IO口模拟SPI口
使用MCU的GPIO模拟SPI
使用MCU的GPIO模拟SPI在树莓派等单片机(MCU)上,可以使用GPIO模拟SPI(串行外设接口)来与其他设备进行通信。
SPI是一种同步串行数据传输协议,通常用于连接MCU和传感器、显示器、存储器等外设。
以下是使用MCU的GPIO模拟SPI的详细步骤。
1.了解SPI的基本原理:SPI使用四根信号线进行通信,包括时钟(SCLK)、主机输出从机输入(MOSI)、主机输入从机输出(MISO)和片选(SS)。
-SCLK:时钟信号,由主机产生,用于同步数据传输。
-MOSI:主机输出从机输入,主机将数据发送到从机。
-MISO:主机输入从机输出,从机将数据发送到主机。
-SS:片选信号,用于选择从机。
2.确定所需GPIO引脚:根据所连接的设备的要求,选择合适的GPIO引脚作为SCLK、MOSI、MISO和SS。
3. 配置GPIO引脚:在MCU上,使用相应的编程语言和库函数来配置GPIO引脚。
例如,在树莓派上使用Python编程,可以使用RPi.GPIO库进行配置。
4.编写SPI传输函数:编写一个函数来模拟SPI传输。
该函数应包括以下步骤:a.设置SS为低电平,选中从机设备。
b.发送数据比特串:逐位发送MOSI数据,同时接收并保存MISO数据。
c.设置SS为高电平,取消从机设备的选中。
假设我们要发送8位数据,可以使用以下Python代码实现SPI传输函数:```pythonimport RPi.GPIO as GPIOdef spi_transfer(data):GPIO.output(SS, GPIO.LOW) # 选中从机received_data = 0for bit in range(7, -1, -1): # 逐位传输数据#发送MOSI数据GPIO.output(MOSI, (data >> bit) & 0x01)#接收并保存MISO数据received_bit = GPIO.input(MISO)received_data = (received_data << 1) , received_bit#在SCLK上升沿发送和接收数据GPIO.output(SCLK, GPIO.HIGH)GPIO.output(SCLK, GPIO.LOW)GPIO.output(SS, GPIO.HIGH) # 取消从机选中return received_data```5. 通过调用SPI传输函数与从机通信:在应用程序中,根据需要调用SPI传输函数。
SPI、I2C、UART三种串行总线的原理、区别及应用
简单描述:SPI 和I2C这两种通信方式都是短距离的,芯片和芯片之间或者其他元器件如传感器和芯片之间的通信。
SPI和IIC是板上通信,IIC有时也会做板间通信,不过距离甚短,不过超过一米,例如一些触摸屏,手机液晶屏那些很薄膜排线很多用IIC,I2C能用于替代标准的并行总线,能连接的各种集成电路和功能模块。
I2C 是多主控总线,所以任何一个设备都能像主控器一样工作,并控制总线。
总线上每一个设备都有一个独一无二的地址,根据设备它们自己的能力,它们可以作为发射器或接收器工作。
多路微控制器能在同一个I2C总线上共存这两种线属于低速传输;而UART是应用于两个设备之间的通信,如用单片机做好的设备和计算机的通信。
这样的通信可以做长距离的。
UART和,UART就是我们指的串口,速度比上面三者快,最高达100K左右,用与计算机与设备或者计算机和计算之间通信,但有效范围不会很长,约10米左右,UART优点是支持面广,程序设计结构很简单,随着USB的发展,UART也逐渐走向下坡;SmBus有点类似于USB设备跟计算机那样的短距离通信。
简单的狭义的说SPI和I2C是做在电路板上的。
而UART和SMBUS是在机器外面连接两个机器的。
详细描述:1、UART(TX,RX)就是两线,一根发送一根接收,可以全双工通信,线数也比较少。
数据是异步传输的,对双方的时序要求比较严格,通信速度也不是很快。
在多机通信上面用的最多。
2、SPI(CLK,I/O,O,CS)接口和上面UART相比,多了一条同步时钟线,上面UART 的缺点也就是它的优点了,对通信双方的时序要求不严格不同设备之间可以很容易结合,而且通信速度非常快。
一般用在产品内部元件之间的高速数据通信上面,如大容量存储器等。
3、I2C(SCL,SDA)接口也是两线接口,它是两根线之间通过复杂的逻辑关系传输数据的,通信速度不高,程序写起来也比较复杂。
一般单片机系统里主要用来和24C02等小容易存储器连接。
运用4个普通IO口模拟SPI程序等
运用 4 个普通 I/O 口模拟 SPI 程序源代码
/******************************************************************** 函 数 名:uchar SpiReadWrite(uchar dat) 功 能:SPI 发送接收一个数据 说 明: 调 用: 入口参数: 出口参数: ***********************************************************************/ uchar SpiReadWrite(uchar dat) { uchar i,temp; temp=0; SCK=0; _nop_(); for(i=0;i<8;i++) { if(dat & 0x80) { MOSI=1; }
单片机IO口介绍
单片机IO口介绍单片机(microcontroller)是一种集成电路芯片,具有运算、存储和控制功能。
它是嵌入式系统中最常用的处理器之一、在单片机中,IO (Input/Output)口是用来进行输入输出操作的接口。
IO口通常包括数字IO口和模拟IO口两种类型。
下面将详细介绍单片机IO口的功能和应用。
1.数字IO口:数字IO口是单片机与外部设备进行数字信号交换的接口。
数字IO口可以进行输入和输出操作,具有以下特点:-输入功能:可以通过读取外部设备的状态或信号,并将其转换为数字信号输入到单片机中进行处理。
例如,传感器的信号输入和按键的输入等。
-输出功能:可以通过将数字信号输出到外部设备,控制其工作状态。
例如,LED的控制、驱动电机或继电器等。
数字IO口通常以引脚(pin)的形式存在于单片机芯片上。
一个引脚包括输入端和输出端,可以根据需要进行配置。
数字IO口操作简单、速度快、精度高,常用于控制和通信等方面。
2.模拟IO口:模拟IO口是单片机与外部设备进行模拟信号交换的接口。
模拟IO口可以进行模拟输入和输出操作,常用于采集和控制模拟信号。
-模拟输入功能:可以从外部信号源中获取模拟信号,并将其转换为数字信号输入到单片机中进行处理。
例如,温度传感器、声音传感器等。
-模拟输出功能:可以将数字信号转换为模拟电压、电流等形式,输出到外部设备中。
例如,通过PWM(脉冲宽度调制)信号控制电机的转速。
模拟IO口通常通过ADC(模数转换器)和DAC(数模转换器)实现。
ADC将模拟信号转换为数字信号,DAC将数字信号转换为模拟信号。
模拟IO口的使用相对复杂,需要进行模数转换和数模转换,但在一些需要对模拟信号进行处理和控制的应用中起到关键作用。
3.应用场景:IO口在单片机系统中广泛应用于各种应用场景。
以下是一些常见的应用场景:-传感器接口:通过IO口连接传感器,读取传感器的输出信号,进行数据采集和处理。
例如温度、湿度、光照等传感器的接口。
单片机IO口模拟SPI四种模式的程序
单⽚机IO⼝模拟SPI四种模式的程序#include "iom8535v.h"#define _CPOL 1#define _CPHA 0#define SCK_IO DDRA|=0X01#define MOSI_IO DDRA|=0X02#define MISO_IO DDRA&=0XFB#define SSEL_IO DDRA|=0X08#define SCK_D(X) (X?(PORTA|=0X01):(PORTA&=0XFE))#define MOSI_D(X) (X?(PORTA|=0X02):(PORTA&=0XFD))#define SSEL_D(X) (X?(PORTA|=0X08):(PORTA&=0XF7))#define MISO_I() (PINA&0X04)void delay(){unsigned char m,n;for(n=0;n<5;n++);for(m=0;m<100;m++);}void SPI_Init(void){SCK_IO ;MOSI_IO ;MISO_IO ;SSEL_IO ;SSEL_D(1);MOSI_D(1);#if _CPOL==0SCK_D(0);#elseSCK_D(1);#endif}#if _CPOL==0&&_CPHA==0 //MODE 0 0void SPI_Send_Dat(unsigned char dat){unsigned char n;for(n=0;n<8;n++){SCK_D(0);if(dat&0x80)MOSI_D(1);else MOSI_D(0);dat<<=1;SCK_D(1);}SCK_D(0);}unsigned char SPI_Receiver_Dat(void){unsigned char n ,dat,bit_t;for(n=0;n<8;n++){SCK_D(0);dat<<=1;if(MISO_I())dat|=0x01;else dat&=0xfe;SCK_D(1);}SCK_D(0);return dat;}#endif#if _CPOL==1&&_CPHA==0 //MODE 1 0 void SPI_Send_Dat(unsigned char dat){unsigned char n;for(n=0;n<8;n++){SCK_D(1);if(dat&0x80)MOSI_D(1);else MOSI_D(0);dat<<=1;SCK_D(0);}SCK_D(1);}unsigned char SPI_Receiver_Dat(void){unsigned char n ,dat,bit_t;for(n=0;n<8;n++){SCK_D(1);dat<<=1;if(MISO_I())dat|=0x01;else dat&=0xfe;SCK_D(0);}SCK_D(1);return dat;}#endif#if _CPOL==0&&_CPHA==1 //MODE 0 1 void SPI_Send_Dat(unsigned char dat){unsigned char n;SCK_D(0);for(n=0;n<8;n++){SCK_D(1);if(dat&0x80)MOSI_D(1);else MOSI_D(0);dat<<=1;SCK_D(0);}}unsigned char SPI_Receiver_Dat(void){unsigned char n ,dat,bit_t;for(n=0;n<8;n++){SCK_D(1);dat<<=1;if(MISO_I())dat|=0x01;else dat&=0xfe;SCK_D(0);}SCK_D(0);return dat;}#endif//////////////////////////////////////////////////////////////////////////////////////////////////////////////#if _CPOL==1&&_CPHA==1 //MODE 1 1 void SPI_Send_Dat(unsigned char dat){unsigned char n;SCK_D(1);for(n=0;n<8;n++){SCK_D(0);if(dat&0x80)MOSI_D(1);else MOSI_D(0);dat<<=1;SCK_D(1);}}unsigned char SPI_Receiver_Dat(void){unsigned char n ,dat,bit_t;SCK_D(0);for(n=0;n<8;n++){ SCK_D(0);dat<<=1;if(MISO_I())dat|=0x01;else dat&=0xfe;SCK_D(1);}SCK_D(1);return dat;}#endifvoid main(){SPI_Init();DDRB = 0XFF;//#if _CPOL//SCK_D(0);//#endifwhile(1){//SSEL_D(0);//SPI_Send_Dat(0x01);//SPI_Send_Dat(0x31);//SSEL_D(1);SSEL_D(0);SPI_Send_Dat(0x81);PORTB =SPI_Receiver_Dat();SSEL_D(1);//delay();}}。
SPI、I2C、UART三种串行总线协议的区别和SPI接口介绍(转)
SPI、I2C、UART三种串⾏总线协议的区别和SPI接⼝介绍(转)SPI、I2C、UART三种串⾏总线协议的区别第⼀个区别当然是名字:SPI(Serial Peripheral Interface:串⾏外设接⼝);I2C(INTER IC BUS)UART(Universal Asynchronous Receiver Transmitter:通⽤异步收发器)第⼆,区别在电⽓信号线上:SPI总线由三条信号线组成:串⾏时钟(SCLK)、串⾏数据输出(SDO)、串⾏数据输⼊(SDI)。
SPI总线可以实现多个SPI设备互相连接。
提供SPI串⾏时钟的SPI设备为SPI主机或主设备(Master),其他设备为SPI从机或从设备(Slave)。
主从设备间可以实现全双⼯通信,当有多个从设备时,还可以增加⼀条从设备选择线。
如果⽤通⽤IO⼝模拟SPI总线,必须要有⼀个输出⼝(SDO),⼀个输⼊⼝(SDI),另⼀个⼝则视实现的设备类型⽽定,如果要实现主从设备,则需输⼊输出⼝,若只实现主设备,则需输出⼝即可,若只实现从设备,则只需输⼊⼝即可。
I2C总线是双向、两线(SCL、SDA)、串⾏、多主控(multi-master)接⼝标准,具有总线仲裁机制,⾮常适合在器件之间进⾏近距离、⾮经常性的数据通信。
在它的协议体系中,传输数据时都会带上⽬的设备的设备地址,因此可以实现设备组⽹。
如果⽤通⽤IO⼝模拟I2C总线,并实现双向传输,则需⼀个输⼊输出⼝(SDA),另外还需⼀个输出⼝(SCL)。
(注:I2C资料了解得⽐较少,这⾥的描述可能很不完备)UART总线是异步串⼝,因此⼀般⽐前两种同步串⼝的结构要复杂很多,⼀般由波特率产⽣器(产⽣的波特率等于传输波特率的16倍)、UART接收器、UART发送器组成,硬件上由两根线,⼀根⽤于发送,⼀根⽤于接收。
显然,如果⽤通⽤IO⼝模拟UART总线,则需⼀个输⼊⼝,⼀个输出⼝。
第三,从第⼆点明显可以看出,SPI和UART可以实现全双⼯,但I2C不⾏;第四,看看⽜⼈们的意见吧!wudanyu:I2C线更少,我觉得⽐UART、SPI更为强⼤,但是技术上也更加⿇烦些,因为I2C需要有双向IO的⽀持,⽽且使⽤上拉电阻,我觉得抗⼲扰能⼒较弱,⼀般⽤于同⼀板卡上芯⽚之间的通信,较少⽤于远距离通信。
IO口模拟SPI主从机例程
IO口模拟spi主从机通讯例程下面这两幅图是,关于SPI数据读取或发送的时序图。
1、主机io口模拟spi通讯例程//**spi io 口初始化**//void SPI_init(void){gpio_configure_fpin(SPI_MISO, IO_TYPE_INPUT);//配置成输入模式gpio_configure_fpin(SPI_MOSI, IO_OUTPUT_1);//配置成输出模式gpio_configure_fpin(SPI_SCK, IO_OUTPUT_1); //配置成输出模式gpio_configure_fpin(SPI_CS, IO_OUTPUT_1); //配置成输出模式clr_spi_GPIO(SPI_SCK);//拉低SPI_SCKset_spi_GPIO(SPI_CS);//拉高SPI_SCKclr_spi_GPIO(SPI_MOSI);//拉低SPI_MOSI}//**主机spi读取一字节api**//unsigned char SPI_ReadByte(void){unsigned char i,rByte=0;clr_spi_GPIO(SPI_CS);for(i=0;i<8;i++){clr_spi_GPIO(SPI_SCK);//clr_spi_sck;delay_us(3);rByte<<=1;if(MISO_is_status())////M16 MISO---PB6rByte|=1;set_spi_GPIO(SPI_SCK);//set_spi_sck;delay_us(3);}clr_spi_GPIO(SPI_SCK);set_spi_GPIO(SPI_CS);return rByte;}//** 读取miso 的电平**//char MISO_is_status(void){if(red_spi_GPIO(SPI_MISO))//return 1;elsereturn 0;}//**主机spi写入一字节api**//void SPI_WriteByte(unsigned char wByte){unsigned char i;clr_spi_GPIO(SPI_CS);for(i=0;i<8;i++){clr_spi_GPIO(SPI_SCK);//delay_us(3);//if(wByte&0x80){set_spi_GPIO(SPI_MOSI);//}else{clr_spi_GPIO(SPI_MOSI);//}wByte=wByte<<1;set_spi_GPIO(SPI_SCK);//set_spi_sck;delay_us(3);//}clr_spi_GPIO(SPI_SCK);set_spi_GPIO(SPI_CS);}////////////////////////////////////////////////////////////////////////////////////注意,我写的主从机的io口对接如下主机io 从机ioSPI_MISO ------------------------- SPI_MISOSPI_MOSI --------------------------- SPI_MOSISPI_SCK --------------------------- SPI_SCKSPI_CS -------------------------- SPI_CS可能有的人对上面的io口对接的方式感到奇怪,请仔细看我对这几个io口做的初始化设置就可以明白。
I2C,SPI,UART和CAN的区别
I2C,SPI,UART和CAN的区别(转)SPI--Serial Peripheral Interface,(Serial Peripheral Interface:串行外设接口)串行外围设备接口,是Motorola公司推出的一种同步串行通讯方式,是一种三线同步总线,因其硬件功能很强,与SPI有关的软件就相当简单,使CPU有更多的时间处理其他事务。
I2C--INTER-IC(INTER IC BUS:意为IC之间总线)串行总线的缩写,是PHILIPS公司推出的芯片间串行传输总线。
它以1根串行数据线(SDA)和1根串行时钟线(SCL)实现了双工的同步数据传输。
具有接口线少,控制方式简化,器件封装形式小,通信速率较高等优点。
在主从通信中,可以有多个I2C总线器件同时接到I2C总线上,通过地址来识别通信对象。
能用于替代标准的并行总线,能连接的各种集成电路和功能模块。
I2C是多主控总线,所以任何一个设备都能像主控器一样工作,并控制总线。
总线上每一个设备都有一个独一无二的地址,根据设备它们自己的能力,它们可以作为发射器或接收器工作。
多路微控制器能在同一个I2C总线上共存。
最主要的优点是其简单性和有效性。
它支持多主控(multimastering),其中任何能够进行发送和接收的设备都可以成为主总线。
一个主控能够控制信号的传输和时钟频率。
当然,在任何时间点上只能有一个主控。
UART(Universal Asynchronous Receiver Transmitter:通用异步收发器):单端,远距离传输。
大多数计算机包含两个基于RS232的串口。
串口同时也是仪器仪表设备通用的通信协议;很多GPIB兼容的设备也带有RS-232口。
同时,串口通信协议也可以用于获取远程采集设备的数据。
串口通信的概念非常简单,串口按位(bit)发送和接收字节。
尽管比按字节(byte)的并行通信慢,但是串口可以在使用一根线发送数据的同时用另一根线接收数据。
I2C,SPI,UART和CAN的区别
I2C,SPI,UART和CAN的区别(转)SPI--Serial Peripheral Interface,(Serial Peripheral Interface:串行外设接口)串行外围设备接口,是Motorola公司推出的一种同步串行通讯方式,是一种三线同步总线,因其硬件功能很强,与SPI有关的软件就相当简单,使CPU有更多的时间处理其他事务。
I2C--INTER-IC(INTER IC BUS:意为IC之间总线)串行总线的缩写,是PHILIPS公司推出的芯片间串行传输总线。
它以1根串行数据线(SDA)和1根串行时钟线(SCL)实现了双工的同步数据传输。
具有接口线少,控制方式简化,器件封装形式小,通信速率较高等优点。
在主从通信中,可以有多个I2C总线器件同时接到I2C总线上,通过地址来识别通信对象。
能用于替代标准的并行总线,能连接的各种集成电路和功能模块。
I2C是多主控总线,所以任何一个设备都能像主控器一样工作,并控制总线。
总线上每一个设备都有一个独一无二的地址,根据设备它们自己的能力,它们可以作为发射器或接收器工作。
多路微控制器能在同一个I2C总线上共存。
最主要的优点是其简单性和有效性。
它支持多主控(multimastering),其中任何能够进行发送和接收的设备都可以成为主总线。
一个主控能够控制信号的传输和时钟频率。
当然,在任何时间点上只能有一个主控。
UART(Universal Asynchronous Receiver Transmitter:通用异步收发器):单端,远距离传输。
大多数计算机包含两个基于RS232的串口。
串口同时也是仪器仪表设备通用的通信协议;很多GPIB兼容的设备也带有RS-232口。
同时,串口通信协议也可以用于获取远程采集设备的数据。
串口通信的概念非常简单,串口按位(bit)发送和接收字节。
尽管比按字节(byte)的并行通信慢,但是串口可以在使用一根线发送数据的同时用另一根线接收数据。
STM32之IO口模拟SPI
STM32之IO⼝模拟SPI本⽂介绍如何使⽤STM32标准外设库的GPIO端⼝模拟SPI,本例程使⽤PA5、PA6和PA7模拟⼀路SPI。
SPI有4种⼯作模式,模拟SPI使⽤模式0,即空闲时SCK为低电平,在奇数边沿采样。
本⽂适合对单⽚机及C语⾔有⼀定基础的开发⼈员阅读,MCU使⽤STM32F103VE系列。
1. 简介SPI 协议是由摩托罗拉公司提出的通讯协议(Serial Peripheral Interface),即串⾏外围设备接⼝,是⼀种⾼速全双⼯的通信总线。
它被⼴泛地使⽤在要求通讯速率较⾼的场合。
SPI⽤于多设备之间通讯,分为主机Master和从机Slave,主机只有⼀个,从机可以有多个,通过⽚选信号对从机进⾏选择,⼀次只能选择⼀个从机。
通讯只能由主机发起,⽀持的操作分为读取和写⼊,即主机读取从机的数据,以及向从机写⼊数据。
SPI⼀般有4根线,分别是⽚选线SS、时钟线SCK、主设备输出\从设备输⼊MOSI、主设备输⼊\从设备输出MISO,其中除MISO对于主机为输⼊引脚外,其他引脚对于主机均为输出引脚。
因为有独⽴的输⼊和输出引脚,因此SPI⽀持全双⼯⼯作模式,即可以同时接收和发送。
2. 总线传输信号空闲状态:⽚选信号SS低电平有效,那么空闲状态⽚选信号SS为⾼。
开始信号及结束信号:开始信号需要将⽚选信号SS拉低,结束信号需要将⽚选信号SS拉⾼。
通讯模式:SPI有4种通讯模式,分别为0、1、2、3,根据时钟极性和时钟相位确定,时钟极性分别为空闲低电平和空闲⾼电平,时钟相位分别为SCK奇数边沿采样和偶数边沿采样。
常⽤的模式为模式0和模式3。
SPI模式时钟极性(空闲时SCK时钟)时钟相位(采样时刻)0低电平奇数边沿1低电平偶数边沿2⾼电平奇数边沿3⾼电平偶数边沿3. 时序说明以模式0举例说明:空闲状态:⽚选信号SS为⾼,SCK输出低电平。
开始信号:⽚选信号SS变低,SCK输出低电平。
结束信号:⽚选信号SS变⾼,SCK输出低电平。
SPI、I2C、UART、USB串行总线协议的区别
SPI、I2C、UART、USB串行总线协议的区别SPI、I2C、UART三种串行总线协议的区别第一个区别当然是名字:SPI(Serial Peripheral Interface:串行外设接口);I2C(INTER IC BUS)UART(Universal Asynchronous Receiver Transmitter:通用异步收发器)第二,区别在电气信号线上:SPI总线由三条信号线组成:串行时钟(SCLK)、串行数据输出(SDO)、串行数据输入(SDI)。
SPI总线可以实现多个SPI设备互相连接。
提供SPI串行时钟的SPI设备为SPI主机或主设备(Master),其他设备为SPI从机或从设备(Slave)。
主从设备间可以实现全双工通信,当有多个从设备时,还可以增加一条从设备选择线。
如果用通用IO口模拟SPI总线,必须要有一个输出口(SDO),一个输入口(SDI),另一个口则视实现的设备类型而定,如果要实现主从设备,则需输入输出口,若只实现主设备,则需输出口即可,若只实现从设备,则只需输入口即可。
I2C总线是双向、两线(SCL、SDA)、串行、多主控(multi-master)接口标准,具有总线仲裁机制,非常适合在器件之间进行近距离、非经常性的数据通信。
在它的协议体系中,传输数据时都会带上目的设备的设备地址,因此可以实现设备组网。
如果用通用IO口模拟I2C总线,并实现双向传输,则需一个输入输出口(SDA),另外还需一个输出口(SCL)。
(注:I2C资料了解得比较少,这里的描述可能很不完备)UART总线是异步串口,因此一般比前两种同步串口的结构要复杂很多,一般由波特率产生器(产生的波特率等于传输波特率的16倍)、UART接收器、UART发送器组成,硬件上由两根线,一根用于发送,一根用于接收。
显然,如果用通用IO口模拟UART总线,则需一个输入口,一个输出口。
第三,从第二点明显可以看出,SPI和UART可以实现全双工,但I2C不行;第四,看看牛人们的意见吧!wudanyu:I2C线更少,我觉得比UART、SPI更为强大,但是技术上也更加麻烦些,因为I2C需要有双向IO的支持,而且使用上拉电阻,我觉得抗干扰能力较弱,一般用于同一板卡上芯片之间的通信,较少用于远距离通信。
GPIO模拟SPI通讯接口的驱动
GPIO模拟SPI通讯接口的驱动一,某些时候我们会不得不使用GPIO来模拟SPI,I2C等通讯接口,如本例中,需要使用SPI接口发送9位的数据,如果使用linux内核提供的SPI子系统来做这个驱动是无法实现9位传输数据的。
二,用GPIO模拟SPI总的来说是比较简单,把相应的管脚配置成GPIO功能,再按需要配置管脚的输入输出方向,然后根据SPI总线的时序设定IO口的电平。
三,驱动代码如下,以备今后作参考:(linux-2.6.28 + TCC8900, 这个驱动是用来控制LCD的初始化的(型号为LW350AC9001))#include <linux/module.h>#include <linux/types.h>#include <linux/kernel.h>#include <linux/init.h>#include <linux/ioport.h>#include <asm/uaccess.h>#include <linux/delay.h>#include <bsp.h>#include <asm/io.h>#define PDEBUG#ifdef PDEBUG#define PLOG(fmt,args...) printk(fmt,##args)#else#define PLOG(fmt,args...) /*do nothing*/#endif#define SPI_CMD 0#define SPI_DATA 1#define FUN_GPIO 0#define PIN_SDO 15 //GPIOF[15]#define PIN_SDI 14#define PIN_SCLK 16#define PIN_CS 29 //GPIOC[29]#define GPC_BASE 0xF0102080#define GPF_BASE 0xF0102140#define OFFSET_DAT 0x0#define OFFSET_EN 0x4#define OFFSET_FUN0 0x24#define OFFSET_FUN1 0x28#define OFFSET_FUN2 0x2c#define OFFSET_FUN3 0x30// select pin used for gpiostatic int tcc_set_pin_fun(int pin, int fun){if(pin<8)tcc_writel(((tcc_readl(GPF_BASE+OFFSET_FUN0) & ~(0x0f<<(4*pin))) | (fun<<(4 * pin))), GPF_BASE+OFFSET_FUN0);else if(pin<16)tcc_writel(((tcc_readl(GPF_BASE+OFFSET_FUN1) & ~(0x0f<<(4*(pin-8)))) | (fun<<(4 * (pin-8)))), GPF_BASE+OFFSET_FUN1);else if(pin<24)tcc_writel(((tcc_readl(GPF_BASE+OFFSET_FUN2) & ~(0x0f<<(4*(pin-16)))) | (fun<<(4 *(pin-16)))),GPF_BASE+OFFSET_FUN2);else if(pin<32)tcc_writel(((tcc_readl(GPF_BASE+OFFSET_FUN3) & ~(0x0f<<(4*(pin-24)))) | (fun<<(4 *(pin-24)))),GPF_BASE+OFFSET_FUN3);return 0;}static int tcc_set_cs_fun(void){tcc_writel(((tcc_readl(GPC_BASE+OFFSET_FUN3) & ~(0x0f<<(4*(PIN_CS-24)))) ),GPC_BASE+OFFSET_FUN3);return 0;}// set gpio direction, output: 1 for output, 0 for inputstatic int tcc_set_gpio_direction(int pin, int output){tcc_writel(((tcc_readl(GPF_BASE+OFFSET_EN) & ~(1<<pin)) | (output<< pin)),GPF_BASE+OFFSET_EN);return 0;}static int tcc_set_cs_output(void){tcc_writel(((tcc_readl(GPC_BASE+OFFSET_EN) | (1<< PIN_CS)) ),GPC_BASE+OFFSET_EN);return 0;}// set gpio pin level, high: 1, low: 0static int tcc_set_gpio_data(int pin, int level){tcc_writel(((tcc_readl(GPF_BASE+OFFSET_DAT) & ~(1<<pin) )| (level<< pin)),GPF_BASE+OFFSET_DAT);return 0;}static int tcc_set_cs_data(int level){tcc_writel(((tcc_readl(GPC_BASE+OFFSET_DAT) & ~(1<<PIN_CS) )| (level<< PIN_CS)), GPC_BASE+OFFSET_DAT);return 0;}// get gpio pin level, high: 1, low: 0static int tcc_get_gpio_data(int pin){return ((tcc_readl(GPF_BASE+OFFSET_DAT) >>pin) & 1);}void SPI_init(void){tcc_set_pin_fun(PIN_SDO, FUN_GPIO); //configure pin sdo and sda as GPIOtcc_set_pin_fun(PIN_SDI, FUN_GPIO);tcc_set_pin_fun(PIN_SCLK, FUN_GPIO);tcc_set_gpio_direction(PIN_SDO,1);tcc_set_gpio_direction(PIN_SDI,1);tcc_set_gpio_direction(PIN_SCLK,1);tcc_set_gpio_data(PIN_SDO,1);tcc_set_gpio_data(PIN_SDI,1);tcc_set_gpio_data(PIN_SCLK,1);tcc_set_cs_fun();tcc_set_cs_output();tcc_set_cs_data(1);}void SPI_send(bool is_parameter,unsigned char w_data){unsigned char vsignbit;//send DNC-bittcc_set_gpio_data(PIN_SCLK,0);tcc_set_gpio_data(PIN_SDO,is_parameter);ndelay(20);tcc_set_gpio_data(PIN_SCLK,1);ndelay(20);for(vsignbit=0x80;vsignbit>0;vsignbit>>=1) {tcc_set_gpio_data(PIN_SCLK,0);if(w_data&vsignbit)tcc_set_gpio_data(PIN_SDO,1);elsetcc_set_gpio_data(PIN_SDO,0);ndelay(20);tcc_set_gpio_data(PIN_SCLK,1);ndelay(20);}tcc_set_gpio_data(PIN_SDO,1);}unsigned char SPI_read(void){unsigned char vsignbit,r_data=0;tcc_set_gpio_direction(PIN_SDI,1);tcc_set_gpio_data(PIN_SDI,1);tcc_set_gpio_direction(PIN_SDI,0);for(vsignbit=0x80;vsignbit>0;vsignbit>>=1) {tcc_set_gpio_data(PIN_SCLK,0);ndelay(20);if(tcc_get_gpio_data(PIN_SDI)){r_data = r_data|vsignbit;}tcc_set_gpio_data(PIN_SCLK,1);ndelay(20);}return r_data;}static void set_value(){SPI_send(SPI_CMD, 0xB9);SPI_send(SPI_DATA, 0xFF);SPI_send(SPI_DATA, 0x83);SPI_send(SPI_DATA, 0x63);SPI_send(SPI_CMD, 0xB1);SPI_send(SPI_DATA, 0x81);SPI_send(SPI_DATA, 0x30);SPI_send(SPI_DATA, 0x02);SPI_send(SPI_DATA, 0x13);SPI_send(SPI_DATA, 0x11);SPI_send(SPI_DATA, 0x00);SPI_send(SPI_DATA, 0x3A);SPI_send(SPI_DATA, 0x42);SPI_send(SPI_DATA, 0x3F);SPI_send(SPI_DATA, 0x3F);SPI_send(SPI_CMD, 0x11);mdelay(150);SPI_send(SPI_CMD, 0x36);SPI_send(SPI_DATA, 0x08);SPI_send(SPI_CMD, 0x3A);SPI_send(SPI_DATA, 0x77);SPI_send(SPI_CMD, 0xB3);SPI_send(SPI_DATA,0x09);SPI_send(SPI_CMD, 0xB4);SPI_send(SPI_DATA, 0x08);SPI_send(SPI_DATA, 0x12);SPI_send(SPI_DATA, 0x72);SPI_send(SPI_DATA, 0x12);SPI_send(SPI_DATA, 0x06);SPI_send(SPI_DATA, 0x03);SPI_send(SPI_DATA, 0x54);SPI_send(SPI_DATA, 0x03);SPI_send(SPI_DATA, 0x4E);SPI_send(SPI_DATA, 0x00);SPI_send(SPI_DATA, 0x00);SPI_send(SPI_CMD, 0xBF);SPI_send(SPI_DATA, 0x00);SPI_send(SPI_DATA, 0x01);SPI_send(SPI_CMD, 0xB6);SPI_send(SPI_DATA, 0x00);SPI_send(SPI_CMD, 0xCC);SPI_send(SPI_DATA, 0x0A);mdelay(10);SPI_send(SPI_DATA, 0x40);SPI_send(SPI_DATA, 0x42);SPI_send(SPI_DATA, 0xC1);SPI_send(SPI_DATA, 0x4B);SPI_send(SPI_DATA, 0xA7);SPI_send(SPI_DATA, 0x06);SPI_send(SPI_DATA, 0x0D);SPI_send(SPI_DATA, 0x51);SPI_send(SPI_DATA, 0x56);SPI_send(SPI_DATA, 0x18);SPI_send(SPI_DATA, 0x56);SPI_send(SPI_DATA, 0x17);SPI_send(SPI_DATA, 0x89);SPI_send(SPI_DATA, 0x11);SPI_send(SPI_DATA, 0x00);SPI_send(SPI_DATA, 0x40);SPI_send(SPI_DATA, 0x42);SPI_send(SPI_DATA, 0xC1);SPI_send(SPI_DATA, 0x4B);SPI_send(SPI_DATA, 0xA7);SPI_send(SPI_DATA, 0x06);SPI_send(SPI_DATA, 0x0D);SPI_send(SPI_DATA, 0x51);SPI_send(SPI_DATA, 0x56);SPI_send(SPI_DATA, 0x18);SPI_send(SPI_DATA, 0x56);SPI_send(SPI_DATA, 0x17);SPI_send(SPI_DATA, 0x89);SPI_send(SPI_DATA, 0x11);mdelay(5);SPI_send(SPI_CMD, 0x29);}static int __init spi_lcd_init(void){PLOG("Register lcd spi control.\n");SPI_init();tcc_set_cs_data(0);ndelay(20);set_value();tcc_set_cs_data(1);return 0;}static void __exit spi_lcd_exit(void){printk(KERN_INFO "unregister lcd spi control.\n");}module_init(spi_lcd_init);module_exit(spi_lcd_exit);MODULE_LICENSE("GPL");MODULE_AUTHOR("J.H.Luo<sparkle-cliz@>");MODULE_VERSION("0.1");MODULE_DESCRIPTION("lcd spi control driver");四,测试结果,insmod此驱动模块之后,LCD显示出开机LOGO了,说明SPI控制成功。
运用4个普通IO口模拟SPI程序等.
#define ATT_CS
PORTB.5
#define ATT_SEL PORTB.6 #define ATT_REST PORTB.1 #define SET7022_Din PORTB|=(1<<2) #define CLR7022_Din PORTB&=~(1<<2) #define SET7022_SCLK PORTB|=(1<<4) #define CLR7022_SCLK PORTB&=~(1<<4) #define SET7022_CS #define CLR7022_CS PORTB|=(1<<5) PORTB&=~(1<<5)
else MOSI=0; dat<<=1; SCK=1; _nop_(); _nop_(); _nop_(); _nop_(); temp<<=1; if(MISO)temp++; SCK=0; _nop_(); _nop_(); _nop_(); _nop_(); } return temp; }
/************************************************************ *************************/ ulong Read_SPI(uchar comm) { uchar j; ulong rbyte=0; if(ATT_SIG==0) { SET7022_CS; CLR7022_SCLK; CLR7022_CS; #asm("cli") for( j=0;j<8;j++) { //关中断 //使能 SPI
2、SPI 简介: 同步外设接口(SPI)是由摩托罗拉公司开发的全双工同步串行总线,该总线大量 用在与 EEPROM、ADC、FLASH 和显示驱动器之类的慢速外设器件通信。 SPI(Serial Peripheral Interface)是一种串行同步通讯协议,由一个主设 备和一个或多个从设备组成, 主设备启动一个与从设备的同步通讯,从而完成数 据的交换。通讯时,数据由 MOSI 输出,MISO 输入,数据在时钟的上升或下 降沿由 MOSI 输出, 在紧接着的下降或上升沿由 MISO 读入, 这样经过 8/16 次 时钟的改变,完成 8/16 位数据的传输。
I/OPort软件模拟三线SPI通信时序
smua ig t e3 wie P e ilc mmu iai n t n sn / P r sp o o e n t i a e . i ltn h - rsS Is ra o nc t i g u ig I O o ti r p s d i hsp p r o mi
用于微处 理器/ 控制器 和外 围扩展芯 片之 间的 串行 微 连接 , 已发展 成为一 种工业标 准. 现 目前 , 各半 导体公 司推 出 了大量 的带 有 S I 口的具有 各种 各样 功 能 P 接 的芯 片 , R 如 AM , E R E P OM, L S A D 转 换 器 、 F A H, / D A 转换 器 、 E / C / L D L D显示 驱 动器 、/ 接 口芯 片、 I0
最全的STM32八种IO口模式讲解
最全的STM32八种IO口模式讲解STM32是一种基于ARM Cortex-M处理器的微控制器系列,具有强大的性能和广泛的应用领域。
而IO口是STM32微控制器中常见的功能之一,它允许我们与外部设备进行通信和数据交换。
在STM32中,IO口有八种不同的模式,本文将逐一进行讲解。
1. 输入浮空模式(Floating Input)输入浮空模式是IO口的默认模式。
在这种模式下,IO口既不输出也不输入电平信号,它的电平状态由外部电路决定。
这种模式非常适用于连接外部传感器或其他输入设备。
2. 模拟输入模式(Analog Input)模拟输入模式是用于连接模拟传感器的模式。
在这种模式下,IO口被配置为模拟输入引脚,可以读取来自传感器的模拟电压值。
3. 输出推挽模式(Push-pull Output)输出推挽模式是最常用的IO口模式之一、在这种模式下,IO口既能输出高电平,也能输出低电平。
它能够驱动较大负载,并且在输出状态下具有较低的电平谐波失真。
推挽输出模式常用于控制LED灯、继电器和其他外部设备。
4. 输出开漏模式(Open-drain Output)输出开漏模式也被称为开漏输出模式。
在这种模式下,IO口只能输出低电平,而不能输出高电平。
当IO口输出低电平时,它会与外部上拉电阻连接,使得整个电路可以实现低电平输出。
开漏输出模式常用于I2C总线和其他需要共享信号线的应用。
5. 复用推挽模式(Push-pull Alternate Function)复用推挽模式是IO口的特殊模式之一、在这种模式下,IO口既可以用于通用IO功能,也可以用作一些外设的引脚。
复用推挽模式常用于USART、SPI和I2C等串行通信接口。
6. 复用开漏模式(Open-drain Alternate Function)复用开漏模式也是IO口的特殊模式之一、在这种模式下,IO口可以用作一些外设的引脚,并且只能输出低电平。
复用开漏模式常用于I2C总线和其他需要共享信号线的应用。
51单片机SD卡SPI模式操作_1568
【51单片机SD卡SPI模式操作】摘要:sd卡有两种接口模式,一种是sd模式,另一种是spi模式。
在spi模式下,有六根接口线与主机相连,5V电平的51单片机通过电平转换可与3.3V电平的sd卡相连接。
51单片机没有专门的spi总线,可以用51单片机的IO口来模拟spi总结时序。
主机与sd卡的数据交换主要通过命令来实现,通过发送cmd0命令对sd卡进行复位,发送命令cmd1实现sd卡的spi模式初始化。
cmd17、cmd18命令是sd卡的读写扇区命令,对sd卡的操作是严格按照时序进行的。
关键词:sd卡;spi接口;时序sd卡以其大容量、低成本、携带方便、存储数据简单和安全可靠性高被大量应用于数码电子设备中,比如数码相机、数码摄像机、mp3、pda、电子学习机、电子图书等。
对sd卡的操作有复位、初始化、读写等,下面以本人掌握的材料对sd卡的操作进行分析。
一、sd卡的结构sd卡的外形与接口如图1,它有9个接点与主机相连,其接口端定义如表1所示。
sd卡有两种操作模式,一种是sd模式,另一种是spi模式,不同模式下端口的定义不同。
SD模式有一个时钟线、一个命令/反馈线、四根输入/输出信号线、两个电源地和一个电源,所有九根线都有定义,数据传输速率较快。
SPI模式只用到CS片选、数据输入、数据输出、时钟、电源地及电源六根线。
SPI模式较SD模式速度较慢,但很多单片机都有专用的SPI总线,可与sd卡直接相连,使用方便。
SD卡的内部结构如图2所示,主要有四部分组成,一是接口电路,共有九个接口电路,定义如表1所示。
二是接口控制电路,所有操作都由该控制电路具体去执行。
三是内部寄存器组OCR、CID、RCA等。
四是存储数据的存储单元。
接口电路通过控制电路与内部寄存器组成存储单元交换数据,其主要操作有写命令、读数据、写数据、读状态等。
二、sd卡的命令格式sd卡的命令格式固定为6个字节48个位,其格式如图3所示。
开始位固定为0,第二位固定为1,表示主机给sd卡的命令,然后是6位命令索引号,索引号的大小与索引号数字相同,比如cmd0的索引号为000000,索引号41为101001。
运用4个普通IO口模拟SPI程序等
运用4个普通I/O口模拟SPI程序源代码收藏/********************************************************************函数名:uchar SpiReadWrite(uchar dat)功能:SPI发送接收一个数据说明:调用:入口参数:出口参数:***********************************************************************/ uchar SpiReadWrite(uchar dat){uchar i,temp;temp=0;SCK=0;_nop_();for(i=0;i<8;i++){if(dat & 0x80){MOSI=1;}else MOSI=0;dat<<=1;SCK=1;_nop_();_nop_();_nop_();_nop_();temp<<=1;if(MISO)temp++;SCK=0;_nop_();_nop_();_nop_();_nop_();}return temp;}1、SPI总线速度:波特率可以高达5Mbps,具体速度大小取决于SPI硬件。
例如,Xicor公司的SPI串行器件传输速度能达到5MHz;ATMEL的AT45DB021B,20 MHz Max Clock Frequency;LPC2214的SPI,最大数据位速率为输入时钟速率的1/8。
2、SPI简介:同步外设接口(SPI)是由摩托罗拉公司开发的全双工同步串行总线,该总线大量用在与EEPROM、ADC、FLASH和显示驱动器之类的慢速外设器件通信。
SPI(Serial Peripheral Interface)是一种串行同步通讯协议,由一个主设备和一个或多个从设备组成,主设备启动一个与从设备的同步通讯,从而完成数据的交换。
通讯时,数据由MOSI 输出,MISO 输入,数据在时钟的上升或下降沿由MOSI 输出,在紧接着的下降或上升沿由MISO 读入,这样经过8/16 次时钟的改变,完成8/16 位数据的传输。
SPI总线从机接口实时模拟的实现
SPI总线从机接口实时模拟的实现SPI(Serial Peripheral Interface)总线是一种用于串行通信的同步接口协议,常用于嵌入式系统中的外围设备之间的通信。
SPI总线由一个主设备和一个或多个从设备组成,主设备通过时钟信号控制数据的传输。
在实时模拟SPI总线从机接口时,我们需要实现以下几个关键的功能:1.时钟信号生成:SPI总线的通信是通过时钟信号来同步的,因此我们需要在从机接口中生成正确的时钟信号。
可以通过使用定时器或者外部时钟信号源,按照SPI总线的时序要求生成时钟信号。
2.数据收发:SPI总线的通信是全双工的,即可以同时收发数据。
从机接收主机发送的数据,同时向主机发送响应的数据。
我们需要实现数据的收发功能,可以通过串口或者并口方式将数据从主机传输到从机,同时将从机的响应数据传输回主机。
3.数据帧格式解析:SPI总线中的数据是按照一定格式进行传输的,我们需要在从机接口中解析数据帧的格式。
数据帧通常包括数据位、校验位、起始位和停止位等信息。
在接收数据时,需要正确解析数据帧的格式,提取出有效的数据,并进行校验。
4.状态监测:在实时模拟从机接口时,需要监测SPI总线状态的变化。
包括时钟信号的变化、数据收发的状态和错误状态等。
在监测到状态的变化时,应及时进行相应的操作,例如更新数据、发送响应等。
5.错误处理:在SPI总线通信中,可能会出现各种错误,如数据传输错误、时钟信号失效等。
我们需要在从机接口中实现错误的检测和处理机制,以保证数据的可靠传输。
实时模拟SPI总线从机接口的实现,需要根据具体的硬件平台和所使用的编程语言进行相应的开发。
通常可以借助现有的软件库或者开发工具来简化开发过程,如使用Arduino等开发板、C语言或Python等编程语言。
总之,实时模拟SPI总线从机接口的实现需要考虑时钟信号生成、数据收发、数据帧格式解析、状态监测和错误处理等关键功能。
通过合理的设计和开发,可以实现SPI总线从机接口在软件上的模拟,以满足相应的通信需求。
使用MCU的GPIO模拟SPI
用GPIO模拟SPI协议的实现一SPI协议概括SPI,是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口。
是Motorola首先在其MC68HCXX系列处理器上定义的。
SPI接口主要应用在EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器之间。
SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议,比如AT91RM9200.SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。
也是所有基于SPI的设备共有的,它们是SDI(数据输入),SDO(数据输出),SCK(时钟),CS(片选)。
(1)SDO –主设备数据输出,从设备数据输入(2)SDI –主设备数据输入,从设备数据输出(3)SCLK –时钟信号,由主设备产生(4)CS –从设备使能信号,由主设备控制其中CS是控制芯片是否被选中的,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),对此芯片的操作才有效。
这就允许在同一总线上连接多个SPI设备成为可能。
接下来就负责通讯的3根线了。
通讯是通过数据交换完成的,这里先要知道SPI是串行通讯协议,也就是说数据是一位一位的传输的。
这就是SCK时钟线存在的原因,由SCK提供时钟脉冲,SDI,SDO 则基于此脉冲完成数据传输。
数据输出通过SDO线,数据在时钟上升沿或下降沿时改变,在紧接着的下降沿或上升沿被读取。
完成一位数据传输,输入也使用同样原理。
这样,在至少8次时钟信号的改变(上沿和下沿为一次),就可以完成8位数据的传输。
要注意的是,SCK信号线只由主设备控制,从设备不能控制信号线。
同样,在一个基于SPI的设备中,至少有一个主控设备。