组合图形的面积
组合图形的面积
组合图形的面积(二)一.巩固旧知长方形面积= 正方形面积=平行四边形面积= 三角形面积=梯形的面积=二.当堂小启发组合图形多种多样、千变万化,求组合图形面积的方法也多种多样。
许多图形问题,只靠原图形上已有的线段很难发现解题思路,需要添加一条或几条原图形上没有的线段,在图形与图形之间搭起“桥梁”,这样就可以发现图形与图形之间、问题与条件之间的关系,从而找到解题的思路,这种求组合图形面积的方法我们称之为添辅助线求面积。
三. 经典例题例1:如右图,是由两个正方形组成的图形,求阴影部分的面积。
(单位:厘米)自我尝试老师解析小试牛刀如下图所示,阴影部分的面积比空白的直角三角形的面积大40平方厘米,求三角形的面积。
例2:正方形ABCD的边长是4厘米,长方形DEFG的长DG为5厘米,长方形的宽DE是多少厘米?自我尝试老师解析小试牛刀如图,E,F是平行四边形ABCD中BC,CD边的中点,求阴影部分的面积。
(单位:厘米)四. 举一反三1、有一个长方形,如果长增加8米,面积就增加64平方米;如果宽增加4米,面积也增加64平方米。
原来长方形的面积是多少平方米?2、一个正方形,一边截去6厘米,另一边截去2厘米,剩下的长方形面积比原正方形面积少68平方厘米,求原正方形的边长。
3、如图,三角形ABC的面积是24平方厘米,且BE=2EC,D,F分别是AB,CD的中点,那么阴影部分的面积是多少?4、平行四边形ABCD中,AE=EF=FB,AG=2CG,三角形GEF的面积是6平方厘米,平行四边形的面积是多少平方厘米?5、正方形ABCD的一条对角线BD被等分成三等份,每份长1厘米,E、F是等分点,AG和HC是平行线,求正方形ABCD的面积。
6、长方形ABCD的面积为36平方厘米,E、F、G分别是AB、BC、CD的中点,H 为AD边上任意一点,问:阴影部分的面积是多少?五.大显身手A:如右图,求四边形ABCD的面积。
(单位:厘米)B:求斜边是3厘米的等腰直角三角形的面积。
五年级《组合图形的面积》教学设计4篇
五年级《组合图形的面积》教学设计4篇五年级《组合图形的面积》教学设计1【教学内容】人教版五年级上册第六单元《组合图形的面积》【教材分析】本课是五年级上册第六单元内容,是在学生学习了长方形与正方形.平行四边形.三角形与梯形的面积计算的基础上学习的,一方面可以巩固已经学过的基本图形,另一方面则能将所学的知识进行整合,注重将解决问题的思考策略渗透其中,提高学生的综合能力。
【设计理念】儿童思维发展的一般规律是从具体操作开始的,再逐步形成抽象的思维。
教学设计时,充分考虑学生原有认知水平及儿童心理发展水平,从描述组合图形入手,让学生自主探究,注重让学生在观察、操作、合作交流、比较等数学活动中,找出计算组合图形面积的多种方法,并进行优化选择。
学生在解决问题的过程中,获得数学学习方法。
在对学习过程与结果的反思中,提高解决问题的能力。
【教学目标】1.能结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积2.能运用所学知识解决生活中组合图形的实际问题。
3.自主探索,合作交流。
养成认真思考,团结协作的能力。
4.通过找一找.分一分.拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”.“补”等方法来计算组合图形的面积。
【教学重点】探索并掌握组合图形的面积计算方法【教学难点】理解并掌握组合图形的组合及分解方法。
【数学思想】分类、化归【教学过程】一.创设情境,引出问题教师活动学生活动及达成目标1.说一说:(1)让学生快速说出老师出示的平面图形的名字(正方形.长方形.平行四边形.三角形.梯形)。
(2)说出上面各种图形的面积计算公式及字母表达式(并适时出示多媒体)。
2.看一看:老师出示一些组合图形,让学生仔细观察,思考:这些图形跟我们刚才复习的基本图形有什么不同?(这些图形都是由几个基本图形组合而成的。
)出示生活中常见的组合图形(如房子的侧面.风筝.七巧板拼图.中队旗等),问:要想知道做一面中队旗用多少布就是求什么?3.揭示课题并板书:组合图形的'面积学生观察回答让学生在说一说,看一看的过程中充分调动多种感官参与到学习中来,在浓厚的学习氛围中感受到知识于生活,而又服务于生活,明确生活中的很多问题都和组合图形的面积有关。
组合图形的面积__小学奥数专题
组合图形的面积(一)例1一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米?练习一1、求四边形ABCD的面积。
(单位:厘米)2、已知正方形ABCD的边长是7厘米,求正方形EFGH的面积。
3、有一个梯形,它的上底是5厘米,下底7厘米。
如果只把上底增加3厘米,那么面积就增加4.5平方厘米。
求原来梯形的面积。
例2正图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。
求中间长方形的面积。
练习二1、已知大正方形的边长是12厘米,求中间最小正方形的面积。
2、如下图长方形ABCD的面积是16平方厘米,E、F都是所在边的中点,求三角形AEF的面积。
3、求下图长方形ABCD的面积(单位:厘米)。
例3四边形ABCD和四边形DEFG都是正方形,已知三角形AFH 的面积是7平方厘米。
三角形CDH的面积是多少平方厘米?练习三1、图中两个正方形的边长分别是6厘米和4厘米,求阴影部分面积。
2、下图中两个完全一样的三角形重叠在一起,求阴影部分的面积。
3、下图中,甲三角形的面积比乙三角形的面积大多少平方厘米?例4下图中正方形的边长为8厘米,CE为20厘米,梯形BCDF的面积是多少平方厘米?练习四1、如下图,正方形ABCD中,AB=4厘米,EC=10厘米,求阴影部分的面积。
2、在一个直角三角形铁皮上剪下一块正方形,并使正方形面积尽可能大,正方形的面积是多少?(单位:厘米)3、图中BC=10厘米,EC=8厘米,且阴影部分面积比三角形EFG 的面积大10平方厘米。
求平行四边形的面积。
例5图中ABCD是长方形,三角形EFD的面积比三角形ABF的面积大6平方厘米,求ED的长。
练习五1、如图,平行四边形BCEF中,BC=8厘米,直角三角形中,AC=10厘米,阴影部分面积比三角形ADH的面积大8平方厘米。
求AH长多少厘米?2,图中三个正方形的边长分别是1厘米、2厘米和3厘米,求图中阴影部分的面积。
组合图形的面积公式
组合图形的面积公式许多天文学家和数学家经常发现,天文和数学形状的总体面积可以通过不同的图形组合而成。
经常的形状可以是三角形、正方形、圆形、多边形和椭圆形等。
为了计算组合图形的总体面积,我们需要知道每个组件面积的公式,以及它们如何组合在一起。
下面,我将介绍组合图形的常用面积公式。
1、三角形面积公式三角形的面积可以通过三角形的底边长与其高的乘积来确定。
如果三角形的底边长是a,其高为h,则可以通过以下公式确定三角形的面积:S = 1/2 a h2、正方形面积公式正方形的面积可以通过其边长乘积来确定。
如果正方形的边长是a,则可以通过以下公式确定正方形的面积:S = a a3、圆形面积公式圆形的面积可以通过圆形的半径乘以π来确定。
如果圆形的半径是r,则可以通过以下公式确定圆形的面积:S = r r4、多边形面积公式多边形的面积可以通过多边形的顶点与其中心的距离乘积来确定。
如果多边形的顶点是A,它的中心距离为d,则可以通过以下公式确定多边形的面积:S=1/2 A d5、椭圆形面积公式椭圆形的面积可以通过椭圆形的长轴与短轴的乘积来确定。
如果椭圆形的长轴是a,它的短轴是b,则可以通过以下公式确定椭圆形的面积:S = a b以上就是组合图形的常用面积公式。
当在计算更复杂的组合形状时,可以使用多边形分解法来计算总面积。
这种方法可以将复杂的多边形分解为若干较小的多边形,然后在每个小多边形上应用前面提到的面积公式,最后将每个小多边形的面积相加,从而获得总面积。
总之,组合图形的面积计算可以通过不同图形的面积公式进行计算,也可以通过多边形分解方法来计算总面积。
不同结构的图形可以有不同的面积计算方法,但基本思路都是将复杂的形状分成若干个简单的形状,以最简单的形状的面积公式为基础,求出复杂形状的面积值。
通过学习和研究以上计算面积的方法,可以帮助我们更好地解决天文学和数学中的组合图形的面积计算问题。
五年级奥数组合图形面积
挑战练习题
总结词
思维训练与难题攻克
详细描述
挑战练习题旨在培养学生的思维能力和解题 技巧,题目难度较大,需要学生具备一定的 数学思维和创新能力。这类题目通常涉及多 个知识点的综合运用,需要学生通过观察、
分析、推理等手段寻找解题思路。
感谢您的观看
THANKS
五年级奥数组合图形面积
汇报人: 202X-01-03
目录
• 组合图形面积概述 • 常见组合图形及面积计算 • 组合图形面积的解题技巧 • 组合图形面积的实际应用 • 练习与巩固
01
组合图形面积概述
组合图形的定义
01
组合图形是由两个或两个以上的 基本图形通过一定的方式组合而 成的图形。
02
常见的组合图形有平行四边形、 三角形、梯形等。
03
组合图形面积的解题技巧
分割法
总结词
将复杂的组合图形分割成几个简单的规 则图形,分别求出各部分的面积,最后 相加。
VS
详细描述
分割法是解决组合图形面积问题的一种常 用方法。通过合理分割,将复杂的图形拆 分成几个简单的图形,如三角形、长方形 、平行四边形等,这些图形的面积计算相 对简单。在分割后,分别计算各部分的面 积,最后将各部分面积相加即可得到整个 组合图形的面积。
填补法
总结词
将组合图形补全为一个完整的规则图形,然后计算整个图形的面积,再减去填补的部分。
详细描述
填补法是通过将组合图形补全为一个完整的规则图形,如长方形、平行四边形等,然后计算整个图形的面积。再 从总面积中减去填补的部分,即可得到组合图形的面积。这种方法适用于不规则图形,通过填补的方式将其转化 为规则图形,便于计算。
02
常见组合图形及面积计算
组合图形面积计算技巧十法
组合图形面积计算技巧“十法"一、相加相减法【点拨】:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,相加求出整个图形的面积.或者将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.【例题1】:求组合图形的面积。
(单位:厘米)【分析与解答】:上图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了.4÷2=2(米)4×4+2×2×÷2=(平方厘米)【例题2】:长方形长6厘米,宽4厘米,求阴影部分的面积。
【分析与解答】:上图中,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可.4÷2=2(米)6×4-2×2×÷(平方厘米)二、用比例知识求面积【点拨】:利用图形之间的比例关系解题。
【例题3】一块长方形耕地,它由四个小长方形拼合而成,其中三个小长方形的面积分别为15、18、30公顷,图中阴影部分的面积是多少?【分析与解答】:因为阴影部分也是一长方形,所以只要求出它的长、宽是多少就行,为此设它的长、宽分别为a、b,面积为18公顷的长方形的长、宽分别为c、d.直接按比例关系来理解。
因为(a×c):(d×c)=(a×b):(d×b),a:d=15:18=阴影面积:30,阴影面积为15×30÷18=25(公顷)。
三、等分法【点拨】:根据所求图形的对称性,将所求图形面积平均分成若干份,先求出其中的一份面积,然后求总面积。
【例题4】:求阴影部分的面积(单位:厘米)【分析与解答】:把原图平均分成八分,就得到下图,先求出每个小扇形面积中的阴影部分:×22÷4-2×2÷2=(平方厘米)阴影部分总面积为:×8=(平方厘米)四、等积变形【点拨】:将题中的条件或问题替换成面积相等的另外的条件或问题,使原来复杂的图形变为简单明了的图形。
组合图形面积6种办法
组合图形面积6种办法组合图形面积是数学中一个重要的概念,它可以帮助我们计算复杂图形的面积。
组合图形面积的计算有很多种方法,下面我们就来介绍一下这六种计算组合图形面积的方法。
首先,我们可以使用分割法来计算组合图形的面积。
这种方法是将复杂图形分割成若干个简单图形,然后分别计算每个简单图形的面积,最后将这些简单图形的面积相加,就可以得到复杂图形的面积。
其次,我们可以使用三角形面积公式来计算组合图形的面积。
这种方法是将复杂图形分割成若干个三角形,然后分别计算每个三角形的面积,最后将这些三角形的面积相加,就可以得到复杂图形的面积。
第三,我们可以使用积分法来计算组合图形的面积。
这种方法是将复杂图形的面积看作一个函数,然后使用积分法来计算这个函数的积分,最后得到复杂图形的面积。
第四,我们可以使用梯形面积公式来计算组合图形的面积。
这种方法是将复杂图形分割成若干个梯形,然后分别计算每个梯形的面积,最后将这些梯形的面积相加,就可以得到复杂图形的面积。
第五,我们可以使用平行四边形面积公式来计算组合图形的面积。
这种方法是将复杂图形分割成若干个平行四边形,然后分别计算每个平行四边形的面积,最后将这些平行四边形的面积相加,就可以得到复杂图形的面积。
最后,我们可以使用椭圆面积公式来计算组合图形的面积。
这种方法是将复杂图形分割成若干个椭圆,然后分别计算每个椭圆的面积,最后将这些椭圆的面积相加,就可以得到复杂图形的面积。
以上就是六种计算组合图形面积的方法,它们都可以帮助我们计算复杂图形的面积,但是要根据实际情况选择合适的方法。
只有掌握了这些方法,才能更好地计算组合图形的面积。
小学数学五年级——组合图形的面积
可以把它看成一个正方 形和一个三角形的组合。
方法一:
5米
2
5
=
米2米
+
米
55米米
5 米
5×2÷2+5×5
=5+25
=30(平方米)
答:它的面积是30平方米。
我把它分成两个完 全一样的梯形。
方法二:
2
2
=
米
米
+
米5米2
5 米
5米
(5÷2)米
米米5(5 5÷2)米
(5+5+2)×(5÷2)÷2×2
=12×2.5÷2×2 =30(平方米)
答:它的面积是30平方米。
你是怎样想的?
方法三:
2 米
5米
= 5
米
-
(5+2)×5 -(5÷ 2)×2÷2×2 =35-5 =30(平方米)
想:这块菜地的面积 = 平行四边形面积 + 三角形面积
50×33+35×12÷2 =1650+210 =60(平方米)
法计算组合图形面积.
正方形
长方形
平行四边形
梯形
三角形
你还记得吗?
长 方 形 的 面 积 = 长 ×宽
S=ab
正 方 形 的 面 积 = 边长×边长
S=a×a
平行四边形的面积= 底×高
S=ah
三 角 形 的 面 积 = 底×高÷2
S=ah÷2
梯 形 的 面 积 = (上底+下底)×高÷2 S=(a+b)h÷2
下面这些物品里有哪些图形?
由两个完全 一样的梯形 组合成的
由一个长方形 和两个完全一 样的三角形组
合成的
由几个简单的图形 拼出来的图形,我们 把它们叫做组合图形。
五年级上册数学《组合图形的面积》教案(通用12篇)
五年级上册数学《组合图形的面积》教案(通用12篇)五年级上册数学《组合图形的面积》篇1教学内容:《义务教育课程标准实验教科书数学五年级上册》第92~94页。
教学目标:1.使学生结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积。
2.综合运用平面图形面积计算的知识,进一步发展学生的空间观念。
3.培养学生的认真观察、独立思考的能力。
教具准备:、图片等。
教学过程:一、展示汇报建立概念师:大家搜集了许多有关生活中的组合图形的图片,谁来给大家展示并汇报一下。
(指名回答)生1:这枝铅笔的面是由一个长方形和一个三角形组成的。
生2:这条小鱼的面是由两个三角形组成的。
……师:同桌的同学互相看一看,说一说,你们搜集的组合图形分别是由哪些图形组成的?(设计意图:根据学生已有的知识经验和生活经验,让学生在课前进行搜集生活中的组合图形的图片,学生热情高涨、兴趣盎然。
通过学生查、拼、摆、画、剪、找等活动,使学生在头脑中对组合图形产生感性认识。
)师:老师也搜集了一些生活中物品的图片,( 课件出示:房子、队旗、风筝、空心方砖、指示牌、火箭模型)这些物品的表面,都有哪些图形?谁来选一个说说。
生1:小房子的表面是由一个三角形和一个正方形组成的。
生2:风筝的面是由四个小三角形组成的。
生3:火箭模型的面是由一个梯形、一个长方形和一个三角形组成的。
……师:这几个都是组合图形,通过大家的介绍,你觉得什么样的图形是组合图形?生1:由两个或两个以上的图形组成的是组合图形。
生2:有几个平面图形组成的图形是组合图形。
……师小结:组合图形是由几个简单的图形组合而成的。
说一说,生活中有哪些地方的表面有组合图形?(学生自由回答)师:同学们认识组合图形了,那么大家还想了解有关组合图形的哪些知识?生1:我想了解组合图形的周长。
生2:我想知道组合图形的面积怎样计算。
……这节课我们重点学习组合图形的面积。
(设计意图:唤起学生学习数学的好奇心和积极的探究态度,鼓励学生自己提出问题,使学生认知活动中的智力因素和非智力因素都处于状态,形成强烈的求知欲。
组合图形面积
多边形的面积一、平行四边形的面积公式与推导平行四边形的面积=底×高S= ah 逆运算公式:平行四边形的底=面积÷高(a = S÷h)平行四边形的高=面积÷底(h = S÷a)注意:在求平行四边形的面积时,底和高必须对应。
①长方形框架拉成平行四边形,周长不变,面积变小;②平行四边形框架拉成长方形,周长仍不变,但面积变大。
③任何平行四边形都有无数条高。
二、三角形的面积公式与推导(1(2)三角形的面积=底×高÷2S = ah÷2 逆运算公式:三角形的底=面积×2÷高(a = 2S÷h)三角形的高=面积×2÷底(h = 2S÷a)注意:在求三角形的面积时,底和高必须对应。
三、等底等高的平行四边形与三角形Ⅰ.等底等高的平行四边形的面积相等。
Ⅱ.等底等高的三角形的面积相等。
Ⅲ.等底等高的三角形的面积是平行四边形的面积的一半。
Ⅰ.S = S Ⅱ. S △1 = S △2 Ⅲ. S ÷2 = S △2 四、梯形的面积公式与推导(1)(2)梯形的面积=(上底+下底)×高÷2S =(a +b )×h ÷2逆运算公式:梯形的上底+下底的和=面积×2÷高 梯形的上底=面积×2÷高-下底 (a = 2S ÷h-b )梯形的下底=面积×2÷高-上底 (b = 2S ÷h-a )梯形的高=面积×2÷(上底+下底) h = 2S ÷(a +b )注意:任何梯形都有无数条高。
基础练习一、填空1.一个三角形和一个平行四边形的面积相等,高也相等,如果三角形的高是6厘米,平行四边形的高是()厘米2. 2.3m2=( ) dm2 3200cm2=( )dm25平方米10平方分米=()平方分米0.25m2=( )cm2 6500平方米=()公顷3.一个直角三角形的两条直角边分别是0.3cm和0.4cm,斜边长0.5cm,这个直角三角形的面积是()cm2。
求组合图形面积的十种解法
求组合图形面积的十种解法
求组合图形面积是一个典型的几何问题,为了解决这一问题,可以使用以下十种解法:
1、分法法:将复杂图形分解成若干简单图形,然后求其各自的面积,最后求总和即可。
2、叠加法:如果复杂图形与某一简单图形有公共部分,那么就可以把复杂图形和简单图
形叠加在一起,求出叠加图形的面积,然后用叠加图形的面积减去简单图形的面积即可求
得复杂图形的面积。
3、分数解法:如果复杂图形的面积太难求,可以采用分数解法,先把复杂图形分成若干
等份,每份更容易求面积,最后把求的的结果加起来即可。
4、数学公式法:如果复杂图形有相应的数学公式,可以利用这个公式来求复杂图形的面积。
5、经验法:一些规则复杂图形,有时候还可以借助经验法,比如正多边形,多个等腰三
角形等组合,通过一定的经验公式即可求得面积。
6、极限法:如果复杂图形不是太复杂,可以采用极限法,采用适当的空间坐标,把图形
分解成若干若干子图形,然后求得每个子图形的面积,把这些子图形的面积累加,最后就
可以求得复杂图形的面积。
7、计算机图形学法:使用计算机图形学的方法可以更准确快速地求组合图形面积。
利用
图形赋值法,先将要求面积的图形表示成点阵图,此时此刻,图形上面每个点对应着某个面积的的面积,然后将每个点的面积相加,就可以求出总的面积了。
8、三角函数法:如果所求复杂图形是圆形,那么可以采用三角函数法,根据圆心角的计
算公式,计算复杂图形的圆形面积。
9、渐近法:渐近法可以用来求一类复杂图形的面积,它将复杂图形分割为若干小正方形,再根据小正方形和图形的相似度,算出复杂图形面积接近的结果。
10、变换法:变换法是将复杂图形变换为简单图。
组合图形面积
c
b
a
d
22.下图中圆的周长是18.84厘米,
求阴影部分的面积。
23.如图A,求阴影部分的面积。(单位:厘米)
O
24.已知ABC,CDE都是等腰直角三角形,求图中阴 影部分面积.
组合图形面积
由几个简单的图形组合而成的图形叫组合图形。
求组合图形面积的思考方法:
1、观察。 组合图形是由哪 些基本图形形成 的。 2、分析。 是基本图形面 积的和、面积 的差。 3、列式计算。
b a a
a
h
a
h a
S=ab
a b
S=a×a =a2
S=ah
S=ah÷2
h
S=(a+b)h÷2
b
a
S=πr×r=πr²
14.求圆的面积:
o·
4cm
15.求圆的面积:
O·
正方形的面积是12平方厘米
16.求圆的面积:
O
·
正方形的面积是5平方厘米
17.求圆的面积:
O
三角形的面积是4平方厘米
18.求环形面积:
O
蓝色部分的面积是6平方分米
19.求图中阴影面积.(单位:厘米)
20.求图中阴影面积.(单位:厘米)
21.求图中阴影面积.(单位:厘米)
80
100
10
10
3. 求图中阴影面积(单位:厘米)
4.求图中阴影面积(单位:分米)
12.求图形中涂色部分的面积。(单位:cm)
5.求图中阴影面积(单位:分米)
6.求阴影面积:
2dm
7.求阴影面积:
4cm 4cm
11.求下面各图形阴影部分的面积。
10..ห้องสมุดไป่ตู้图中阴影面积(单位:分米)
数学 - 组合图形面积的计算
数学 - 组合图形面积的计算引言在数学中,组合图形是指由多个基本图形组合而成的复合图形。
而要计算组合图形的面积,需要先计算组合图形中各个基本图形的面积,然后将这些面积相加。
本文将介绍如何计算常见的组合图形的面积。
一、矩形和正方形的面积计算矩形和正方形是最简单的组合图形,其面积的计算公式分别为:•矩形的面积:$S = l \\times w$,其中l为矩形的长,w为矩形的宽。
•正方形的面积:$S = a \\times a$,其中a为正方形的边长。
示例:假设有一个矩形,长为 5,宽为 3,那么它的面积可以通过以下计算得到:S = 5 * 3 = 15因此,该矩形的面积为 15。
二、三角形的面积计算三角形是另一个常见的组合图形,其面积的计算公式为:$S = \\frac{1}{2} \\times b \\times h$,其中b为三角形的底边长,ℎ为三角形的高。
示例:假设有一个底边长为 4,高为 6 的三角形,那么它的面积可以通过以下计算得到:S = 0.5 * 4 * 6 = 12因此,该三角形的面积为 12。
三、圆的面积计算圆是另一种常见的组合图形,其面积的计算公式为:$S = \\pi \\times r^2$,其中r为圆的半径。
需要注意的是,计算圆的面积时,需要使用 $\\pi$(圆周率)的近似值,通常取 3.14 或更精确的值。
示例:假设有一个半径为 5 的圆,那么它的面积可以通过以下计算得到:S = 3.14 * (5^2) = 78.5因此,该圆的面积为 78.5。
四、组合图形的面积计算当组合图形由多个基本图形组合而成时,其面积的计算可以通过计算各个基本图形的面积,然后将这些面积相加得到。
示例:假设有一个由一个矩形和一个三角形组成的图形,如下图所示:---------------| ▲ || ╱╲ || ╱╲ || ╱╲ || ╱______╲ || ▔ |--------------矩形的长和宽分别为 6 和 4,三角形的底边长为 4,高为 3。
组合图形的面积的方法
组合图形的面积的方法组合图形的面积是由不同形状的图形组合而成的一个整体面积。
计算组合图形的面积有许多不同的方法,我们可以根据组合图形的特征和性质选择不同的方法计算。
一种常见的方法是将组合图形分解为更简单的几何图形,然后计算每个简单图形的面积,最后将它们相加得到组合图形的面积。
这种方法适用于组合图形由矩形、三角形、圆形等常见几何图形组成的情况。
例如,如果组合图形是由一个矩形和一个半圆组成的,我们可以首先计算矩形的面积,即长乘以宽,然后计算半圆的面积,即半径的平方乘以π再除以2。
最后将矩形的面积和半圆的面积相加,就可以得到组合图形的面积。
另一种方法是使用几何变换,将组合图形转化为一个更简单的形状,然后计算这个简单形状的面积。
常见的几何变换包括平移、旋转、镜像和缩放。
例如,如果组合图形是由一个矩形和一个等边三角形组成的,我们可以通过将等边三角形旋转180度,然后将其平移到矩形的上方,从而将组合图形转化为一个长方形。
然后,我们可以直接计算长方形的面积,即长乘以宽,就得到了组合图形的面积。
此外,对于一些特殊的组合图形,还可以使用特定的公式来计算其面积。
例如,如果组合图形是由一个正多边形和若干个相似的小正多边形组成的,可以使用类似于级数求和的方法计算其面积。
还有一些复杂的组合图形,可能需要使用更复杂的方法来计算其面积。
例如,如果组合图形是由一些不规则的曲线组成的,可以使用数值积分的方法来计算其面积。
需要注意的是,计算组合图形的面积时需要注意单位的统一。
如果不同形状的图形的面积单位不同,需要进行单位转换,以便得到正确的结果。
在实际问题中,计算组合图形的面积时还需要考虑一些特殊情况。
例如,如果组合图形中的某些图形重叠部分需要被去除,可以将重叠部分的面积减去,得到的就是组合图形的实际面积。
总之,计算组合图形的面积需要根据具体情况选择合适的方法。
将组合图形分解为简单图形进行计算、使用几何变换简化形状、利用特定公式或数值积分等方法都是常见的计算组合图形面积的方法。
组合图形的面积计算技巧
【例题9】:如图:求阴影部分的面积。
【点拨】:这种方法是根据具 体情况在图形中添一条或若 干条辅助线,使不规则图形 转化成若干个基本规则图形, 然后再采用相加、相减法求 面积。 【分析与解答】:很显然,阴影部分是个不规则图形, 没有办法求出它的面积,但是如果添加几条辅助线,把 右边的阴影部分反折,正好能拼成一个三角形。 6×6÷2=18(平方厘米)
4×4×3.14÷4×2=25.12 (平方厘米) 25.12-4×4=9.12 (平方厘米)
【例题11】:在面积是80平方厘米的正方形中,有一 个最大的圆。这个圆的面积是多少平方厘米?
【点拨】:如果一个阴影部分所示的图形既不 是基本图形,也不能通过分解、隔离、组合、 平移、旋转和割补等方法 转化成基本图形或 其相加减的形式时,应该怎么求解呢?这时 可运用一些特殊的方法进行分析解答。 【分析与解答】:要求圆的面积,就要找出圆的半径或者直径, 通过观察我们知道,圆的直径和正方形的边长相等,就这道题, 要求正方形的边长,就要把80开方,小学阶段,我们还没有学 到开方。怎么办?换个角度思考,把大正方形平均分割成四个 小正方形,每个小正方形的边长正好是圆形的半径,小正方形 的面积就相等于半径×半径,也就是半径的平方,这个时候我 们就找到了求圆形面积的另一条途径:把半径的平方看做一个 整体求出来,再带入公式。 每个小正方形的面积是80÷4=20cm2圆的面积:3.14×20=62.8cm2
【分析与解答】:把原图 平均分成八分,就得到左 图,
先求出每个小扇形面积中的阴影部分: 3.14×22÷4-2×2÷2=1.14(平方厘米 ) 阴影部分总面积为: 1.14×8=9.12(平方厘米 )
【例题5】:计算下图中的阴影部分 面积。(单位:厘米)
组合图形的面积的方法汇总
➢ 旋转平移法求面积
方法介绍:在求组合图形阴影部分面积时,阴影部分可能是一个不规则 图形或零散分布的几个图形,根据图形形状特征,先将其中的一部分绕 某个点旋转或绕某条直线平移后,与其中的另一部分拼成比较规则的 图形,再用相应规则图形的面积公式求解,这种求面积的方法就叫做旋 转平移法。旋转平移法求面积的实质也是割和补,只不过是通过旋转、 平移的方式来补。
➢ 割补法求面积
方法介绍:在组合图形中除了多边形外还有由圆、扇 形、弓形等图形组合而成的不规则图形,为了计算它 们的面积,解题时常常需要将不规则的组合图形进行 适当的分割,并根据形状的互补性,重新拼组,转化成 规则的几何图形来计算面积。
求图中阴影面积。(单位:厘米)
【解析】解法一:如下图,把图形分割后,将①号扇形拼到A处,将②号扇形拼到B处, 把求阴影部分面积转化为求长为半圆直径、宽为半圆半径的长方形的面积。 4×2=8(平方厘米)
【解析】如图,画出正方形的两条对角线,把正方形分成4个相同的三角形。再将①号②号 阴影部分分别绕正方形中心点旋转90°,拼A空白处和B空白处,阴影部分被割补成2个三 角形,其面积正好等于长方形面积的一半。 所求阴影部分面积为:82÷2=32(平方米)
➢ 放大法求面积
方法介绍:减法的差不变性质:被减数和减数同时增加(或减少)同一 个数,它们的差不变。 在求两个不规则图形(或无法直接求出单个图形面积的两个图形)的面 积差时,或已知面积差求面积或线段长度时,我们常常需要根据差不变 性质,把这两个图形都加上同一个图形拼成规则的两个图形,把原来两 个图形的面积差转化成拼成的这两个规则图形的面积差,从而使隐蔽
求阴影部分面积。(单位:厘米)
【解析】如图,把上图中阴影部分分割为3部分:再根据每部分图形的形状,将①号阴影 部分向右平移到A空白处,将②号阴影部分向左平移到B空白处。从而把求不规则的阴 影部分面积,转化为求长方形的面积。 所求阴影部分面积为:4×2=8(平方厘米)
组合图形面积的计算
S长方形=a x b
S正方形=a x a
S平行四边形=a x h S△=a x h÷2 S梯形=(a+b)x h÷2
像这样的图形我们把 它们叫做组合图形。
• 1、如何计算组合图形的面积? • 2、如何解决一些简单组合图 形的实际问题?
华丰小学校园里有一块草坪,把我们不能计算的组合图 形的面积通过分割(或者补充),把它 们转化成我们学过的几个图形的面积之 和(或者之差)。
分割:一个长方形和一个梯形
分割:一个长方形和一个三角形
分割:一个梯形和一个三角形
分割:一个大长方形和一个梯形
想一想:
在进行割补时,要注意什么?
1、要根据图形的特点进行思考和操作; 2、要便于利用已知知识和条件来计算简 单图形的面积; 3、可以用不同的方法进行割补(要注意 割补后图形的条件),比较一下你更 喜欢那种方法。
校园里有一个花圃, 你能算出它的面积是 多少平方米吗?
拓展延伸:
《组合图形的面积》教学设计优秀5篇
《组合图形的面积》教学设计优秀5篇作为一名为他人授业解惑的教育工作者,可能需要进行教案编写工作,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。
那要怎么写好教案呢?以下是小编帮大家收集整理的《组合图形的面积》教学设计优秀5篇,仅供借鉴。
组合图形的面积教学设计篇一学习目标:1.知识目标:通过动手操作使学生理解组合图形的含义,理解并掌握组合图形的多种计算方法,并正确地计算组合图形的面积。
2.能力目标:通过学生自主探索,合作交流,激发学生的积极性和主动性。
从而归纳组合图形面积的方法。
3.情感目标:在探索,实践活动中使学生获得成功的体验,感受数学知识的广泛应用。
渗透转化的数学思想和方法。
教学重点:能根据条件求组合图形的面积。
教学难点:理解分解图形时简单图形的差。
教具准备:图形卡片教学过程:一、联系学生生活,引入新课。
数学教学,要紧密联系学生的生活实际。
新课开始之前,我由猜图形引出:1.实物投影:同学们,你们说说这些图形像什么?师:今天老师先和大家玩一个猜图形的小游戏。
出示图形:猜猜它们像什么?师:很简单,很容易吧!但是在这个简单的游戏中却蕴含着丰富的数学知识。
今天就让我们一起去探索、去研究。
2.出示基本图形,从而复习已学过的基本知识。
师:在这两个拼成的图形中,有哪些是你认识的图形?梯形是哪里来的?还有一个学过的图形这里没有出现,它是什么呢?(贴出图形:正方形、长方形、三角形、梯形、平行四边形)二、教学新课。
学生亲身体验和感知易于获得感性经验,提高实际操作能力。
而观察、操作、讨论等都是数学活动中较常用的方法。
因此,在教学过程中我尽量给学生创设更多的动手操作机会,提供丰富的材料,使他们可以亲自进行较广泛意义的实验、操作及通过观察结果、提出问题、讨论并自己寻找答案。
教学新课时,我首先让学生说一说、拼一拼、分一分。
根据学生前面猜的结果,提出:自己用这些基本图形拼出自己喜欢的图案?1.在拼图活动中认识组合图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(三)合作探究
一、通过自主学习我们知道测量土地面积时要用较大的面积单位:公顷、平方千米,请大家看展示100平方米有多大,100个100平方米是1公顷。跟老师一起了解相关面积单位。
二、边长是1千米的正方形面积是1平方千米。我国的占地面积是:平方千米
三、利用已学知识推出平方千米、公顷、平方米之间的进率。
3、5公顷=()平方米4平方千米=()公顷
70000平方米=()公顷8平方米=()平方分米二、在○里填上“>”、“<”和“=”。
500平方厘米○60平方分米80平方分米○1平方米4平方米○400公顷1平方千米○9000平方米2、一个正方形果园,边长200米,它的面积是多少公顷?三、判断题。
(1)面积是1公顷的土地,一定是边长为100米的正方形。( ) (2)四年级一班教室的面积约1公顷。( ) (3)我国的领土面积大约有960万平方千米。( ) (4)1平方千米=1000平方米。( )四、解答题
六组合图形的面积
组合图形的面积<> ()
【学习目标】
会辨认出组合图形。
2、会把组合图形分成已学过的平面图形,并会计算出它的面积。
【学习重点难点预测】
1、明确目标,提出质疑。
2、选择合适的方法解决问题。(比如:看书自学或者想办法把不会的新知识转化成会的旧知识解决。)
【学习准备】学具
【学习过程】
(一)新课导学
【学习重点难点预测】
认识较大的面积就单位公顷、平方千米,感知1公顷、1平方千米的实际大小。
【学习准备】教学课件。
【学习过程】
(一)新课导学
1、创设情境
2、明确学习内容
(二)自主学习
预习教材84页,完成下面练习。
1、我们前面学过的面积单位有:()、()、()。2、测量土地面积时常常用到较大的面积单位:()、()。
鸡有()只脚,兔有()只脚,鸡和兔共()只,鸡和兔共()只脚。
(2)鸡和兔各多少只呢?先猜一猜吧!可不要乱猜哟!帮你列了个表格,你填一填就能得到答案。
得到的答案:鸡有()只,兔()只。(3)以下还有两种方法也能解决这个问题,敢尝试一下吗?
(三)合作探究
A假设法
假设笼子里全是鸡,那么鸡有8只,就有()只脚,但实际笼子里只有26只脚,这样我们就()算()只脚。
1、通过摆一摆、画一画的方法,尝试着找出图形与小棒变化规律。
2、能找出相应的数量关系式,表达图形个数与根数的关系。
【学习准备】
教学课件
【学习过程】
(一)新课导学
1、创设情境
1、三角形有几条边?正方形有几条边?2、熟练说出已学过图形由几条边组成。
2、明确学习内容
(二)自主学习
找出小棒根数与所摆三角形个数的关系
【学习准备】教学课件。
【学习过程】
(一)新课导学
1、创设情境
看一看,比一比你们的的脚印谁的大,谁的小?
2、明确学习内容
(二)自主学习
1、完成“成长的脚印”中的(1)、(2)题。
(1)淘气出生时脚印面积约是多少?你是怎么得出来的?请具体说一说。
(2)淘气2岁时,脚印的面积是多大呢?请具体说一说。
(3)除了用数方格的方法估计的,还有没有其他的估算法呢?如:把脚印看成近似的()形,长是(),宽是(),
为什么会这样呢?因为我们把兔的4只脚算成了鸡的2只脚,每只兔就()算了()脚,所以笼子里有()只兔,()只鸡。
假设法也挺好用吧,想一想还可以怎样假设呢?
B方程法
列方程首先要设未知数:
解:设兔有x只,鸡有()只。列方程需根据等量关系式:鸡的脚数+兔的脚数=()请列方程并解答:
__________________________________ __________________________________ __________________________________ __________________________________ __________________________________你还能列出不同的方程吗?解:设______________________
数量关系式:_________________________列方程:_________________________
(四)展示提升
1、汇报交流总结
【小组合作】合作要求:
1、小组长带领小组成员交流自学所得。
2、小组长对于小组成员出现的问题,应及时给予帮助。3、对于感到疑惑、困难或有不同看法的问题
要做出标记,便于交流时提出。
习题册
成长的脚印
<> ()
【学习目标】
1、我能正确估计不规则的图形面积的大小。(难点)
2、我会用数方格的方法计算一些不规则图形的面积,掌握数方格的顺序和方
法。(重点)
3、我能初步的养成估算意识和估算习惯,体验估算的必要性和重要作用
【学习重点难点预测】
利用方格图估计不规则图形面积。估算的习惯和方法的选择。
你发现了:
(四)展示提升
1、汇报交流总结
2、达标检测
(一)根据规律,尝试解答:如图
1.摆20个三角形需要()根小棒;摆200个三角形需要()根小棒。
2.现在我有31根小棒,可以摆()个三角形。
根据规律填表
仔细观察每一排数的排列有什么规律,然后按规律在()内填上适当的数.
(1)2,4,8,16,(),64.
1、仔细研究表中内容,有哪些数学信息。
2、如果有61名学生活动,请你做好预算。
请根据收集到的资料,设计一份秋游方案。
(四)展示提升
1、汇报交流总结
2、达标检测
1、一年级有42名同学准备去划船,请设计租船方案,并算出租船的价钱?哪种方案最便宜?
2、有100人的旅行团准备租车外出旅游,有三种车辆可以选择,大客车每辆160元,限乘18人,面包车每辆120元,限乘12人,小轿车每辆50元,限乘4人,如果你是
(3)在有阳光时,大约每25 cm2
的树叶能在一天里释放足够一个人呼吸所需的氧气。这棵树在有阳光时,一天里释放的氧气能满足多少人呼吸的需要。
2、达标检测
课本91页练一练1、2、
(五)学习评价
【布置作业】习题册
公顷、平方千米
<> ()
【学习目标】
认识较大的面积单位公顷和平方千米,能感知1公顷和1平方千米的实际大小,并能进行简单的面积单位换算。
所以面积是()
把脚印看成近似的()形,上底是(),下底是(),高是(),所以面积是()
2、完成“成长的脚印”中的(3)题。
3、(三)合作探究
1、探究自主学习中的1、2
2、展示自主学习中的1、(3)
(四)展示提升
1、汇报交流总结
(1)估测一片树叶的面积。
(2)如果一棵树有10000片树叶,估算这棵树所有树叶的总面积。
【布置作业】
习题册
尝试与猜测
<> ()
【学习目标】
1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性;
2、尝试用不同的方法解决“鸡兔同笼”问题,体会代数方法的一般性;
3、在解决问题的过程中培养逻辑思维能力。
【学习重点难点预测】
用假设法、方程法解决“鸡兔同笼”问题。
【学习准备】
教学课件
【学习过程】
(一)新课导学
2、达标检测
(五)学习评价
谈一谈你对“鸡兔同笼”问题的收获和感悟。
【布置作业】
习题册
要求:1.根据小组实际情况选择研究方法
2.找到三角形个数与所需小棒根数之间的规律,得到10个三角形需要多少根小棒。三角形个数1 2 3 4……10 n
小棒根数
你发现了:
(三)合作探究
如下图
………
活动目的:利用小棒摆成正方形,找出所摆图形与所需小棒根数的规律。
活动要求:根据规律,得出10个正方形所需小棒根数。正角形个数1 2 3 4……10 n小棒根数
1、创设情境
正方形的面积=长方形的面积=平行四边形面积=三角形的面积=梯形的面积=
2、明确学习内容
这节课来探讨组合图形的面积
(二)自主学习
任务一:认识组合图形。
自学课本第88页内容,思考以下各题:
1、什么是组合图形?
2、生活中哪些地方有组合图形?
任务二:想办法计算组合图形的面积。(先独立尝试,再小组交流)
(五)学习评价
给自己一个合理的评级,看看自己应该得几个笑脸,最多三个。
【布置作业】
习题册
图形中的规律
<> ()
【学习目标】
1、通过摆图形,尝试找出用小棒根数与所摆三角形的个数的关系。
2.利用数量关系式表示出其中的规律,体验数学的简洁美。
3.通过探究活动掌握解决实际问题的策略和方法。
【学习重点难点预测】
1、自学例4.下图是一间房子侧面墙的形状,它的面积是多少平方米?
(1)我的想法:
(2)我的算法是:
(3)还有别的做法吗?
(三)合作探究
尝试练习:下面是一块正方形空心地砖,它实际占地面积是多少?
讨论总结:怎样求组合图形的面积?
(四)展示提升
1、汇报交流总结
2、达标检测
完成课后相关习题
(五)学习评价
【布置作业】
(2)1,4,9,16,(),36,49.64.(3)1,4,7,10,13,(),19,21.(4)1,4,16,64,(),1024,4096.(5)2,3,5,9,17,(),65,129.
(6)15,4,13,4,11,4,(),().(7)8,15,10,13,12,11,(),().
(五)学习评价
设计秋游方案