TC9149中文资料
1-1469491-2中文资料
1-1469491-2 Product DetailsHome | Customer Support | Suppliers | Site Map | Privacy Policy | Browser Support© 2008 Tyco Electronics Corporation All Rights Reserved SearchProducts Documentation Resources My Account Customer SupportHome > Products > By Type > Two-Piece, High-Speed Connectors > Product Feature Selector > Product Details1-1469491-2Active MULTIGIG RT ProductAlways EU RoHS/ELV Compliant (Statement of Compliance)Product Highlights:?Pin, External Thread?Guidance Series?VITA 41/VITA 46 Configuration?Used With 9mm Guide ModuleView all Features | Find SimilarProductsCheck Pricing &AvailabilitySearch for ToolingProduct FeatureSelectorContact Us AboutThis ProductQuick LinksDocumentation & Additional InformationProduct Drawings:?KEYED GUIDE PIN, DIE CAST BACKPLANE CONNECTOR, MULTI...(PDF, English)Catalog Pages/Data Sheets:?Power Connectors & Interconnection Systems Catalog -...(PDF, English)?MULTIGIG RT Connector Products for VITA 46 (VPX) Sta...(PDF, English)Product Specifications:?None AvailableApplication Specifications:?None AvailableInstruction Sheets:?None AvailableCAD Files:?None AvailableList all Documents Additional Information:?Product Line InformationRelated Products:?ToolingProduct Features (Please use the Product Drawing for all design activity)Product Type Features:?Product Type = Pin, External Thread ?Finish = Silver?Comment = KeyedBody Related Features:?Series = Guidance?Used With = 9mm Guide Module?Pin Material = Zinc Alloy Industry Standards:?RoHS/ELV Compliance = RoHS compliant, ELVcompliant?Lead Free Solder Processes = Not relevant forlead free process?VITA 41/VITA 46 Configuration = Yes?RoHS/ELV Compliance History = Always wasRoHS compliantOther:?Brand = AMPProvide Website Feedback | Contact Customer Support。
C1419中文资料
Vectron International · v.2005-02-10 · page 1 of 3Vectron International Headquarters Vectron International LLC. 100 Watts StreetVectron international GmbH & Co. KG LandstrasseVectron Asia Pacific Sales OfficeUnit 3119 31st Floor, Jin Mao Tower, 88Typical ApplicationsFeaturesTelecommunication Standard 4-Pin DIP Package Universal Clock Enable FunctionPrevious Vectron Model NumbersMCO1XXX; AA;Frequency range1 MHz – 100 MHzFrequency stabilities 1ParameterMin Typ Max. Units Operating temprange Ordering Code 5Overall (vs. Initial, vs. operatingtemperature range vs. supply voltage change vs. load change vs. aging /1. Yea)r-100.0 -50.0 -25.0 -100.0 -50.0 -32.0+100.0 +50.0 +25.0 +100.0 +50.0 +32.0ppm ppm ppm ppm ppm ppm-0 … +70°C -0 … +70°C -0 … +70°C -40 … +85°C -40 … +85°C -40 … +85°CC104 C505 C255 F104 F505 F325Supply voltageParameterMin Typ Max. Units ConditionOrdering Code 5Supply voltage (Vs)4.755.0 5.25 VDCSV050Current consumption40 50 55 70 mA@ HCMOS fo < 24.0 MHz @ HCMOS fo < 50.0 MHz @ HCMOS fo < 70.0 MHz @ HCMOS fo < 100.0 MHz Supply voltage (Vs) 3.135 3.3 3.465 VDC SV033 Current consumption30 35 40 50mA@ HCMOS fo < 24.0 MHz @ HCMOS fo < 50.0 MHz @ HCMOS fo < 70.0 MHz @ HCMOS fo < 100.0 MHzRF outputParameter Min Typ Max.Units ConditionOrdering Code 5SignalHCMOSRFHLoad15.0 pFRise and Fall time 10 ns @ 15 pF 10 to 90 %Duty cycle4060%@ Vs/2Vectron International · v.2005-02-10 · page 2 of 3Vectron International Headquarters Vectron International LLC.100 Watts StreetVectron international GmbH & Co. KGLandstrasseVectron Asia Pacific Sales OfficeUnit 3119 31st Floor, Jin Mao Tower, 88EnclosuresAbsolute Maximum RatingsParameter Min Typ Max. Units Condition Supply voltage (Vs) 7 VOperable temperature range -30 +80 °CStorage temperature range -40 +90 °CVectron International · v.2005-02-10 · page 3 of 3Vectron International Headquarters Vectron International LLC.100 Watts StreetVectron international GmbH & Co. KGLandstrasseVectron Asia Pacific Sales OfficeUnit 3119 31st Floor, Jin Mao Tower, 88How to Order this Product:Step 1 Use this worksheet to forward the following information to your factory representative:Model Stability Code Supply Voltage Code RF Output Code Package Code C1419Example: C1419 C104 SV050 RFH A1Step 2 The factory representative will then respond with a Vectron Model Number in the following Configuration: Model Package Code Dash Dash NumberC1419 [Customer Specified Package Code]- [Factory Generated 4 digit number] Typical P/N = C1419A1-0001Notes:1 Contact factory for improved stabilities or additional product options. Not all options and codes are available at all frequencies.2 Unless otherwise stated all values are valid after warm-up time and refer to typical conditions for supply voltage, frequency controlvoltage, load, temperature (25°C)3 Phase noise degrades with increasing output frequency.4 Subject to technical modification.5 Contact factory for availability.。
RM914中文资料
Data Sheet 100637D © 2001, 2002 Skyworks Solutions, Inc., All Rights Reserved.March 22, 2002RM914Power Amplifier Module for AMPS Applications (824–849 MHz)The RM914 Advanced Mobile Phone Service (AMPS) Power Amplifier is a fully matched 6-pin surface mount module designed for mobile units operating in the 824-849 MHz cellular bandwidth. This device can be driven to power output levels beyond 31 dBm for high efficiency FM mode operation. A single GaAs Microwave Monolithic Integrated Circuit (MMIC) contains all active circuitry in the module. The MMIC contains on-board bias circuitry as well as input and interstage matching circuits. The output match is realized off-chip and within the module package to optimize efficiency and power performance into a 50 Ω load. This device is manufactured with Skyworks’s GaAs HBT process that provides for all positive voltage DC supply operation while maintaining high efficiency. Primary bias to the RM914 can be supplied directly from a three cell nickel-cadmium, single celllithium-ion, or other suitable battery with output in the 3-4 volt range. Power down is accomplished by setting the voltage on the low current reference pin to zero volts. No external supply side switch is needed as typical “off” leakage is a few microamperes with full primary voltage supplied from the battery.Functional Block DiagramDistinguishing Features•Low voltage positive bias supply (3 to 4 Volts, typical)•High efficiency•Large dynamic range •6-pin package(6mm x 6mm x 1.5 mm)•Power down controlApplications•Analog cellular (AMPS)•Wireless local loop (WLL)Electrical SpecificationsRM914Power Amplifier Module for AMPS Applications (824–849 MHz)2Skyworks100637DMarch 22, 2002Electrical SpecificationsThe following tables list the electrical characteristics of the RM914 Power Amplifier. Table 1 lists the absolute maximum rating for continuous operation. Table 2 lists the recommended operating conditions for achieving the electrical performance listed in Table 3. Table 3 lists the electrical performance of the RM914 Power Amplifier over the recommended operating conditions.Table 1.Absolute Maximum Ratings (1)ParameterSymbolMinimumNominalMaximumUnitRF Input Power Pin — 3.0 6.0dBm Supply Voltage Vcc — 3.4 6.0Volts Reference VoltageVref — 3.0 3.3Volts Case Operating Temperature Tc –3025+110°C Storage TemperatureTstg–55—+125°CNOTE(S):No damage assuming only one parameter is set at limit at a time with all other parameters set at or below nominal value.Table 2.Recommended Operating ConditionsParameterSymbolMinimumNominalMaximumUnitSupply Voltage Vcc 3.2 3.4 4.2Volts Reference Voltage Vref 2.9 3.0 3.1Volts Operating Frequency Fo 824.0836.5849.0MHz Operating TemperatureTo–30+25+85°CRM914Electrical SpecificationsPower Amplifier Module for AMPS Applications (824–849 MHz)100637DSkyworks3March 22, 2002Table 3.Electrical Specifications for AMPS Nominal Operating Conditions (1)CharacteristicsConditionSymbolMinimumTypicalMaximumUnitQuiescent current Vref = 3.0Vref = 2.9Iq Iq 60.0—100.080.0130.0—mA mA Leakage Current Vref = 0 V Vcc = 3.4 V I LK —— 5.0µA GainPo = 0 dBm Po = 31 dBm G Gp —29.032.531.0—33.0dB dB Power Added Efficiency Po = 31 dBm PAEa 48.551.0—%Harmonic SuppressionSecond ThirdPo ≤ 31 dBm Po ≤ 31 dBm AFo2AFo3——–43.0–41.0–36.0–34.0dBc dBc Noise Power in RX Band 869-894 MHz Po ≤ 31 dBmRxBN —–136.0–133.0dBm/Hz Noise Figure—NF —7.0—dB Input Voltage Standing Wave Ratio —VSWR — 1.4:1 1.5:1—Stability (Spurious output)5:1 VSWR All phases S ——–60.0dBc Ruggedness – No damagePo ≤ 31 dBmRu10:1——VSWRNOTE(S):(1)Vcc = +3.4 V, Vref = +3.0 V, Freq = 836.5 MHz, Tc = 25 °C, unless otherwise specified.Table 4.Electrical Specifications Limits for AMPS Recommended Operating Conditions (1)CharacteristicsConditionSymbolMinimumMaximumUnitQuiescent current Vref = 3.0Vref = 2.9Iq Iq ——170.0150.0mA mA GainPo = 31 dBm Gp 25.035.5dB Power Added Efficiency Po = 31 dBm PAEa 48.0—%Harmonic SuppressionSecond ThirdPo ≤ 31 dBm Po ≤ 31 dBm AFo2AFo3——–35.0–30.0dBc dBc Noise Power in RX Band 869-894 MHzPo ≤ 31 dBmRxBN —–130.0dBm/Hz Input Voltage Standing Wave Ratio —VSWR —2:1—Stability (Spurious output)5:1 VSWR All phases S —–60.0dBc Ruggedness – No damagePo ≤ 31 dBmRu10:1—VSWRNOTE(S):(1)Per Table 2Characterization DataRM914Power Amplifier Module for AMPS Applications (824–849 MHz)4Skyworks100637DMarch 22, 2002Characterization DataThe following charts illustrate the characteristics of a typical RM914 Power Amplifier tested in the evaluation board described in the following section. The amplifier was selected by characterizing a group of devices and choosing a part with average electrical performance at both nominal and worst case (limit) conditions. Figures 1 through 2 illustrate the analog characteristics of the RM914.Figure 1.Analog Gain vs. Output PowerLegendRM914Characterization DataPower Amplifier Module for AMPS Applications (824–849 MHz)100637DSkyworks5March 22, 2002Figure 2.Analog Power Added Efficiency vs. Output PowerLegendCharacterization DataRM914Power Amplifier Module for AMPS Applications (824–849 MHz)6Skyworks100637DMarch 22, 2002Figure 4.Analog Third Order Harmonic Suppression MagnitudeLegendRM914Characterization DataPower Amplifier Module for AMPS Applications (824–849 MHz)100637DSkyworks7March 22, 2002Figure 5.Analog Gain vs. Output PowerFigure 6.Analog Second Harmonic Suppression MagnitudeCharacterization DataRM914Power Amplifier Module for AMPS Applications (824–849 MHz)8Skyworks100637DMarch 22, 2002Figure 7.Analog Third Order Harmonic Suppression MagnitudeFigure 8.Noise Figure Variation Over Recommended Operating ConditionsRM914Characterization DataPower Amplifier Module for AMPS Applications (824–849 MHz)100637DSkyworks9March 22, 2002Figure 9.Voltage Standing Wave Ratio Variation Over Recommended Operating ConditionsEvaluation Board DescriptionRM914Power Amplifier Module for AMPS Applications (824–849 MHz)10Skyworks100637DMarch 22, 2002Evaluation Board DescriptionThe evaluation board is a platform for testing and interfacing design circuitry. To accommodate the interface testing of the RM914, the evaluation board schematic and diagrams are included for preliminary analysis and design. Figure 10 shows the basic schematic of the board for the 824 MHz to 849 MHz range. Figure 11 illustrates the board layout.Figure 10.Evaluation Board SchematicFigure 11.Evaluation Board Assembly DiagramRM914Package Dimensions and Pin DescriptionsPower Amplifier Module for AMPS Applications (824–849 MHz)100637DSkyworks11March 22, 2002Package Dimensions and Pin DescriptionsThe RM914 is a multi-layer laminate base, overmold encapsulated modular package designed for surface mount solder attachment to a printed circuit board. Figure 12 is a mechanical drawing of the pad layout for this package and Figure 13 illustrates typical case markings. The pin numbering convention starts with pin 1 in the upper left, as indicated in Figure 12, and increments counter-clockwise around the package. Table 5 describes each pin function.Figure 12.RM914 Package DrawingPackage Dimensions and Pin DescriptionsRM914Power Amplifier Module for AMPS Applications (824–849 MHz)12Skyworks100637DMarch 22, 2002Table 5.Pin DescriptionPin #Function1VCC1(1)2RFInput 3VREF 4VCC2(1)5RF Output 6GND 7GND (2)NOTE(S):(1)All supply pins may be connected together at the supply.(2)Package underside is GND.Figure 13.Typical Case MarkingsRM914Package and Handling InformationPower Amplifier Module for AMPS Applications (824–849 MHz)100637DSkyworks13March 22, 2002Package and Handling InformationBecause of its sensitivity to moisture absorption, this device package is baked and vacuum packed prior to shipment. Instructions on the shipping container label must be followed regarding exposure to moisture after the container seal is broken, otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly.The RM914 is capable of withstanding an MSL 3/225 °C solder reflow. Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. If the part is attached in a reflow oven, the temperature ramp rate should not exceed 5 °C per second; maximum temperature should not exceed 225 °C. If the part is manually attached, precaution should be taken to insure that the part is not subjected to temperatures exceeding 225 °C for more than 10 seconds. For details on both attachment techniques, precautions, and handling procedures recommended by Conexant, please refer to Application Note: PCB Design and SMTAssembly/Rework, Document Number 101752. Additional information on standard SMT reflow profiles can also be found in the JEDEC Standard J–STD–020A .Production quantities of this product are shipped in the standard tape-and-reel format. For packaging details, refer to Application Note: Tape and Reel, Document Number 101568.Electrostatic Discharge SensitivityRM914Power Amplifier Module for AMPS Applications (824–849 MHz)14Skyworks100637DMarch 22, 2002Electrostatic Discharge SensitivityThe RM914 is a Class I device. Figure 14 lists the Electrostatic Discharge (ESD) immunity level for each pin of the RM914 product. The numbers in Figure 14 specify the ESD threshold level for each pin where the I-V curve between the pin and ground starts to show degradation. The ESD testing was performed in compliance with MIL-STD-883E Method 3015.7 using the Human Body Model. Since 2000 volts represents the maximum measurement limit of the test equipment used, pins marked > 2000 V pass 2000V ESD stress.Various failure criteria can be utilized when performing ESD testing. Many vendors employ relaxed ESD failure standards which fail devices only after “the pin fails the electrical specification limits” or “the pin becomes completely non-functional”. Skyworks employs the most stringent criteria and fails devices as soon as the pin begins to show any degradation on a curve tracer.To avoid ESD damage, latent or visible, it is very important the Class-1 ESD handling precautions listed in Table 6 be used in the product assembly and test areas follow.Figure 14.ESD Sensitivity AreasTable 6.Precautions for GaAs ICs with ESD Thresholds Greater Than 200V But Less Than 2000VPersonnel GroundingWrist StrapsConductive Smocks, Gloves and Finger Cots Antistatic ID BadgesFacilityRelative Humidity Control and Air Ionizers Dissipative Floors (less than 109 Ω to GND)Protective WorkstationDissipative Table TopsProtective Test Equipment (Properly Grounded)Grounded Tip Soldering Irons Conductive Solder Suckers Static SensorsProtective Packaging & TransportationBags and Pouches (Faraday Shield)Protective Tote Boxes (Conductive Static Shielding)Protective Trays Grounded CartsProtective Work Order Holders© 2002, Skyworks Solutions, Inc. All Rights Reserved.Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products. These materials are provided by Skyworks as a service to its customers and may be used for informational purposes only. Skyworks assumes no responsibility for errors or omissions in these materials. Skyworks may make changes to its products, specifications and product descriptions at any time, without notice. Skyworks makes no commitment to update the information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from future changes to its products and product descriptions.No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as may be provided in Skyworks' Terms and Conditions of Sale for such products, Skyworks assumes no liability whatsoever.THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF SKYWORKS ™ PRODUCTS INCLUDING WARRANTIES RELATING TO FITNESS FOR AP ARTICULAR PURPOSE, MERCHANTABILITY , PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY PA TENT,COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. SKYWORKS FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMA TION, TEXT , GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,INCLUDING WITHOUT LIMITA TION, LOST REVENUES OR LOST PROFITS THA T MAY RESULT FROM THE USE OF THESE MATERIALS.Skyworks ™ products are not intended for use in medical, lifesaving or life-sustaining applications. Skyworks' customers using or selling Skyworks ™ products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.The following are trademarks of Skyworks Solutions, Inc.: Skyworks ™, the Skyworks symbol, and "Breakthrough Simplicity"™.Product names or services listed in this publication are for identification purposes only, and may be trademarks of third parties. Third-party brands and names are the property of their respective owners.Additional information, posted at , is incorporated by reference.Ordering InformationRevision HistoryReferencesApplication Note: Tape and Reel, Document Number 101568.Application Note: PCB Design and SMT Assembly/Rework, Document Number 101752JEDEC Standard J –STD –020AModel Number Manufacturing Part Number Product RevisionPackage Operating Temperature RM914RM914-13136x6LM-6–30 °C to +85 °CRevision LevelDate DescriptionA September 2000Initial ReleaseB December 2000Add Solder Reflow, T emperature GuidelinesRevised data Table 1, Table 4; Revised Figure 13C August 2001Revise: Table 3, Leakage Current.DMarch 22, 2002Revise: Tables 3 and 4.Add: Reference DocumentsSkyworks Solutions, Inc.4311 Jamboree Rd. Newport Beach, CA. 92660-3007。
HEDS-9140中文资料
The HEDS-9040 and 9140 provide sophisticated motion control detection at a low cost, making them ideal for high volume applications. Typical applications include printers, plotters, tape drives, and industrial and factory automation equipment.
2.16 (0.085) DEEP
1.78 ± (0.070 ± 0.004)
2.92 ± 0.10 (0.115 ± 0.004)
OPTICAL CENTER
10.16 (0.400)
OPTICAL CENTER LINE
5.46 ± 0.10 (0.215 ± 0.004)
TYPICAL DIMENSIONS IN MILLIMETERS AND (INCHES)
元器件交易网
Three Channel Optical Incremental Encoder Modules
Technical Data
HEDS-9040 HEDS-9140
Features
• Two Channel Quadrature Output with Index Pulse
1.52 (0.060)
DATE CODE
3.73 ± 0.05 (0.147 ± 0.002)
20.8 (0.82)
11.7 (0.46)
2.21 (0.087) 2.54
(0.100)
2.67 (0.105) DIA. MOUNTING THRU HOLE 2 PLACES
汽车法规--ISO9141-2的国际标准文档4(pdf 58)
SSF 14230Road Vehicles - Diagnostic SystemsKeyword Protocol 2000 - Part 2 - Data Link LayerSwedish Implementation StandardBased on ISO 14230-2 Data Link LayerStatus:Issue 1Date: April 22, 1997This document is based on the InternationalStandard ISO 14230 Keyword Protocol 2000 andhas been further developed to meet Swedishautomotive manufacturer's requirements by theSwedish Vehicle Diagnostics Task Force.It is based on mutual agreement between thefollowing companies:•Saab Automobile AB•SCANIA AB•Volvo Car Corp.•Volvo Bus Corp.•Mecel ABFile: 14230-2s.DOC / Definition by “Samarbetsgruppen för Svensk Fordonsdiagnos” / Author: L. Magnusson Mecel ABDocument updates and issue historyThis document can be revised and appear in several versions. The document will be classified in order to allow identification of updates and versions.A. Document status classificationThe document is assigned the status Outline, Draft or Issue.It will have the Outline status during the initial phase when parts of the document are not yet written.The Draft status is entered when a complete document is ready, which can be submitted for reviews. The draft is not approved. The draft status can appear between issues, and will in that case be indicated together with the new issue number E.g. Draft Issue 2.An Issue is established when the document is reviewed, corrected and approved.B. Version number and history procedureEach issue is given a number and a date. A history record shall be kept over all issues.Document in Outline and Draft status may also have a history record.C. HistoryIssue #Date Comment197 04 22Frst issueTable of Content1. SCOPE (1)2. NORMATIVE REFERENCE (2)3. PHYSICAL TOPOLOGY (3)4. MESSAGE STRUCTURE (4)4.1 Header (4)4.1.1 Format byte (4)4.1.2 Target address byte (5)4.1.2.1 Physical addressing (5)4.1.2.2 Functional addressing (5)4.1.3 Source address byte (5)4.1.4 Length byte (5)4.1.5 Use of header bytes (6)4.2 Data Bytes (6)4.3 Checksum Byte (6)4.4 Timing (7)4.4.1 Timing Exceptions (9)4.4.2 Periodic transmission (9)4.4.3 Server (ECU) Response Data Segmentation (12)4.5 End Of Message (12)5. COMMUNICATION SERVICES (13)5.1 StartCommunication Service (14)5.1.1 Service Definition (14)5.1.1.1 Service Purpose (14)5.1.1.2 Service Table (14)5.1.1.3 Service Procedure (14)5.1.2 Implementation (14)5.1.2.1 Key bytes (15)5.1.2.2 Fast Initialisation (17)5.2 StopCommunication Service (19)5.2.1 Service Definition (19)5.2.1.1 Service Purpose (19)5.2.1.2 Service Table (19)5.2.1.3 Service Procedure (19)5.2.2 Implementation (20)5.3 AccessTimingParameter Service (21)5.3.1 Service Definition (21)5.3.1.1 Service Purpose (21)5.3.1.2 Service Table (21)5.3.1.3 Service Procedure (22)5.3.2 Implementation (23)5.4 SendData Service (25)5.4.1 Service Definition (25)5.4.1.1 Service Purpose (25)5.4.1.2 Service Table (25)5.4.1.3 Service Procedure (25)5.4.2 Implementation (26)6. ERROR HANDLING (27)6.1 Error handling during physical/functional Fast Initialisation (27)6.1.1 Client (tester) Error Handling during physical/functional Fast Initialisation (27)6.1.2 Server (ECU) Error Handling during physical Fast Initialisation (27)6.1.3 Server (ECU) Error Handling during functional Fast Initialisation (28)6.2 Error handling after Initialisation (28)6.2.1 Client (tester) communication Error Handling (28)6.2.2 Server (ECU) communication Error Handling. physical addressing (29)6.2.3 Server (ECU) Error Handling, functional addressing (29)APPENDIX A - ARBITRATION1. DEFINITIONS (1)1.1 Random response time (1)1.2 Start bit detection (1)1.3 Transmission latency (1)1.4 Collision detection (1)2. MAINSTREAM COMMUNICATION (1)APPENDIX B - TIMING DIAGRAMS1. PHYSICAL ADDRESSING (1)1.1 Physical addressing - single positive response message (1)1.2 Physical addressing - more than one positive response message (3)1.3 Physical addressing - periodic transmission (5)2. FUNCTIONAL ADDRESSING (7)2.1 Functional addressing - single positive response message -single server (ECU) addressed (7)2.2 Functional addressing - more than one response message -single server (ECU) addressed (9)2.3 Functional addressing - single positive response message -more than one server (ECU) (11)2.4 Functional addressing - more than one response message -more than one server (ECU) (13)APPENDIX C - MESSAGE FLOW EXAMPLES1. PHYSICAL INITIALISATION - MORE THAN ONE SERVER (ECU) INITIALISED (1)2. PERIODIC TRANSMISSION MODE (4)2.1 Message Flow Example A (4)2.2 Message Flow Example B (5)IntroductionThis document (The Swedish Keyword Protocol 2000 Implementation Standard) is based on the ISO 14230-2 International Standard. Changes are indicated by changing the font from "Arial" to "Times New Roman"!It has been established in order to define common requirements for the implementation of diagnostic services for diagnostic systems.To achieve this, the standard is based on the Open System Interconnection (O:S:I.) Basic Reference Model in accordance with ISO 7498 which structures communication systems into seven layers. When mapped on this model, the services used by a diagnostic tester and an Electronic Control Unit (ECU) are broken into:- Diagnostic services (layer 7)- Communication services (layers 1 to 6)See figure 1 below.1. ScopeThis national Standard specifies common requirements of diagnostic services which allow a tester to control diagnostic functions in an on-vehicle Electronic Control Unit (e.g. electronic fuel injection, automatic gear box, anti-lock braking system,...) connected on a serial data link embedded in a road vehicle.It specifies only layer 2 (data link layer). Included are all definitions which are necessary to implement the services (described in "Keyword Protocol 2000 - Part 3:Implementation) on a serial link (described in "Keyword Protocol 2000 - Part 1: Physical Layer") Also included are some communication services which are needed for communication/session management and a description of error handling.This Standard does not specify the requirements for the implementation of diagnostic services.The physical layer may be used as a multi-user-bus, so a kind of arbitration or bus management is necessary. If arbitration is used it shall comply to the technique described in Attachment A. The car manufacturers are responsible for the correct working of bus management.Communication between ECUs are not part of this document.The vehicle diagnostic architecture of this standard applies to:• a single tester that may be temporarily or permanently connected to the on-vehicle diagnostic data link and• several on-vehicle electronic control units connected directly or indirectlySee figure 2 below.2. Normative ReferenceThe following standards contain provisions which, through reference in this text, constitute provisions of this document. All standards are subject to revision, and parties to agreement based on this document are encouraged to investigate the possibility of applying the most recent editions of the standards listed below. Members of ISO maintain registers of currently valid International Standards.ISO 7498-1:1984Information processing systems - Open systemsinterconnection - Basic reference model.SAE J-1979:Dec,1991E/E Diagnostic Test ModesSAEJ-2178 :June, 1993Class B Data Communication Network MessagesISO 14229:1996Road Vehicles - Diagnostic systems -Diagnostic Services SpecificationSSF 14230-1:1997Road Vehicles - Diagnostic systems - Keyword Protocol 2000 -Issue 2Part 1: Physical LayerSSF 14230-3:1996Road Vehicles - Diagnostic systems - Keyword Protocol 2000 -Draft Part 3: ImplementationISO 14230-4:1996Road Vehicles - Diagnostic systems - Keyword Protocol 2000 -Part 4: Requirements For Emission related Systems3. Physical topologyKeyword Protocol 2000 is a bus concept (s. diagram below). Figure 3 shows the general form of this serial link.Figure 3 - TopologyThe K-Line is used for communication and initialisation. Special cases are node-to-node-connections, that means there is only one ECU on the line, which also can be a bus converter.4. Message structureThis section describes the structure of a message.The message structure consists of three parts:• header• data bytes• checksumHeader Data bytes ChecksumFmt Tgt1 Src1 Len1SId2 . .Data2 . . CSmax . 4 byte max. 255 byte 1 byte1 bytes are optional, depending on format byte2 Service Identification, part of data bytesHeader and Checksum byte are described in this document. The area of data bytes always begins with a Service Identification. Use of the data bytes for communication services is described in this document. Use of the data bytes for diagnostic services is described in "Keyword Protocol 2000 - Part 3: Implementation".4.1 HeaderThe header consists of 3 or 4 bytes. A format byte includes information about the form of the message. A separate length byte allows message lengths up to 255 bytes.4.1.1 Format byteThe format byte contains 6 bit length information and 2 bit address mode information. The tester is informed about use of header bytes by the key bytes (s.5.1.2.1).msb lsbA1A0L5L4L3L2L1L0• A1,A0: Define the form of the header which will be used by the message:A1A0Mode Mnemonic HeaderMode210Header with address information, physical target address HM2 311Header with address information, functional target address HM3HM0 and HM1 are not defined in this document.HM3 (functional target address) shall only be used in request messages see §5.1.2.2.2• L5..L0: Define the length of the data field of a message, i.e. from the beginning of the data field (Service Identification byte included) to Checksum byte (not included). A message length of 1 to 63 bytes is possible. If L0 to L5 = 0 then the additional length byte is included.In the Swedish Implementation Standard L0 to L5 shall always be set to 0 (except in theStartCommunicationRequest message, see §5.1.2.2).This is the target address for the message. It may be a physical or a functional address. For emission related (CARB) messages this byte is defined in ISO 14230 KWP 2000 Part 4: Requirements For Emission related Systems.4.1.2.1 Physical addressingPhysical addressing (HM2) can be used in both request and response messages. The target address of a physically addressed request shall be interpreted as a physical server (ECU) address, the source address is the physical address of the client (tester).In the response message the target and source addresses are also physical addresses (HM2). Physical addresses shall be according to SAE J2178-Part 1, or as specified by the vehicle manufacturer.4.1.2.2 Functional addressingFunctional addressing (HM3) can only be used in request messages. The target address of a functionally addressed request shall be interpreted as a functional (group) address, the source address is the physical address of the client (tester).In the response messages the target and source addresses are physical addresses, i.e. response messages are always physically addressed (HM2).Functional addressing requires that the servers (ECUs) must support arbitration (see appendix A).4.1.3 Source address byteThis is the address of the transmitting device. It must be a physical address (also in the case where the target address is a functional address). There are the same possibilities for the values as described for physical target address bytes. Addresses for testers are listed in SAE J2178 Part 1, but the ECU must accept all tester addresses.4.1.4 Length byteThis byte is provided if the length in the header byte (L0 to L5) is set to 0. It allows the user to transmit messages with data fields longer then 63 bytes. With shorter messages it may be omitted. This byte defines the length of the data field of a message, i.e. from the beginning of the data field (Service Identification byte included) to Checksum byte (not included). A data length of 1 to 255 bytes is possible. The longest message consists of a maximum of 260 byte (255 data bytes + 4 bytes header + Checksum). For messages with data fields of less than 64 bytes there are two possibilities: Length may be included in the format byte or in the additional length byte. An ECU may support both possibilities, the tester is informed about this capability through the keybytes ( see section 5.1.2.1).Length Length provided inFmt byte Length byte< 64XX00 0000present< 64XXLL LLLL not present≥ 64XX00 0000presentXX: 2 bit address mode information (see §4.1.1)LL LLLL: 6 bit length informationIn the Swedish Implementation Standard the Length byte shall always be provided (L0 to L5 = 0) (except in the StartCommunicationRequest message, see §5.1.2.2).With the above definitions there are two different forms of message. These are shown diagramatically below.LengthFmt Tgt Src SId Data CSChecksumHeader with address information, no additional length byteLengthFmt Tgt Src Len SId Data CSChecksumHeader with address information, with additional length byteFmt Format byteTgt Target addressSrc Source addressLen additional length byteSId Service Identification byteData depending on serviceCS Checksum byte4.2 Data BytesThe data field may contain up to 255 bytes of information. The first byte of the data field is the Service Identification Byte. It may be followed by parameters and data depending on the selected service. These bytes are defined in "Keyword Protocol 2000 - Part 3: -Implementation" (for diagnostic services) and in section 5 of this document (for communication services).4.3 Checksum ByteThe Checksum byte (CS) inserted at the end of the message block is defined as the simple 8-bit sum series of all bytes in the message, excluding the Checksum.If the message is<1> <2> <3> ... <N> , <CS>where <i> (1 ≤ i ≤ N) is the numeric value of the i th byte of the message, then:<CS> = <CS>Nwhere <CS>i (i = 2 to N) is defined as<CS>i = { <CS> i-1 + <i> } Modulo 256 and <CS>1 = <1>Additional security may be included in the data field as defined by the manufacturer.4.4 TimingDuring normal operation the following timing parameters are relevant:Value DescriptionP1Inter byte time in ECU response.P2Time between end of tester request and start of ECU response, or time between end of ECU response and start of next ECU response.The next ECU response may be from the same ECU or it may be from another ECUin case of functional addressing.P3Time between end of ECU response and start of new tester request, or time between end of tester request and start of new tester request if ECU fails torespond.P3 shall be measured from the last byte in the latest response message from anyECU responding.P4Inter byte time in tester request.There are two sets of default timing parameters, normal and extended. Only normal timing parameters are supported by this document (Swedish Implementation Standard).Table 1a shows the timing parameters which are used as default (all values in ms).Table 1a - Normal Timing Parameter Set, default valuesTiming min. values max. valuesParameter default defaultP1020P2 P2*2525505000P3555000P4520Note: The timing parameter P2* becomes active if the server (ECU) responds with Negative response and the response code $78 "reqCorrectlyRcvd-RspPending", see §4.4.1.The values of the timing parameters may be changed with the communication service "AccessTimingParameters" (see §5.3).Table 1b shows the resolution and the possible limits within which the timing parameters can be changed with AccessTimingParameters (ATP).Table 1b -Normal Timing Parameter Set, lower and upper limitsAll values in msTiming Min. values Max. valuesParameter Lower limit Resolution 1Upper limit Resolution 1P10---20---P200.589600 ; ∞see Table 1cP300.563500∞250 see note 2P400.520---1) Min./Max. value calculation method [ms] = ATP parameter value * Resolution2) ATP parameter value = $FF => Max. value = ∞Table 1c - P2max Timing Parameter calculationTiming Parameter Hex valueof ATPparamete rResolutionin [ms]valuein [ms]Maximum value calculation methodin [ms]P2max01 to F02525 to 6000(hex value) - (Resolution) F1F2F3F4F5F6 F7 F8 F9 FA FB FC FD FE see maximumvaluecalculationmethod640012800192002560032000384004480051200576006400070400768008320089600(low nibble of hex value) - 256 - 25Example of $FA:($0A - $0100) - 25 = 64000FF---∞= ∞The P2max timing parameter calculation uses 25 [ms] resolution in the range of $01 to $F0.Beginning with $F1 a different calculation method shall be used by the server and the client in order to reach P2max timing values greater than 6000 [ms].Calculation Formula for P2max values > $F0Calculation_Of_P2max [ms] = (low nibble of ATP parameter P2max) * 256 * 25Note:The P2max timing parameter value shall always be a single byte value in the AccessTimingParameter service. The timing modifications shall be activated by implementation of the AccessTimingParameter service.Users must take care for limits listed above and the following restrictions:P3min > P2max(to avoid collisions in case of func. addressing or data segm.)P3min > P4min(to guarantee that the ECU can receive the first byte)Pimin < Pimax for i=1,...,4When the tester and listening ECUs detect the end of a message by time-out, the following restrictions are also valid:P2min > P4maxP2min > P1maxIt is in the system designers responsibility to ensure proper communication in the case of changing the timing parameters from the default values.He also has to make sure that the chosen communication parameters are possible for all ECUs which participate in the session.The possible values depend on the capabilities of the ECU. In some cases the ECU possibly needs to leave its normal operation mode for switching over to a session with different communication parameters.For complete timing diagrams see appendix B.4.4.1 Timing ExceptionsThe extended P2 timing window is a possibility for (a) server(s) to extend the time to respond on a request message. A timing exception is only allowed with the use of one or multiple negative response message(s) with response code $78 (requestCorrectlyReceived-ResponsePending) by the server(s). This response code shall only be used by a server in case it cannot send a positive or negative response message based on the client's request message within the active P2 timing window.After the transmission of the first negative response message, with response code $78, from the server (ECU) the timing parameter P2* becomes active, instead of the original timing parameter P2, in both the server and the client.The timing parameter P2* shall be generated as described in the following formula: P2*min = P2minP2*max = P3maxThe server(s) shall send multiple negative response messages with the negative response code $78 if required.As soon as the server has completed the task (routine) initiated by the request message it shall send either a positive or negative response message (with a response code other than $78) based on the last request message received. When the client has received the response message, which has been preceded by the negative response message(s) with response code $78, the timing parameter P2 becomes active again in both the server and the client. The client shall not repeat the request message after the reception of a negative response message with response code $78.4.4.2Periodic transmissionThe Keyword Protocol 2000 Periodic Transmission Mode shall be enabled by starting a diagnostic session with the startDiagnosticSession service and the diagnosticMode (DCM_) parameter set to $82 for PeriodicTransmission.PeriodicTransmission shall be supported in connection with physical addressing, normal and modified timing. The description below explains in steps how the PeriodicTransmission mode shall be activated, handled and de-activated.Step #1:To enable the PeriodicTransmission mode in the client (tester) and the server (ECU) the client (tester) shall transmit a startDiagnosticSession request message containing thediagnosticMode parameter for the PeriodicTransmission. After the reception of the firstpositive response message from the server (ECU) the PeriodicTransmission mode isenabled and periodic transmission mode communication structure and timing becomesactive. From now on, the server (ECU) shall periodically transmit the last responsemessage with current (updated, if available) data content, until the client (tester) sends arequest message within the timing window P3*. The timing parameters can be changedwithin the possible limits of the periodic transmission timing parameter set (see Table1d) with the communication service AccessTimingParameters.Step #2:After reception of any request message within the timing window P3*, the server (ECU) shall periodically transmit the corresponding response message which can be either apositive or a negative response message.Step #3:After reception of a stopDiagnosticSession or stopCommunication request message within the timing window P3*, the server (ECU) shall transmit the correspondingpositive response message only once.After reception of a stopDiagnosticSession or stopComunication positive responsemessage the periodicTransmissionMode is disabled and the default diagnostic sessionwith the default timing values, defined by the key bytes becomes active.After reception of a stopDiagnosticSession or stopComunication negative responsemessage the periodicTransmissionMode shall continue. In such case the server (ECU)shall transmit negative response messages unless the client (tester) sends a new requestmessage within the timing window P3*.During the standardDiagnosticModeWithPeriodicTransmission the following rules have to be considered:1.The client (tester) has to ignore the original timing window P3 and shall generate a new timingparameter for the jump-in timing window, which is called from now on P3*.The timing parameter P3* shall be generated as described in the following formula:P3*max = P2min - 2 msP3*min = P3minNote: The original P3max timing parameter is only used for time out detection during negative response message handling with the response code $78 "reqCorrectlyRcvd-RspPending".2.The timing window P3*, which starts at P3*min and ends at P3*max, shall be at least 5ms. It isimportant for the client (tester) to guarantee a minimum size of the jump-in window for the start of a request message.3.The timing window P3* starts and ends before the timing window P2 starts.4.P1max shall not exceed P2min. This is required in order to support resynchronisation betweenthe server (ECU) and client (tester) to meet the error handling requirements.5.Default and optimised timing parameter valuesThe timing table below specifies the timing parameter values with the diagnostic mode standardDiagnosticModeWithPeriodicTransmission.Table 1d -Timing parameter - periodic transmission.All values in msTiming minimum values maximum valuesParameter lower limit default resolution 1default upper limit resolution 1 P100---20200.5P27250.55089600; ∞see Table 1cP2* 37250.5500063500∞250 see note 2P3050.5500063500∞250 see note 2P3* 4050.523125.50.5P4050.520200.51) Min./Max. value calculation method [ms] = ATP parameter value * Resolution2) ATP parameter value = $FF => Max. value = ∞3) The timing parameter P2* becomes active if the server (ECU) responds with Negative response and the response code $78 "reqCorrectlyRcvd-RspPending", see §4.4.14) The timing parameter P3* can be changed, indirectly, by changing the timing parameters P2 and P3 with the service “AccessTimingParameters”.6.When implementing the standardDiagnosticModeWithPeriodicTransmission the followinglimits and restrictions must be considered as listed below:•Pimin < Pimax for i=1, ,4•P1max < P2min•P3min ≤ P2min - 10msIt is the system designers responsibility to ensure proper communication in the case of changing the timing parameters from their default values.It is also the system designers responsibility to ensure proper communication when periodic transmission is used in combination with multiple diagnose, see §5.1.2.2.For complete timing diagrams and message flow examples see appendix B and C.4.4.3Server (ECU) Response Data SegmentationServer (ECU) Response Data Segmentation is used if a client (tester) has sent a request message which causes the server (ECU) to split the response message content (data bytes) into several data segments. The data segments shall be transmitted consecutively in repeated response messages. Each message shall be transmitted within the timing window P2. The data field of each response message shall consist of the Service ID and the corresponding data segment (see figure 5).Data segmentation shall be detected by the client (tester) by comparing source addresses and Service IDs which must be identical for all response messages during segmentation.Server (ECU) response data segmentation shall only be used when the data length exceeds the maximum length that the server (ECU) can transmit in a single message. Data segmentation shall not be supported in periodic transmission mode.This procedure shall also be used to meet the requirements of ISO 14230-4 Keyword Protocol 2000 - Part 4: Requirements For Emission Related Systems.If data segmentation is used the following restriction shall apply:P3min > P2max4.5End Of MessageThe end of a received message shall be detected as:Number of bytes received equals message length (as defined in the format byte or length byte) orTime-out of inter byte time in the received message (P1max exceeded in ECU transmission, P4max exceeded in tester transmission)whichever occurs first.5. Communication servicesSome services are necessary to establish and maintain communication. They are not diagnostic services because they do not appear on the application layer. They are described in the formal way and with the conventions defined in ISO/WD 14229, i.e. a definition of the service purpose, a service table and a verbal description of the service procedure. A description of implementation on the physical layer of Keyword Protocol 2000 is added.The StartCommunication Service and the AccessTimingParameters Service are used for starting a diagnostic communication. In order to perform any diagnostic service, communication must be initialised and the communication parameters need to be appropriate to the desired diagnostic mode. A chart describing this is shown in figure 6.Figure 6 - Use of communication services。
品质管理质量认证ISOTS16949基础知识PPT141页
荐在QS9000认证证书到期前升级为ISO/TS16949:2002,但最迟 不能超过2006年12月14日或各OEM顾客要求的更早的期限。 福特(FORD): 1999年10月7日声明,认可ISO/TS16949为QS9000的等同标准。 2002年8月声明同通用公司! 戴姆勒·克莱斯勒(Daimler-Chrysler): 要求所有供应商在2004年7月1日前通过ISO/TS16949注册认证。
VDA 6.1是以ISO 9004为基 础,并参考了QS 9000标准, 但它亦有一些額外的要求, 例如产品安全以及财务考虑。
VDA 6.1要求主要有二大部 份:管理部份、制造部份。 管理部份有七个要素,制造 部份有十六个要素。
3.法国的汽车工业质量体系:
法国的汽车工 业质量体系是 EAQF,是以94 年版的ISO 9001为基础所 建立的。
QS9000是美国克莱斯勒
汽车公司 供方质量保证手 册、福特汽车公司 Q-101 质量体系标准 和通用汽车 公司 北美创优目标 及货
车制造公司基本要求的协 调产物。
2.德国的汽车工业质量体系:
VDA:德国汽车工业联合会, 包含奔驰、大众、奧迪、保 時捷、以及数以百计的供应 商所組成。在1991年发布了 第一版的VDA
通用的质量管理体系标准?
让我们可以面对: QS 9000 + VDA 6.1 + EAQF + AVSQ
第二章:ISO/TS16949的发展历程
1、ISO/TS16949的发展
VDA
BS5750
小家电————成品检验标准
目录
前言
Q/GAL00GL08C019—2009《赠品检验标准要求》是广东格兰仕集团有限公司质量管理标准之一。
本标准在修订时根据体系运行的实际情况并征求了各相关部门的意见,在符合性及可操作性等方面进一步完善。
本标准由广东格兰仕集团有限公司标准化委员会提出。
本标准由广东格兰仕集团有限公司全质办归口。
本标准起草单位:集团全质办。
本标准所述赠品暂分为七大类(后续可再增补):
●A类:电器类,主要包括电风扇、电饭煲、豆浆机等;
●B类:玻璃陶瓷类,主要包括烹调玻璃碗等;
●C类:塑料件类,主要包括保鲜盒、饭勺、汤勺等;
●D类:刀具类,主要包括厨具六件套、刀具组合等;
●E类:布料类,主要包括床上用品、沙滩椅等;
●F类:金属类,主要包括蒸锅、奶锅、汤锅等。
本标准主要起草人:宋振威、陈永柱、翟谦章、林波、陈天柱、任秋云、曾卫欢、苏永诚等。
本标准是在本公司现行的管理基础上进行编制,自2009年11月25日首次按标准化要求发布。
一次抽样检验方案:。
MMSD914中文资料
General Description:The high breakdown voltage, fast switching speed and high forward conductance of this diode packaged in a SOD-123 Surface Mount package makes it desirable also as a general purpose diode.High ConductanceFast DiodeAbsolute Maximum Ratings*SymT stg Storage TemperatureT J Operating Junction TemperatureP D Total Power Dissipation at TLinear Derating Factor from TR OJA Thermal Resistance Junction-to-AmbientTRADEMARKSACEx™CoolFET™CROSSVOLT™E 2CMOS TM FACT™FACT Quiet Series™FAST ®FASTr™GTO™HiSeC™The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.LIFE SUPPORT POLICYFAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORTDEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROV AL OF FAIRCHILD SEMICONDUCTOR CORPORA TION.As used herein:ISOPLANAR™MICROWIRE™POP™PowerTrench™QS™Quiet Series™SuperSOT™-3SuperSOT™-6SuperSOT™-8TinyLogic™1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant intothe body, or (b) support or sustain life, or (c) whosefailure to perform when properly used in accordancewith instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.2. A critical component is any component of a lifesupport device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status DefinitionAdvance InformationPreliminary No Identification Needed Obsolete This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.This datasheet contains preliminary data, andsupplementary data will be published at a later date.Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor.The datasheet is printed for reference information only.Formative or In DesignFirst ProductionFull ProductionNot In ProductionDISCLAIMERFAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY , FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.UHC™VCX™。
弹性膜片联轴器JBT9147-1999年版
前言1 范围.....................................................................................................................12 引用标准...............................................................................................................13 分类.....................................................................................................................14 技术要求............................................................................................................145 试验方法............................................................................................................156 检验规则............................................................................................................157 标志、包装及贮存................................................................................................16附录A (提示的附录) 联轴器选用说明 (17)-目录1 范围本标准规定了JM Ⅰ型、JM ⅠJ 型、JM Ⅱ型、JM ⅡJ 型膜片联轴器(以下简称联轴器)的型式与参数,技术要求,试验方法,检验规则,标志、包装和贮存等。
TC9148_9149_9150
HD9148通用红外遥控发射器电路HD9149,9150通用红外遥控接收器电路1、概述HD9148是用作通用红外遥控发射器的CMOS大规模集成电路。
该电路与HD9149相配可完成10个功能控制,与HD9150相配可完成18个功能控制,可发射的指令达75个,其中63个是连续指令,可多键组合。
12个是单发指令,只能单键使用。
2、特点●电源电压范围较宽:2.2V-5.5V●CMOS工艺保证了极低的功耗●可多键组合●外围元件少●码位与其他模式兼容●只需外接LC或陶瓷振荡器产生振荡3、用途音响、空调、玩具等各种电气设备的遥控操作4、HD9148电路外形图如下:管脚号 符号 输入/输出功能描述1,16 GND,Vdd 地/电源 提供电源2,3 XT,NXT 振荡器 连接455kHz晶振等产生振荡,(内建反馈电阻)4—9 K1—K6 I 键输入端 键矩阵键输入端。
T1—T3*K1—K6连成18键(内建下拉电阻)10—12 T1-T3 O 时序信号输出端键矩阵的数字时序信号输出13 CODE I 码位输入端 用作传输和接受的码位匹配用14 NTEST I 测试端 开路15 TXOUT O 输出端 传输信号输出,信号12位一个周期,38kHz载波调制5、极限参数(Ta=25℃)参数 符号 极限值 单位电源电压 VDD 6.0 V输入/输出电压 VIN Vss-0.3—VDD+0.3 V功耗 PD 200 mW工作温度 Topr -20-75 ℃存储温度 Tstg -55-125 ℃TXOUT“1”输出电流IOUT -5 mA6、电参数(VDD=3V,Ta=25℃,另有说明外)项目 符号测试条件 最小典型 最大 单位电源电压 VDD 所有功能操作 2.2— 5.0 V工作电流 IDD 键通,无负载— — 1.0 mA静态电流 IDS 键开,不振荡— — 10 uA高电平 VIH — 2.— 3.0 VK-K6C ODE 输入电压低电平VIL — 0 — 0.5 V高电平IIH VIH=3V 20 30 60 uAK1-K6 输入电流低电平 IIL VIL=0V -1.0— 1.0 uA高电平 IIH VIH=3V -1.0— 1.0 uA输入端CODE TESTR 输入电流低电平IIL VIL=0V 20 30 60 uA高电平IOH VOH=2V — — -500 uAT1-T3 输出电流低电平IOL VOL=3V 50 — — uA高电平 IOH VOH=2V — — -0.1 mA输出端TXOUT 输出电流低电平 IOL VOL=2V 1.— — mA振荡器反馈电阻 Rf — — 500 — kΩ 振荡频率 fosc— 40455 600 kHz7、功能描述:●振荡电路内含CMOS反相器及自偏置电阻。
ISOTS16949品质手册
ISO TC21 TC92 TC94归口的现行国际标准目录
ISO/TC21/TC92/TC94归口的现行国际标准目录/news.aspx?id=710422013-5-22 13:06:05 lyyISO/TC21/TC92/TC94归口的现行国际标准目录序号标准代号英文名称中文名称1 ISO 340-2013 Conveyor belts - Laboratory scale flammability characteristics - Requirements and test method 输送带实验室规模的燃烧特性要求和试验方法2 ISO 528-1983 Refractory products -- Determination of pyrometric cone equivalent (refractoriness) 耐火制品。
高温锥当量(耐火度)的测定3 ISO 834-1:1999 Fire-resistance tests -- Elements of building construction -- Part 1: General requirements 耐火性能试验—建筑构件—第1部分:基本要求4 ISO/TR 834-2-2009 Fire-resistance tests - Elements of building construction - Part 2: Guidance on measuring uniformity of furnace exposure on test samples 耐火试验建筑构件第2部分:炉子对试验样品的测量均匀性指南5 ISO 834-3:2012 Fire-resistance tests -- Elements of building construction -- Part 3: Commentary on test method and test data application 耐火性能试验—建筑构件—第3部分:试验方法和试验数据应用解释6 ISO 834-4:2000 Fire-resistance tests -- Elements of building construction -- Part 4: Specific requirements for loadbearing vertical separating elements 耐火性能试验—建筑构件—第4部分:承重垂直分隔构件的特殊要求7 ISO 834-5:2000 Fire-resistance tests-Elements of building construction-Part 5: Specific requirements for loadbearing horizontal separating elements 耐火性能试验—建筑构件—第5部分:承重水平分隔构件的特殊要求8 ISO 834-6:2000 Fire-resistance tests -- Elements of building construction -- Part 6: Specific requirements for beams 耐火性能试验—建筑构件—第6部分:梁的特殊要求9 ISO 834-7:2000 Fire-resistance tests -- Elements of building construction -- Part 7: Specific requirements for columns 耐火性能试验—建筑构件—第7部分:柱的特殊要求10 ISO 834-8:2002 Fire-resistance tests -- Elements of building construction -- Part 8:Specific requirements for non-loadbearing vertical separating elements 耐火性能试验—建筑构件—第8部分:非承重垂直分隔构件的特殊要求11 ISO 834-9:2003 Fire-resistance tests -- Elements of building construction -- Part 9: Specific requirements for non-loadbearing ceiling elements 耐火性能试验—建筑构件—第9部分:非承重吊顶构件的特殊要求12 ISO 834-12-2012 Fire resistance tests - Elements of building construction - Part 12: Specific requirements for separating elements evaluated on less than full scale furnaces 耐火试验建筑构件第12部分:评估小于全尺寸火炉的分隔构件的特殊要求13 ISO 836-2001 Terminology for refractories (available in English only) 耐火材料术语14 ISO 1021-1980 Aircraft -- Engine nacelle fire extinguisher apertures and doors 航空器。
isots16949简介.doc
Introduce of ISO/TS 16949由于汽车供应商通过了QS-9000或VDA6.1质量体系认证后,其证书在全世界范围内并不能得到所有国家的承认和认可(至目前为止,美国三大汽车厂和德国、法国、意大利的OEMs 仅就"内部审核"(QS-9000要素4.17)和"分承包方的开发"(QS-9000要素4.6中的4.6.2.1)达成相互认可),且QS-9000和VDA6.1均不是经国际标准组织(ISO)颁布发行的。
The automobile suppliers certificated by QS-9000 or VDA6.1 can not be accepted and approved by all countries in the world.( uptodate, the three big automobile manufacturer in American and the OEMs in German, France, Italy agree on inner audit (item 4.17 in QS-9000) and the development of sub-contractor (item 4.6.2.1 in QS-9000)). Moreover both QS-9000 and VDA6.1 was not issued by ISO.为减少汽车供应商不必要的资源浪费和利于汽车公司全球采购战略的实施,国际汽车特别工作组(IATF)以及ISO/TC176、质量管理和质量保证委员会及其分委员会的代表在以ISO9001:1994版质量体系的基础上结合QS-9000、VDA6.1、EAQF(法国)94和AVSQ (意大利)95等质量体系的要求制定了ISO/TS 16949技术规范,并于己于1999年1月1日颁布发行适用。
室温快干环氧树脂胶粘剂 914胶粘剂
室温快干环氧树脂胶粘剂914胶粘剂室温快干环氧树脂胶粘剂(914胶粘剂)2004-05-30 09:02:33【快人快语】【我要纠错】[url=javascript:doCommend()]【推荐给朋友】[/url]【字体选择:[url=javascript:doZoom(16)]大[/url][url=javascript:doZoom(14)]中[/url][url=javascript:doZoom(12)]小[/url]】本剂是以600号环氧树脂和E20环氧树脂(601环氧树脂)配制成的混合环氧树脂,以变性胺为固化剂,以三元芳香叔胺为固化剂配制而成,是一种可在室温迅速固化的胶粘剂,不存在911快干胶粘剂对水分过于敏感的缺点。
(一)特点与用途1.可于室温迅速固化,17~20℃、2.5小时内基本固化完全;2.粘接强度较一般室温固化环氧树脂胶粘剂高,铝-铝粘接时,20℃固化25小时,抗剪强度20兆帕(200公斤力/平方厘米)以上,不锈钢可达30兆帕(300公斤力/平方厘米)以上。
而用脂肪胺或低分子聚酰胺固化的环氧树脂胶粘剂,60℃固化后的抗剪强度仅3.0~4.0兆帕(30~40公斤力/平方厘米)。
主要用于金属、陶瓷、玻璃钢、玻璃等粘接,尤宜用于小件物品的快速修理。
(二)原材料1.环氧树脂是含有环氧基团树脂的总称。
主要由环氧氯丙烷和多酚类缩聚而成。
因原料、配比和制法不同,产品品种、牌号极多。
本剂使用的是产品牌号为600号和部统一牌号为E20的两种环氧树脂。
600号环氧树脂:学名二缩水甘油醚,为浅黄色粘稠液体,粘度0.45~0.7帕·秒,粘度低,活性高,在室温下和胺类固化剂反应迅速。
加入E20环氧树脂,可以增加组分粘度,便于操作,但更重要的是加入后可以提高胶粘剂的强度和耐水、耐热性。
生产厂:上海树脂厂、无锡树脂厂、天津树脂厂等。
E20环氧树脂:为双酚A型环氧树脂,是淡黄色至棕黄色高粘稠液体,在600号环氧树脂为100重量份时,以加入80重量份为宜。
(JTT-914-)危险货物道路运输企业安全生产档案管理技术要求
危险货物道路运输企业安全生产档案管理技术要求(JT/T 914-2014)1 范围本标准规定了危险货物运输企业安全生产档案管理要求、档案分类、归档范围、立卷归档、电子档案。
本标准适用于危险货物道路运输企业安全生产档案管理编制。
2 规范性引用文件下列文件对于本文件的应用是必不可少的。
凡是注日期的引用文件,仅注日期的版本适用于本文件。
凡是不注日期的引用文件,其最新版本(包括所有修改单)适用于本文件。
GB 13392道路运输危险货物车辆标志GB 18565营运车辆综合性能要求和检验办法JT/T 198营运车辆技术等级划分和评定要求JT 618汽车运输、装卸危险货物作业规程JT 719营运货车燃料消耗量限值及测量方法JT/T 794道路运输车辆卫星定位系统车载终端技术要求3 术语和定义下列术语和定义适用于本文件。
3.1 危险货物道路运输车辆 dangerous goods road transport vehicle满足特定技术条件和要求,从事危险货物道路运输的载货汽车。
3.2 危险货物道路运输 dangerous goods road transport使用载货汽车通过道路运输危险货物的作业全过程。
3.3 危险货物道路运输从业人员 dangerous goods road transport practitioner经设区的市级人民政府交通运输主管部门考试合格,取得相应从业资格证,从事危险货物道路运输的驾驶人员、押运人员和装卸管理人员。
3.4 专职安全管理人员 full-time safety management personnel符合行业管理要求,经考试合格取得安全管理人员资格证,专门从事危险货物道路运输企业安全生产管理的人员。
4 档案管理编制要求4.1 应依据国家法律、法规、标准对危险货物道路运输管理要求编制安全生产管理档案,内容包括企业安全生产全过程所形成的管理材料。
4.2 归档材料分类管理。
深圳末端产品
风量概念
机型
MDX MHW MSW MDW
MDM
25
25 45
400 x103CMH
价格概念
价格
MHW MSW MDW MDM MDX
产品区别
手动标准 手动舒适 手动豪华 自动舒适 自动豪华 香车加美女
MHW MSW
直接传动 单壁结构 减震装置 双壁结构标准功能段 加负压功能段 加源自压功能段恒温恒湿 自带主机
MDW 无框架
MDM
框架 MDX MDM
操作简便
品质
合肥所测试漏风0.94%,无冷桥
产品基本概念
概念—左右式
判断准则 左右式判断错误盘管不 能改
概念—压力
TP:风机全压 ETP:机外余压 ESP:机外静压
TP=ETP+内部阻力 ETP=ESP+动压 ESP=B+C
混和 段阻 力=K
初效
中效
麦克维尔深圳-末端产品
末端产品
冷冻水
冷媒
组合式
柜式 MDX
有框架MDM 无框架MDM MDW
MSW
MHW
应用概念
有框架MDM 无框架MDM MDW MSW MHW MDX
除了其他解决不了的场合
新风处理
大空间场合:商场、大卖场、体育馆、办公楼 净化场合:只是用来调节温度
小型净化场合:检测室、手术室 屋顶机市场
过滤 盘管 挡水 最大负 最大 均流 消音
过滤
出风
回风
阻力 阻力 板阻 压处
正压 板阻 器阻
阻力
段阻
管阻
=L =M 力=N =X
处=Y 力=P 力=Q
=R
力=S
力=B