 振 动 . 若 X 0 ,则 a 0 ,对 应 于 物 块 的 平 衡 位 置 . 由(5)式可知,当物块处于平衡位置时,物块 下底面在 x 系中的坐标为
3mv0 3m
J
vPy 0
(1) (2)
(3) (4)
x
P
lCP
C
可在质心参考系中考察系统对质心的角动量. 在球
C 与挡板碰撞过程中,质心的坐标为
xP l c o s
(5)
图1
yP
1ls 3
i
n
(6)
球 C 碰挡板前,三小球相对于质心静止,对质心的角动量为零;球 C 碰挡板后,质心相对
(17)
s
代入相关数值可得
T 6 . 8h
(18)
卫星与地球赤道第一次相切时已在太空中运行了半个周期,在这段时间内,如果地球不转动,
卫星沿地球自转方向运行 180 度,落到西经 (180 110) 处与赤道相切. 但由于地球自转,
在这期间地球同时转过了 T/ 2 角度,地球自转角速度 360/ 24h 15/ h ,因此卫星与 地球赤道相切点位于赤道的经度为西经
湖水时,其所受到的浮力为
fb b2xg
( xb)
(1)
式中 g 为重力加速度.物块的重力为
fg b3g
2011年第28届全国中学生物理竞赛复赛试题及答案
第28届全国中学生物理竞赛复赛试题(2011)一、(20分)如图所示,哈雷彗星绕太阳S 沿椭圆轨道逆时针方向运动,其周期T 为76.1年,1986年它过近日点P 0时与太阳S 的距离r 0=0.590AU ,AU 是天文单位,它等于地球与太阳的平均距离,经过一段时间,彗星到达轨道上的P 点,SP 与SP 0的夹角θP =72.0°。
已知:1AU=1.50×1011m ,引力常量G=6.67×10-11Nm 2/kg 2,太阳质量m S =1.99×1030kg ,试求P 到太阳S 的距离r P 及彗星过P 点时速度的大小及方向(用速度方向与SP 0的夹角表示)。
二、(20分)质量均匀分布的刚性杆AB 、CD 如图放置,A 点与水平地面接触,与地面间的静摩擦系数为μA ,B 、D 两点与光滑竖直墙面接触,杆AB 和CD 接触处的静摩擦系数为μC ,两杆的质量均为m ,长度均为l 。
1、已知系统平衡时AB 杆与墙面夹角为θ,求CD 杆与墙面夹角α应该满足的条件(用α及已知量满足的方程式表示)。
2、若μA =1.00,μC =0.866,θ=60.0°。
求系统平衡时α的取值范围(用数值计算求出)。
三、(25分)在人造卫星绕星球运行的过程中,为了保持其对称转轴稳定在规定指向,一种最简单的办法就是让卫星在其运行过程中同时绕自身的对称轴转,但有时为了改变卫星的指向,又要求减慢或者消除卫星的旋转,减慢或者消除卫星旋转的一种方法就是所谓消旋法,其原理如图所示。
一半径为R ,质量为M 的薄壁圆筒,,其横截面如图所示,图中O 是圆筒的对称轴,两条足够长的不可伸长的结实的长度相等的轻绳的一端分别固定在圆筒表面上的Q 、Q ′(位于圆筒直径两端)处,另一端各拴有一个质量为2m 的小球,正常情况下,绳绕在圆筒外表面上,两小球用插销分别锁定在圆筒表面上的P 0、P 0′处,与卫星形成一体,绕卫星的对称轴旋转,卫星自转的角速度为ω0。
第28届全国中学生物理竞赛复赛试题参考解答及评分标准
第28届全国中学生物理竞赛复赛试题参考解答及评分标准一、参考解答:解法一取直角坐标系Oxy ,原点O 位于椭圆的中心,则哈雷彗星的椭圆轨道方程为22221x y a b += (1)a 、b 分别为椭圆的半长轴和半短轴,太阳S 位于椭圆的一个焦点处,如图1所示.以e T 表示地球绕太阳运动的周期,则e 1.00T =年;以e a 表示地球到太阳的距离(认为地球绕太阳作圆周运动),则e 1.00AU a =,根据开普勒第三定律,有3232a T a T =e e(2)设c 为椭圆中心到焦点的距离,由几何关系得c a r =-0 (3)22c a b -= (4) 由图1可知,P 点的坐标cos P P x c r θ=+ (5) sin P P y r θ= (6) 把(5)、(6)式代入(1)式化简得()2222222222sin cos 2cos 0P P P P P ab r b cr bc a b θθθ+++-= (7)根据求根公式可得()22222cos sin cos P P P Pb ac r a b θθθ-=+ (8) 由(2)、(3)、(4)、(8)各式并代入有关数据得0.896AU P r = (9) 可以证明,彗星绕太阳作椭圆运动的机械能为 s2Gmm E =a-(10) 式中m 为彗星的质量.以P v 表示彗星在P 点时速度的大小,根据机械能守恒定律有2s s 122P P Gmm Gmm m r a ⎛⎫+-=- ⎪⎝⎭v (11) 图1得P=v(12)代入有关数据得414.3910m sP-⨯⋅v=(13)设P点速度方向与SP的夹角为ϕ(见图2),根据开普勒第二定律[]sin2P P Prϕθσ-=v(14)其中σ为面积速度,并有πabTσ=(15)由(9)、(13)、(14)、(15)式并代入有关数据可得127ϕ= (16)解法二取极坐标,极点位于太阳S所在的焦点处,由S引向近日点的射线为极轴,极角为θ,取逆时针为正向,用r、θ表示彗星的椭圆轨道方程为1cospreθ=+(1)其中,e为椭圆偏心率,p是过焦点的半正焦弦,若椭圆的半长轴为a,根据解析几何可知()21p a e=-(2)将(2)式代入(1)式可得()θcos112eear+-=(3)以eT表示地球绕太阳运动的周期,则e1.00T=年;以ea表示地球到太阳的距离(认为地球绕太阳作圆周运动),则e1.00AUa=,根据开普勒第三定律,有3232a Ta T=e e(4)在近日点0=θ,由(3)式可得1rea=-0(5)将P θ、a 、e 的数据代入(3)式即得0.895AU P r = (6)可以证明,彗星绕太阳作椭圆运动的机械能 s2Gmm E =a-(7) 式中m 为彗星的质量.以P v 表示彗星在P 点时速度的大小,根据机械能守恒定律有2s s 122P P Gmm Gmm m r a ⎛⎫+-=- ⎪⎝⎭v (8) 可得P =v (9) 代入有关数据得414.3910m s P -⨯⋅v = (10) 设P 点速度方向与极轴的夹角为ϕ,彗星在近日点的速度为0v ,再根据角动量守恒定律,有()sin P P P r r ϕθ-=v v 00 (11)根据(8)式,同理可得=0v (12) 由(6)、(10)、(11)、(12)式并代入其它有关数据 127ϕ= (13)评分标准:本题20分 解法一(2)式3分,(8)式4分,(9)式2分,(11)式3分,(13) 式2分,(14)式3分,(15)式1分,(16)式2分.解法二(3)式2分,(4)式3分,(5)式2分,(6)式2分,(8)式3分,(10) 式2分,(11)式3分,(12)式1分,(13)式2分.二、参考解答:1.建立如图所示坐标系Oxy .两杆的受力情况如图:1f 为地面作用于杆AB 的摩擦力,1N 为地面对杆AB的支持力,2f 、2N 为杆AB 作用于杆CD 的摩擦力和支持力,3N 、4N 分别为墙对杆AB 和CD 的作用力,mg 为重力.取杆AB 和CD 构成的系统为研究对象,系统平衡时, 由平衡条件有4310N N f +-= (1) 120N mg -= (2)以及对A 点的力矩()3411sin sin sin cos cos cos 022mgl mg l l N l N l l CF θθαθθα⎛⎫+---+-= ⎪⎝⎭即()3431sin sin cos cos cos 022mgl mgl N l N l l CF θαθθα---+-= (3) 式中CF 待求.F 是过C 的竖直线与过B 的水平线的交点,E 为BF 与CD 的交点.由几何关系有sin cot CF l αθ= (4) 取杆CD 为研究对象,由平衡条件有422c o s s i n 0N N f θθ+-= (5) 22sin cos 0N f mg θθ+-= (6) 以及对C 点的力矩41cos sin 02N l mgl αα-= (7) 解以上各式可得41t a n 2N m g α=(8) 331sin 1tan sin tan tan 22cos 2sin N mg αααθαθθ⎛⎫=--+ ⎪⎝⎭ (9)13tan sin 1tan sin 2cos 2sin f mg θαααθθ⎛⎫=-+⎪⎝⎭ (10)12N mg = (11)21sin tan cos 2N mg θαθ⎛⎫=-⎪⎝⎭ (12) 21cos tan sin 2f mg θαθ⎛⎫=+ ⎪⎝⎭(13)CD 杆平衡的必要条件为22c f N μ≤ (14)由(12)、(13)、(14)式得()2sin cos tan cos sin C C μθθαμθθ-≤+ (15)AB 杆平衡的必要条件为11A f N μ≤ (16)由(10)、(11)、(16)式得tan sin 2sin 43tan sin cos A αααμθθθ-≤- (17)因此,使系统平衡,α应满足的条件为(15)式和(17)式.2.将题给的数据代入(15)式可得a r c t a n 0.38521α︒≤=(18)将题给的数据代入(17)式,经数值计算可得19.5α≥︒ (19)因此,α的取值范围为19.521.1α≤≤(20)评分标准:本题20分 第1问15分(1)、(2)、(3)式共3分,(4)式1分,(5)、(6)、(7)式共3分,(9) 、(10) 式各1分,(12)到(17)式各1分.第2问5分(18)式1分,(19)式3分,(20)式1分.三、参考解答: 解法一1. 设在时刻t ,小球和圆筒的运动状态如图1所示,小球位于P 点,绳与圆筒的切点为T ,P 到T 的距离即绳的拉直部分的长度为l ,圆筒的角速度为ω,小球的速度为v .小球的速度可以分解成沿着绳子方向的速度1v 和垂直于绳子方向的速度2v 两个分量.根据机械能守恒定律和角动量守恒定律有()()()()22222001211112222M R m R M R m ωωω+=++v v (1) 2220012+=++MR mR MR mR ml ωωωv v (2)因为绳子不可伸长,1v 与切点T 的速度相等,即ωR =1v (3) 解(1)、(2)、(3)式得()()02222ωωmlR m M ml R m M ++-+= (4) ()()022222ωmlR m M lR m M +++=v (5) 由(4)式可得l = (6)这便是在卫星角速度减至ω时绳的拉直部分的长度l .2.由(6)式,当0=ω得=L (7)这便是绳的总长度L . 3.如图2所示,从时刻t 到t t +∆,切点T 跟随圆筒转过一角度1t ωθ∆=∆,由于绳子的拉直部分的长度增加了l ∆,切点相对圆筒又转过一角度2lRθ∆=∆,到达T '处,2()2t'所以在t ∆时间内,切点转过的角度12lt Rθθωθ∆∆=∆=+∆+∆ (8) 切点从T 变到T '也使切线方向改变了一个同样的角度θ∆,而切线方向的改变是小球具有垂直于绳子方向的速度2v 引起的,故有 2tlθ∆∆=v (9) 由(1)、(2)、(3)式可得()20l ωω=+v (10) 由(8)、(9)、(10)三式得0l R t ω∆=∆ (11) (11)式表示l 随t 均匀增加,故l 由0增加到L 所需的时间为 0s L t R ω== (12)解法二1.撤去插销后两个小球的运动情况相同,故可取一个小球作为对象进行研究,先研究任何时刻小球的速度.在t 时刻,相对卫星系统质心参考系小球运动状态如图1所示,绳子的拉直部分与圆筒面的切点为T ,小球到切点T 的距离即绳的拉直部分的长度为l ,小球到转轴O 的距离为r ,圆筒的角速度为ω.由于圆筒的转动和小球相对圆筒的运动,绳将展开,切点位置和绳的拉直部分的长度都要改变.首先考察小球相对于圆筒的运动.在t 时刻,OT 与固定在圆筒上的半径0OP 的夹角为φ,如图2所示.由于小球相对圆筒的运动,经过时间t ∆,切点从圆筒上的T 点移到T '点,OT '与0OP 的夹角变为φφ+∆,绳的拉直部分的长度由l 变为l ',小球由P 运动到P ',PP '便是小球相对圆筒的位移.当t ∆很小时l l '≈,故2m1PP l l φφ''=∆≈∆于是小球相对圆筒的速度大小为l l tφφφω∆==∆v (1) 方向垂直于TP .φω是切点相对圆筒转动的角速度.再考察圆筒相对质心参考系的转动,即与圆筒固连在一起的转动参考系相对质心参考系的运动.当圆筒的角速度为ω时,位于转动参考系中的P 点(小球所在处)相对质心系的速度r ωω=v (2)方向垂直于OP .可以把ωv 分解成沿着TP 方向的分量1ωv 和垂直TP 方向的分量2ωv ,如图3所示,即1R ωω=v (3)2l ωω=v (4) 小球相对质心系的速度v 是小球相对圆筒的速度和圆筒参考系中的P 点相对质心系速度的合成,由图3可得v 的大小=v (5)因l R φ= (6) 故有=v (7)因为系统不受外力作用,故系统的动能和角动量守恒,故有()()222220011112222M R mR M R m ωωω+=+v (8) ()2220012MR mR MR mR ml ωωφωωω+=+++v v v (9)由(7)、(8)两式有()22220mM mφωωωωφ=+++ (10) 由(1)、(3)、(4)、(6)、(9)各式得()20mM mφωωφωω=+++ (11)2φω+ v由(10)、(11)两式得φωωωω+=+0故有0ωωφ= (12)上式说明绳子与圆筒的切点相对圆筒转动的角速度等于卫星的初始角速度,是一个恒量,将(12)式代入(11)式得φ=(13) 由(6)、(13)两式得l = (14) 这便是在卫星角速度减至ω时绳的拉直部分的长度l .2.由(14)式,当0=ω得绳总长度, 即L = (15) 3.因φω是一个恒量,φ随时间的t 的变化规律为t 0ωφ= (16)当0=ω时,由(13)式可得卫星停旋时的φs φ=(17) 设卫星停转所用的时间为s t ,由(16)、(17)式得0s s t φω==(18) 评分标准:本题25分. 解法一第1问12分.(1)、(2)式各3分,(3)式2分,(6)式4分. 第2问3分.(7)式3分.第3问10分.(8)、(9)式各3分,(10)式2分,(11)、(12)式各1分. 解法二第1问18分.(1)式3分,(2)式2分,(7)式2分,(8)式3分,(9)式3分,(12)式2分,(14)式3分,第2问3分.(15)式3分.第3问4分.(16)式2分,(17)式1分,(18)式1分. 四、参考解答:1.根据题意,粒子的初速度只有y 方向和z 方向的分量,设它们为0y v 和0z v .因为粒子在z 方向不受电场力和磁场力作用,故粒子在z 方向以初速度0z v 作匀速运动.粒子在Oxy 面内的运动可以看作由以下两部分运动的合成:可把粒子在y 方向的初速度表示为001001y y y y =-++v v v v (1) 其中010y E B =-v (2) 沿y 负方向.与01y v 相关的磁场力010Bx y f q B =-v (3) 沿x 负方向.粒子受到的电场力0E Ex f f qE == (4) 沿x 正方向.由(2)、(3)、(4)式可知,粒子在x 方向受到的电场力和磁场力正好抵消,故粒子以大小为E B 的速度沿y 负方向运动.除此之外,由(1)式可知,粒子还具有初速度 00200y y E B =+v v (5) 沿y 正方向,与02y v 相关的磁场力使粒子以速率02y v 在Oxy 面内作匀速圆周运动,以r 表示圆周运动的半径,有202020y y q B mr=v v (6)可得020y m r qB =v (7)由周期的定义和(7)式可得圆周运动的周期2mT =qB π (8) (8)式表明,粒子运动的周期与粒子在y 方向的初速度无关.经过时间T 或T 的整数倍所考察的粒子就能同时回到Oyz 平面.2.增加的电场2E对粒子在Oxy 平面内的运动无影响,但粒子在z 方向要受到此电场力作用.以z a 表示在此电场力作用下的加速度,有0cos z ma qE t ω= (9) 或cos z qE a =t mω (10) 这是简谐运动的加速度,因而有2z a =z ω- (11) 由(10)、(11)可得t mqE z ωωcos 102-= (12)因未增加电场时,粒子在z 方向作初速度为0z v 的匀速运动,增加电场后,粒子在z 方向的运动是匀速运动与简谐运动的叠加,即有021cos z qE z t t mωω=-v (13) 粒子在Oxy 平面内的运动不受电场2E的影响.设0ω为粒子在Oxy平面内作圆周运动的角速度,则有 002πqB T mω== (14)由图示可得与圆周运动相联系的粒子坐标随时间t 的变化关系()01cos x r t ω'=- (15) 0sin y r t ω'= (16) 考虑到粒子在y 方向还具有速度为01y v 的匀速运动,并利用(2)、(5)、(7)、(14)以及己知条件,可得带电粒子的运动规律:000001cos y E qB m x t qB B m ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭v (17) 0000000sin y E E qB m y t t B qB B m⎛⎫=-++ ⎪⎝⎭v (18)200020cos z mE qB z t t qB m=-v (19)评分标准:本题20分.第1问12分.(2)、(3)、(4)式共5分,(5)、(6)、(7)式共4分,(8)式及相关说明共3分.第2问8分.(12)式2分,(14)式到(19)式各1分. 五、答案与评分标准 本题15分.1.01TV V L I I e ⎛⎫-- ⎪ ⎪⎝⎭ (2分),L I (2分),0ln 1L T I V I ⎛⎫+ ⎪⎝⎭ (2分), 01TVV L VI VI e ⎛⎫-- ⎪ ⎪⎝⎭(1分).2.0.62V (2分);0.54V (2分);49mW (2分);6.0Ω (2分).六、参考解答:在电加热器对A 室中气体加热的过程中,由于隔板N 是导热的,B 室中气体的温度要升高,活塞M 将向右移动.当加热停止时,活塞M 有可能刚移到气缸最右端,亦可能尚未移到气缸最右端. 当然亦可能活塞已移到气缸最右端但加热过程尚未停止.1. 设加热恰好能使活塞M 移到气缸的最右端,则B 室气体末态的体积02B V V = (1)根据题意,活塞M 向右移动过程中,B 中气体压强不变,用B T 表示B 室中气体末态的温度,有00BBV V T T =(2) 由(1)、(2)式得02B T T = (3)由于隔板N 是导热的,故A 室中气体末态的温度02A T T = (4) 下面计算此过程中的热量m Q .在加热过程中,A 室中气体经历的是等容过程,根据热力学第一定律,气体吸收的热量等于其内能的增加量,即05()2A A Q R T T =- (5) 由(4)、(5)两式得052A Q RT =(6) B 室中气体经历的是等压过程,在过程中B 室气体对外做功为00()B B W p V V =- (7)由(1)、(7)式及理想气体状态方程得0B W RT = (8) 内能改变为05()2B B U R T T ∆=- (9) 由(4)、(9)两式得052∆=B U RT (10) 根据热力学第一定律和(8)、(10)两式,B 室气体吸收的热量为072=∆+=B B B Q U W RT (11) 由(6)、(11) 两式可知电加热器提供的热量为06m A B Q Q Q RT =+= (12)若0m Q Q =,B 室中气体末态体积为02V ,A 室中气体的末态温度02T .2.若0m Q Q >,则当加热器供应的热量达到m Q 时,活塞刚好到达气缸最右端,但这时加热尚未停止,只是在以后的加热过程中气体的体积保持不变,故热量0m Q Q -是A 、B 中气体在等容升温过程中吸收的热量.由于等容过程中气体不做功,根据热力学第一定律,若A 室中气体末态的温度为AT ',有 00055(2)(2)22m AA Q Q R T T R T T ''-=-+- (13) 由(12)、(13)两式可求得00455AQ T T R '=+ (14) B 中气体的末态的体积02BV =V ' (15) 3. 若0m Q Q <,则隔板尚未移到气缸最右端,加热停止,故B 室中气体末态的体积B V ''小于02V ,即02BV V ''<.设A 、B 两室中气体末态的温度为A T '',根据热力学第一定律,注意到A 室中气体经历的是等容过程,其吸收的热量05()2A A Q R T T ''=- (16) B 室中气体经历的是等压过程,吸收热量 0005()()2B A B Q R T T p V V ''''=-+- (17) 利用理想气体状态方程,上式变为 ()072B A Q R T T ''=- (18) 由上可知006()A B A Q Q Q R T T ''=+=- (19)所以A 室中气体的末态温度06AQ T T R''=+ (20) B 室中气体的末态体积00000(1)6BA V QV T V T RT ''''==+ (21) 评分标准:本题20分.得到0m Q Q =的条件下(1)、(4)式各1分;(12)式6分,得到0m Q Q >的条件下的(14)式4分,(15)式2分;得到0m Q Q <的条件下的(20)式4分,(21)式2分.七、答案与评分标准: 本题20分.1. 3R (3分) 2. 6R (3分)第1第3空格各2分;其余3个空格全对3分,有一个错则不给这3分.第1第3空格各2分;其余3个空格全对3分,有一个错则不给这3分. 八、参考解答: 1. 反应能()()332p n H He Q m m m m c ⎡⎤=+-+⎣⎦(1) 式中c 为光速.代入数据得0.764MeV Q =- (2) 上式表明这是一吸能核反应.2.为了求入射质子阈能,反应前后各粒子都应沿同一直线运动.设质子的入射速度大小为p v ,反应后32He 的速度大小为3He v ,中子的速度大小为n v ,根据动量守恒和能量守恒有33p p n n He He m m m =+v v v (3) 33222p p n n He He 111222m m m Q =++v v v (4) 由(3)、(4)式可得3333322n n p p p n22He He n p n p He He He 220m m m m m m m m Q m m m ⎛⎫⎛⎫+--++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭v v v v (5) 令333332n nHe He p n pHe 2p p 2Hep He22m m m a m m m b m m m m c Qm ⎫+⎪=⎪⎪⎪=-⎬⎪⎪-⎪=+⎪⎭v v (6) 把(6)式代入(5)式得2n n 0a b c ++=v v (7)(7)式有解的条件是240b ac -≥ (8)由(6)式可知,c 可能大于零,亦可能小于零.若0c <,则(8)总成立,中子速度一定有解,反应一定能发生;若0c >,则由 (6)、(8)两式得33n 2He p p n pHe 12m m m Q m m m +≥+-v (9)即只有当入射质子的动能满足(9)式时,中子速度才有解,反应才能发生,所以入射质子的阈能为3pn p He 1th m T Q m m m ⎛⎫=+ ⎪ ⎪+-⎝⎭(10)利用(1)式,在忽略2Q 项的情况下,(10)式可简化为3p H 1th m T Q m ⎛⎫=+⎪ ⎪⎝⎭(11) 代入有关数据得1.02MeV th T = (12)3.由动量守恒和能量守恒有33p p n n He He =+m m m v v v (12)33222p p n n He He 111222m m m Q =++v v v (13) 以θ表示反应中产生的中子速度方向与入射质子速度方向的夹角,如图所示,根据余弦定律有 ()()()33222n n p p n p n p He He 2cos m m m m m θ=+-v v v v v (14)令2p p p 12T m =v (15) 2n n n 12T m =v (16)3332He He He 12=T m v (17)把(15)、(16)、(17)式代入(13)、(14)两式得3He Q T T T =--p n (18)33n n p p He He 222m T m T m T θ=+- (19)由(18)、(19)式,消去3He T 后,得()3333p p HeHe n nnHe He 0m m T Q m T m m θ---=+ (20)p p m v令3nHe S θ=,()333p p HeHe nHe m m T Q m R m m --=+ (21)得n 20T R -= (22)根据题给的入射质子的动能和第1问求得的反应能Q 的值,由(21)式可知0R >,故(22)式的符合物理意义的解为S =+ (23)将具体数据代入(21)、(23)式中,有n 0.132M e V T = (24) (如果得到 131.0=n T MeV ,也是对的.)第2问的其他解法解法一为了研究阈能,只考虑碰撞前后各粒子都沿同一直线运动的情况.若碰撞后32He 和中子的速度相同,即粘在一起运动(完全非弹性碰撞),则在碰撞过程中损失的机械能最多,若所损失的机械能正好等于反应能,则入射质子的动能最小,这最小动能便是阈能. 设质子的入射速度大小为p v ,反应后32He 和中子的速度大小为v ,根据动量守恒和能量守恒有3p p n He ()m m m =+v v (1) 322p p n He 11()22m m m Q =++v v (2) 由(1)、(2)式可得33n 2He p p n pHe 12m m m Q m m m +=+-v (3)所以阈能为3pn p He 1th m T Q m m m ⎛⎫=+ ⎪ ⎪+-⎝⎭(4) 利用第1问中的(1)式,并注意到 32H 1<<Qm c有333332n pHe H H 2H H 11111⎛⎫==- ⎪ ⎪+-⎛⎫⎝⎭+ ⎪ ⎪⎝⎭Q m m m m m c Q m m c 在忽略2Q 项的情况下,(4)式可简化为3p H 1th m T Q m ⎛⎫=+ ⎪ ⎪⎝⎭(5)代入有关数据得1.02MeV th T = (6)第2问8分(1)、(2)式各3分,(4)式或(5)式1分,(6)式1分. 解法二在牛顿力学中可以证明,质点系的总动能可以表示为质点系的总质量以质心速度运动的动能即所谓质心动能与各质点相对质心运动的动能之和.若质点系不受外力作用,则质点系的动量守恒,质心速度不变,故质心动能亦恒定不变;如果质点系内部的相互作用导致质点系机械能的变化,则可变化的机械能只能是各质点相对质心运动的动能. 在本题中,如果质子p 与氚31H 发生反应后,生成的中子n 和氦32He 相对质心都静止,则质子p 与氚31H 相对质心运动的动能之和全部转化成反应能,反应后系统的动能只有质心的动能,在这请况下,转化成其他形式能量的机械能最多,入射质子的动能最小,这最小动能便是阈能.所以入射质子的阈能等于系统质心的动能与反应能之和.以p 'v 和3H 'v 分别表示质子p 和氚31H 相对质心的速度,有3322p p H H 1122Q =m m ''+v v (1) 因系统质心的速度3p p c p H=+m m m v v (2)而33p H p p c p Hm m '=-=+v v v v m (3)33p pc H p H0m m '=-=-+v v v m (4)由(1)、(3)、(4)式得332H p p p H12m Q m m m =+v (5) 在牛顿力学中,系统的总质量是恒定不变的,这就导致系统质心的动能在反应前后恒定不变的结论,但在本题中,损失掉的机械能导致系统总质量的变化,使反应前系统的总质量与反应后系统的总质量不相等,即33p n H He +≠+m m m m .如果仍沿用牛顿力学的结论,对一个孤立系统,其质心速度是不会改变的,故反应后质心的动能应为 ()()33222c n c p c c 2He H 111222=+=++Q E m m m m c v v v 而()33322p p p 2c 2222p H Hp HQ 1122m m Q QQ c c c m m m m m =⋅=⋅⋅++v v 由此可见,在忽略2Q 的条件下 ()()3322n p He H 1122c c m m m m +=+v v 而入射质子的阀能()32p H 12th c T m m Q =++v (6) 由(2)、(5)、(6)式得3p H 1th m T Q m ⎛⎫=+⎪ ⎪⎝⎭(7) 代入有关数据得1.02MeV th T = (8)第2问8分(1)、(5) 、(6)式各2分, (7)式1分,、(8)式1分. 解法三考虑反应前后各粒子都沿同一直线运动的情况,若入射质子与与静止的31H 发生完全非弹性碰撞,即反应后产生的中子和32He 以相同的速度运动,则入射质子的动能就是阈能.以10m 表示质子的静止质量,20m 表示31H 的静止质量,30m 表示中子的静止质量,40m 表示31He 的静止质量,设质子的入射速度大小为p v ,反应后32He 和中子的速度大小都为v ,根据动量守恒和能量守恒有1p m m m +=v (1)222120m m c m c m c++=(2)式中1m 是质子的动质量.由(1)、(2)两式得 1p 120+m m m v v = (3)把(3)式代入(1)式,经整理得()()2222221201p 3040+-=+m m c m m m c v (4)由1m =(5)可得221p221102-=m m m c v (6)若入射质子的阈能为th E ,有22110th m c m c E =+ (7) 由(4)、(6)、(7)式可得()()2230401020202th m m m m E m +-+= (8)利用题给条件并引入反应能,得 333p n H HeH2th m m m m E Q m +++= (9)或有()3333p 2H p H H H22th Q+m m m m c E Q Q m m ++=≈ (10)代入有关数据得1.02MeV th T = (11)第2问8分(1)、(2) 、(8)式各2分,(9)或(10)式1分,(11)式1分.21。
第28届全国中学生物理竞赛复赛试卷(高清晰)
1.像 I与 透镜 L的 距离等于 2.形 成像 I的 光线经 A反 射 ,直 接通过小孔后经 L所 成的像 I1与 透镜 L的 距离等于
3.形 成像 I的 光线经 A反 射 ,再 经 B反 射 ,再 经 A反 射 ,最 后通过 L成 像为 I2,将
I2的 有关信息填在下表中 I2与
:
L的 距离 I2在 L左 方还是右方 I2的 大小
G° 1。
物理竞赛复赛卷 第 2页 (共 8页 )
三、(25分 )在 人造卫星绕星球运行的过程中 ,为 了保持其对称转 得 分 阅卷 复 核 轴稳定在规定指向 ,一 种最简单的办法就是让卫星在其运行过程中 同时绕 自身的对称轴旋转。但有时为了改变卫星的指向 ,又 要求减 慢或者消除卫星的旋转 .减 慢或者消除卫星旋转的一种方法是所谓 “ 的 Yo—Yo” 消旋法 ,其 原理如 图所示。 设卫星是一半径为 R、 质量为 ″ 的薄壁 圆筒 其横截面如图所 示 。 图中 0是 圆筒的对称轴。两条
地 面接触 ,与 地面 间的静摩擦系数 为 u^,B、 D两 点与光滑 竖直墙 面 接触 ,杆 AB和 CD接 触处的静摩擦系数为uc,两 杆的质量 均为 屁,长 度均为 L 1.已 知系统平衡时 AB杆 与墙面夹角为 J,求 D杆 与 墙面的夹角 α应该满是的条件 (用 α及已知量满足的方程 式表示 )。 2.若 h〓 ∞ ,仳 〓 “6,e〓 ω。 ,求 系统平 衡 0。 o° 时 α的取值范 围 (用 数值计算求出)。
物理竞赛复赛卷 第 4页 (共 8页 )
得分
阅卷
复核
五、(15分 )半 导体 pn结 太阳能电池是 根据光生伏打效应:工 作 的。 当有光照射
时 ,光 照使 p尼 结内部产生由负极指向正极的电流即光电流 ,照 射光的强度恒定时 :光 电流是恒定 的 ,己 知该光电流为 几;同 时 ,p乃 结又是一个 管 ,当 有 电流通过负载时 ,负 载两端的
第28届全国中学生物理竞赛复赛试题
第28届全国中学生物理竞赛复赛试题2011 一、(20分)如图所示,哈雷彗星绕太阳S沿椭圆轨道逆时针方向运动,其周期T为76.1年。
1986年它过近日点P0时,与太阳S的距离r0=0.590AU,AU是天文单位,它等于地球与太阳的平均距离。
经过一段时间,彗星到达轨道上的P点,SP与SP0的夹角θP=72.0°.已知:1AU=1.50×1011m,引力常量G=6.67×10-11m3•kg-1•s-2,太阳质量m S=1.99×1030kg.试求P到太阳S的距离r P及彗星过P点时速度的大小及方向(用速度方向与SP0的夹角表示)。
二、(20分)质量均匀分布的刚性杆AB、CD如图放置,A点与水平地面接触,与地面间的静摩擦因数为μA,B、D两点与光滑竖直墙面接触,杆A B和CD接触处的静摩擦因数为μC,两杆的质量均为m,长度均为l. (1)已知系统平衡时AB杆与墙面夹角θ,求CD杆与墙面的夹角α应满足的条件(用α及已知量满足的方程式表示)。
(2)若μA=1.00,μC=0.866,θ=60.0°,求系统平衡时α的取值范围(用数值计算求出)。
三、(25分)人造卫星绕星球运行的过程中,为了保持其对称轴稳定在规定指向,一种最简单的办法就是让卫星在其运行过程中同时绕自身的对称轴旋转。
但有时为了改变卫星的指向,又要求减慢或者消除卫星的旋转。
减慢或者消除卫星旋转的一种方法是所谓的“YO—YO”消旋法,其原理如图。
设卫星是一半径为R、质量为M的薄壁圆筒,其横截面如图所示。
图中O是圆筒的对称轴。
两条足够长的不可伸长的结实的长度相等的轻绳的一端分别固定在圆筒表面上的Q、Q'(位于圆筒直径两端)处,另一端各拴有一质量为m/2的小球。
正常情况下,绳绕在圆筒外表面上,两小球用插销分别锁定在圆筒表面上的P0、P0'处,与卫星形成一体,绕卫星的对称轴旋转。
卫星自转的角速度为ω0.若要使卫星减慢或停止旋转(消旋),可瞬间撤去插销释放小球,让小球从圆筒表面甩开,在甩开的整个过程中,从绳与圆筒表面相切点到小球的那段绳都是拉直的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第28届全国中学生物理竞赛复赛试题参考解答及评分标准一、参考解答:解法一取直角坐标系Oxy ,原点O 位于椭圆的中心,则哈雷彗星的椭圆轨道方程为22221x y a b += (1) a 、b 分别为椭圆的半长轴和半短轴,太阳S 位于椭圆的一个焦点处,如图1所示.以e T 表示地球绕太阳运动的周期,则e 1.00T =年;以e a 表示地球到太阳的距离(认为地球绕太阳作圆周运动),则e 1.00AU a =,根据开普勒第三定律,有3232a T a T =e e(2)设c 为椭圆中心到焦点的距离,由几何关系得c a r =-0 (3)22c a b -= (4) 由图1可知,P 点的坐标cos P P x c r θ=+ (5) sin P P y r θ= (6) 把(5)、(6)式代入(1)式化简得()2222222222sin cos 2cos 0P P P P P ab r b cr bc a b θθθ+++-= (7)根据求根公式可得()22222cos sin cos P P P Pb ac r a b θθθ-=+ (8) 由(2)、(3)、(4)、(8)各式并代入有关数据得0.896AU P r = (9) 可以证明,彗星绕太阳作椭圆运动的机械能为 s2Gmm E =a-(10) 式中m 为彗星的质量.以P v 表示彗星在P 点时速度的大小,根据机械能守恒定律有2s s 122P P Gmm Gmm m r a ⎛⎫+-=- ⎪⎝⎭v (11) 图1得P=v(12)代入有关数据得414.3910m sP-⨯⋅v=(13)设P点速度方向与SP的夹角为ϕ(见图2),根据开普勒第二定律[]sin2P P Prϕθσ-=v(14)其中σ为面积速度,并有πabTσ=(15)由(9)、(13)、(14)、(15)式并代入有关数据可得127ϕ=(16)解法二取极坐标,极点位于太阳S所在的焦点处,由S引向近日点的射线为极轴,极角为θ,取逆时针为正向,用r、θ表示彗星的椭圆轨道方程为1cospreθ=+(1)其中,e为椭圆偏心率,p是过焦点的半正焦弦,若椭圆的半长轴为a,根据解析几何可知()21p a e=-(2)将(2)式代入(1)式可得()θcos112eear+-=(3)以eT表示地球绕太阳运动的周期,则e1.00T=年;以ea表示地球到太阳的距离(认为地球绕太阳作圆周运动),则e1.00AUa=,根据开普勒第三定律,有3232a Ta T=e e(4)在近日点0=θ,由(3)式可得1rea=-0(5)将Pθ、a、e的数据代入(3)式即得0.895AU P r = (6)可以证明,彗星绕太阳作椭圆运动的机械能 s2Gmm E =a-(7) 式中m 为彗星的质量.以P v 表示彗星在P 点时速度的大小,根据机械能守恒定律有2s s 122P P Gmm Gmm m r a ⎛⎫+-=- ⎪⎝⎭v (8) 可得P =v (9) 代入有关数据得414.3910m s P -⨯⋅v = (10) 设P 点速度方向与极轴的夹角为ϕ,彗星在近日点的速度为0v ,再根据角动量守恒定律,有()sin P P P r r ϕθ-=v v 00 (11)根据(8)式,同理可得=0v (12) 由(6)、(10)、(11)、(12)式并代入其它有关数据127ϕ= (13) 评分标准:本题20分 解法一(2)式3分,(8)式4分,(9)式2分,(11)式3分,(13) 式2分,(14)式3分,(15)式1分,(16)式2分.解法二(3)式2分,(4)式3分,(5)式2分,(6)式2分,(8)式3分,(10) 式2分,(11)式3分,(12)式1分,(13)式2分.二、参考解答:1.建立如图所示坐标系Oxy .两杆的受力情况如图:1f 为地面作用于杆AB 的摩擦力,1N 为地面对杆AB的支持力,2f 、2N 为杆AB 作用于杆CD 的摩擦力和支持力,3N 、4N 分别为墙对杆AB 和CD 的作用力,mg 为重力.取杆AB 和CD 构成的系统为研究对象,系统平衡时, 由平衡条件有4310N N f +-=(1) 120N mg -= (2)以及对A 点的力矩()3411sin sin sin cos cos cos 022mgl mg l l N l N l l CF θθαθθα⎛⎫+---+-= ⎪⎝⎭即()3431sin sin cos cos cos 022mgl mgl N l N l l CF θαθθα---+-= (3)式中CF 待求.F 是过C 的竖直线与过B 的水平线的交点,E 为BF 与CD 的交点.由几何关系有sin cot CF l αθ= (4) 取杆CD 为研究对象,由平衡条件有422c o s s i n 0N N f θθ+-= (5)22sin cos 0N f mg θθ+-= (6) 以及对C 点的力矩41cos sin 02N l mgl αα-= (7)解以上各式可得41t a n 2N m g α=(8) 331sin 1tan sin tan tan 22cos 2sin N mg αααθαθθ⎛⎫=--+⎪⎝⎭(9)13tan sin 1tan sin 2cos 2sin f mg θαααθθ⎛⎫=-+⎪⎝⎭(10)12N mg = (11)21sin tan cos 2N mg θαθ⎛⎫=-⎪⎝⎭ (12) 21cos tan sin 2f mg θαθ⎛⎫=+ ⎪⎝⎭(13) CD 杆平衡的必要条件为22c f N μ≤ (14)由(12)、(13)、(14)式得()2sin cos tan cos sin C C μθθαμθθ-≤+ (15)AB 杆平衡的必要条件为11A f N μ≤ (16)由(10)、(11)、(16)式得tan sin 2sin 43tan sin cos A αααμθθθ-≤- (17)因此,使系统平衡,α应满足的条件为(15)式和(17)式.2.将题给的数据代入(15)式可得a r c t a n 0.38521α︒≤=(18)将题给的数据代入(17)式,经数值计算可得19.5α≥︒ (19)因此,α的取值范围为19.521.1α≤≤ (20)评分标准:本题20分 第1问15分(1)、(2)、(3)式共3分,(4)式1分,(5)、(6)、(7)式共3分,(9) 、(10) 式各1分,(12)到(17)式各1分.第2问5分(18)式1分,(19)式3分,(20)式1分.三、参考解答: 解法一1. 设在时刻t ,小球和圆筒的运动状态如图1所示,小球位于P 点,绳与圆筒的切点为T ,P 到T 的距离即绳的拉直部分的长度为l ,圆筒的角速度为ω,小球的速度为v .小球的速度可以分解成沿着绳子方向的速度1v 和垂直于绳子方向的速度2v 两个分量.根据机械能守恒定律和角动量守恒定律有()()()()22222001211112222M R m R M R m ωωω+=++v v (1) 2220012+=++MR mR MR mR ml ωωωv v (2)因为绳子不可伸长,1v 与切点T 的速度相等,即ωR =1v (3) 解(1)、(2)、(3)式得()()02222ωωmlR m M ml R m M ++-+= (4) ()()022222ωmlR m M lR m M +++=v (5) 由(4)式可得l = (6)这便是在卫星角速度减至ω时绳的拉直部分的长度l .2.由(6)式,当0=ω得=L (7)这便是绳的总长度L . 3.如图2所示,从时刻t 到t t +∆,切点T 跟随圆筒转过一角度1t ωθ∆=∆,由于绳子的拉直部分的长度增加了l ∆,切点相对圆筒又转过一角度2lRθ∆=∆,到达T '处,2()2t'所以在t ∆时间内,切点转过的角度12lt Rθθωθ∆∆=∆=+∆+∆ (8) 切点从T 变到T '也使切线方向改变了一个同样的角度θ∆,而切线方向的改变是小球具有垂直于绳子方向的速度2v 引起的,故有 2tlθ∆∆=v (9) 由(1)、(2)、(3)式可得()20l ωω=+v (10) 由(8)、(9)、(10)三式得0l R t ω∆=∆ (11) (11)式表示l 随t 均匀增加,故l 由0增加到L 所需的时间为 0s L t R ω==(12)解法二1.撤去插销后两个小球的运动情况相同,故可取一个小球作为对象进行研究,先研究任何时刻小球的速度.在t 时刻,相对卫星系统质心参考系小球运动状态如图1所示,绳子的拉直部分与圆筒面的切点为T ,小球到切点T 的距离即绳的拉直部分的长度为l ,小球到转轴O 的距离为r ,圆筒的角速度为ω.由于圆筒的转动和小球相对圆筒的运动,绳将展开,切点位置和绳的拉直部分的长度都要改变.首先考察小球相对于圆筒的运动.在t 时刻,OT 与固定在圆筒上的半径0OP 的夹角为φ,如图2所示.由于小球相对圆筒的运动,经过时间t ∆,切点从圆筒上的T 点移到T '点,OT '与0OP 的夹角变为φφ+∆,绳的拉直部分的长度由l 变为l ',小球由P 运动到P ',PP '便是小球相对圆筒的位移.当t ∆很小时l l '≈,故2m1PP l l φφ''=∆≈∆于是小球相对圆筒的速度大小为ll tφφφω∆==∆v (1) 方向垂直于TP .φω是切点相对圆筒转动的角速度.再考察圆筒相对质心参考系的转动,即与圆筒固连在一起的转动参考系相对质心参考系的运动.当圆筒的角速度为ω时,位于转动参考系中的P 点(小球所在处)相对质心系的速度r ωω=v (2)方向垂直于OP .可以把ωv 分解成沿着TP 方向的分量1ωv 和垂直TP 方向的分量2ωv ,如图3所示,即1R ωω=v (3)2l ωω=v (4) 小球相对质心系的速度v 是小球相对圆筒的速度和圆筒参考系中的P 点相对质心系速度的合成,由图3可得v 的大小=v (5)因l R φ= (6) 故有=v (7)因为系统不受外力作用,故系统的动能和角动量守恒,故有()()222220011112222M R mR M R m ωωω+=+v (8) ()2220012MR mR MR mR ml ωωφωωω+=+++v v v (9)由(7)、(8)两式有()22220mM mφωωωωφ=+++ (10) 由(1)、(3)、(4)、(6)、(9)各式得()20mM mφωωφωω=+++ (11)Pφvωv 1ωvωvv2φω+v由(10)、(11)两式得φωωωω+=+0故有0ωωφ= (12)上式说明绳子与圆筒的切点相对圆筒转动的角速度等于卫星的初始角速度,是一个恒量,将(12)式代入(11)式得φ=(13) 由(6)、(13)两式得l = (14) 这便是在卫星角速度减至ω时绳的拉直部分的长度l .2.由(14)式,当0=ω得绳总长度, 即L = (15) 3.因φω是一个恒量,φ随时间的t 的变化规律为t 0ωφ= (16)当0=ω时,由(13)式可得卫星停旋时的φs φ=(17) 设卫星停转所用的时间为s t ,由(16)、(17)式得0s s t φω== (18) 评分标准:本题25分. 解法一第1问12分.(1)、(2)式各3分,(3)式2分,(6)式4分. 第2问3分.(7)式3分.第3问10分.(8)、(9)式各3分,(10)式2分,(11)、(12)式各1分. 解法二第1问18分.(1)式3分,(2)式2分,(7)式2分,(8)式3分,(9)式3分,(12)式2分,(14)式3分,第2问3分.(15)式3分.第3问4分.(16)式2分,(17)式1分,(18)式1分. 四、参考解答:1.根据题意,粒子的初速度只有y 方向和z 方向的分量,设它们为0y v 和0z v .因为粒子在z 方向不受电场力和磁场力作用,故粒子在z 方向以初速度0z v 作匀速运动.粒子在Oxy 面内的运动可以看作由以下两部分运动的合成:可把粒子在y 方向的初速度表示为001001y y y y =-++v v v v (1) 其中010y E B =-v (2) 沿y 负方向.与01y v 相关的磁场力010Bx y f q B =-v (3) 沿x 负方向.粒子受到的电场力0E Ex f f qE == (4) 沿x 正方向.由(2)、(3)、(4)式可知,粒子在x 方向受到的电场力和磁场力正好抵消,故粒子以大小为E B 的速度沿y 负方向运动.除此之外,由(1)式可知,粒子还具有初速度 00200y y E B =+v v (5) 沿y 正方向,与02y v 相关的磁场力使粒子以速率02y v 在Oxy 面内作匀速圆周运动,以r 表示圆周运动的半径,有202020y y q B mr=v v (6)可得020y m r qB =v (7)由周期的定义和(7)式可得圆周运动的周期2mT =qB π (8) (8)式表明,粒子运动的周期与粒子在y 方向的初速度无关.经过时间T 或T 的整数倍所考察的粒子就能同时回到Oyz 平面.2.增加的电场2E对粒子在Oxy 平面内的运动无影响,但粒子在z 方向要受到此电场力作用.以z a 表示在此电场力作用下的加速度,有0cos z ma qE t ω= (9) 或c o s z qE a =t mω (10) 这是简谐运动的加速度,因而有2z a =z ω- (11)由(10)、(11)可得t mqE z ωωcos 102-= (12)因未增加电场时,粒子在z 方向作初速度为0z v 的匀速运动,增加电场后,粒子在z 方向的运动是匀速运动与简谐运动的叠加,即有021cos z qE z t t mωω=-v (13) 粒子在Oxy 平面内的运动不受电场2E 的影响.设0ω为粒子在Oxy 平面内作圆周运动的角速度,则有 002πqB T mω==(14)由图示可得与圆周运动相联系的粒子坐标随时间t 的变化关系()01cos x r t ω'=- (15) 0sin y r t ω'= (16) 考虑到粒子在y 方向还具有速度为01y v 的匀速运动,并利用(2)、(5)、(7)、(14)以及己知条件,可得带电粒子的运动规律:000001cos y E qB m x t qB B m ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭v (17) 0000000sin y E E qB m y t t B qB B m⎛⎫=-++ ⎪⎝⎭v (18)200020cos z mE qB z t t qB m=-v (19)评分标准:本题20分.第1问12分.(2)、(3)、(4)式共5分,(5)、(6)、(7)式共4分,(8)式及相关说明共3分.第2问8分.(12)式2分,(14)式到(19)式各1分. 五、答案与评分标准 本题15分.1.01TV V L I I e ⎛⎫-- ⎪ ⎪⎝⎭ (2分),L I (2分),0ln 1L T I V I ⎛⎫+ ⎪⎝⎭ (2分), 01TVV L VI VI e ⎛⎫-- ⎪ ⎪⎝⎭(1分).2.0.62V (2分);0.54V (2分);49mW (2分);6.0Ω (2分).六、参考解答:在电加热器对A 室中气体加热的过程中,由于隔板N 是导热的,B 室中气体的温度要升高,活塞M 将向右移动.当加热停止时,活塞M 有可能刚移到气缸最右端,亦可能尚未移到气缸最右端. 当然亦可能活塞已移到气缸最右端但加热过程尚未停止.1. 设加热恰好能使活塞M 移到气缸的最右端,则B 室气体末态的体积02B V V = (1)根据题意,活塞M 向右移动过程中,B 中气体压强不变,用B T 表示B 室中气体末态的温度,有00BBV V T T = (2) 由(1)、(2)式得02B T T = (3)由于隔板N 是导热的,故A 室中气体末态的温度02A T T = (4) 下面计算此过程中的热量m Q .在加热过程中,A 室中气体经历的是等容过程,根据热力学第一定律,气体吸收的热量等于其内能的增加量,即05()2A A Q R T T =- (5) 由(4)、(5)两式得052A Q RT =(6) B 室中气体经历的是等压过程,在过程中B 室气体对外做功为00()B B W p V V =- (7)由(1)、(7)式及理想气体状态方程得0B W RT = (8) 内能改变为05()2B B U R T T ∆=- (9)由(4)、(9)两式得052∆=B U RT (10)根据热力学第一定律和(8)、(10)两式,B 室气体吸收的热量为072=∆+=B B B Q U W RT (11) 由(6)、(11) 两式可知电加热器提供的热量为06m A B Q Q Q RT =+= (12)若0m Q Q =,B 室中气体末态体积为02V ,A 室中气体的末态温度02T .2.若0m Q Q >,则当加热器供应的热量达到m Q 时,活塞刚好到达气缸最右端,但这时加热尚未停止,只是在以后的加热过程中气体的体积保持不变,故热量0m Q Q -是A 、B 中气体在等容升温过程中吸收的热量.由于等容过程中气体不做功,根据热力学第一定律,若A 室中气体末态的温度为AT ',有 00055(2)(2)22m AA Q Q R T T R T T ''-=-+- (13) 由(12)、(13)两式可求得00455AQ T T R '=+ (14) B 中气体的末态的体积02BV =V ' (15) 3. 若0m Q Q <,则隔板尚未移到气缸最右端,加热停止,故B 室中气体末态的体积B V ''小于02V ,即02B V V ''<.设A 、B 两室中气体末态的温度为AT '',根据热力学第一定律,注意到A 室中气体经历的是等容过程,其吸收的热量05()2A AQ R T T ''=- (16) B 室中气体经历的是等压过程,吸收热量 0005()()2B A B Q R T T p V V ''''=-+- (17) 利用理想气体状态方程,上式变为 ()072B AQ R T T ''=- (18) 由上可知006()A B A Q Q Q R T T ''=+=- (19)所以A 室中气体的末态温度06AQ T T R''=+ (20)B 室中气体的末态体积00000(1)6BA V QV T V T RT ''''==+ (21) 评分标准:本题20分.得到0m Q Q =的条件下(1)、(4)式各1分;(12)式6分,得到0m Q Q >的条件下的(14)式4分,(15)式2分;得到0m Q Q <的条件下的(20)式4分,(21)式2分.七、答案与评分标准: 本题20分.1. 3R (3分) 2. 6R (3分)第1第3空格各2分;其余3个空格全对3分,有一个错则不给这3分.第1第3空格各2分;其余3个空格全对3分,有一个错则不给这3分. 八、参考解答: 1. 反应能()()332p n H He Q m m m m c ⎡⎤=+-+⎣⎦(1) 式中c 为光速.代入数据得0.764MeV Q =- (2) 上式表明这是一吸能核反应.2.为了求入射质子阈能,反应前后各粒子都应沿同一直线运动.设质子的入射速度大小为p v ,反应后32He 的速度大小为3He v ,中子的速度大小为n v ,根据动量守恒和能量守恒有33p p n n He He m m m =+v v v (3) 33222p p n n He He 111222m m m Q =++v v v (4) 由(3)、(4)式可得3333322n n p p p n22He He n p n p He He He 220m m m m m m m m Q m m m ⎛⎫⎛⎫+--++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭v v v v (5) 令333332n nHe He p n pHe 2p p 2Hep He22m m m a m m m b m m m m c Qm ⎫+⎪=⎪⎪⎪=-⎬⎪⎪-⎪=+⎪⎭v v (6) 把(6)式代入(5)式得2n n 0a b c ++=v v (7)(7)式有解的条件是240b ac -≥ (8)由(6)式可知,c 可能大于零,亦可能小于零.若0c <,则(8)总成立,中子速度一定有解,反应一定能发生;若0c >,则由 (6)、(8)两式得33n 2He p p n pHe 12m m m Q m m m +≥+-v (9)即只有当入射质子的动能满足(9)式时,中子速度才有解,反应才能发生,所以入射质子的阈能为3p n p He 1th m T Q m m m ⎛⎫=+⎪ ⎪+-⎝⎭(10) 利用(1)式,在忽略2Q 项的情况下,(10)式可简化为3pH1th m T Q m ⎛⎫=+⎪ ⎪⎝⎭(11) 代入有关数据得1.02MeV th T = (12)3.由动量守恒和能量守恒有33p p n n He He =+m m m v v v (12)33222p p n n He He111222m m m Q =++v v v (13) 以θ表示反应中产生的中子速度方向与入射质子速度方向的夹角,如图所示,根据余弦定律有 ()()()33222n n p p n p n p He He 2cos m m m m m θ=+-v v v v v (14)令2p p p12T m =v (15) 2n n n 12T m =v (16)3332He He He 12=T m v (17)把(15)、(16)、(17)式代入(13)、(14)两式得3He Q T T T =--p n (18)33n n p p He He 222m T m T m T θ=+- (19)由(18)、(19)式,消去3He T 后,得()3333p p HeHe n nnHe He 0m m T Q m T m m θ---=+ (20)θp p m vn n v令3nHe S θ=,()333p p HeHe nHe m m T Q m R m m --=+ (21)得n 20T R -= (22)根据题给的入射质子的动能和第1问求得的反应能Q 的值,由(21)式可知0R >,故(22)式的符合物理意义的解为S = (23)将具体数据代入(21)、(23)式中,有n 0.132M e V T = (24) (如果得到 131.0=n T MeV ,也是对的.)第2问的其他解法解法一为了研究阈能,只考虑碰撞前后各粒子都沿同一直线运动的情况.若碰撞后32He 和中子的速度相同,即粘在一起运动(完全非弹性碰撞),则在碰撞过程中损失的机械能最多,若所损失的机械能正好等于反应能,则入射质子的动能最小,这最小动能便是阈能. 设质子的入射速度大小为p v ,反应后32He 和中子的速度大小为v ,根据动量守恒和能量守恒有3p p n He ()m m m =+v v (1) 322p p n He 11()22m m m Q =++v v (2) 由(1)、(2)式可得33n 2He p p n pHe 12m m m Q m m m +=+-v (3)所以阈能为3pn p He 1th m T Q m m m ⎛⎫=+ ⎪ ⎪+-⎝⎭(4) 利用第1问中的(1)式,并注意到 32H 1<<Q m c有333332n pHe H H 2H H 11111⎛⎫==- ⎪ ⎪+-⎛⎫⎝⎭+ ⎪ ⎪⎝⎭Q m m m m m c Q m m c 在忽略2Q 项的情况下,(4)式可简化为3pH1th m T Q m ⎛⎫=+⎪ ⎪⎝⎭(5) 代入有关数据得1.02MeV th T = (6)第2问8分(1)、(2)式各3分,(4)式或(5)式1分,(6)式1分. 解法二在牛顿力学中可以证明,质点系的总动能可以表示为质点系的总质量以质心速度运动的动能即所谓质心动能与各质点相对质心运动的动能之和.若质点系不受外力作用,则质点系的动量守恒,质心速度不变,故质心动能亦恒定不变;如果质点系内部的相互作用导致质点系机械能的变化,则可变化的机械能只能是各质点相对质心运动的动能. 在本题中,如果质子p 与氚31H 发生反应后,生成的中子n 和氦32He 相对质心都静止,则质子p 与氚31H 相对质心运动的动能之和全部转化成反应能,反应后系统的动能只有质心的动能,在这请况下,转化成其他形式能量的机械能最多,入射质子的动能最小,这最小动能便是阈能.所以入射质子的阈能等于系统质心的动能与反应能之和.以p 'v 和3H 'v 分别表示质子p 和氚31H 相对质心的速度,有3322p p H H1122Q =m m ''+v v (1) 因系统质心的速度3p p c p H=+m m m v v (2)而33p H p p c p Hm m '=-=+v v v v m (3)33p pc H p H0m m '=-=-+v v v m (4)由(1)、(3)、(4)式得332H p pp H12m Q m m m =+v (5) 在牛顿力学中,系统的总质量是恒定不变的,这就导致系统质心的动能在反应前后恒定不变的结论,但在本题中,损失掉的机械能导致系统总质量的变化,使反应前系统的总质量与反应后系统的总质量不相等,即33p n H He +≠+m m m m .如果仍沿用牛顿力学的结论,对一个孤立系统,其质心速度是不会改变的,故反应后质心的动能应为 ()()33222c n c p c c 2He H 111222=+=++Q E m m m m c v v v 而()33322p p p 2c2222p H Hp HQ 1122m m Q QQ c c c m m m m m =⋅=⋅⋅++v v 由此可见,在忽略2Q 的条件下 ()()3322n p He H 1122c cm m m m +=+v v 而入射质子的阀能()32p H 12th c T m m Q =++v (6) 由(2)、(5)、(6)式得3pH1th m T Q m ⎛⎫=+⎪ ⎪⎝⎭(7) 代入有关数据得1.02MeV th T = (8)第2问8分(1)、(5) 、(6)式各2分, (7)式1分,、(8)式1分. 解法三考虑反应前后各粒子都沿同一直线运动的情况,若入射质子与与静止的31H 发生完全非弹性碰撞,即反应后产生的中子和32He 以相同的速度运动,则入射质子的动能就是阈能.以10m 表示质子的静止质量,20m 表示31H 的静止质量,30m 表示中子的静止质量,40m 表示31He 的静止质量,设质子的入射速度大小为p v ,反应后32He 和中子的速度大小都为v ,根据动量守恒和能量守恒有1p m m m +=v (1)222120m m c m c m c++=(2)式中1m 是质子的动质量.由(1)、(2)两式得 1p 120+m m m v v = (3)把(3)式代入(1)式,经整理得()()2222221201p 3040+-=+m m c m m m c v (4)由1m =(5)可得221p221102-=m m m c v (6)若入射质子的阈能为th E ,有22110th m c m c E =+ (7)由(4)、(6)、(7)式可得()()2230401020202th m m m m E m +-+= (8)利用题给条件并引入反应能,得 333p n H HeH2th m m m m E Q m +++= (9)或有()3333p 2H p H H H22th Q+m m m m c E Q Q m m ++=≈ (10)代入有关数据得1.02MeV th T = (11)第2问8分(1)、(2) 、(8)式各2分,(9)或(10)式1分,(11)式1分.。