二元一次方程组的解法2

合集下载

第二节 二元一次方程组的解法(含答案)...七年级数学 学而思

第二节 二元一次方程组的解法(含答案)...七年级数学 学而思

第二节二元一次方程组的解法1.二元一次方程组的解法基本思路是消元,即通过运用代入法或加减法把二元一次方程组转化为一元一次方程,从而求出方程组的解. (1)代入消元法:通过等量代换,消去方程组中的一个未知数,使二元一次方程组转化为一元一次方程,从而求得一个未知数的值,然后再求出被消去未知数的值,从而确定原方程组的解的方法.代入消元法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数例如y,用含另一个未知数如x的代数式表示出来;②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求出x(或y)的值;④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值;⑤把求得的x、y的值用“{”联立起来,就是方程组的解.(2)加减消元法:加减法是消元法的一种,也是解二元一次方程组的基本方法之一.加减法不仅在解二元一次方程组中适用,也是今后解其它方程(组)经常用到的方法.加减消元法解二元一次方程组的一般步骤:①变换系数:方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数;②加减消元:把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求得未知数的值;④回代:将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值;⑤把所求得的两个未知数的值写在一起,就得到原方程组的解,需要把求得的x,y的值用“{”联立起来.2.特殊方程组的解法对于具有某些特点的二元一次方程组,如果仍按常规方法不仅运算量大,而且容易出错,则可根据题目的特点,利用整体思想来采用特殊方法简化方程组,接着再采用代入或加减消元法解出相应x,y的值即可.(1)系数轮换法:适用方程组类型:如果把方程组中的每一个未知数依次轮换后,虽然每个方程都变了,但是整个方程组仍不变,步骤:解题时,把各方程相加,即可得到x+ y=常数的形式,把各方程相减,即可得到x- y=常数的形式,这两个新的方程组成的方程组就是原方程组化简后的结果,便可以采用加减或代入消元法求得未知数的值.(2)换元法:适用方程组类型:方程组项数较多、系数较为复杂,而且会有相同的部分或者是互为相反数的部分多次出现;步骤:解题时,把方程中相同的部分或者是互为相反数的部分看成是一个整体,用另一个字母来替换,从而简化原先项数多、系数复杂的方程组,再采用常规的加减或者代入消元法来求得未知数的值.(3)倒数法:适合方程组类型:方程中出现分母是和的形式,分子是积的形式⋅+yx xy步骤:解题时,采用倒数法变换成分子是和、分母是积的形式,xyyx +然后进行拆分,利用加减或者代入或者换元法来解出x ,y 的值.1.代入消元方法的选择①运用代入法时,将一个方程变形后,必须代入另一个 方程,否则就会 得出“0=0”的形式,求不出未知数的值;②当方程组中有一个方程的一个未知数的系数是1或一1时,用代入法较简便. 2.加减消元方法的选择①一般选择系数绝对值最小的未知数消元;②当某一未知数的系数互为相反数时,用加法消元;当某一未知数的系数相 等时,用减法消元;③某一未知数系数成倍数关系时,直接使其系数互为相反数或相等,再用 加减消元求解;④当相同的未知数的系数都不相同时,找出某一个未知数的系数的最小公倍数,同时对两个方程进行变形,转化为系数的绝对值相同的方程,再用加减消元求解,例1.如果关于x ,y 的方程组⎩⎨⎧-=-=+223a y x y x 的解是负数,则a 的取值范围是( )54.<<-a A 5.>a B 4.-<a C D .无解检测1.(浙江绍兴期末)已知关于x ,y 的方程组⎩⎨⎧-=-=-,52253a y x ay x 若x ,y 的值互为相反数,则a 的值为( )5.-A 5.B 20.-C 20.D例2.(四川南江县期末)已知,0)112(|32|2=+++--y x y x 则( )⎩⎨⎧==12.y x A ⎩⎨⎧-==30.y x B ⎩⎨⎧-=-=51.y x C ⎩⎨⎧-=-=72.y x D检测2.(山东滨州期末)已知,0|72|)12(2=-++--y x y x 则=-y x 3( )3.A 1.B 6.-C 8.D例3.(湖北黄冈期末)若y x h y xb a ba -+--332243是同类项,则b a -的值是( )0.A 1.B 2.C 3.D检测3.若y x nm +243与n m y x -5是同类项,则m .n 的值分别是( ) 3,2.A 1,2.B 0,2.C 2,1.D例4.(湖南衡阳县一模)解方程组:⎩⎨⎧=+=+,604320122016604120162012y x y x 则yx yx -+值是3.A 3.-B 6.C 6.-D检测4.(1)(江苏海门市期末)如果实数x ,y 满足方程组⎩⎨⎧=+=+,4222y x y x 那么=+y x(2)(安徽泗县校级模拟)关于x ,y 的二元一次方程组⎩⎨⎧-=+-=+22132y x k y x 的解满足y x +,1=则k=例5.(河北古冶区一模)已知a ,b 满足方程组⎩⎨⎧=-=+,283b a b a 则=+b a2.A3.B4.C5.D检测5.(1)(河北模拟)已知e 、f 满足方程组⎩⎨⎧=-=--,6223e f f e 则f e +2的值为( )2.A 4.B 6.C 8.D(2)(广东广州中考)已知a .b 满足方程组⎩⎨⎧=-=+,43125b a b a 则b a +的值为第二节 二元一次方程组的解法(建议用时:35分钟)实战演练1.用加减法解方程组⎩⎨⎧-=-=+15y x y x 中,消x 用 法,消y 用 法( )A.加,加 B .加,减 C .减,加 D .减,减2.若用代入法解方程组⎩⎨⎧+==,12332y x yx 以下各式代入正确的是( )1)32(23.+=x x A 1)32(23.+=y x B1)23(23.+=x x C 1623.+⋅=x x x D3.若,0|52||12|=--+--y x y x 则x+y 的值为( )4.A5.B6.C7.D4.已知:|32|++y x 与2)2(y x +互为相反数,则=-y x ( )7.A 5.B 3.C 1.D5.(山东临清市期末)已知方程组⎩⎨⎧=+=-my x y x 24中x ,y 相加为0,则m 的值为( )2.A 2.-B 0.C 4.D6.(河北石家庄校级模拟)若方程组⎩⎨⎧=++=+my x m y x 32253的解x 与y 互为相反数,则m 的值为( )2.-A 0.B 2.C 4.D7.若方程组⎩⎨⎧=+=+16156653y x y x &的解也是方程103=+ky x 的解,则( )6.=k A 10.=k B 9.=k C 101.=k D 8.若3243y x b a +与ba y x -634的和是单项式,则=+b a ( ) 3.-A 0.B 3.C 6.D9.按如图8 -2—1所示的运算程序,能使输出结果为3的x ,y 的值是( )128--2,5.-==y x A ⋅-==3,3.y x B 2,.4.=-=y x C 9,3.-=-=y x D10.(山东临沂中考)已知x ,y 满足方程组⎩⎨⎧=+=+,4252y x y x 则y x -的值为( )⎩⎨⎧==12.11y x 是方程组⎩⎨⎧=-=+04by ax by ax 的解,那么=+-))((b a b a 12.已知方程组⎩⎨⎧-=+=-123225m y x my x 的解x ,y 互为相反数,则m=13.(江苏常州期末)若关于x ,y ,的二元一次方程组⎩⎨⎧=+-=+22132y x a y x 的解满足x+ y=l ,则a 的值为14.三个同学对问题“若方程组⎪⎩⎪⎨⎧=+=+222111c y b x a c y b x a 的解是⎩⎨⎧==,43y x 求方程组⎪⎩⎪⎨⎧=+=+222111523523c y b x a c y b x a 的解.”提出各自的想法.甲说:“这个题目好像条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”,参考他们的讨论,你认为这个题目的解应该是 .15.(“信利杯”竞赛题)已知:a ,b ,c 三个数满足,31=+b a ab ,41=+c b bc ,51=+a c ca 则ca bc ab abc++的值为 16.(重庆校级自主招生)解方程组:⎩⎨⎧=+=+200320042005200620052004y x y x17.解方程组:⎪⎩⎪⎨⎧-=-=-+-421621y x y x18.已知方程组⎩⎨⎧+=---=+ay x ay x 317的解中,x 为非正数,y 为负数.(1)求a 的取值范围; (2)化简.|2||3|++-a a19.(江苏张家港市期末)已知关于x ,y 的方程组⎩⎨⎧+=+=+12242m y x my x (实数m 是常数).(1)若x+y=1,求实数m 的值;(2)若,51≤-≤-y x 求m 的取值范围; (3)在(2)的条件下,化简:.|32||2|-++m m20.(黑龙江讷河市校级期末)已知二元一次方程组⎩⎨⎧+=-+=+1593a y x a y x 的解x ,y 均是正数.(1)求a 的取值范围; (2)化简.|4||54|--+a a拓展创新21.解方程组:⎩⎨⎧==+44y -3x 23y x 2拓展1.解方程组:⎪⎪⎩⎪⎪⎨⎧=-=+443232y x y x 拓展2.解方程组:⎪⎪⎩⎪⎪⎨⎧=-=+41432132x y xy x y xy极限挑战22.(全国初中数学竞赛)若,0634=--z y x ),0(072=/=-+xyz z y x 则式子222222103225z y x z y x ---+的值等于( )21.-A219.-B 15.-C 13.-D课堂答案培优答案。

二元一次方程组求解

二元一次方程组求解

二元一次方程组求解解法一:代入法对于一个二元一次方程组,可以使用代入法来求解。

假设我们有以下的方程组:方程一:ax + by = c方程二:dx + ey = f首先,我们可以将方程一中的 x 表达出来,然后代入方程二中计算y 值。

具体步骤如下:1. 将方程一中的 x 表达出来:ax = c - by ①从而可以得到 x 的表达式:x = (c - by)/a ②2. 将 x 的表达式 (②) 代入方程二中:d((c - by)/a) + ey = f化简得到:dc/a - dby/a + ey = f移项得到:dby/a + ey = f - dc/a整理得到:(db + ae)y = af - dc从而得到 y 的表达式:y = (af - dc)/(db + ae) ③3. 将 y 的表达式 (③) 代入方程一中即可得到 x 的值:ax + b((af - dc)/(db + ae)) = c化简得到:ax + baf/(db + ae) - bdc/(db + ae) = c移项得到:ax - baf/(db + ae) = c + bdc/(db + ae)整理得到:ax = c + bdc/(db + ae) + baf/(db + ae)从而得到 x 的表达式:x = (c(db + ae) + bdc + baf)/(ad - be) ④解法二:消元法对于二元一次方程组,还可以使用消元法来求解。

假设我们有以下的方程组:方程一:ax + by = c方程二:dx + ey = f具体步骤如下:1. 通过乘法使得方程一和方程二的系数相等:方程一乘以 e,方程二乘以 b,得到:aex + bey = cedbx + bey = fb从而我们可以得到一个新的方程组:aex + bey = cedbx + bey = fb2. 将方程二减去方程一,消去 y 的项:(dbx + bey) - (aex + bey) = fb - ce化简得到:dbx - aex = fb - ce移项得到:(db - ae)x = fb - ce从而得到 x 的表达式:x = (fb - ce)/(db - ae) ⑤3. 将 x 的表达式 (⑤) 代入方程一,计算得到 y 的值:ax + by = c化简得到:a((fb - ce)/(db - ae)) + by = c移项得到:(afb - ace)/(db - ae) + by = c整理得到:by = c - (afb - ace)/(db - ae)从而得到 y 的表达式:y = (c(db - ae) - afb + ace)/(db - ae) ⑥至此,我们通过代入法和消元法分别得到了二元一次方程组的解。

§消元二元一次方程组的解法教案44

§消元二元一次方程组的解法教案44

消元——二元一次方程组的解法(2)教案 下关四中 苏志兵一、教案目标1、会用加减消元法解二元一次方程组以及会列二元一次方程组解决简单的实际问题;2、让学生经历二元一次方程组解法的探究过程,进一步体会消元的思想,化归的思想;3、培养学生学会自主探索,养成与他人合作、交流的习惯。

二、教案重点1、探索加减消元法解二元一次方程组,体会消元思想;2、灵活运用加减消元法。

三、教案难点1、加减消元法的形成过程;2、如何启发学生探索、引导学生自主尝试,调动交流的积极性。

四、教案过程(一) 情境创设——复习旧知,引出新知※让两位同学扮演牛哥和小马,以小品形式演绎以上情境(用图片吸引学生眼球,以小品增加情趣,活跃气氛,激发兴趣)。

T :谁来扮演任劳任怨的牛哥?还有千里小马呢?看图回答:教师:听完牛哥和小马的对话,你获取了哪些信息?根据这张图你能算出老牛与小马各驮多少袋吗?请列方程组求解。

(小组讨论,合作完成,请一学生板演) 学生1:解:设老牛驮x 袋,小马驮y 袋,列方程组得X-y=2X+1=2(y-1)……——如何解这个方程组?教师:我们用了什么方法解以上二元一次方程组?学生2:——代入消元法。

累死我 我从你背上拿来一袋,我的包裹就是你的2真的? 牛哥,你还累?这么大的个,才比我多驮教师:通过代入将二元一次方程组转化为一元一次方程,体现了怎样的数学思想? 学生3:——体现消元的数学思想。

教师:你能叙述用代入消元法解二元一次方程组的一般步骤吗?(二)探究新知:牛哥又喊累了——看图片回答:教师:根据这张图你能算出老牛与小马一趟各驮多少袋吗?请列方程组。

学生4:根据题意可设老牛一趟驮x 袋,小马一趟驮y 袋,则 6x+7y=77(1)6x-7y=9 (2)教师:分小组讨论,你会解这个二元一次方程组吗?学生5:用代入消元法:……学生6:用代入消元法,将6x 看作一个整体,由(2)得:6x=9+7y 将此式代入(1)求解。

二元一次方程组的解法

二元一次方程组的解法

二元一次方程组的解法二元一次方程组是指包含两个未知数和两个方程的方程组。

解二元一次方程组的常用方法有消元法、代入法和矩阵法等。

下面将分别介绍这三种方法的步骤和应用。

一、消元法消元法是解二元一次方程组常用的方法,它的基本思想是通过消去一个未知数,从而将方程组转化为只含一个未知数的一次方程,进而求解。

假设给定的二元方程组为:a₁x + b₁y = c₁(1)a₂x + b₂y = c₂(2)步骤如下:1. 通过等式的加减消去一个未知数。

选择其中一个方程,将其系数乘以另一个方程中与其同未知数的系数的相反数,然后将两个方程相加或相减,消去该未知数。

2. 获得新的一次方程,其中只含有一个未知数。

3. 解新的一次方程,求得该未知数的值。

4. 将求得的未知数值代入原方程中,求得另一个未知数的值。

5. 检查解的可行性,在原方程组中验证求得的解是否满足原方程组。

二、代入法代入法是解二元一次方程组的另一种常用方法,它的基本思想是将一个方程的一个未知数表示为另一个未知数的函数,然后将其代入另一个方程,从而将方程组转化为只含一个未知数的方程,进而求解。

假设给定的二元方程组为:a₁x + b₁y = c₁(1)a₂x + b₂y = c₂(2)步骤如下:1. 选择一个方程,将其一个未知数表示为另一个未知数的函数,例如将(1)中的 x 表示为 y 的函数:x = f(y)。

2. 将函数表达式代入另一个方程(2),得到只含有一个未知数 y的一次方程。

3. 解这个一次方程,求得 y 的值。

4. 将求得的 y 值代入第一个方程(1),求得 x 的值。

5. 检查解的可行性,在原方程组中验证求得的解是否满足原方程组。

三、矩阵法矩阵法是用矩阵运算的方法解二元一次方程组,它的基本思想是将方程组转化为矩阵方程,通过对矩阵的运算得到解。

假设给定的二元方程组为:a₁x + b₁y = c₁(1)a₂x + b₂y = c₂(2)将方程组表示为矩阵形式:⎛ a₁ b₁⎞⎛ x ⎞⎛ c₁⎞⎜⎟⎜⎟⎜⎟⎝ a₂ b₂⎠ * ⎝ y ⎠ = ⎝ c₂⎠利用矩阵的逆矩阵,可以得到未知数向量的值:⎛ x ⎞⎛ a₁ b₁⎞⁻¹⎛ c₁⎞⎜⎟⎜⎟⎜⎟⎝ y ⎠ = ⎝ a₂ b₂⎠⎝ c₂⎠通过计算矩阵的逆矩阵,可以求得未知数的值。

二元一次方程怎么解 详细过程

二元一次方程怎么解 详细过程

二元一次方程怎么解详细过程
二元一次方程的解法:代入消元法
例题:
{x-y=3 ①
{3x-8y=4②
由①得x=y+3③
③代入②得
3(y+3)-8y=4
y=1
把y=1带入③
得x=4
则:这个二元一次方程组的解为
x=4
y=1
代入消元法的知识点:
1、选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;
2、将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的);
3、解这个一元一次方程,求出未知数的值;
4、将求得的未知数的值代入变形后的方程中,求出另一个未知数的值;
5、用“{”联立两个未知数的值,就是方程组的解;
6、最后检验(代入原方程组中进行检验,方程是否满足左边=右边)。

二元一次方程的解法步骤

二元一次方程的解法步骤

二元一次方程的解法步骤二元一次方程是指含有两个未知数和一次方程的方程,通常的形式为ax+by=c。

解决这种方程需要遵循以下步骤:1. 将方程转化为标准形式将方程转化为标准形式,即将未知数的系数写在一起,常数项写在另一边。

例如,将方程2x+3y=7转化为2x+3y-7=0。

2. 选择适当的解法二元一次方程的解法有三种:代入法、消元法和克莱姆法则。

选择适当的解法可以使解决方程更加简单。

3. 代入法代入法是将一个未知数的值代入到另一个未知数的方程中,从而得到一个只含有一个未知数的方程。

例如,对于方程2x+3y=7和3x-2y=8,可以将第一个方程中的2x代入到第二个方程中,得到3(2x)-2y=8,即6x-2y=8。

然后将该方程转化为标准形式,即6x-2y-8=0。

接着,将该方程除以2,得到3x-y-4=0。

最后,将y=(3x-4)代入到第一个方程中,得到2x+3(3x-4)=7,即11x=19,解得x=1.727。

将x的值代入到y=(3x-4)中,得到y=-0.182。

4. 消元法消元法是通过将两个方程相加或相减,消去一个未知数,从而得到一个只含有一个未知数的方程。

例如,对于方程2x+3y=7和3x-2y=8,可以将第一个方程中的2x乘以3,将第二个方程中的3x乘以2,得到6x+9y=21和6x-4y=16。

然后将两个方程相减,得到13y=5,解得y=0.385。

将y的值代入到任意一个方程中,得到x=1.727。

5. 克莱姆法则克莱姆法则是通过行列式的形式求解方程组。

对于方程2x+3y=7和3x-2y=8,可以将系数矩阵和常数矩阵写成如下形式:|2 3||3 -2||7||8|然后求出系数矩阵的行列式和每个未知数对应的常数矩阵的行列式,即|2 3||3 -2||7||8||3 3||8 -2||7||8|将每个未知数对应的常数矩阵的行列式除以系数矩阵的行列式,即可得到每个未知数的值。

对于该方程组,解得x=1.727,y=-0.182。

二元一次方程的解法

二元一次方程的解法

二元一次方程的解法二元一次方程的解:使二元一次方程左、右两边的值相等的一对未知数的值,叫做二元一次方程的一个解。

1.消元解法“消元”是解二元一次方程组的基本思路。

所谓“消元”就是减少未知数的个数,使多元方程最终转化为一元多次方程再解出未知数。

这种将方程组中的未知数个数由多化少,逐一解决的解法,叫做消元解法。

代入消元法(1)概念:将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解.。

这种解方程组的方法叫做代入消元法,简称代入法。

(2)代入法解二元一次方程组的步骤①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的);③解这个一元一次方程,求出未知数的值;④将求得的未知数的值代入①中变形后的方程中,求出另一个未知数的值;⑤用“{”联立两个未知数的值,就是方程组的解;⑥最后检验(代入原方程组中进行检验,方程是否满足左边=右边)。

2.加减消元法(1)概念:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法.(2)加减法解二元一次方程组的步骤①利用等式的基本性质,将原方程组中某个未知数的系数化成相等或相反数的形式;②再利用等式的基本性质将变形后的两个方程相加或相减,消去一个未知数,得到一个一元一次方程(一定要将方程的两边都乘以同一个数,切忌只乘以一边,然后若未知数系数相等则用减法,若未知数系数互为相反数,则用加法);③解这个一元一次方程,求出未知数的值;④将求得的未知数的值代入原方程组中的任何一个方程中,求出另一个未知数的值;⑤用“{”联立两个未知数的值,就是方程组的解;⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边)。

二元一次方程组公式解法

二元一次方程组公式解法

二元一次方程组公式解法一、二元一次方程组的定义。

含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。

把两个含有相同未知数的二元一次方程(或者一个二元一次方程,一个一元一次方程)联立起来,组成的方程组,叫做二元一次方程组。

一般形式为:a_1x + b_1y = c_1 a_2x + b_2y = c_2其中a_1、a_2、b_1、b_2、c_1、c_2为已知数,且a_1与b_1不同时为0,a_2与b_2不同时为0。

二、代入消元法。

1. 基本思路。

- 从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数(例如y),用含另一个未知数(例如x)的代数式表示出来,即将方程写成y = ax + b的形式。

- 然后将y = ax + b代入另一个方程中,消去y,得到一个关于x的一元一次方程。

- 解这个一元一次方程,求出x的值。

- 把求得的x值代入y = ax + b中,求出y的值,从而得到方程组的解。

2. 示例。

- 对于方程组2x + y=5 x - y = 1- 由方程x - y = 1可得y=x - 1。

- 将y=x - 1代入2x + y = 5,得到2x+(x - 1)=5。

- 展开括号得2x+x - 1 = 5,即3x=6,解得x = 2。

- 把x = 2代入y=x - 1,得y=2 - 1 = 1。

- 所以方程组的解为x = 2 y = 1三、加减消元法。

1. 基本思路。

- 当方程组中两个方程的同一未知数的系数相等或互为相反数时,把这两个方程的两边分别相减或相加,消去这个未知数,得到一个一元一次方程。

- 当同一未知数的系数既不相等,也不互为相反数时,则可给方程两边乘以适当的数,使一个未知数的系数相等或互为相反数,然后再进行相减或相加消元。

2. 示例。

- 对于方程组3x+2y = 10 2x - 2y=2- 因为y的系数分别为2和 - 2,互为相反数,所以将两个方程相加,得到(3x + 2y)+(2x - 2y)=10 + 2。

二元一次方程组的解法全面版

二元一次方程组的解法全面版
3x 5y 21 ① 2x 5y -11 ②
把②变形得:x
5y 11 2
代入①,不就消去 x了!
把②变形得 5y2x11
可以直接代入①呀!


小丽
5 y和 5y
互为相反数…… 小彬
按照小丽的思路,你能消去一个未知数吗?
思路
3x 5y 21 ① 2x 5y -11 ②
§4.3 二元一次方程组的解 法(二)
复习:
1、解二元一次方程组的基本思路是什么?
基本思路: 消元: 二元
一元
2、用代入法解方程的步骤是什么?
主要步骤:
1. 变
2. 代3. 解 4.写解
用一个未知数的代数式 表示另一个未知数
消去一个元 分别求出两个未知数的值
写出方程组的解
问 题 怎样解下面的二元一次方程组呢?
试一试
用加减消元法解下列方程组.(你
可以选择你喜欢的一题解答)
7x-2y=3 9x+2y=-19
6x-5y=3 6x+y=-15
例4. 解方程组:
分析:
2x 3y 12 ① 当方程组中两方程未知数系数不
3x 4y 17 ②
具备相同或互为相反数的特点时 要建立一个未知数系数的绝对值
5x-6y=9 7x-4y=-5
小结 :
1.加减消元法解方程组基本思路是什么?
主要步骤有哪些?
基本思路: 加减消元: 二元
一元
主要步骤: 变形 加减
同一个未知数的系
数相同或互为相反数 消去一个元
求解
分别求出两个未知数的值
写解
写出方程组的解
2. 二元一次方程组解法有: 代入法、加减法

二元一次方程组的概念与解法

二元一次方程组的概念与解法

二元一次方程组的概念与解法二元一次方程组是初中数学中的重要内容,它由两个未知数和两个方程组成。

本文将介绍二元一次方程组的概念以及解法,帮助读者更深入地理解和掌握这一知识点。

一、概念二元一次方程组由两个未知数和两个一次方程组成。

通常的一种表示形式为:```{ax + by = c (式1){dx + ey = f (式2)```其中,a、b、c、d、e、f都是已知的实数系数,x和y是未知数。

二、解法解二元一次方程组有多种方法,下面将分别介绍三种常用的解法。

1. 代入法代入法是一种较为直观且易于理解的解法。

我们可以将其中一个方程中的一个未知数用另一个方程中的未知数表示,然后代入另一个方程中,从而得到一个只含有一个未知数的方程,进而求解。

以下是具体步骤:Step 1:选择一个方程,将其中一个未知数,如x,用另一个方程中的未知数y表示。

Step 2:将代入得到的式子代入另一个方程中,得到一个只含有一个未知数的方程。

Step 3:求解该方程,得到一个未知数的值。

Step 4:将求得的未知数的值代入任意一个原方程,求解另一个未知数。

Step 5:得到方程组的解。

2. 消元法消元法是一种常用的解法,它通过逐步消去一个未知数,从而实现解方程组的目的。

以下是具体步骤:Step 1:通过变换,使得两个方程的系数相等。

Step 2:将两个方程相减(或相加),得到一个只含有一个未知数的方程。

Step 3:求解该方程,得到一个未知数的值。

Step 4:将求得的未知数的值代入任意一个原方程,求解另一个未知数。

Step 5:得到方程组的解。

3. 矩阵法矩阵法是一种更为高级的解法,它将二元一次方程组表示为一个矩阵方程,并通过矩阵的性质进行求解。

以下是具体步骤:Step 1:将方程组的系数和常数构成一个矩阵。

Step 2:求解矩阵的逆矩阵。

Step 3:将逆矩阵与常数向量相乘,得到未知数向量。

Step 4:得到方程组的解。

通过以上三种方法,我们可以解决二元一次方程组的问题。

二元一次方程组及其解法

二元一次方程组及其解法

二元一次方程组及其解法
二元一次方程组是由两个含有两个未知数的等式组成的方程组,通常的一般式表示为:
ax + by = c
dx + ey = f
其中,a、b、c、d、e、f 都是已知数,x、y 都是未知数。

解法有以下几种:
1. 消元法:通过变换方程式将一个未知数消去,再代入另一个方程求解。

2. 代入法:选择其中一个方程,将其中一个未知数表示成另一个未知数的函数,代入另一个方程中求解。

3. 公式法:利用二元一次方程组的公式解法求解。

4. 矩阵法:用矩阵运算的方法求解方程组。

以上四种方法都可以求得二元一次方程组的解,一般解的形式为一个有序二元组 (x, y)。

代数方程解法二元一次方程组的求解方法

代数方程解法二元一次方程组的求解方法

代数方程解法二元一次方程组的求解方法在数学中,方程是一个带有未知数的等式,需要通过计算得出未知数的值。

当方程中含有两个未知数时,这就是一个二元一次方程组。

求解这类方程组,可以采用多种方法,包括代数方法和几何方法。

在代数方法中,我们需要了解两个基本概念:消元和代入。

下面将详细介绍这两种方法以及解方程组的步骤。

一、消元法消元法是一种通过不断消去方程组中的未知数,从而得到一个只含有一个未知数的方程的方法。

下面以一个二元一次方程组为例,来说明消元法的基本步骤。

假设我们有以下的二元一次方程组:```ax + by = cdx + ey = f```(1)让其中一个未知数的系数相等为了消元,我们需要让其中一个未知数的系数相等。

例如,在上面的方程中,我们可以通过乘以一个常数来使得 x 的系数相等:```a(dx + ey) = cdadx + aey = cdaxd + aey = cd```现在我们得到了一个只包含 x 和 y 的方程。

(2)让未知数的系数相消接下来我们要把其中一个未知数的系数消去。

例如,在上面的方程中,我们可以通过减去两个方程来消去 y 的系数:```axd + aey = cd-bxd - bey = -bf------------------axd - bxd + aey - bey = cd - bf```也就是:```x(ad - b) + y(ae - b) = cd - bf```(3)求解未知数现在我们得到了一个只包含 x 和 y 的方程,我们就可以用一些简单的代数操作来解这个方程,从而求出未知数的值。

二、代入法代入法是一种将一个方程的一个未知数表示成另外一个未知数的函数,利用已知的未知数的值求出另一个未知数的值的方法。

下面以一个二元一次方程组为例,来说明代入法的基本步骤。

假设我们有以下的二元一次方程组:```x + y = 53x + 2y = 11```(1)将一个方程表示成另一个未知数的函数我们可以通过将第一个方程表示成 y 的函数,得到:```y = 5 - x```(2)将函数代入第二个方程我们将上述函数代入第二个方程中:```3x + 2(5-x) = 113x + 10 - 2x = 11x = 1```(3)求解另一个未知数现在我们已经知道了 x 的值,我们可以将其代入第一个方程来求解y 的值:```x + y = 51 + y = 5y = 4```因此,二元一次方程组的解为 x=1,y=4。

中考数学冲刺复习二元一次方程组02二元一次方程组的解法

中考数学冲刺复习二元一次方程组02二元一次方程组的解法

二元一次方程组的解法一、相关概念1.二元一次方程:含有个未知数,且未知数的指数均为的方程叫做2.二元一次方程组:像⎧⎨⎩x+y=1383x+5y=540这样,把两个二元一次方程合在一起,就组成了一个。

3.使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的。

4.二元一次方程组的两个方程的,叫做二元一次方程组的解。

二、二元一次方程组解法我们必须熟练使用二元一次方程组这个工具,才能解决更多的问题。

那么我们究竟怎么解决一个二元一次方程组呢?它的解法是怎样的?归根究底,我们要把二元一次方程组回归到以前会处理的一元一次方程问题。

二元一次方程组→一元一次方程.那么现在的问题就是二元怎样变为一元问题?这就是要大家去掌握“消元”的办法。

1.像回顾的问题当中,由二元一次方程组中一个方程,将一个未知数用2.含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进3.而求得这个二元一次方程组的解,这种方法叫做代入消元法。

一般步骤:a、求表达式,代入消元,回代求解b、把方程组的两个方程(或先作适当变形)相加或相减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程.这种解方程组的方法叫做加减消元法,简称加减法.三、例题例1.方程m+13n2x+5y=1是二元一次方程,则m=______,n=______。

例2.写出二元一次方程组x+2y=5的所有正整数解。

例3.与方程组⎧⎨⎩x+y-2=0x+2y=0有完全相同的解的是()A.x+y-2=0B.x+2y=0C.(x+y-2)(x+2y)=0D.2x+y-2+(x+2y)=0例4.已知:2x+3y=7,用关于y的代数式表示x,用关于x的代数式表示y。

例5.解方程组⎧⎨⎩x+2y=9(1) 3x-2y=-1(2)例6. 解方程组:⎧⎨⎩2x+5y=7(1) 3x+2y=5(2)例7.解方程:(1)⎧⎪⎨⎪⎩2x-3y=2(1)2x-3y+5+2y=9(2) 7(2)⎧⎨⎩x-4y=5(1) x:y=4:3(2)例8. (1)已知关于x、y的二元一次方程组:(1)⎧⎨⎩x+my=4nx+3y=2的解为⎧⎨⎩x=1y=-3,求m+n。

二元一次方程组解法详解

二元一次方程组解法详解

二元一次方程组解法详解一、二元一次方程组解法总结1、二元一次方程组解法的基本思想二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为一元一次方程,就可以先解出一个未知数,然后再设法求另一个未知数,这种将未知数的个数由多化少,逐一简化的思想方法,叫做消元思想.即二元一次方程组形如:ax=b(a,b为已知数)的方程.2、代入消元法由方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程的解,这种方法叫做代入消元法,简称代入法.3、用代入消元法解二元一次方程组的步骤(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的代数式表示出来.(2)把(1)中所得的方程代入另一个方程,消去一个未知数.(3)解所得到的一元一次方程,求得一个未知数的值.(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.4、加减消元法两个二元一次方程中同一个未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.5、加减消元法解二元一次方程组的一般步骤(1)把一个方程或者两个方程的两边乘以适当的数,使方程组的两个方程中一个未知数的系数互为相反数或相等;(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)把求得的未知数的值代入到原方程组中的系数比较简单的一个方程中,求出另一个未知数的值;(5)把求出的未知数的值写成的形式.6、二元一次方程组解的情况若二元一次方程组(a1,a2,b1,b2,c1,c2均为不等于0的已知数),则(1)当时,这个方程组只有唯一解;(2)当时,这个方程组无解;(3)当时,这个方程组有无穷多个解.二、重难点知识归纳二元一次方程组的解的理解,二元一次方程组的解法,运用有关概念解决相关数学问题.三、典型例题讲解例1、(1)下列方程中是二元一次方程的有()①②③④mn+m=7 ⑤x+y=6A.1个B.2个C.3个D.4个(2)在方程(k2-4)x2+(2-k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k的值为()A.2 B.-2 C.±2 D.以上都不对分析:一个方程是否是二元一次方程,必须看它是否满足或使它满足三个条件:①含有两个未知数;②未知数项的次数为1;③整式方程.解答:(1)∵方程①③不是整式方程,∴它们不是二元一次方程.∵mn的次数为2,∴方程④不是二元一次方程.∵方程②⑤满足二元一次方程的三个条件,∴方程②⑤是二元一次方程.故此题应选择B.(2)∵方程(k2-4)x2+(2-k)x+(k+1)y+3k=0是二元一次方程,∴它应满足条件:k2-4=0且2-k≠0且k+1≠0,解得k=±2且k≠2且k≠-1.∴k=-2.例2、在方程3x-ay=0中,如果是它的一个解,那么a的值为_____..由于方程的解必使方程左右两边的值相等,晨旭教育培训中心所以只需将代入方程中,解关于a的一次方程即可.解答:∵是方程3x-ay=0的一个解,∴3×3-a·2=0,例3、甲、乙两人同时解方程组乙因抄错c,解得求a、b、c的值.将正确的解代入方程组中可直接求出c的值,但不能求a、b的值.错误解有什么作用呢?方程组的解应满足每一个方程,因此正确解满足ax+by=2,错误的解同样能满足方程ax+by=2,那么就可以建立a、b的方程组,于是a、b、c的值均可求出.解答:都是方程①的解.晨旭教育培训中心又∵是方程②的解,∴c+3=-2,∴c=-5.故a、b、c的值分别为例4、解下列方程组.(1)先将①化简为3y=4x+5,再代入②即可消去y,从而求出x 的值.(2)先将方程组进行化简,整理为标准的二元一次方程组的形式,再观察选择消去哪个未知数.解:(1)将①化简得:3y=4x+5③把③代入②得:2x-(4x+5)=1解得x=-3将x=-3代入③得:3y=4×(-3)+5∴∴原方程组的解为.(2)原方程组整理为由③×3-④×4,得7b=14,∴b=2.将b=2代入③,得a=2.∴原方程组的解为.例5、已知方程组与方程组有相同的解,求a、b的值.题设的已知条件是两个方程组有相同的解。

7.2.2二元一次方程组的解法(2)

7.2.2二元一次方程组的解法(2)

解:由(1)得2x﹣3y=2 (3), 把(3)代入(2),得 y=4 把y=4代入(3)得: x=7
例4.
2x 7 x
6y 2 18 y 1
① ②
解: ①×3得 6x+18y=-6 ③
② - ③得: x=5 把x=5代入①得:
2×5+6y=-2
y=-2

x
y
5 2
特点: 方程组中没有未知数的系数的 绝对值相等
办法:选一个未知数,用方程变形 的规则⑵,变其系数为绝对 值相等,从而为加减消元法 解方程组创造条件.
87y
3( 2 ) -8y= 10
把 y 4 代入(3)得:
5
x
8
7
4 5
8
28 5
12 5
6
2
2 25
24+21y-16y=20
5y=-4
y4 5
x6

5
y4
5
选一个方程变形为y=?x或x=?y,代入另一个方程,实现消元,进而求得二 元一次方程组的解的方法叫代入消元法, 简称代入法
用加减法解方程组
(5)写解 写出方程组的解
解二元一次方程组的方法选择
x 2y 0 3x 4y 6
5x 3y 2 2x 3y 10
代入法还是加减法
选择的标准: 若有未知数的系数为±1, 用代入法. 否则用加减法.
⑴ 中x的系数为1
例1. 解方程组 x-y=3 3x-8y=14
解:将方程⑴变形,得
选择用代入法.
ቤተ መጻሕፍቲ ባይዱ
6
2
2 25
24+21y-16y=20
5y=-4
y4 5

二元一次解方程组的方法

二元一次解方程组的方法

二元一次解方程组的方法
二元一次方程是指含有两个未知数及系数的方程,形如a某 + by = c,d某 + ey = f。

解二元一次方程组就是要找到满足这两个方程的未知数某和y的值。

解二元一次方程组的方法有多种,下面将介绍四种常见的方法:
1.替换法
替换法是解二元一次方程组最常用的方法之一、首先,将其中一个方程表示出其中一个未知数,然后将该式子代入另一个方程中,得到一个只含有一个未知数的一元一次方程,从而解得该未知数的值,再代回原方程组中求出另一个未知数的值。

2.消元法
消元法是另一种常用的解法。

通过对方程组进行适当的变换,使得其中一个未知数的系数相同,然后相减或相加,消除这个未知数,得到一个只含有一个未知数的一元一次方程,进而求出该未知数的值,再代回原方程组求另一个未知数的值。

3.矩阵法
矩阵法是一种将方程组表达为矩阵形式的解法。

将方程组的系数和常数项构成一个增广矩阵,然后通过行变换将矩阵化为上三角矩阵或行最简形,最后通过回代求出未知数的值。

4.克莱姆法则
克莱姆法则是一种利用行列式的性质解方程组的方法。

通过求解方程组的系数矩阵的行列式和未知数矩阵的行列式,即方程组的增广矩阵的行列式,然后将这两个行列式相除,得到未知数的值。

以上四种方法都有其适用的场景和特点,根据具体问题的不同,选择合适的方法可以更高效地求解二元一次方程组。

需要注意的是,当求解二元一次方程组时,有时方程可能无解或有无穷解。

无解的情况是指两个方程表示的直线平行,即两个方程的斜率相等但截距不相等;而有无穷解的情况是指两个方程表示的直线重合,即两个方程的斜率和截距均相等。

8.2二元一次方程组的解法----加减消元法2

8.2二元一次方程组的解法----加减消元法2

七年级数学加减消元法讲学稿主备:杨海兰 王钟升 审核:粟景耀 班学生姓名【目标】掌握加减法解二元一次方程组 【重点】用加减法解二元一次方程组【难点】用加减法解相同未知数的系数不成整数倍的二元一次方程组一、预习案:(一)知识回顾用代入法解下列方程组,并检验所得结果是否正确.6,(1)212.x y x y +=⎧⎨-=⎩ 321(2)2410a b a b -=-⎧⎨+=⎩(二)阅读课本P99-100内容,完成下列问题:1.请仔细观察上面两道题未知数的系数有何关系?2.试用加减法解方程组: 6 (1)212 (2)x y x y +=⎧⎨-=⎩解:①+②得:3x= _______解得:x=________。

把x=_______,代入①得:_____________________. ∴y=________. ∴________x y =⎧⎨=⎩(三)尝试练习:23(1)34a b a b +=⎧⎨+=⎩ 41030(2)15108x y x y +=⎧⎨-=⎩二、学习案:【知识点拨】1.什么是加减消元法?2.用加减消元法解二元一次方程。

【课内训练】1.已知45,324,x yx y+=⎧⎨+=⎩,则x-y的值是()A.1 B.0 C.-1 D.不能确定2.用加减消元法解下列方程组:(1)3213,32 5.x yx y+=⎧⎨-=⎩(2)258325m nm n+=⎧⎨+=⎩(3)3416,5633,x yx y+=⎧⎨-=⎩三、反馈案:1.解方程组①2359;x yx y=⎧⎨-=⎩②4273210;x yx y-=⎧⎨+=⎩③341;x yx y+=⎧⎨-=⎩④459237x yx y+=⎧⎨-=⎩比较适宜的方法是()A.①②用代入法,③④用加减法B.②③用代入法,①④用加减法C.①③用代入法,②④用加减法D.②④用代入法,①③用加减法2.用加减法解下列方程组:(1)29321x yx y+=⎧⎨-=-⎩(2)52253415x yx y+=⎧⎨+=⎩(3)25343x yx y-=-⎧⎨-+=-⎩。

二元一次方程组的解有三种不同情况唯一解,无解,无穷多解,

二元一次方程组的解有三种不同情况唯一解,无解,无穷多解,
解:解方程组 x= 2 得 y=2 ∴l1与l2的交点是(2,2) 设经过原点的直线方程为 y=k x y= x x-2y+2=0 2x-y-2=0
把(2,2)代入方程,得k=1,所求方程为
例3:求直线3x+2y-1=0和2x-3y-5=0的交点M的 坐标,并证明方程3x+2y-1+λ(2x-3y-5)=0(λ为 任意常数)表示过M点的所有直线(不包括直线2x-3y- y 5=0)。 3x+2y-1=0 证明:联立方程 2x-3y-5=0 x
练一练
①两条直线x+my+12=0和2x+3y+m=0的交点在y轴上,则m 的值是 (A)0 (B)-24 (C)±6 (D)以上都不对 ②若直线kx-y+1=0和x-ky = 0相交,且交点在第二象限 则k的取值范围是 (A)(- 1,0) (B)(0,1] (C)(0,1) (D)(1,+∞) ③若两直线(3-a)x+4y=4+3a与2x+(5-a)y=7平行, 则a的值是 (A)1或7 (B)7 (C)1 (D)以上都错
①两条直线的交点: 如果两条直线A1x+B1y+C1=0和A2x+B2y+C2=0 相交,由于交点同时在两条直线上,交点坐标一定 A1x+B1y+C1=0 是它们的方程组成的方程组 A x+B y+C =0 2 2 2 A1x+B1y+C1=0 的解;反之,如果方程组 A2x+B2y+C2=0 只有一个解,那么以这个解为坐标的点就是直线 A1x+B1y+C1=0和A2x+B2y(1, - 1) M
即 M(1,- 1)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4、 、
3x+5y=5 3x-4y=23 x=5 y=-2
3x+5y=5 ① 方程组 还有简单的解法吗? 还有简单的解法吗? 3x-4y=23 ② 用整体代入法解二元一次方程组 解:由②得 3x=4y+23 ③ 把③代入①,得 4y+23+5y=5 9y= -18 解得 y= -2 把y= -2代入③,得 代入 3x=4×(-2)+23 × 解得 x=5 x=5 ∴ 原方程组的解是 y= -2
的解呢? 的解呢?
未知数的系数的绝对值不是1 未知数的系数的绝对值不是1的二元 一次方程组的解法: 一次方程组的解法: 选取一个方程, 选取一个方程,用一个未知数来表 示另一个未知数, 示另一个未知数,然后通过代入消去一个 未知数, 未知数,将方程组转化为一元一次方程 来求解. 来求解.
练习1、 练习 、把下列各方程变形为一个 未知数的代数式表示另一个未知数 的形式: 的形式: y = 4 x + 1,或 (1)、4x-y= -1 、
练习、解下列方程组: 练习、解下列方程组: 1、 、 2x+y= -5
x-y=5 x=3y+1 x= -2 y= -1
2、 、 2x+3y=15x=6 y=1来自问题探知: 问题探知:
该怎样求出方程组
2x-7y=8

3x-8y-10=0 ② 分析:用代入法解方程组的关键在于用一个未 分析解: ①得 x=4+3.5y ③ :由 把③代入②,得 知数来表示另一个未知数, 知数来表示另一个未知数,观察方程组 3(4+3.5y)-8y-10=0 中哪个方程能进行适当变形的。 中哪个方程能进行适当变形的。 12+10.5y-8y-10=0 解得 y= -0.8 把y= -0.8代入③,得 代入 x=4+3.5×(-0.8) × x=1.2 x=1.2 ∴ 原方程组的解是 y= -0.8
y −1 x= 4
(2)、5x-10y+15=0 x = 2 y − 3,或 、
x+3 y= 2
练习2、解下列方程组: 练习 、解下列方程组: 2、 、 1、 、 2x+5y=23 x=4 3x+2y=17 x=5
y=1 y=3 2x-4y=6 3y=x+5
3、 、
2x+3y=7 3x-5y=1 x=2 y=1
练习3、解下列方程组: 练习 、解下列方程组: 1、 、
x+y= -9
1 ( x + y) 2 y = 3 − 3
x= -6 y= -3 x=7 y=10
2、 、 4(y-1)=3(x+5)
3(x-1)=2y-2
相关文档
最新文档