八年级数学三角形的中位线同步练习1
浙教版八年级数学下《4.5三角形中位线》同步练习含答案
《三角形中位线》同步练习题一、选择题1.△ABC 中,D 、E 分别是AB 、AC 边上的中点,若BC=8,则DE 等于( ) A. 5 B. 4 C. 3 D. 22.三角形的三条中位线长分别为3cm ,4cm ,6cm ,则原三角形的周长为( ) A. 6. 5cm B. 34cm C 26cm D. 52cm3.如图,在四边形ABCD 中,AB=CD ,M ,N ,P 分别AD ,BC ,BD 的中点,若∠MPN=130°,则∠NMP=( )A. 25°B. 30°C. 35°D. 50°第3题 第4题4.如图所示,已知点E 、F 分别是△ABC 中AC 、AB 边的中点,BE 、CF 相交于点G ,FG=3,则CF 的长为( )A .4B .4.5C .6D .9二、填空题5. 已知三角形的各边分别为8cm ,10cm ,12cm ,以各边中点为顶点的三角形的周长是_______。
7题 8题 6.顺次连结任意四边形各边中点所得到的四边形一定是__ ___.7.在四边形ABCD 中,AC=6cm ,BD =8cm ,E F G H ,,,分别是边AB BC CD DA ,,,的中点,则四边形EFGH 的周长为 .8. 如图,A 、B 两处被池塘隔开,为了测量A 、B 两处的距离,在AB 外选一适当的点C ,AFE C BGABCD E F GHFEC BA连接AC 、BC ,并分别取线段AC 、BC 的中点E 、F ,测得EF=22m ,则AB=__________m .三、证明题:9.如图,已知:在△ABC 中,D ,E ,F 分别是BC ,CA ,AB 的中点.求证:四边形AFDE 是平行四边行.10.如图,在四边形ABCD 中, E 、F 、G 、H 分别是AD 、BC 、BD 、AC 的中点。
请判断四边形EGFH 的形状,并说明理由。
备战中考数学专题练习(2021人教版)三角形的中位线卷一(含解析)
备战中考数学专题练习(2021人教版)三角形的中位线卷一(含解析)一、单项选择题1.如图,DE是△ABC的中位线,F是DE的中点,CF的延伸线交AB于点G,假定△CEF的面积为12cm2,那么S△DGF的值为〔〕A.4cm2B.6cm2C.8cm2D.9cm22.某地需求开拓一条隧道,隧道AB长度无法直接测量。
如下图,在空中上取一点C,使点C 均可直接抵达A、B两点,测量找到AC和BC的中点D、E,测得DE的长为1100m,那么隧道AB的长度为〔〕A.3300mB.2200mC.1100mD.550m3.如图,DE是△ABC的中位线,假定BC的长为3cm,那么DE的长是〔〕A.2cmB.1.5cmC.1.2cmD.1cm4.如图,在梯形中,,中位线与对角线交于两点,假定cm, cm,那么的长等于()A.10 cmB.13 cmC.20 cmD.26 cm5.如图,在△ABC中,点D、E区分是边AB、AC的中点,DE=6cm,那么BC的长是〔〕A.3cmB.12cmC.18cmD.9cm6.如下图,A ,B两点区分位于一个池塘的两端,小聪想用绳子测量A ,B间的距离,但绳子不够长,一位同窗帮他想了一个主意:先在地上取一个可以直接抵达A ,B的点C ,找到AC ,BC的中点D , E ,并且测出DE的长为10m,那么A ,B间的距离为〔〕A.15mB.25mC.30mD.20m7.如下图,四边形ABCD,R,P区分是DC,BC上的点,E,F区分是AP,RP的中点,当点P 在BC上从点B向点C移动而点R不动时,那么以下结论成立的是〔〕A.线段EF的长逐渐增大B.线段EF的长逐渐增加C.线段EF的长不变D.线段EF 的长不能确定8.如图,长方形ABCD,R,P区分是DC,BC上的点,E,F区分是AP,RP的中点,当点P 在BC上从点B向点C移动,而点R不动时,那么以下结论成立的是〔〕A.线段EF的长逐渐增大B.线段EF的长逐渐增加C.线段EF的长不变D.线段EF的长先增大后变小二、填空题9.如图,在△ABC中,D、E区分是边AB、AC的中点,BC=8,那么DE=________.10.如图,现需测量池塘边上A、B两点间的距离,小强在池塘外选取一个点C,衔接AC与BC并找到它们中点E、F,测得EF长为45米,那么池塘的宽AB为________米.11.如图,在△ABC中,AB=8,点D,E区分是BC,CA的中点,衔接DE,那么DE=________.12.:如图,在△ABC中,点D为BC上一点,CA=CD,CF平分△ACB,交AD于点F,点E为AB的中点.假定EF=2,那么BD=________13.如图,CD是△ABC的中线,点E,F区分是AC、DC的中点,EF=2,那么BD=________14.如图,△ABC中,AC、BC上的中线交于点O,且BE△AD.假定BD=10,BO=8,那么AO的长为________15.在△ABC中,D、E区分为边AB、AC的中点,假定△ADE的周长为3cm,那么△ABC的周长为________cm.16.如图,A,B,C三点在△O上,且AB是△O的直径,半径OD△AC,垂足为F,假定△A=30°,OF=3,那么BC=________三、解答题17.如图,点O是△ABC内恣意一点,G、D、E区分为AC、OA、OB的中点,F为BC上一动点,问四边形GDEF能否为平行四边形?假定可以,指出F点位置,并给予证明.18.如图,D、E区分是不等边三角形ABC〔即AB≠BC≠AC〕的边AB、AC的中点.O是△ABC 平面上的一动点,衔接OB、OC,G、F区分是OB、OC的中点,依次衔接点D、G、F、E.〔1〕如图,当点O在△ABC内时,求证:四边形DGFE是平行四边形;〔2〕假定衔接AO,且满足AO=BC,AO△BC.问此时四边形DGFE又是什么外形?并请说明理由.19.:如图,在四边形ABCD中,对角线AC、BD相交于点O,且AC=BD,E、F区分是AB、CD的中点,EF区分交BD、AC于点G、H.求证:OG=OH.四、综合题20.在学习三角形中位线的性质时,小亮对课本给出的处置方法停止了仔细思索:课本研讨三角形中位线性质的方法:如图①,△ABC中,D,E区分是AB,AC两边中点.求证:DE△BC,DE=BC.证明:延伸DE至点F,使EF=DE,衔接FC.…那么△ADE△△CFE.△…请你应用小亮的发现处置以下效果:〔1〕如图③,AD是△ABC的中线,BE交AC于点E,交AD于点F,且AE=EF,求证:AC=BF.请你协助小亮写出辅佐线作法并完成论证进程:〔2〕处置效果:如图⑤,在△ABC中,△B=45°,AB=10,BC=8,DE是△ABC的中位线.过点D,E作DF△EG,区分交BC于点F,G,过点A作MN△BC,区分与FD,GE的延伸线交于点M,N,那么四边形MFGN周长的最小值是________.21.如图,△1+△2=180°,△3=△B.〔1〕试判别△AED与△ACB的大小关系,并说明你的理由.〔2〕假定D、E、F区分是AB、AC、CD边上的中点,S四边形ADFE=4〔平方单位〕,求S△ABC.22.如图,在四边形ABCD中,AB=DC,E、F区分是AD、BC的中点,G、H区分是对角线BD、AC的中点.〔1〕求证:四边形EGFH是菱形〔2〕假定AB=,那么当△ABC+△DCB=90°时,求四边形EGFH的面积.答案解析局部一、单项选择题1.【答案】A【考点】三角形中位线定理【解析】【解答】解:如图,取CG的中点H,衔接EH,△E是AC的中点,△EH是△ACG的中位线,△EH△AD,△△GDF=△HEF,△F是DE的中点,△DF=EF,在△DFG和△EFH中,△△DFG△△EFH〔ASA〕,△FG=FH,S△EFH=S△DGF,又△FC=FH+HC=FH+GH=FH+FG+FH=3FH,△S△CEF=3S△EFH,△S△CEF=3S△DGF,△S△DGF=×12=4〔cm2〕.应选:A.【剖析】取CG的中点H,衔接EH,依据三角形的中位线定理可得EH△AD,再依据两直线平行,内错角相等可得△GDF=△HEF,然后应用〝角边角〞证明△DFG和△EFH全等,依据全等三角形对应边相等可得FG=FH,全等三角形的面积相等可得S△EFH=S△DGF,再求出FC=3FH,再依据等高的三角形的面积比等于底边的比求出两三角形的面积的比,从而得解.2.【答案】B【考点】三角形中位线定理【解析】【解答】解:△D,E区分是AC,BC的中点,△DE是△ABC的中位线,那么DE=AB,那么AB=2DE=2200m,应选B。
八年级数学下册第6章平行四边形6.4三角形的中位线定理
第6章6.4三角形的中位线定理一.选择题(共10小题)1.(2020•魏县二模)如图,△ABC中,D,E分别上边AB,AC的中点,若DE=3,则BC=()A.B.9 C.6 D.5(1题图)(2题图)(3题图)(4题图)2.(2020•山西)如图,在△ABC中,点D、E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是()A.8 B.10 C.12 D.143.(2020•怀柔区二模)如图所示,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为()A.15m B.25m C.30m D.20m4.(2020•南漳县模拟)如图,▱ABCD中,对角线AC,BD交于点O,点E是BC的中点.若OE=3cm,则AB 的长为()A.12cm B.9cm C.6cm D.3cm5.(2020•莆田模拟)如图,△ABC的中线BD、CE交于点O,连接OA,点G、F分别为OC、OB的中点,BC=8,AO=6,则四边形DEFG的周长为()A.12 B.14 C.16 D.18(5题图)(6题图)(7题图)(8题图)6.(2020春•宁城县期末)如图,已知矩形ABCD的对角线AC的长为10cm,连接各边中点E,F,G,H得四边形EFGH,则四边形EFGH的周长为()A.20cm B.20cm C.20cm D.25cm7.(2020春•抚州期末)如图,在△ABC中,AB=5,BC=6,AC=7,点D,E,F分别是△ABC三边的中点,则△DEF的周长为()A.9 B.10 C.11 D.128.(2020春•山亭区期末)如图,已知△ABC的周长是1,连接△ABC三边的中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个三角形…依此类推,则第2020个三角形的周长为()A.B.C.D.9.(2020•泰安)如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BF∥DE,与AE的延长线交于点F.若AB=6,则BF的长为()A.6 B.7 C.8 D.10(9题图)(10题图)(11题图)(12题图)10.(2020•邢台二模)如图,四边形ABCD的两条对角线AC、BD互相垂直,A1B1C1D1是四边形ABCD的中点四边形,如果AC=8,BD=10,那么四边形A1B1C1D1的面积为()A.20 B.40 C.36 D.10二.填空题(共10小题)11.(2020•河池)如图,在△ABC中,D、E分别是AB、AC的中点,若BC=10,则DE= .12.(2020•泰安)如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.若AB=8,AD=12,则四边形ENFM的周长为.13.(2020•盐城)如图,点D、E、F分别是△ABC各边的中点,连接DE、EF、DF.若△ABC的周长为10,则△DEF的周长为.(13题图)(14题图)(15题图)(16题图)14.(2020•衡阳)如图所示,小明为了测量学校里一池塘的宽度AB,选取可以直达A、B两点的点O处,再分别取OA、OB的中点M、N,量得MN=20m,则池塘的宽度AB为m.15.(2020•龙岩校级质检)如图,在△ABC中,∠ACB=60°,点D,E分别是AB,AC的中点,点F在线段DE上,连结AF,CF.若CF恰好平分∠ACB,则∠FAC的度数为.16.(2020•昌平区二模)已知:如图,在△A BC中,点D为BC上一点,CA=CD,CF平分∠ACB,交AD于点F,点E为AB的中点.若EF=2,则BD= .17.(2020春•南长区期末)如图,在△ABC中,点D在BC上,BD=AB,BM⊥AD于点M,N是AC的中点,连接MN.若AB=5,BC=8,则MN= .18.(2020春•薛城区期末)如图,四边形ABCD中,AD=BC,F、E、G分别是AB、CD、AC的中点,若∠DAC=20°,∠ACB=60°,则∠FEG=.(17题图)(18题图)(19题图)(20题图)19.(2020春•昌乐县期末)如图,在△ABC中,点M为BC的中点,AD平分∠BAC,且BD⊥AD于点D,延长BD交AC于点N.若AB=12,AC=18,则MD的长为.20.(2020春•胶州市期末)如图,△ABC中,D,E分别是AB,AC的中点,F是DE上一点,且AF⊥FC,若BC=9,DF=1,则AC的长为.三.解答题(共5小题)21.(2020秋•龙口市期末)如图,D、E分别是△ABC的边AB、AC的中点,点O是△ABC内部任意一点,连接OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E.求证:四边形DGFE是平行四边形.22.(2020•邵阳)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.23.(2020春•临清市期中)已知如图:在△ABC中,AB、BC、CA的中点分别是E、F、G,AD是高.求证:∠EDG=∠EFG.24.(2020春•泗阳县期末)如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)试判断线段DE与FH之间的数量关系,并说明理由;(2)求证:∠DHF=∠DEF.25.(2020春•工业园区期中)如图,M是△ABC的边BC的中点,AN平分∠BAC,且BN⊥AN,垂足为N,且AB=6,BC=10,MN=1.5,求△ABC的周长.青岛版八年级数学下册第6章6.4三角形的中位线定理同步训练题参考答案一.选择题(共10小题)1.C 2.C 3.D 4.C 5.B 6.A 7.A 8.D 9.C 10.A二.填空题(共10小题)11.5 12.20 13.5 14.40 15.60°16.4 17.18.20°19.3 20.7三.解答题(共5小题)21.证明:∵D、E分别是AB、AC边的中点,∴DE∥BC,且DE=BC,同理,GF∥BC,且GF=BC,∴DE∥GF且DE=GF,四边形DGFE是平行四边形.22.(1)证明:∵D、E分别为AB、AC的中点,∴DE BC,∵延长BC至点F,使CF=BC,∴DE FC,即DE=CF;(2)解:∵DE FC,∴四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=.23.证明:连接EG,∵E、F、G分别是AB、BC、CA的中点,∴EF为△ABC的中位线,EF=AC.(三角形的中位线等于第三边的一半)又∵AD⊥BC,∴∠ADC=90°,DG为直角△ADC斜边上的中线,∴DG=AC.(直角三角形斜边上的中线等于斜边的一半)∴DG=EF.同理DE=FG,EG=GE,∴△EFG≌△GDE(SSS).∴∠EDG=∠EFG.(23题图)(24题图)(25题图)24.解:(1)DE与FH相等.理由如下:∵D、E分别是AB、BC边的中点.∴ED∥AC,DE=AC,∵AH⊥BC,垂足为H,F是AC的中点,∴HF=AC,∴DE=FH.(2)∵DH=AB,AD=AB,∴AD=DH,∴∠DAH=∠DHA,同理可证:∠FAH=∠FHA,∴∠DHF=∠DAF,∵AD∥EF,D E∥AF,∴四边形ADEF是平行四边形,∴∠DEF=∠DAF,∴∠DHF=∠DEF.25.解:延长线段BN交AC于E.∵AN平分∠BAC,在△ABN和△AEN中,∴△ABN≌△AEN(SAS),∴AE=AB=6,BN=NE,又∵M是△ABC的边BC的中点,∴CE=2MN=2×1.5=3,∴△ABC的周长是AB+BC+AC=6+10+6+3=25.2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知x1,x2是关于x的方程x2+ax-2b=0的两个实数根,且x1+x2=-2,x1·x2=1,则b a的值是( ) A.B.-C.4 D.-12.如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是()A.B.C.D.3.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABCC.AB2=AD•AC D.AD AB AB BC4.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.725.在下面的四个几何体中,左视图与主视图不相同的几何体是()A.B.C.D.6.如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()A.B.C.D.7.如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°8.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有()A.1对B.2对C.3对D.4对9.在同一坐标系中,反比例函数y=kx与二次函数y=kx2+k(k≠0)的图象可能为()A.B.C.D.10.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB,BD于M,N 两点.若AM=2,则线段ON的长为( )A.22B.32C.1 D.6211.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是()A.m<﹣1 B.m<1 C.m>﹣1 D.m>112.某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间x(min)的关系如图所示,水温从100℃降到35℃所用的时间是()A.27分钟B.20分钟C.13分钟D.7分钟二、填空题:(本大题共6个小题,每小题4分,共24分.)13.写出一个大于3且小于4的无理数:___________.14.对于二次函数y=x2﹣4x+4,当自变量x满足a≤x≤3时,函数值y的取值范围为0≤y≤1,则a的取值范围为__.15.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m.水面下降2.5m,水面宽度增加_____m.16.如图,Y ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE 的周长为.17.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.18.如图,在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB上,点E 在OB的延长线上,当正方形CDEF的边长为4时,阴影部分的面积为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知A(3,0),B(0,﹣1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC.如图1,求C点坐标;如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角△BPQ,连接CQ,当点P在线段OA上,求证:PA=CQ;在(2)的条件下若C、P,Q三点共线,求此时∠APB 的度数及P点坐标.20.(6分)有A、B两组卡片共1张,A组的三张分别写有数字2,4,6,B组的两张分别写有3,1.它们除了数字外没有任何区别,随机从A组抽取一张,求抽到数字为2的概率;随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?21.(6分)手机下载一个APP、缴纳一定数额的押金,就能以每小时0.5到1元的价格解锁一辆自行车任意骑行,共享单车为解决市民出行的“最后一公里”难题帮了大忙,人们在享受科技进步、共享经济带来的便利的同时,随意停放、加装私锁、推车下河、大卸八块等毁坏共享单车的行为也层出不穷•某共享单车公司一月投入部分自行车进入市场,一月底发现损坏率不低于10%,二月初又投入1200辆进入市场,使可使用的自行车达到7500辆.一月份该公司投入市场的自行车至少有多少辆?二月份的损坏率为20%,进入三月份,该公司新投入市场的自行车比二月份增长4a%,由于媒体的关注,毁坏共享单车的行为点燃了国民素质的大讨论,三月份的损坏率下降为14a%,三月底可使用的自行车达到7752辆,求a的值.22.(8分)先化简,再求值:2231422a a aa a a-÷--+-,其中a与2,3构成ABC∆的三边,且a为整数.23.(8分)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B、C两点的俯角分别为45°、35°.已知大桥BC与地面在同一水平面上,其长度为100m,求热气球离地面的高度.(结果保留整数)(参考数据:sin35°=0.57,cos35°=0.82,tan35°=0.70)24.(10分)孔明同学对本校学生会组织的“为贫困山区献爱心”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.如图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:10:8,又知此次调查中捐款30元的学生一共16人.孔明同学调查的这组学生共有_______人;这组数据的众数是_____元,中位数是_____元;若该校有2000名学生,都进行了捐款,估计全校学生共捐款多少元?25.(10分)如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.求证:△ADE≌△CBF;求证:四边形BFDE为矩形.26.(12分)已知抛物线y=ax2﹣bx.若此抛物线与直线y=x只有一个公共点,且向右平移1个单位长度后,刚好过点(3,1).①求此抛物线的解析式;②以y轴上的点P(1,n)为中心,作该抛物线关于点P对称的抛物线y',若这两条抛物线有公共点,求n的取值范围;若a>1,将此抛物线向上平移c个单位(c>1),当x=c时,y=1;当1<x<c时,y>1.试比较ac与1的大小,并说明理由.27.(12分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为w元.求w与x之间的函数关系式.该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据根与系数的关系和已知x1+x2和x1•x2的值,可求a、b的值,再代入求值即可.【详解】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=,∴b a=()2=.故选A.2.A【解析】分析:根据从上面看得到的图形是俯视图,可得答案.详解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:A.点睛:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.3.D【解析】【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【详解】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴AC ABAB AD,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、ADAB=ABBC不能判定△ADB∽△ABC,故此选项符合题意.故选D.【点睛】点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.4.D【解析】设第一个数为x,则第二个数为x+7,第三个数为x+1.列出三个数的和的方程,再根据选项解出x,看是否存在.解:设第一个数为x,则第二个数为x+7,第三个数为x+1故三个数的和为x+x+7+x+1=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=2.故任意圈出一竖列上相邻的三个数的和不可能是3.故选D.“点睛“此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.5.B【解析】【分析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B.【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.6.C【解析】【分析】根据左视图是从左面看所得到的图形进行解答即可.【详解】从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.故选:C.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.7.B【解析】试题分析:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.由旋转的性质可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故选B.考点:旋转的性质.8.C【解析】∵∠ACB=90°,CD⊥AB,∴△ABC∽△ACD,△ACD∽CBD,△ABC ∽CBD ,所以有三对相似三角形.故选C .9.D【解析】【分析】根据k >0,k <0,结合两个函数的图象及其性质分类讨论.【详解】分两种情况讨论:①当k <0时,反比例函数y=k x ,在二、四象限,而二次函数y=kx 2+k 开口向上下与y 轴交点在原点下方,D 符合;②当k >0时,反比例函数y=k x ,在一、三象限,而二次函数y=kx 2+k 开口向上,与y 轴交点在原点上方,都不符.分析可得:它们在同一直角坐标系中的图象大致是D .故选D .【点睛】本题主要考查二次函数、反比例函数的图象特点.10.C【解析】【分析】作MH ⊥AC 于H ,如图,根据正方形的性质得∠MAH=45°,则△AMH 为等腰直角三角形,所以,再根据角平分线性质得,则,于是利用正方形的性质得到+2,OC=12+1,所以△CON ∽△CHM ,再利用相似比可计算出ON 的长.【详解】试题分析:作MH ⊥AC 于H ,如图,∵四边形ABCD为正方形,∴∠MAH=45°,∴△AMH为等腰直角三角形,∴AH=MH=22AM=22×2,∵CM平分∠ACB,∴2,∴2,∴22(2)2,∴OC=122+1,CH=AC﹣2+222,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴ON OCMH CH=21222+=+∴ON=1.故选C.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和正方形的性质.11.B【解析】【分析】根据方程有两个不相等的实数根结合根的判别式即可得出△=4-4m>0,解之即可得出结论.【详解】∵关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,∴△=(-2)2-4m=4-4m>0,解得:m<1.故选B.【点睛】本题考查了根的判别式,熟练掌握“当△>0时,方程有两个不相等的两个实数根”是解题的关键.12.C【解析】【分析】先利用待定系数法求函数解析式,然后将y=35代入,从而求解.【详解】解:设反比例函数关系式为:kyx=,将(7,100)代入,得k=700,∴700yx =,将y=35代入700yx =,解得20x=;∴水温从100℃降到35℃所用的时间是:20-7=13,故选C.【点睛】本题考查反比例函数的应用,利用数形结合思想解题是关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13π等,答案不唯一.【解析】【详解】本题考查无理数的概念.无限不循环小数叫做无理数.介于3和4之间的无理数有无穷多个,因为2239,416==,故而9和16L都是无理数.14.1≤a≤1【解析】【分析】根据y的取值范围可以求得相应的x的取值范围.【详解】解:∵二次函数y=x1﹣4x+4=(x﹣1)1,∴该函数的顶点坐标为(1,0),对称轴为:x=﹣42 22ba-=-=,把y=0代入解析式可得:x=1,把y=1代入解析式可得:x1=3,x1=1,所以函数值y的取值范围为0≤y≤1时,自变量x的范围为1≤x≤3,故可得:1≤a≤1,故答案为:1≤a≤1.【点睛】此题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.15.1.【解析】【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把y=-1.5代入抛物线解析式得出水面宽度,即可得出答案【详解】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O 为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半1米,抛物线顶点C坐标为(0,1),设顶点式y=ax1+1,把A点坐标(-1,0)代入得a=-0.5,∴抛物线解析式为y=-0.5x1+1,当水面下降1.5米,通过抛物线在图上的观察可转化为:当y=-1.5时,对应的抛物线上两点之间的距离,也就是直线y=-1与抛物线相交的两点之间的距离,可以通过把y=-1.5代入抛物线解析式得出:-1.5=-0.5x1+1,解得:x=±3,1×3-4=1,所以水面下降1.5m,水面宽度增加1米.故答案为1.【点睛】本题考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键,学会把实际问题转化为二次函数,利用二次函数的性质解决问题,属于中考常考题型.16.1.【解析】∵ABCD的周长为33,∴2(BC+CD)=33,则BC+CD=2.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=BD=3.又∵点E是CD的中点,∴OE是△BCD的中位线,DE=CD.∴OE=BC.∴△DOE的周长="OD+OE+DE=" OD +12(BC+CD)=3+9=1,即△DOE的周长为1.17.40°【解析】【分析】直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.【详解】如图所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,∵∠1+∠2+∠3+∠4=220°,∴∠1+∠2+∠6+∠3+∠4+∠7=360°,∴∠6+∠7=140°,∴∠5=180°-(∠6+∠7)=40°.故答案为40°.【点睛】主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.18.4π﹣1【解析】分析:连结OC,根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积-三角形ODC 的面积,依此列式计算即可求解.详解:连接OC ∵在扇形AOB 中∠AOB=90°,正方形CDEF 的顶点C 是»AB 的中点,∴∠COD=45°,∴22,∴阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积 =22451(42)43602π⨯⨯-⨯=4π-1. 故答案是:4π-1.点睛:考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(1)C (1,-4).(2)证明见解析;(3)∠APB=135°,P (1,0).【解析】【分析】(1)作CH ⊥y 轴于H ,证明△ABO ≌△BCH ,根据全等三角形的性质得到BH=OA=3,CH=OB=1,求出OH ,得到C 点坐标;(2)证明△PBA ≌△QBC ,根据全等三角形的性质得到PA=CQ ;(3)根据C 、P ,Q 三点共线,得到∠BQC=135°,根据全等三角形的性质得到∠BPA=∠BQC=135°,根据等腰三角形的性质求出OP ,得到P 点坐标.【详解】(1)作CH ⊥y 轴于H ,则∠BCH+∠CBH=90°,∵AB ⊥BC ,∴∠A BO+∠CBH=90°,∴∠ABO=∠BCH ,在△ABO 和△BCH 中,ABO BCHAOB BHC AB BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABO ≌△BCH ,∴BH=OA=3,CH=OB=1,∴OH=OB+BH=4,∴C 点坐标为(1,﹣4);(2)∵∠PBQ=∠ABC=90°,∴∠PBQ ﹣∠ABQ=∠ABC ﹣∠ABQ ,即∠PBA=∠QBC , 在△PBA 和△QBC 中,BP BQPBA QBC BA BC=⎧⎪∠=∠⎨⎪=⎩,∴△PBA ≌△QBC ,∴PA=CQ ;(3)∵△BPQ 是等腰直角三角形,∴∠BQP=45°,当C 、P ,Q 三点共线时,∠BQC=135°, 由(2)可知,△PBA ≌△QBC ,∴∠BPA=∠BQC=135°,∴∠OPB=45°,∴OP=OB=1,∴P点坐标为(1,0).【点睛】本题考查的是全等三角形的判定和性质、三角形的外角的性质,掌握全等三角形的判定定理和性质定理是解题的关键.20.(1)P(抽到数字为2)=13;(2)不公平,理由见解析.【解析】试题分析:(1)根据概率的定义列式即可;(2)画出树状图,然后根据概率的意义分别求出甲、乙获胜的概率,从而得解.试题解析: (1)P=13;(2)由题意画出树状图如下:一共有6种情况,甲获胜的情况有4种,P=42 63 =,乙获胜的情况有2种,P=21 63 =,所以,这样的游戏规则对甲乙双方不公平.考点:游戏公平性;列表法与树状图法.21.(1)7000辆;(2)a的值是1.【解析】【分析】(1)设一月份该公司投入市场的自行车x辆,根据损坏率不低于10%,可得不等量关系:一月初投入的自行车-一月底可用的自行车≥一月损坏的自行车列不等式求解;(2)根据三月底可使用的自行车达到7752辆,可得等量关系为:(二月份剩余的可用自行车+三月初投入的自行车)×三月份的损耗率=7752辆列方程求解.【详解】解:(1)设一月份该公司投入市场的自行车x辆,x﹣(7500﹣110)≥10%x,解得x≥7000,答:一月份该公司投入市场的自行车至少有7000辆;(2)由题意可得,[7500×(1﹣1%)+110(1+4a%)](1﹣14a%)=7752, 化简,得a 2﹣250a+4600=0,解得:a 1=230,a 2=1, ∵1%20%4a <,解得a <80,∴a=1,答:a 的值是1.【点睛】本题考查了一元一次不等式和一元二次方程的实际应用,根据一月底的损坏率不低于10%找出不等量关系式解答(1)的关键;根据三月底可使用的自行车达到7752辆找出等量关系是解答(2)的关键. 22.1【解析】试题分析:先进行分式的除法运算,再进行分式的加减法运算,根据三角形三边的关系确定出a 的值,然后代入进行计算即可.试题解析:原式=()()()()()()()()()2113212232323233aa a a a a a a a a a a a a a a +--⋅+=+==+--------- , ∵a 与2、3构成△ABC 的三边,∴3−2<a<3+2,即1<a<5,又∵a 为整数,∴a=2或3或4,∵当x=2或3时,原分式无意义,应舍去,∴当a=4时,原式=14-3=1 23.热气球离地面的高度约为1米.【解析】【分析】作AD ⊥BC 交CB 的延长线于D ,设AD 为x ,表示出DB 和DC ,根据正切的概念求出x 的值即可.【详解】解:作AD ⊥BC 交CB 的延长线于D ,设AD 为x ,由题意得,∠ABD=45°,∠ACD=35°,在Rt △ADB 中,∠ABD=45°,∴DB=x ,在Rt △ADC 中,∠ACD=35°,∴tan ∠ACD=AD CD, ∴ 100x x = 710 , 解得,x≈1.答:热气球离地面的高度约为1米.【点睛】考查的是解直角三角形的应用,理解仰角和俯角的概念、掌握锐角三角函数的概念是解题的关键,解答时,注意正确作出辅助线构造直角三角形.24.(1)60;(2)20,20;(3)38000【解析】【分析】(1)利用从左到右各长方形高度之比为3:4:5:10:8,可设捐5元、10元、15元、20元和30元的人数分别为3x 、4x 、5x 、10x 、8x ,则根据题意得8x=1,解得x=2,然后计算3x+4x+5x++10x+8x 即可; (2)先确定各组的人数,然后根据中位数和众数的定义求解;(3)先计算出样本的加权平均数,然后利用样本平均数估计总体,用2000乘以样本平均数即可.【详解】(1)设捐5元、10元、15元、20元和30元的人数分别为3x 、4x 、5x 、10x 、8x ,则8x=1,解得:x=2,∴3x+4x+5x+10x+8x=30x=30×2=60(人);(2)捐5元、10元、15元、20元和30元的人数分别为6,8,10,20,1.∵20出现次数最多,∴众数为20元;∵共有60个数据,第30个和第31个数据落在第四组内,∴中位数为20元;(3)5610815102020301660⨯+⨯+⨯+⨯+⨯⨯2000=38000(元),∴估算全校学生共捐款38000元. 【点睛】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.也考查了样本估计总体、中位数与众数.25.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)由DE 与AB 垂直,BF 与CD 垂直,得到一对直角相等,再由ABCD 为平行四边形得到AD=BC ,对角相等,利用AAS 即可的值;(2)由平行四边形的对边平行得到DC 与AB 平行,得到∠CDE 为直角,利用三个角为直角的四边形为矩形即可的值.【详解】解:(1)∵DE ⊥AB ,BF ⊥CD ,∴∠AED=∠CFB=90°,∵四边形ABCD 为平行四边形,∴AD=BC ,∠A=∠C ,在△ADE 和△CBF 中,{AED CFBA CAD BC ∠=∠∠=∠=,∴△ADE ≌△CBF (AAS );(2)∵四边形ABCD 为平行四边形,∴CD ∥AB ,∴∠CDE+∠DEB=180°,∵∠DEB=90°,∴∠CDE=90°,∴∠CDE=∠DEB=∠BFD=90°,则四边形BFDE 为矩形.【点睛】本题考查1.矩形的判定;2.全等三角形的判定与性质;3.平行四边形的性质.26.(1)①212y x x =-+;②n≤1;(2)ac≤1,见解析. 【解析】【分析】(1)①△=1求解b =1,将点(3,1)代入平移后解析式,即可;②顶点为(1,12)关于P (1,n )对称点的坐标是(﹣1,2n ﹣12),关于点P 中心对称的新抛物线y'=12(x+1)2+2n ﹣12=12x 2+x+2n ,联立方程组即可求n 的范围; (2)将点(c ,1)代入y =ax 2﹣bx+c 得到ac ﹣b+1=1,b =ac+1,当1<x <c 时,y >1. b 2a≥c ,b≥2ac ,ac+1≥2ac ,ac≥1;【详解】解:(1)①ax 2﹣bx =x ,ax 2﹣(b+1)x =1,△=(b+1)2=1,b =﹣1,平移后的抛物线y =a (x ﹣1)2﹣b (x ﹣1)过点(3,1),∴4a ﹣2b =1,∴a =﹣12,b =﹣1,原抛物线:y =﹣12x 2+x ,②其顶点为(1,12)关于P (1,n )对称点的坐标是(﹣1,2n ﹣12),∴关于点P 中心对称的新抛物线y'=12(x+1)2+2n ﹣12=12x 2+x+2n . 由221y=x +x+2n21y=-x +x2⎧⎪⎪⎨⎪⎪⎩得:x 2+2n =1有解,所以n≤1.(2)由题知:a >1,将此抛物线y =ax 2﹣bx 向上平移c 个单位(c >1),其解析式为:y =ax 2﹣bx+c 过点(c ,1),∴ac 2﹣bc+c =1 (c >1),∴ac ﹣b+1=1,b =ac+1,且当x =1时,y =c ,对称轴:x =b2a ,抛物线开口向上,画草图如右所示.由题知,当1<x <c 时,y >1. ∴b2a ≥c ,b≥2ac ,∴ac+1≥2ac ,ac≤1;【点睛】本题考查二次函数的图象及性质;掌握二次函数图象平移时改变位置,而a 的值不变是解题的关键. 27. (1)2w 2x 120x 1600=-+-;(2) 该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元;(3)该农户想要每天获得150元的销售利润,销售价应定为每千克25元.【解析】【分析】(1)根据销售额=销售量×销售价单x ,列出函数关系式.(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.(3)把y=150代入(2)的函数关系式中,解一元二次方程求x ,根据x 的取值范围求x 的值.【详解】解:(1)由题意得:()()()2w x 20y x 202x 802x 120x 1600=-⋅=--+=-+-,∴w 与x 的函数关系式为:2w 2x 120x 1600=-+-.(2)()22w 2x 120x 16002x 30200=-+-=--+,∵﹣2<0,∴当x=30时,w 有最大值.w 最大值为2.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元.(3)当w=150时,可得方程﹣2(x ﹣30)2+2=150,解得x 1=25,x 2=3.∵3>28,∴x 2=3不符合题意,应舍去.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.。
人教版八年级数学下册三角形的中位线练习题(含答案)
三角形的中位线练习题三角形中位线定义:___________________________________________符号语言:在△ ABC中,D、E分别是AB、AC的中点, 则:线段DE "ABC的,三不同点:①三角形中位线的两个端点都是三角形边的中点。
②三角形中线只有一个端点是边的中点,另一端点是三角形一个顶点相同点:都是一条线段,都有三条符号语言表述:.••。
£是/\ ABC的中位线(或AD=BD,AE=CE)二DE//% BC练习1 .连结三角形的线段叫做三角形的中位线.2 .三角形的中位线于第三边,并且等于3 .一个三角形的中位线有条.4. 如图△ ABC中,以E分别是ABAC的中点,则线段CD^A ABC的,线段。
£是左AB5、如图,以E、F分别是△ ABC各边的中点(1) 如果EF= 4cm,那么BB cm如果AA 10cm,那么DA cm(2) 中线AD与中位线EF的关系是6. 如图1所示,EF是△ ABC的中位线,若BC=8cm则EF=cm⑴(2) (3) ⑷7. 三角形的三边长分别是3cm 5cm, 6cm,则连结三边中点所围成的三角形的周长是cm.8. 在Rt △ ABC中,/ C=90° , AC=?5 ?BC=?12 ?则连结两条直角边中点的线段长为 .9. 若三角形的三条中位线长分别为2cm, 3cm, 4cm,则原三角形的周长为三角形中位线定理:( )A . 4.5cmB . 18cmC . 9cmD . 36cm10. 如图2所示,A, B两点分别位于一个池塘的两端,小聪想用绳子测量A, B间的距离,但绳子不够长,一位的长为10m 则A, B 间的距离为( ) A . 15m B . 25m C . 30m D . 20m11. 已知△ ABC 的周长为1,连结△ ABC 的三边中点构成第二个三角形,从点B 向点C 移动而点R 不动时, 那么下列结论成立的是( )A .线段EF 的长逐渐增大B .线段EF 的长逐渐减少20 C . 30 D . 4014. 如图所示, 口 ABCD 的对角线 AC, BD 相交于点 O, AE=EB 求证:OE//BC.15. 已知矩形 ABCD 中,AB=4cm, AD=10cm ,点P 在边BC 上移动,点 分别是 AB 、AP 、DP 、DC 的中点.求证:EF+GH=5cm ;16. 如图所示,在△ ABC 中,点D 在BC 上且CD=CA CF 平分Z ACB AE=EB 求证: 1EF=—BD.C .线段EF 的长不变D .线段EF 的长不能确定13.如图 4,在^ ABC 中,E, D,F 分别是AB, BC CA 的中点,AB=6, AC=4,则四边形 AEDF?勺周长是()同学帮他想了一个主意:先在地上取一个可以直接到达 A, B 的点C,找到AC, BC 的中点D, E,并且测出DE?再连结第二个三角形的三边中点构成第三个三角形,依此类推,第 2010个三角形的周长是 A 、1 20082009200822009212.如图3所示,已知四边形 ABCD R, P 分别是DC BC 上的点, E, F 分别是 AP, RP 的中点,当点 P 在BC 上217. 如图所示,已知在口ABCg, E, F分别是AD, BC的中点,求证: MM/BC.四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.EFGH是平行四边形.21.如图5,在四边形ABCD中,点E是线段AD上的任意一点(BE, BC, CE的中点.证明四边形EGFH是平行四边形;22如图,在四边形ABCD中,AD=BC,点E, F, G分别是AB , CD,图5AC的中点。
人教版初中数学八年级下册同步练习题18.1.2平行四边形的判定(4)——三角形的中位线
18.1.2平行四边形的判定(4)一一三角形的中位线课堂学习检测一、填空题:1.(1)三角形的中位线的定义:连结三角形两边叫做三角形的中位线.(2)三角形的中位线定理是三角形的中位线三边,并且等于2.如图,△43。
的周长为64,E、F、G分别为WA AC.■的中点,』'、6'、C分别为研EG、GF的中点,△/'B'C的周长为.如果及7、4EFG、△』'B'C分别为第1个、第2个、第3个三角形,按照上述方法继续作三角形,那么第〃个三角形的周长是•3.中,D、E分别为45、"。
的中点,若座=4,AD=3,AE=2,则■的周长为—二、解答题4.已知:如图,四边形/列中,E、F、G、日分别是/以Ba CD、以的中点.求证:四边形麽诳是平行四边形.5.已知:网的中线初、堡交于点。
F、G分别是缪、%的中点.求证:四边形力碰是平行四边形.综合、运用、诊断6.已知:如图,E为6BCD中庞'边的延长线上的一点,代CE=DC,连结如'分别交应;刃于点尺G,连结4C交初于。
连结必求证:AB=20F.7.已知:如图,在曲时中,£是⑦的中点,尸是/的中点,FC与BE交于G.求证:GF=GC.E CAD.8.已知:如图,在四边形曲%中,AD=BC, E 、尸分别是力C 、/边的中点,死'的延长线分别与如、BC的延长线交于〃、G 点.求证:/AHF=/BGF.拓展、探究、思考9.已知:如图,网中,力是此'边的中点,北'平分ZBAC, BELAE 于E 点,若AB=5, AC=7,求应Z 10.如图在中,D 、E 分别为』弥上的点,巨BD=CE, < "分别是庞、,的中点.过刎的直线交AB 于P,交如于。
线段#、40相等吗?为什么?A参考答案1.(1)中点的线段;(2)平行于三角形的,第三边的一半.2.16,64X(-)71-1.3.18.24.提示:可连结刃(或AC).5.略.6.连结庞CE』ABnUABECnBF=FC.DABCD=>AO=OC,:.AB=20F.7.提示:取座的中点R证明四边形庭烈'是平行四边形.8.提示:连结』G取』C的中点M再分别连结依MF,可得£¥=成9.ED=\,提示:延长冏?,交/C于尸点.10.提示:AP^AQ,取网的中点&连接洌NH.证明zMW是等腰三角形,进而证明/AP4ZAQP.最新人教版八年级数学下册期中综合检测卷考试用时:120分钟,试卷满分:120分一、选择题(每小题3分,共30分)1.若式子后3在实数范围内有意义,则x的取值范围是()A.xN3B.xW3C.x>3D.x<32.下列各组数中,能构成直角三角形的是()A.4,5,6B.l,1,a/2C.6,8,11D.5,12,233.下列各式是最简二次根式的是()A.炯B.V7C.a/20D,V034.下列运算正确的是()A.yfs-=B.=2?C.-'Jl=^2D.』(2一赃V=2-sf55.方程I 4x-8 I +Jx-y-m=O,当y>0时,m 的取值范围是()A.O<m<lB.mN2C.mW2D.m<26.若一个三角形的三边长为6,8, x,则此三角形是直角三角形时,x 的值是()A.8 B.10 C.2a /7 D.10 或 2妗7. 将直角三角形的各边都缩小或扩大同样的倍数后,得到的三角形( )A.可能是锐角三角形B.不可能是直角三角形C.仍然是直角三角形D.可能是钝角三角形8. 能判定四边形ABCD 为平行四边形的题设是( )A.AB〃CD, AD=BCB.AB=CD, AD=BCC.ZA=ZB, ZC=ZDD.AB=AD, CB=CD 9.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是()A.当AB=BC 时,它是菱形C.当ZABC=90°时,它是矩形 B.当ACLBD 时,它是菱形D.当AC=BD 时,它是正方形第9题图 第10题图第13题图 第15题图10.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF, AE 、BF 相交于点O, 下列结论:(1)AE=BF ; (2) AE±BF ; (3) AO=OE ; (4)S aaob =S 四边形 deof 中正确的有( )A.4个B.3个C.2个D.1个二、填空题(每小题3分,共24分)11.已知最简二次根式』4a+3b与'刈2a-b+6可以合并,则ab=.12.若直角三角形的两直角边长为a、b,且满足V«2-6a+9+I b-4I=0,则该直角三角形的斜边长为.2513.如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积S1=—n,8S2=2n,则S3=.14.四边形ABCD的对角线AC,BD相交于点O,AC±BD,且OB=OD,请你添加一个适当的条件,使四边形ABCD成为菱形(只需添加一个即可).15.如图,^ABC在正方形网格中,若小方格边长为1,则^ABC的形状是16.已知菱形ABCD中,对角线AC与BD相交于点O,ZBAD=120°,AC=4,则该菱形的面积是•17.AABC中,若AB=15,AC=13,高AD=12,则AABC的周长是.18.如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A,C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P为线段BC上的点.小明同学写出了一个以OD为腰的等腰三角形ODP的顶点P的坐标(3,4),请你写出其余所有符合这个条件的P 点坐标■三、解答题(共66分)19.(8分)计算下列各题:(1)(a/48-4J-)-(3J--2^5);(2)(2—迅严比•(2+V3)2016-2X|-^|-(-V3)°.220.(8分)如图是一块地,已知AD=4m,CD=3m,AB=13m,BC=12m,且CD±AD,求这块地的面积.21.(8分)已知9+血与9—应的小数部分分别为a,b,试求ab~3a+4b~7的值.22.(10分)如图,在等腰直角三角形ABC中,ZABC=90°,D为AC边上中点,过D点作DEXDF,交AB于E,交BC于F,若AE=4,FC=3,求EF的长.23.(10分)如图,^ABC是直角三角形,且ZABC=90°,四边形BCDE是平行四边形, E为AC的中点,BD平分ZABC,点F在AB上,且BF=BC.求证:(1)DF=AE;(2)DF±AC.24.(10分)如图,四边形ABCD是一个菱形绿地,其周长为402m,ZABC=120°,在其内部有一个四边形花坛EFGH,其四个顶点恰好在菱形ABCD各边的中点,现在准备在花坛中种植茉莉花,其单价为10元/r^,请问需投资金多少元?(结果保留整数)25.(12分)(1)如图①,已知△ABC,以AB、AC为边向^ABC外作等边AABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写作法,保留作图痕迹)(2)如图②,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE 和CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图③,要测量池塘两岸相对的两点B,E的距离,已经测得ZABC=45°CAE=90°,AB=BC=100米,AC=AE,求BE的长.最新人教版八年级数学下册期末综合检测卷一、选择题(每小题3分,共30分)1.二次根式而i 、屈、应、Jx + 2、j40f 、J/ +》2中,最简二次根式有()A.1个B.2个C.3个D.4个2.若式子目有意义,则x 的取值范围为()A.xN4B.x 尹 3C.x34 或 x 乂3D.x34 且 x 尹33.下列计算正确的是( )A.a /4 X ^/6=4a /6B 疝+痴=应C.何:屁22 D.J(-15)2=-154.在 RtAABC 中,ZACB=90° , AC=9, BC=12,则点 C 到 AB 的距离是( )A 36「12A,—— B.—5 25厂 9、30C. — D.----4 45.平行四边形ABCD 中,ZB=4ZA,则ZC=()A.18° B.36° C.72° D.144°6.如图,菱形ABCD 的两条对角线相交于O,菱形的周长是20 cm, AC : BD=4 : 3,则菱形的面积是()A.12 cm 2 B.24 cm 2 C.48 cm 2 D.96 cm 2第6题图第8题图第10题图X =-17.若方程组(2工+*=3的解是.贝I直线y=—2x+b与y=x—a\x-y=a的交点坐标是()A.(-l,3)B.(l,-3)C.(3,-1)D.(3,1)8.甲、乙两人在一次百米赛跑中,路程s(m)与赛跑时间t(s)的关系如图所示,则下列说法正确的是()A.甲、乙两人的速度相同B.甲先到达终点C.乙用的时间短D.乙比甲跑的路程多9.在我市举行的中学生春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩(m) 1.50 1.60 1.65 1.70 1.75 1.80人数124332这些运动员跳高成绩的中位数和众数分别是()A.1.70, 1.65B.1.70, 1.70C.1.65, 1.70D.3,410.如图,在^ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE±AB于E,PF±AC 于F,M为EF中点,则AM的最小值为()二、填空题(每小题3分,共24分)11.当x=时,二次根式x+1有最小值,最小值为12.已知a,b,c是^ABC的三边长,且满足关系式yjc2-a2-b2+\a-b\=O,则Z^ABC的形状为13.平行四边形ABCD的两条对角线AC、BD相交于点O,AB=13,AC=10,DB=24,则四边形ABCD的周长为.14.如图,一次函数"灯x+bi y2=k2x+b2的图象相交于A(3,2),则不等式(k2—/ci)x+b2 -bi>0的解集为第14题图第16题图第18题图15.在数据一1,0,3,5,8中插入一个数据X,使得该组数据的中位数为3,则x的值为16.如图,3XBCD中,E、F分别在CD和BC的延长线上,ZECF=60°,AE〃BD,EF1BC, EF=2,则AB的长是.17.(山东临沂中考)某中学随机抽查了50名学生,了解他们一周的课外阅读时间,结果如下表所示:时间(小时)4567人数1020155则这50名学生一周的平均课外阅读时间是小时.18.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD 上,下列结论:①CE=CF,②ZAEB=75°,③BE+DF=EF,④S正方形ABCD=2+0,其中正确的序号是.(把你认为正确的都填上)三、解答题(共66分)19.(8分)计算下列各题:(1)12V2-31-+a/18(2)先化简,再求值:"+。
2020-2021学年北师大版八年级数学下册第六章 6.3三角形的中位线 同步练习题
2020-2021学年北师大版八年级数学下册第六章 6.3三角形的中位线同步练习题A组(基础题)一、填空题1.如图,▱ABCD的对角线AC,BD相交于点O,E是AB的中点,△BEO的周长是8,则△BCD的周长为_____________.2.如图,跷跷板AB的支柱OD经过它的中点O,且垂直于地面BC,垂足为D,OD=50 cm,当它的一端B着地时,另一端A离地面的高度AC为________.3.如图,在△ABC中,点D,E,F分别是AB,AC,BC的中点,已知∠ADE=65°,则∠CFE的度数为________.4.如图,DE为△ABC的中位线,点F在DE上,且∠AFC为直角.若DF=2 cm,BC=16 cm,则AC的长为________cm.二、选择题5.如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连接OE.若∠ABC =60°,∠BAC=80°,则∠1的度数为( )A.50° B.40° C.30°D.20°6.如图,在△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足为E,F是BC的中点.若BD=10,则EF的长为( )A.8 B.10 C.5 D.47.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于点H,FD=8,则HE=( )A.20 B.16 C.12 D.88.以三角形的一条中位线和第三边上的中线为对角线的四边形是( )A.梯形 B.平行四边形C.菱形 D.矩形三、解答题9.(1)如图,BD是△ABC的高,E,F,G分别是BC,AC,AB的中点.求证FG=DE;(2)如图,D是△ABC内一点,BD⊥CD,AD=7,BD=4,CD=3,E,F,G,H分别是AB,BD,CD,AC的中点,求四边形EFGH的周长.10.(1)如图,在Rt△ABC中,∠BAC=90°,D,E分别是AB,BC的中点,点F在CA 的延长线上,∠FDA=∠B,AC=9,AB=12,求四边形AEDF的周长;(2)如图,在△ABC 中,AD ,AE 分别为△ABC 的中线和角平分线.过点C 作CH ⊥AE 于点H ,并延长交AB 于点F ,连接DH.求证:DH =12BF.B 组(中档题)一、填空题11.如图,在Rt △ABC 中,∠ACB =90°,AE ,BD 是角平分线,CM ⊥BD 于点M ,CN ⊥AE 于点N.若AC =6,BC =8,则MN =________.12.如图,在四边形ABCD 中,对角线AC ⊥BD 且AC =4,BD =8,E ,F 分别是边AB ,CD 的中点,则EF =________.13.如图,在△ABC 中,BD 平分∠ABC ,且AD ⊥BD ,E 为AC 的中点,AD =6 cm ,BD =8 cm ,BC =16 cm ,则DE 的长为________cm.二、解答题14.如图,在四边形ABCD 中,AB>CD ,E ,F 分别是对角线BD ,AC 的中点. 求证:EF>12(AB -CD).C 组(综合题)15.如图,在△ABC 中,D 是边BC 的中点,点E 在△ABC 内,AE 平分∠BAC ,CE ⊥AE ,点F 在边AB 上,EF ∥BC.(1)求证:四边形BDEF 是平行四边形;(2)线段BF ,AB ,AC 的数量之间具有怎样的关系?证明你所得到的结论.参考答案2020-2021学年北师大版八年级数学下册第六章 6.3三角形的中位线同步练习题A组(基础题)一、填空题1.如图,▱ABCD的对角线AC,BD相交于点O,E是AB的中点,△BEO的周长是8,则△BCD的周长为16.2.如图,跷跷板AB的支柱OD经过它的中点O,且垂直于地面BC,垂足为D,OD=50 cm,当它的一端B着地时,另一端A离地面的高度AC为100_cm.3.如图,在△ABC中,点D,E,F分别是AB,AC,BC的中点,已知∠ADE=65°,则∠CFE的度数为65°.4.如图,DE为△ABC的中位线,点F在DE上,且∠AFC为直角.若DF=2 cm,BC=16 cm,则AC的长为12 cm.二、选择题5.如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连接OE.若∠ABC=60°,∠BAC =80°,则∠1的度数为(B)A .50°B .40°C .30°D .20°6.如图,在△ABC 中,D 是AB 上一点,AD =AC ,AE ⊥CD ,垂足为E ,F 是BC 的中点.若BD =10,则EF 的长为(C)A .8B .10C .5D .47.如图,在△ABC 中,D ,E ,F 分别为BC ,AC ,AB 边的中点,AH ⊥BC 于点H ,FD =8,则HE =(D)A .20B .16C .12D .88.以三角形的一条中位线和第三边上的中线为对角线的四边形是(B)A .梯形B .平行四边形C .菱形D .矩形 三、解答题9.(1)如图,BD 是△ABC 的高,E ,F ,G 分别是BC ,AC ,AB 的中点.求证FG =DE ;证明:∵G ,F 分别是AB ,AC 的中点, ∴FG =12BC.∵BD 是△ABC 的高, ∴△BCD 是直角三角形. ∵E 是BC 的中点, ∴DE =12BC.∴FG =DE.(2)如图,D 是△ABC 内一点,BD ⊥CD ,AD =7,BD =4,CD =3,E ,F ,G ,H 分别是AB ,BD ,CD ,AC 的中点,求四边形EFGH 的周长.解:∵BD ⊥CD ,BD =4,CD =3,∴BC =BD 2+CD 2=42+32=5.∵E ,F ,G ,H 分别是AB ,AC ,CD ,BD 的中点, ∴EH =FG =12BC ,EF =GH =12AD.∴四边形EFGH 的周长=EH +GH +FG +EF =AD +BC.又∵AD =7,BC =5,∴四边形EFGH 的周长=7+2=12.10.(1)如图,在Rt △ABC 中,∠BAC =90°,D ,E 分别是AB ,BC 的中点,点F 在CA 的延长线上,∠FDA =∠B ,AC =9,AB =12,求四边形AEDF 的周长;解:在Rt △ABC 中, ∵AC =9,AB =12, ∴BC =92+122=15. ∵E 是BC 的中点, ∴AE =12BC =BE =7.5.∴∠BAE =∠B.∵∠FDA =∠B ,∴∠FDA =∠BAE. ∴DF ∥AE.∵D ,E 分别是AB ,BC 的中点, ∴DE ∥AC ,DE =12AC =4.5.∴四边形AEDF 是平行四边形.∴四边形AEDF 的周长=2×(4.5+7.5)=24.(2)如图,在△ABC 中,AD ,AE 分别为△ABC 的中线和角平分线.过点C 作CH ⊥AE 于点H ,并延长交AB 于点F ,连接DH.求证:DH =12BF.证明:∵AE 为△ABC 的角平分线,CH ⊥AE , ∴△ACF 是等腰三角形. ∴AF =AC ,HF =CH. ∵AD 为△ABC 的中线, ∴DH 是△BCF 的中位线. ∴DH =12BF.B 组(中档题)一、填空题11.如图,在Rt △ABC 中,∠ACB =90°,AE ,BD 是角平分线,CM ⊥BD 于点M ,CN ⊥AE 于点N.若AC =6,BC =8,则MN =2.12.如图,在四边形ABCD 中,对角线AC ⊥BD 且AC =4,BD =8,E ,F 分别是边AB ,CD 的中点,则EF =25.13.如图,在△ABC 中,BD 平分∠ABC ,且AD ⊥BD ,E 为AC 的中点,AD =6 cm ,BD =8 cm ,BC =16 cm ,则DE 的长为3cm.二、解答题14.如图,在四边形ABCD 中,AB>CD ,E ,F 分别是对角线BD ,AC 的中点. 求证:EF>12(AB -CD).证明:作AD 的中点G ,连接EG ,FG.∵E ,F 分别为四边形ABCD 的对角线BD ,AC 的中点, ∴FG =12CD ,EG =12AB.∴EG -FG =12(AB -CD).在△EFG 中,EG -FG<EF , ∴EF>12(AB -CD).C 组(综合题)15.如图,在△ABC 中,D 是边BC 的中点,点E 在△ABC 内,AE 平分∠BAC ,CE ⊥AE ,点F 在边AB 上,EF ∥BC.(1)求证:四边形BDEF 是平行四边形;(2)线段BF ,AB ,AC 的数量之间具有怎样的关系?证明你所得到的结论.解:(1)证明:延长CE 交AB 于点G. ∵AE ⊥CE ,∴∠AEG =∠AEC =90°. 在△AGE 和△ACE 中, ⎩⎪⎨⎪⎧∠GAE =∠CAE ,AE =AE ,∠AEG =∠AEC ,∴△AGE ≌△ACE(ASA).∴GE =EC. ∵BD =CD ,∴DE 为△CGB 的中位线. ∴DE ∥AB.∵EF ∥BC ,∴四边形BDEF 是平行四边形. (2)BF =12(AB -AC).证明如下:∵四边形BDEF 是平行四边形,∴BF =DE. ∵D ,E 分别是BC ,GC 的中点, ∴BF =DE =12BG.∵△AGE ≌△ACE ,∴AG =AC. ∴BF =12(AB -AG)=12(AB -AC).。
期末复习:中位线定理(一)2020-2021学年八年级数学人教版下册
2020-2021学年八年级数学人教版下册期末复习:中位线定理(一)一.选择题1.已知三角形三边长分别为7cm,8cm,9cm,作三条中位线组成一个新的三角形,同样方法作下去,一共做了五个新的三角形,则这五个新三角形的周长之和为()A.46.5cm B.22.5cm C.23.25cm D.以上都不对2.如图,在△ABC中,BC=15,B1、B2、…B9、C1、C2、…C9分别是AB、AC的10等分点,则B1C1+B2C2+…+B9C9的值是()A.45 B.55 C.67.5 D.1353.如图所示,在△ABC中,AB=AC,D,E分别是AB,AC的中点,F,G为BC上的点,连接DG、EF,若AB=5cm,BC=8cm,FG=4cm,则△HFG的面积为()A.1cm2B.1.5cm2C.2cm2D.3cm24.如图,在△ABC中,D、E分别是AB、AC的中点,BC=12,F是DE上一点,连接AF、CF,DE=3DF,若∠AFC=90°,则AC的长度为()A.4 B.5 C.8 D.105.如图,四边形ABCD中,AB∥CD,AB=5,DC=11,AD与BC的和是12,点E、F、G分别是BD、AC、DC的中点,则△EFG的周长是()A.8 B.9 C.10 D.126.如图,在△ABC中,BD、CE是角平分线,AM⊥BD于点M,AN⊥CE于点N.△ABC 的周长为30,BC=12.则MN的长是()A.15 B.9 C.6 D.3二.填空题7.如图,△ABC中,点E,F分别是AB,AC的中点,BC=EG.若AC=BC=10,AB=16,则四边形AECG的面积是.8.在△ABC中,D,E分别为AC,BC的中点,若DE=5,则AB=.9.如图,△ABC中,M、N分别为AC,BC的中点,若S△CMN=2,则S四边形ABNM=.10.如图,在四边形ABCD中,AB=2,CD=6,E,F,M分别为边BC,AD和对角线BD的中点.连接EF,FM,则FM=;线段EF的最大值为.11.如图,在△ABC中,M是BC边上的中点,AP是∠BAC的平分线,BP⊥AP于点P,已知AB=16,AC=24,那么PM的长为.12.如图,在△ABC中,D为BC边中点,P为AC边中点,E为BC上一点且BE=CE,连接AE,取AE中点Q并连接QD,取QD中点G,延长PG与BC边交于点H,若BC =6,则HE=.三.解答题13.三角形中位线定理,是我们非常熟悉的定理.①请你在下面的横线上,完整地叙述出这个定理:.②根据这个定理画出图形,写出已知和求证,并对该定理给出证明.14.如图,已知AO是△ABC的∠A的平分线,BD⊥AO的延长线于D,E是BC的中点.求证:DE=(AB﹣AC)15.如图,在△ABC中,AD是中线,AE是角平分线,点F在AE上,∠CFA=90°,试判断DF与AB的位置关系,并说明理由.16.如图,在四边形ABCD中,AD=BC,E、F分别是边DC、AB的中点,FE的延长线分别AD、BC的延长线交于点H、G,求证:∠AHF=∠BGF.17.如图,在四边形ABCD中,E,F分别是AD,BC的中点.(1)若AB=6,CD=8,∠ABD=30°,∠BDC=120°,求EF的长;(2)若∠BDC﹣∠ABD=90°,求证:AB2+CD2=4EF2.18.【教材呈现】如图是华师版九年级上册数学教材第80页的第3题,请完成这道题的证明.【结论应用】(1)如图②,在上边题目的条件下,延长图①中的线段AD交NM的延长线于点E,延长线段BC交NM的延长线于点F.求证:∠AEN=∠F.(2)若(1)中的∠A+∠ABC=122°,则∠F的大小为.参考答案一.选择题1.解:由△ABC三边长分别为7cm,8cm,9cm,三条中位线组成一个新的三角形,可知新三角形与原三角形相似,相似比是1:2,即:后一个三角形的周长都是前一个三角形周长的,∵原三角形的周长=7+8+9=24,∴这个新三角形的周长=×24=12,∴这个五个新三角形的周长之和=24+×24+×24+×24+×24=23.25,故选:C.2.解:当B1、C1是AB、AC的中点时,B1C1=BC;当B1,B2,C1,C2分别是AB,AC的三等分点时,B1C1+B2C2=BC+BC;…当B1,B2,C1,…,∁n分别是AB,AC的n等分点时,B1C1+B2C2+…+B n﹣1B n﹣1=BC+BC+…+BC=BC=7.5(n﹣1);当n=10时,7.5(n﹣1)=67.5;故B1C1+B2C2+…+B9C9的值是67.5.故选:C.3.解:连接,作AK⊥BC于K.∵AB=AC,∴BK=CK=BC=×8=4,在Rt△ABK中,AK===3,∵D、E分别是AB,AC的中点,∴DE是中位线,即平分三角形的高且DE=8÷2=4,∴DE=BC=FG,∴△DEH≌△GFH,H也是DG,EF的中点,∴△HFG的高是AK÷2=1.5÷2=0.75,∴S△HFG=4×0.75÷2=1.5.故选:B.4.解:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE=BC=6,∵DE=3DF,∴EF=4,∵∠AFC=90°,E是AC的中点,∴AC=2EF=8,故选:C.5.解:连接AE,并延长交CD于K,∵AB∥CD,∴∠BAE=∠DKE,∠ABD=∠EDK,∵点E、F、G分别是BD、AC、DC的中点.∴BE=DE,在△AEB和△KED中,,∴△AEB≌△KED(AAS),∴DK=AB,AE=EK,EF为△ACK的中位线,∴EF=CK=(DC﹣DK)=(DC﹣AB),∵EG为△BCD的中位线,∴EG=BC,又FG为△ACD的中位线,∴FG=AD,∴EG+GF=(AD+BC),∵AD+BC=12,AB=5,DC=11,即DC﹣AB=6,∴EG+GF=6,FE=3,∴△EFG的周长是6+3=9.故选:B.6.证明:∵△ABC的周长为30,BC=12.∴AB+AC=30﹣BC=18.延长AN、AM分别交BC于点F、G.如图所示:∵BM为∠ABC的角平分线,∴∠CBM=∠ABM,∵BM⊥AG,∴∠ABM+∠BAM=90°,∠G+∠CBM=90°,∴∠BAM=∠AGB,∴AB=BG,∴AM=FM,同理AC=CF,AN=NG,∴MN为△AFG的中位线,GF=BG+CF﹣BC,∴MN=(AB+AC﹣BC)=(18﹣12)=3.故选:D.二.填空题(共6小题)7.解:∵点E,F分别是AB,AC的中点,∴EF=BC,∵AC=BC,∴EF=AC,CE⊥AB,∵EG=BC,∴EG=2EF,∴EF=FG,∵AF=CF,∴四边形AECG是矩形,∵AE=AB=8,AC=10,∴CE=6,∴四边形AECG的面积=8×6=48,故答案为:48.8.解:∵D,E分别为AC,BC的中点,∴AB=2DE=10,故答案为:10.9.解:∵M、N分别为AC,BC的中点,∴NM∥AB,AB=2MN,∴△CMN∽△CAB,∴=()2=,∵S△CMN=2,∴S△ABC=8,∴S四边形ABNM=8﹣2=6,故答案为:6.10.解:连接EM,∵E,F,M分别为边BC,AD和对角线BD的中点,∴FM=,EM=,当EF=EM+MF时,线段EF最大,即EF=1+3=4,故答案为:1;4.11.解:延长BP交AC于N∵AP是∠BAC的角平分线,BP⊥AP于P,∴∠BAP=∠NAP,∠APB=∠APN=90°,∴△ABP≌△ANP(ASA),∴AN=AB=16,BP=PN,∴CN=AC﹣AN=24﹣16=8,∵BP=PN,BM=CM,∴PM是△BNC的中位线,∴PM=CN=4.故答案为:4.12.解:连接PQ.∵BD=DC=3,BE=BC=,EC=,∵AQ=QE,AP=PC,∴PQ∥EC,PQ=EC=,∵∠QPG=∠GHD,∠QGP=∠DGH,QG=GD,∴△PQG≌△HDG(AAS),∴PQ=HD=,BH=BD﹣DH=3﹣=,∴HE=BE﹣BH=﹣=,故答案为.三.解答题(共6小题)13.解:(1)三角形的中位线平行于第三边且等于第三边的一半.(2)已知:DE是△ABC的中位线,求证:DE∥BC,DE=BC.证明:延长DE到F,使EF=DE,连接CF.∵AE=CE,∠AED=∠CEF,∴△ADE≌△CEF.∴AD=CF,∠ADE=∠CFE.∴AD∥CF.∵AD=BD,∴BD=CF.∴四边形BCFD是平行四边形.∴DE∥BC,DE=BC.故答案为三角形的中位线平行于第三边且等于第三边的一半.14.证明:延长AC、BD交于点F,∵在△ABD和△AFD中,,∴△ABD≌△AFD(ASA),∴AB=AF,BD=DF,又∵E是BC的中点,即ED是△BCF中位线,∴DE=CF=(AB﹣AC).15.解:DF∥AB.理由如下:如图,延长CF交AB于点G,∵AE是角平分线,∴∠GAF=∠CAF,在△AGF和△ACF中,∴△AGF≌△ACF(ASA),∴GF=CF,即点F是GC的中点,∵AD是△ABC的中线,∴点D是BC的中点∴DF是△BCG的中位线,∴DF∥AB.16.证明:连接BD,取BD的中点P,连接EP,FP,∵E、F、P分别是DC、AB、BD边的中点,∴EP是△BCD的中位线,PF是△ABD的中位线,∴PF=AD,PF∥AD,EP=BC,EP∥BC,∴∠H=∠PFE,∠BGF=∠FEP,∵AD=BC,∴PE=PF,∴∠PEF=∠PFE,∴∠AHF=∠BGF.17.(1)解:如图,取BD的中点P,连接EP、FP.∵E,F分别是AD、BC的中点,AB=6,CD=8,∴PE∥AB,且PE=AB=3,PF∥CD且PF=CD=4.又∵∠ABD=30°,∠BDC=120°,∴∠EPD=∠ABD=30°,∠DPF=180°﹣∠BDC=60°,∴∠EPF=∠EPD+∠DPF=90°,在直角△EPF中,由勾股定理得到:EF===5,即EF=5;(2)证明:如图,取BD的中点P,连接EP、FP.∵E,F分别是AD、BC的中点,∴PE∥AB,且PE=AB,PF∥CD且PF=CD.∴∠EPD=∠ABD,∠BPF=∠BDC,∴∠DPF=180°﹣∠BPF=180°﹣∠BDC,∵∠BDC﹣∠ABD=90°,∴∠BDC=90°+∠ABD,∴∠EPF=∠EPD+∠DPF=∠ABD+180°﹣∠BDC=∠ABD+180°﹣(90°+∠ABD)=90°,∴PE2+PF2=(AB)2+(CD)2=EF2,∴AB2+CD2=4EF2.18.【教材呈现】证明:∵P是BD的中点,M是DC的中点,∴PM=BC,同理,PN=AD,∵AD=BC,∴PM=PN,∴∠PMN=∠PNM,【结论应用】(1)证明:∵P是BD的中点,M是DC的中点,∴PM∥BC,∴∠PMN=∠F,同理,∠PNM=∠AEN,∵∠PMN=∠PNM,∴∠AEN=∠F;(2)解:∵PN∥AD,∴∠PNB=∠A,∵∠DPN是△PNB的一个外角,∴∠DPN=∠PNB+∠ABD=∠A+∠ABD,∵PM∥BC,∴∠MPD=∠DBC,∴∠MPN=∠DPN+∠MPD=∠A+∠ABD+∠DBC=∠A+∠ABC=122°,∵PM=PN,∴∠PMN=×(180°﹣122°)=29°,∴∠F=∠PMN=29°,故答案为:29°.。
初中数学八年级下三角形中位线定理专项训练题集一
初中数学八年级下三角形中位线定理专项训练题集一一、单选题1、如图,梯形ABCD中,DC∥AB,EF是梯形的中位线,对角线BD交EF于G,若AB=10,EF=8,则GF的长等于[ ]A、2B、3C、4D、52、若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD 一定是[ ]A、菱形B、对角线互相垂直的四边形C、矩形D、对角线相等的四边形3、如图,在菱形ABCD中,对角线AC,BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE的长为[ ]A、6 cmB、4 cmC、3 cmD、2 cm4、如图,在梯形ABCD中,AD∥BC,中位线EF与对角线BD交于点G.若EG:GF=2:3,且AD=4,则BC的长是[ ]A、6B、12C、3D、85、如图所示,在△ABC中,D,E分别是AB,AC的中点,且AB=10,AC=14,BC=16,则DE等于A、5B、7C、8D、126、如图(1),在Rt△ABC中,∠ACB=90°,D是斜边AB的中点,动点P从B 点出发,沿B→C→A运动,设S△DPB=y,点P运动的路程为x,若y与x之间的函数图象如图(2)所示,则△ABC的面积为[ ]A、4B、6C、12D、147、如图所示,每个小正方形的边长为1,△ABC的三边a,b,c的大小关系是:[ ]A、a<c<bB、a<b<cC、c<a<bD、c<b<a8、如图,在□ABCD中,AC与BD相交于点O,点E是边BC的中点,AB=4,则OE的长是[ ] A、2B、C、1D、9、如图,在△ABC中∠B=90。
,AB=6,BC=8, 将△ABC沿DE折叠,使点C落在△ABC边上C′处,并且C′D//BC,则CD的长是[ ]A、B、C、D、10、已知线段a和锐角∠α,求作Rt△ABC,使它的一边为a,一锐角为∠α,满足上述条件的大小不同的可以画这样的三角形[ ]A、1个B、2个C、3个D、4个11、如图,DE是△ABC的中位线,若BC的长是3cm,则DE的长是[ ]A、2cmB、1.5cmC、1.2cmD、1cm12、如图,在一张△ABC纸片中,∠C=90°,∠B=60°,DE是中位线,现把纸片沿中位线DE剪开,计划拼出以下四个图形:①邻边不等的矩形;②等腰梯形;③有一个角为锐角的菱形;④正方形,那么以上图形一定能被拼成的个数为[ ]A、1B、2C、3D、413、如图所示,要判断△ABC的面积是△DBC的面积的几倍,只有一把仅有刻度的直尺,需要测量[ ]A、1次B、2次C、3次D、3次以上14、如图,在一张△ABC纸片中,∠C=90°,现把纸片沿中位线DE剪开,计划拼出以下四个图形:①平行四边形;②菱形;③等腰梯形;④矩形,那么以上图形一定能被拼成的个数为[ ]A、1个B、2个C、3个D、4个15、如图,在梯形ABCD中,AD∥BC,AC和BD相交于点O,DP∥AC交BC 的延长线于点P,则图中面积相等的三角形有[ ]A、3对B、4对C、5对D、6对二、填空题1、如图,在梯形ABCD中,AB∥CD,AD=BC,AB=10,CD=4,延长BD到E,使DE=BD,作EF⊥AB交BA的延长线于点F.则AF=()cm。
鲁教版八年级数学上册《三角形的中位线》同步训练(附答案)
鲁教版八年级数学上册《三角形的中位线》同步训练(附答案)1.如图,四边形ABCD中,AD=BC,点P是对角线BD的中点,E、F分别是AB、CD的中点,若∠EPF=130°,则∠PEF的度数为()A.25°B.30°C.35°D.50°2.如图,四边形ABCD的对角线AC,BD相交于点O,AC⊥BD,E,F分别是AB,CD的中点,若AC=BD=2,则EF的长是()A.2B.C.D.3.如图,在△ABC中,点D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是()A.2B.3C.6D.44.如图,四边形ABCD中,AD∥BC,AD=2,BC=5,点E,F分别是对角线AC,BD的中点,则EF的长为()A.1B.1.5C.2.5D.3.55.如图,△ABC的周长为4,点D,E,F分别是AB,BC,CA的中点,则△DEF的周长是()A.1B.2C.3D.46.如图,已知在△ABC中,D,E,F分别是边BC,CA,AB的中点.AB=10,AC=8,则四边形AFDE的周长等于()A.18B.16C.14D.127.如图所示,在△ABC中,BC>AC,点D在BC上,DC=AC=10,且=,作∠ACB 的平分线CF交AD于点F,CF=8,E是AB的中点,连接EF,则EF的长为.8.如图,在△ABC中,M,N分别是AB和AC的中点,连接MN,点E是CN的中点,连接ME并延长,交BC的延长线于点D.若BC=4,则CD的长是多少?9.如图,在△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足为点E,F是BC的中点,若BD=10,求EF的长.10.如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE =30°,DF=3,DE=2,求FC的长度.11.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AE平分∠CAB,CE⊥AE于点E,延长CE交AB于点D.(1)求证:CE=DE;(2)若点F为BC的中点,求EF的长.12.如图,在△ABC中,AD是中线,AE是角平分线,点F在AE上,∠CF A=90°,试判断DF与AB的位置关系,并说明理由.13.如图,D、E、F分别是△ABC三边中点,AH⊥BC于H.求证:(1)∠BDF=∠BAC;(2)DF=EH.14.如图,在四边形ABCD中,AD=BC,E、F分别是边DC、AB的中点,FE的延长线分别AD、BC的延长线交于点H、G,求证:∠AHF=∠BGF.15.如图,点O是△ABC内一点,连接OB、OC,线段AB、OB、OC、AC的中点分别为D、E、F、G.(1)判断四边形DEFG的形状,并说明理由;(2)若M为EF的中点,OM=2,∠OBC和∠OCB互余,求线段BC的长.16.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,过点E作EF∥CD交BC的延长线于点F,连接CD.(1)求证:DE=CF;(2)求EF的长.17.如图,在△ABC中,AB=AC,点D是边AB上一点,DE∥BC交AC于点E,连接BE,点F、G、H分别为BE、DE、BC的中点.(1)求证:FG=FH;(2)当∠A为多少度时,FG⊥FH?并说明理由.18.已知:如图,四边形ABCD中,对角线AC=BD,E,F为AB、CD中点,连EF交BD、AC于P、Q求证:OP=OQ.19.如图,在△ABC中,AE平分∠BAC,BE⊥AE于点E,点F是BC的中点.(1)如图1,BE的延长线与AC边相交于点D,求证:EF=(AC﹣AB);(2)如图2,△ABC中,AB=9,AC=5,求线段EF的长.参考答案1.解:∵P、F分别是BD、CD的中点,∴PF=BC,同理可得:PE=AD,∵AD=BC,∴PF=PE,∵∠EPF=130°,∴∠PEF=∠PFE=×(180°﹣130°)=25°,故选:A.2.解:取BC的中点G,AD的中点H,连接EG、GF、FH、HE,∵E,G分别是AB,BC的中点,AC=2∴EG=AC=1,EG∥AC,同理:FH=AC,FH∥AC,EG=AC,GF∥BD,GF=BD=1,∴四边形EGFH为平行四边形,∵AC=BD,∴GE=GF,∴平行四边形EGFH为菱形,∵AC⊥BD,EG∥AC,GF∥BD,∴EG⊥GF,∴菱形EGFH为正方形,∴EF=EG=,故选:D.3.解:∵D,E分别是BC,AC的中点,∴DE∥AB,∴∠BFD=∠ABF,∵BF平分∠ABC,∴∠DBF=∠ABF,∴∠BFD=∠DBF,∴DF=DB=BC==3,故选:B.4.解:∵取DC中点G,连结FG、EG,如图所示:∵点E,F分别是对角线AC,BD的中点,∴FG∥BC,EG∥AD,∵AD∥BC,∴EG∥BC,FG∥EG,∴E、F、G三点共线,∴FG是△BCD的中位线,∴FG=BC=2.5,∵AD∥BC,∴EG∥AD,∴EG是△ACD的中位线,∴EG=AD=1,∴EF=FG﹣EG=1.5.故选:B.5.解:∵△ABC的周长为4,∴AB+AC+BC=4,∵点D,E,F分别是AB,BC,CA的中点,∴EF=AB,DE=AC,DF=BC,∴△DEF的周长=EF+DE+DF=×(AB+AC+BC)=2,故选:B.6.解:∵D,E,F分别是边BC,CA,AB的中点.AB=10,AC=8,∴DE=AB=5,DF=AC=4,AF=AB=5,AE=AC=4,∴四边形AFDE的周长=AF+DF+DE+AE=5+5+4+4=18,故选:A.7.解:∵DC=AC=10,∠ACB的平分线CF交AD于F,∴F为AD的中点,CF⊥AD,∴∠CFD=90°,∵DC=10,CF=8,∴DF==6,∴AD=2DF=12,∵=,∴BD=8,∵点E是AB的中点,∴EF为△ABD的中位线,∴EF=BD=4,故答案为:4.8.解:∵M,N分别是AB和AC的中点,∴MN是△ABC的中位线,∴MN=BC=2,MN∥BC,∴∠NME=∠D,∠MNE=∠DCE,∵点E是CN的中点,∴NE=CE,在△MNE和△DCE中,,∴△MNE≌△DCE(AAS),∴CD=MN=2.9.解:∵AD=AC,AE⊥CD,∴CE=ED,∵F是BC的中点,∴EF是△CDB的中位线,∴EF=BD=×10=5.10.解:∵AF⊥BC,点D是边AB的中点,DF=3,∴AB=2DF=6.∵点D,E分别是边AB,AC的中点,∴DE∥BC,∴∠B=∠ADE=30°,∴AF=AB=3,由勾股定理得,BF===3,∴FC=BC﹣BF=.11.(1)证明:∵AE平分∠CAB,∴∠CAE=∠BAE,∵CE⊥AE,∴∠AEC=∠AED=90°,在△AEC和△AED中,,∴△AEC≌△AED(ASA),∴CE=DE;(2)在Rt△ABC中,∵AC=6,BC=8,∴,∵△AEC≌△AED,∴AD=AC=6,∴BD=AB﹣AD=4,∵点E为CD中点,点F为BC中点,∴.12.解:DF∥AB.理由如下:如图,延长CF交AB于点G,∵AE是角平分线,∴∠GAF=∠CAF,在△AGF和△ACF中,∴△AGF≌△ACF(ASA),∴GF=CF,即点F是GC的中点,∵AD是△ABC的中线,∴点D是BC的中点∴DF是△BCG的中位线,∴DF∥AB.13.证明:(1)∵D、F分别是AB、BC边中点,∴DF是△ABC的中位线,∴DF∥AC,DF=AC,∴∠BDF=∠BAC;(2)∵AH⊥BC于H,E是AC的中点,∴EH=AC,∴DF=EH.14.证明:连接BD,取BD的中点P,连接EP,FP,∵E、F、P分别是DC、AB、BD边的中点,∴EP是△BCD的中位线,PF是△ABD的中位线,∴PF=AD,PF∥AD,EP=BC,EP∥BC,∴∠H=∠PFE,∠BGF=∠FEP,∵AD=BC,∴PE=PF,∴∠PEF=∠PFE,∴∠AHF=∠BGF.15.解:(1)四边形DEFG是平行四边形,理由如下:∵E、F分别为线段OB、OC的中点,∴EF=BC,EF∥BC,同理DG=BC,DG∥BC,∴EF=DG,EF∥DG,∴四边形DEFG是平行四边形;(2)∵∠OBC和∠OCB互余,∴∠BOC=90°,∵M为EF的中点,OM=2,∴EF=2OM=4,∴BC=2EF=8.16.解:(1)∵D、E分别为AB、AC的中点,∴DE∥BC,DE=BC,∵EF∥CD∴四边形DEFC是平行四边形,∴DE=CF.(2)∵四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=.17.(1)证明:∵AB=AC.∴∠ABC=∠ACB,∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴∠ADE=∠AED,∴AD=AE,∴DB=EC,∵点F、G、H分别为BE、DE、BC的中点,∴FG是△EDB的中位线,FH是△BCE的中位线,∴FG=BD,FH=CE,∴FG=FH;(2)解:延长FG交AC于N,∵FG是△EDB的中位线,FH是△BCE的中位线,∴FH∥AC,FN∥AB,∵FG⊥FH,∴∠A=90°,∴当∠A=90°时,FG⊥FH.18.证明:取BC中点G,连EG、FG,∵E,G为AB、BC中点,∴EG=AC,EG∥AC,∴∠FEG=∠OQP,同理,FG=BD,FG∥BD,∴∠EFG=∠OPQ,∵AC=BD,∴EG=FG,∴∠FEG=∠EFG,∴∠OPQ=∠OQP,∴OP=OQ.19.(1)证明:在△AEB和△AED中,,∴△AEB≌△AED(ASA)∴BE=ED,AD=AB,∵BE=ED,BF=FC,∴EF=CD=(AC﹣AD)=(AC﹣AB);(2)解:分别延长BE、AC交于点H,在△AEB和△AEH中,,∴△AEB≌△AEH(ASA)∴BE=EH,AH=AB=9,∵BE=EH,BF=FC,∴EF=CH=(AH﹣AC)=2.。
初二数学三角形中位线练习题(含答案)
初二数学三角形中位线练习题一.选择题(共5小题)1.如图,为了测量池塘边A、B两地之间的距离,在线段AB的同侧取一点C,连结CA并延长至点D,连结CB并延长至点E,使得A、B分别是CD、CE的中点,若18DE m=,则线段AB的长度是()A.9m B.12m C.8m D.10m2.已知三角形的周长是16,它的三条中位线围成的三角形的周长是()A.16B.12C.8D.43.如图,在四边形ABCD中,点P是边CD上的动点,点Q是边BC上的定点,连接AP,PQ,E,F分别是AP,PQ的中点,连接EF.点P在由C到D运动过程中,线段EF的长度() A.保持不变B.逐渐变小C.先变大,再变小D.逐渐变大4.如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD BC=,∠的度数是()∠=︒,则EFPEPF136A.68︒B.34︒C.22︒D.44︒5.如图,D是ABC⊥,E、F、G、H分别是边AB、BD、CD、AC的中点.若∆内一点,BD CDCD=,则四边形EFGH的周长是()BD=,6AD=,810A.24B.20C.12D.10第3题图第4题图第5题图二.填空题(共5小题)6.某直角三角形的两条边长分别是10和24,则连接两条直角边中点的线段的长是.7.如图,在Rt ABCABC∠=︒,点D、E、F分别是AB、AC,∆中,90BE=,则DF=.BC边上的中点,连结BE,DF,已知58.如图,在四边形ABCD中,220∠+∠=︒,E、F分别是AC、ADC BCDBD 的中点,P 是AB 边上的中点,则EPF ∠= ︒.9.如图,在四边形ABCD 中,//AB CD ,E ,F 分别是AC ,BD 的中点,已知12AB =,6CD =,则EF = .10.如图,在ABC ∆中,8AB =,6AC =,AM 平分BAC ∠,CM AM ⊥于点M ,N 为BC 的中点,连结MN ,则MN 的长为 .第8题图 第9题图 第10题图三.解答题(共3小题)11.如图所示,在ABC ∆中,点D 在BC 上且CD CA =,CF 平分ACB ∠,AE EB =,求证:12EF BD =.12.如图:D 、E 是ABC ∆边AB ,AC 的中点,O 是ABC ∆内一动点,F 、G 是OB ,OC 的中点.判断四边形DEGF 的形状,并证明.13.已知:如图,在四边形ABCD 中,对角线AC 、BD 相交于O ,且AC BD =,E 、F 分别是AB 、CD 的中点,E 、F 分别交BD 、AC 于点G 、H .求证:OG OH =.答案与解析一.选择题(共5小题)1.如图,为了测量池塘边A 、B 两地之间的距离,在线段AB 的同侧取一点C ,连结CA 并延长至点D ,连结CB 并延长至点E ,使得A 、B 分别是CD 、CE 的中点,若18DE m =,则线段AB 的长度是( )A .9mB .12mC .8mD .10m【分析】根据三角形的中位线定理解答即可. 【解答】解:A 、B 分别是CD 、CE 的中点, ∴AB 是△CDE 的中位线,192AB DE m ∴==, 故选:A .2.已知三角形的周长是16,它的三条中位线围成的三角形的周长是( ) A .16 B .12 C .8 D .4【分析】由中位线定义可得新三角形的各边长为原三角形各边长的一半,即可得出其周长等于原三角形周长的一半.【解答】解:三角形的周长是16,∴它的三条中位线围成的三角形的周长是11682⨯=. 故选:C .3.如图,在四边形ABCD 中,点P 是边CD 上的动点,点Q 是边BC 上的定点,连接AP ,PQ ,E ,F 分别是AP ,PQ 的中点,连接EF .点P 在由C 到D 运动过程中,线段EF 的长度( )A .保持不变B .逐渐变小C .先变大,再变小D .逐渐变大 【分析】连接AQ ,根据三角形中位线定理解答即可. 【解答】解:如图所示,连接AQ , 点Q 是边BC 上的定点, AQ ∴的大小不变,E ,F 分别是AP ,PQ 的中点, ∴EF 是△APQ 的中位线, 12EF AQ ∴=, ∴线段EF 的长度保持不变,故选:A .4.如图,在四边形ABCD 中,P 是对角线BD 的中点,E 、F 分别是AB 、CD 的中点,AD BC =,136EPF ∠=︒,则EFP ∠的度数是( )A .68︒B .34︒C .22︒D .44︒【分析】根据三角形中位线定理得到12PE AD =,12PF BC =,根据等腰三角形的性质、三角形内角和定理计算即可.【解答】解:P 是BD 的中点,E 是AB 的中点, ∴EP 是△BCD 的中位线, 12PE AD ∴=, 同理,12PF BC =, AD BC =, PE PF ∴=,1(180)222EFP EPF ∴∠=⨯︒-∠=︒,故选:C . 5.如图,D 是ABC ∆内一点,BD CD ⊥,E 、F 、G 、H 分别是边AB 、BD 、CD 、AC 的中点.若10AD =,8BD =,6CD =,则四边形EFGH 的周长是( )A .24B .20C .12D .10【分析】利用勾股定理列式求出BC 的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出12EH FG BC ==,12EF GH AD ==,然后代入数据进行计算即可得解. 【解答】解:BD CD ⊥,8BD =,6CD =,22228610BC BD CD ∴=+=+,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,12EH FG BC ∴==,12EF GH AD ==,∴四边形EFGH 的周长EH GH FG EF AD BC =+++=+, 又10AD =,∴四边形EFGH 的周长101020=+=, 故选:B .二.填空题(共5小题)6.某直角三角形的两条边长分别是10和24,则连接两条直角边中点的线段的长是 13或12 . 【分析】根据勾股定理求出AB ,根据三角形中位线定理计算,得到答案. 【解答】解:分两种情况讨论:①当24是直角边时,由勾股定理得,斜边2222241026AB AC BC =+=+=,M 、N 分别为CA 、CB 的中点, ∴MN 是△ABC 的中位线,1132MN AB ∴==,②当24是斜边时,1122MN AB ==,故答案为:13或12.7.如图,在Rt ABC ∆中,90ABC ∠=︒,点D 、E 、F 分别是AB 、AC ,BC 边上的中点,连结BE ,DF ,已知5BE =,则DF = 5 .【分析】已知BE 是Rt ABC ∆斜边AC 的中线,那么12BE AC =;DF 是ABC ∆的中位线,则12DF AC =,则5DF BE ==. 【解答】解:ABC ∆是直角三角形,BE 是斜边的中线, 12BE AC ∴=, 又DF 是ABC ∆的中位线,12DF AC ∴=, 5DF BE ∴==. 故答案为5.8.如图,在四边形ABCD 中,220ADC BCD ∠+∠=︒,E 、F 分别是AC 、BD 的中点,P 是AB 边上的中点,则EPF ∠= 40 ︒.【分析】依据四边形内角和即可得到140BAD ABC ∠+∠=︒,再根据三角形中位线定理即可得到BPF BAD ∠=∠,APE ABC ∠=∠,进而得出140APE BPF ∠+∠=︒,即可得到EPF ∠的度数. 【解答】解:四边形ABCD 中,220ADC BCD ∠+∠=︒, 360220140BAD ABC ∴∠+∠=︒-︒=︒,E 、F 分别是AC 、BD 的中点,P 是AB 边上的中点, PE ∴是ABC ∆的中位线,PF 是ABD ∆的中位线, //PE BC ∴,//PF AD ,BPF BAD ∴∠=∠,APE ABC ∠=∠,140APE BPF BAD ABC ∴∠+∠=∠+∠=︒, 18014040EPF ∴∠=︒-︒=︒,故答案为:40.9.如图,在四边形ABCD 中,//AB CD ,E ,F 分别是AC ,BD 的中点,已知12AB =,6CD =,则EF = 3 .【分析】连接CF 并延长交AB 于G ,证明FDC FBG ∆≅∆,根据全等三角形的性质得到6BG DC ==,CF FG =,求出AG ,根据三角形中位线定理计算,得到答案. 【解答】解:连接CF 并延长交AB 于G , //AB CD ,FDC FBG ∴∠=∠, 在FDC ∆和FBG ∆中, FDC FBG FD FBDFC BFG ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()FDC FBG ASA ∴∆≅∆ 6BG DC ∴==,CF FG =, 1266AG AB BG ∴=-=-=, CE EA =,CF FG =, ∴EF 是△ACG 的中位线, 132EF AG ∴==, 故答案为:3. 10.如图,在ABC ∆中,8AB =,6AC =,AM 平分BAC ∠,CM AM ⊥于点M ,N 为BC 的中点,连结MN ,则MN 的长为 1 .【分析】延长CM 交AB 于H ,证明AMH AMC ∆≅∆,根据全等三角形的性质得到6AH AC ==,CM MH =,根据三角形中位线定理解答. 【解答】解:延长CM 交AB 于H , 在AMH ∆和AMC ∆中, 90MAH MAC AM AMAMH AMC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ()AMH AMC ASA ∴∆≅∆6AH AC ∴==,CM MH =, 2BH AB AH ∴=-=, CM MH =,CN BN =, ∴MN 是△BCH 的中位线, 112MN BH ∴==, 故答案为:1. 三.解答题(共3小题)11.如图所示,在ABC ∆中,点D 在BC 上且CD CA =,CF 平分ACB ∠,AE EB =,求证:12EF BD =.【分析】首先根据等腰三角形的性质可得F 是AD 中点,再根据三角形的中位线定理可得12EF BD =.【解答】证明:CD CA =,CF 平分ACB ∠, F ∴是AD 中点, AE EB =, E ∴是AB 中点,EF ∴是ABD ∆的中位线, 12EF BD ∴=. 12.如图:D 、E 是ABC ∆边AB ,AC 的中点,O 是ABC ∆内一动点,F 、G 是OB ,OC 的中点.判断四边形DEGF 的形状,并证明.【分析】根据三角形中位线定理得到12DE BC =,//DE BC ,12FGT BC =,//FG BC ,得到DE FG =,//DE FG ,根据平行四边形的判定定理证明结论. 【解答】解:四边形DEGF 是平行四边形, 理由:D 、E 是ABC ∆边AB ,AC 的中点, ∴DE 是△ABC 的中位线,12DE BC ∴=,//DE BC , F 、G 是OB ,OC 的中点, ∴FG 是△BCO 的中位线,12FG BC ∴=,//FG BC ,DE FG ∴=,//DE FG∴四边形DEGF 是平行四边形.13.已知:如图,在四边形ABCD中,对角线AC、BD相交于O,且AC BD=,E、F分别是AB、CD的中点,E、F分别交BD、AC于点G、H.求证:OG OH=.【分析】取BC边的中点M,连接EM,FM,则根据三角形的中位线定理,即可证得EMF∆是等腰三角形,根据等边对等角,即可证得MEF MFE∠=∠,然后根据平行线的性质证得OGH OHG∠=∠,根据等角对等边即可证得.【解答】解:取BC边的中点M,连接EM,FM,M、F分别是BC、CD的中点,∴MF是△BCD的中位线,//MF BD ∴,12MF BD=,同理://ME AC,12ME AC=,AC BD=ME MF∴=MEF MFE∴∠=∠,//MF BD,MFE OGH∴∠=∠,同理,MEF OHG∠=∠,OGH OHG∴∠=∠OG OH∴=.。
湘教版八年级下册数学三角形的中位线同步测试题
2.4 三角形的中位线1.如图,为测量池塘边A,B两点间的距离,小明在池塘的一侧选取一点O,测得OA,OB的中点分别是点D,E,且DE=14米,则A,B间的距离是( )A.18米B.24米C.28米D.30米第1题图第2题图第3题图2.如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C的度数为( )A.50°B.60°C.70°D.80°3.如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC的中点,则DE的长为( )A.1 B.2 C. 3 D.1+ 34.如图,点D,E,F分别是△ABC各边的中点,连接DE,EF,DF.若△ABC的周长为10,则△DEF的周长为____.第4题图第5题图5.如图,▱ABCD的对角线AC,BD相交于点O,点E是CD的中点,△ABD的周长为16 cm,则△DOE的周长是____cm.6.如图,在△ABC中,D,E,F分别是BC,AC,AB的中点.(1)若DE=10 cm,则AB=____cm;(2)中线AD与中位线EF有什么特殊关系?证明你的猜想.7.我们把依次连接任意一个四边形各边中点得到的四边形叫做中点四边形.如图,在四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点,依次连接各边中点得到中点四边形EFGH.(1)这个中点四边形EFGH的形状是___________;(2)请证明你的结论.8.如图,四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠PEF=30°,则∠PFE的度数是( )A.15°B.20°C.25°D.30°第8题图第9题图9.如图,在四边形ABCD中,R,P分别是BC,CD上的点,E,F 分别是AP,RP的中点,当点P在CD上从C向D移动而点R不动时,那么下列结论成立的是( )A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不变D.线段EF的长与点P的位置有关10.如图,EF是△ABC的中位线,BD平分∠ABC交EF于点D,若DE=2,则EB=____.第10题图第11题图11.如图,△ABC的周长是1,连接△ABC三边的中点构成第2个三角形,再连接第2个三角形三边中点构成第3个三角形,依此类推,第2017个三角形的周长为________.12.如图,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.13.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN 于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3.(1)求证:BN=DN;(2)求△ABC的周长.14.如图,在▱ABCD中,AE=BF,AF,BE相交于点G,CE,DF相交于点H.求证:GH∥BC且GH=12 BC.15.如图,在▱ABCD中,E是CD的中点,F是AE的中点,FC与BE相交于点G.求证:GF=GC.方法技能:1.三角形有三条中位线,每条中位线都与第三边有相应的位置关系和数量关系,位置关系可证明两直线平行,数量关系可证明线段相等或倍分关系.2.三角形的三条中位线将原三角形分为四个全等的小三角形,每个小三角形的周长都等于原三角形周长的一半.3.当题目中有中点时,特别是有两个中点且都在一个三角形中,可直接利用三角形中位线定理.易错提示:对三角形中位线的意义理解不透彻而出错答案:1. C2. C3. A4. 55. 86. (1) 20(2) 解:AD与EF互相平分.证明:∵D,E,F分别为BC,AC,AB的中点,∴DE∥AB,DE=12AB,AF=12AB,∴DE=AF,∴四边形AFDE是平行四边形,∴AD与EF互相平分7. (1) 平行四边形(2) 解:连接AC,由三角形中位线性质得,EF∥AC且EF=12 AC,GH ∥AC 且GH =12AC ,∴EF 綊GH ,∴四边形EFGH 是平行四边形 8. D9. C10. 211. 12201612. 解:连接BD ,∵E ,H 分别是AB ,AD 的中点,∴EH 是△ABD的中位线,∴EH =12BD ,EH ∥BD ,同理可证FG =12BD ,FG ∥BD ,∴EH 綊FG ,∴四边形EFGH 是平行四边形13. 解:(1)∵AN 平分∠BAD ,∴∠1=∠2,∵BN ⊥AN ,∴∠ANB =∠AND =90°,又∵AN =AN ,∴△ABN ≌△ADN(ASA ),∴BN =DN (2)∵△ABN ≌△ADN ,∴AD =AB =10,∵DN =BN ,点M 是BC 的中点,∴MN 是△BDC 的中位线,∴CD =2MN =6,∴△ABC 的周长=AB +BC +CD +AD =10+15+6+10=4114. 解:连接EF ,证四边形ABEF ,EFCD 分别为平行四边形,从而得G 是BE 的中点,H 是EC 的中点,∴GH 是△EBC 的中位线,∴GH∥BC 且GH =12BC 15. 解:取BE 的中点H ,连接FH ,CH ,∵F 是AE 的中点,H 是BE 的中点,∴FH 是△ABE 的中位线,∴FH ∥AB 且FH =12AB.在▱ABCD 中,AB ∥DC ,AB =DC ,∴FH ∥EC ,又∵点E 是DC 的中点,∴EC =12DC =12AB ,∴FH =EC ,∴四边形EFHC 是平行四边形,∴GF =GC八年级下册数学期末测试卷一、选择题(本大题共8个小题,每小题3分,满分24分.请将正确答案的字母代号填在下表中.)1.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(3分)以下列各组数为边长能构成直角三角形的是()A.1,1,B.2,3,4 C.4,5,6 D.6,8,113.(3分)在下列所给出坐标的点中,在第三象限的是()A.(2,3)B.(﹣2,﹣3) C.(﹣2,3)D.(2,﹣3)4.(3分)如图,在△ABC中,∠C=90°,∠A=30°,BC=4cm,点D 为AB的中点,则CD=()A.3cm B.4cm C.5cm D.6cm5.(3分)已知▱ABCD的周长是26cm,其中△ABC的周长是18cm,则AC的长为()A.12cm B.10cm C.8cm D.5cm6.(3分)菱形的两条对角线长为6cm 和8cm,那么这个菱形的周长为()A.40 cm B.20 cm C.10 cm D.5 cm7.(3分)正方形具有而菱形不一定具有的性质是()A.对角线平分一组对角B.对角线互相垂直平分C.对角线相等D.四条边相等8.(3分)汽车由重庆驶往相距400千米的成都,如果汽车的平均速度是100千米/时,那么汽车距成都的路程s(千米)与行驶时间t (小时)的函数关系用图象表示为()A.B.C.D.二、填空题(本大题共8小题,每小题3分,满分24分)9.(3分)已知点P(3,2)在一次函数y=x+b的图象上,则b= .10.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为.11.(3分)已知y与x成正比例,且当x=1时,y=2,则当x=4时,y= .12.(3分)如图,AC⊥BC,AD⊥BD,垂足分别是C、D,若要用“HL”得到Rt△ABC≌Rt△BAD,则你添加的条件是.(写一种即可)13.(3分)将点P (﹣3,4)先向下平移3个单位,再向右平移2个单位后得到点Q,则点Q的坐标是.14.(3分)如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=2,则菱形ABCD的周长是.15.(3分)如图,矩形ABCD中,对角线AC、BD交于点O,过O 的直线分别交AD、BC于点E、F,已知AD=4cm,图中阴影部分的面积总和为6cm2,对角线AC长为cm.16.(3分)如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示).三、解答题(本大题共8个小题,共计72分)17.(6分)在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为.18.(8分)已知:如图,AC平分∠BAD,CE⊥AB于E CF⊥AD于F,且BC=DC.求证:BE=DF.19.(8分)已知一次函数y=(2m+1)x+m﹣3.(1)若这个函数的图象经过原点,求m的值;(2)若这个函数的图象经过一、三、四象限,求m的取值范围.20.(8分)已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.21.(10分)为了进一步了解某校八年级学生的身体素质情况,体育老师对该校八年级(1)班50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图,图表如下所示:组别次数x 频数(人数)第1组80≤x<100 6第2组100≤x<120 8第3组120≤x<140 a第4组140≤x<160 18第5组160≤x<180 6请结合图表完成下列问题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若在一分钟内跳绳次数少于120次的为测试不合格,则该校八年级共1000人中,一分钟跳绳不合格的人数大约有多少?22.(10分)如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是32cm.求:(1)两条对角线的长度;(2)菱形的面积.23.(10分)甲、乙两地相距300km,一辆货车和一辆轿车先后从甲地出发向乙地.如图,线段OA表示货车离甲地距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地距离y(km)与时间x(h)之间的函数关系.请根据图象,解答下列问题:(1)线段CD表示轿车在途中停留了h;(2)货车的平均速度是km/h;(3)求线段DE对应的函数解析式.24.(12分)如图,在矩形ABCD中,AB=1cm,AD=3cm,点Q 从A点出发,以1cm/s的速度沿AD向终点D运动,点P从点C出发,以1cm/s的速度沿CB向终点B运动,当这两点中有一点到达自己的终点时,另一点也停止运动,两点同时出发,运动了t秒.(1)当0<t<3,判断四边形BQDP的形状,并说明理由;(2)求四边形BQDP的面积S与运动时间t的函数关系式;(3)求当t为何值时,四边形BQDP为菱形.2016-2017学年湖南省张家界市永定区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,满分24分.请将正确答案的字母代号填在下表中.)1.(3分)(2017春•永定区期末)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:不是轴对称图形,是中心对称图形,故本选项不符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、既是轴对称图形,又是中心对称图形,故本选项符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3分)(2017春•永定区期末)以下列各组数为边长能构成直角三角形的是()A.1,1,B.2,3,4 C.4,5,6 D.6,8,11【分析】根据勾股定理的逆定理对各选项进行逐一判断即可.【解答】解:A、∵12+12=2=()2,∴能构成直角三角形,故本选项正确;B、∵22+32=25≠42,∴不能构成直角三角形,故本选项错误;C、∵42+52=41≠62,∴不能构成直角三角形,故本选项错误;D、∵62+82=100≠112,∴不能构成直角三角形,故本选项错误.故选A.【点评】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.3.(3分)(2017春•永定区期末)在下列所给出坐标的点中,在第三象限的是()A.(2,3)B.(﹣2,﹣3) C.(﹣2,3)D.(2,﹣3)【分析】根据各象限内点的坐标特征解答即可.【解答】解:A、(2,3)第一象限,B、(﹣2,﹣3)第三象限,C、(﹣2,3)第二象限,D、(2,﹣3)第四象限,故选:B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.(3分)(2017春•永定区期末)如图,在△ABC中,∠C=90°,∠A=30°,BC=4cm,点D为AB的中点,则CD=()A.3cm B.4cm C.5cm D.6cm【分析】根据直角三角形的性质得到AB=2BC=8cm,根据直角三角形中,斜边上的中线等于斜边的一半计算即可.【解答】解:∵∠C=90°,∠A=30°,BC=4cm,∴AB=2BC=8cm,∵点D为AB的中点,∴CD=4cm,故选:B.【点评】本题考查的是直角三角形的性质,掌握直角三角形中,30°角所对的直角边等于斜边的一半、斜边上的中线等于斜边的一半是解题的关键.5.(3分)(2017春•永定区期末)已知▱ABCD的周长是26cm,其中△ABC的周长是18cm,则AC的长为()A.12cm B.10cm C.8cm D.5cm【分析】根据题意得出平行四边形的邻边长的和为13cm,进而利用△ABC的周长是18cm求出AC即可.【解答】解:如图所示:∵▱ABCD的周长是26cm,∴AB+BC=13cm,∵△ABC的周长是18cm,∴AC=18﹣13=5(cm).故选:D.【点评】此题主要考查了平行四边形的性质,得出AB+BC=13cm是解题关键.6.(3分)(2017春•永定区期末)菱形的两条对角线长为6cm 和8cm,那么这个菱形的周长为()A.40 cm B.20 cm C.10 cm D.5 cm【分析】首先根据题意画出图形,由菱形ABCD中,AC=6,BD=8,即可得AC⊥BD,OA=AC=3,OB=BD=4,然后利用勾股定理求得这个菱形的边长.【解答】解:∵菱形ABCD中,AC=6,BD=8,∴AC⊥BD,OA=AC=3,OB=BD=4,∴AB==5.即这个菱形的周长为:20.故选B.【点评】此题考查了菱形的性质以及勾股定理.注意菱形的对角线互相平分且垂直.7.(3分)(2017春•博兴县期末)正方形具有而菱形不一定具有的性质是()A.对角线平分一组对角B.对角线互相垂直平分C.对角线相等D.四条边相等【分析】根据正方形和菱形的性质容易得出结论.【解答】解:正方形的性质:正方形的四条边相等,四个角都是直角,对角线互相垂直平分且相等,并且每一条对角线平分一组对角;菱形的性质:菱形的四条边相等,对角线互相垂直平分,并且每一条对角线平分一组对角;因此正方形具有而菱形不一定具有的性质是:对角线相等;故选:C.【点评】本题考查了正方形和菱形的性质;熟练掌握正方形和菱形的性质是解题的关键;注意区别.8.(3分)(2004•四川)汽车由重庆驶往相距400千米的成都,如果汽车的平均速度是100千米/时,那么汽车距成都的路程s(千米)与行驶时间t(小时)的函数关系用图象表示为()A.B.C.D.【分析】先根据题意列出s、t之间的函数关系式,再根据函数图象的性质和实际生活意义进行选择即可.【解答】解:根据题意可知s=400﹣100t(0≤t≤4),∴与坐标轴的交点坐标为(0,400),(4,0).要注意x、y的取值范围(0≤t≤4,0≤y≤400).故选C.【点评】主要考查了一次函数的图象性质,首先确定此函数为一次函数,然后根据实际意义,函数图象为一条线段,再确定选项即可.二、填空题(本大题共8小题,每小题3分,满分24分)9.(3分)(2017春•永定区期末)已知点P(3,2)在一次函数y=x+b 的图象上,则b= ﹣1 .【分析】直接把点P(3,2)代入一次函数y=x+b即可.【解答】解:∵P(3,2)在一次函数y=x+b的图象上,∴3+b=2,解得b=﹣1.故答案为:﹣1.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.10.(3分)(2016•乌鲁木齐)一个多边形的内角和是外角和的2倍,则这个多边形的边数为 6 .【分析】利用多边形的外角和以及多边形的内角和定理即可解决问题.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形.故答案为:6.【点评】本题主要考查了多边形的内角和定理与外角和定理,熟练掌握定理是解题的关键.11.(3分)(2017春•永定区期末)已知y与x成正比例,且当x=1时,y=2,则当x=4时,y= 8 .【分析】首先根据y与x成正比例列出函数关系式,然后代入x、y的值即可求解.【解答】解:∵y与x成正比例,∴y=kx(k≠0).∵当x=1时,y=2,∴k=2,∴y与x之间的函数解析式是y=2x,∴当x=4时,y=8.故答案为:8.【点评】本题考查的是利用待定系数法求一次函数的解析式,此类题目需灵活运用待定系数法建立函数解析式,然后将一对未知数的值代入解析式,利用方程解决问题.12.(3分)(2017春•永定区期末)如图,AC⊥BC,AD⊥BD,垂足分别是C、D,若要用“HL”得到Rt△ABC≌Rt△BAD,则你添加的条件是AC=BD .(写一种即可)【分析】根据“HL”添加AC=BD或BC=AD均可.【解答】解:可添加AC=BD,∵AC⊥BC,AD⊥BD,∴∠C=∠D=90°,在Rt△ABC和Rt△BAD中,∵,∴Rt△ABC≌Rt△BAD(HL),故答案为:AC=BD.【点评】本题主要考查全等三角形的判定,熟练掌握直角三角形全等的判定是解题的关键.13.(3分)(2017春•永定区期末)将点P (﹣3,4)先向下平移3个单位,再向右平移2个单位后得到点Q,则点Q的坐标是(﹣1,1).【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.【解答】解:根据题意,知点Q的坐标是(﹣3+2,4﹣3),即(﹣1,1),故答案为:(﹣1,1).【点评】此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握点的坐标的变化规律.14.(3分)(2017春•永定区期末)如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=2,则菱形ABCD的周长是16 .【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出BC,再根据菱形的周长公式列式计算即可得解.【解答】解:∵E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴BC=2EF=2×2=4,∴菱形ABCD的周长=4BC=4×4=16.故答案为16.【点评】本题主要考查了菱形的四条边都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.15.(3分)(2017春•永定区期末)如图,矩形ABCD中,对角线AC、BD交于点O,过O的直线分别交AD、BC于点E、F,已知AD=4cm,图中阴影部分的面积总和为6cm2,对角线AC长为 5 cm.【分析】根据矩形的性质,采用勾股定理求解即可.【解答】解:∵图中阴影部分的面积总和为6cm2,AD=4cm,则AD ×CD=×4×CD=6,CD=3,在直角三角形ACD中AD=4,CD=3,由勾股定理得AC=5,∴对角线AC长为5cm.故答案为5.【点评】本题主要考查矩形的性质、勾股定理,是基础知识比较简单.16.(3分)(2013•聊城)如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(2n,1)(用n 表示).【分析】根据图形分别求出n=1、2、3时对应的点A4n+1的坐标,然后根据变化规律写出即可.【解答】解:由图可知,n=1时,4×1+1=5,点A5(2,1),n=2时,4×2+1=9,点A9(4,1),n=3时,4×3+1=13,点A13(6,1),所以,点A4n+1(2n,1).故答案为:(2n,1).【点评】本题考查了点的坐标的变化规律,仔细观察图形,分别求出n=1、2、3时对应的点A4n+1的对应的坐标是解题的关键.三、解答题(本大题共8个小题,共计72分)17.(6分)(2014•湘潭)在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为(﹣3,2);(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为(﹣2,3).【分析】(1)根据关于y轴对称的点的横坐标互为相反数,纵坐标相等解答;(2)根据网格结构找出点A、O、B向左平移后的对应点A1、O1、B1的位置,然后顺次连接即可;(3)根据平面直角坐标系写出坐标即可.【解答】解:(1)B点关于y轴的对称点坐标为(﹣3,2);(2)△A1O1B1如图所示;(3)A1的坐标为(﹣2,3).故答案为:(1)(﹣3,2);(3)(﹣2,3).【点评】本题考查了利用平移变换作图,关于y轴对称点的坐标,熟练掌握网格结构准确找出对应点的位置是解题的关键.18.(8分)(2017春•永定区期末)已知:如图,AC平分∠BAD,CE⊥AB于E CF⊥AD于F,且BC=DC.求证:BE=DF.【分析】根据角平分线的性质就可以得出CE=CF,再由HL证明△CEB ≌△CFD就可以得出结论.【解答】证明:∵AC平分∠BAD,CE⊥AB于E CF⊥AD于F,∴∠F=∠CEB=90°,CE=CF.在Rt△CEB和Rt△CFD中,∴△CEB≌△CFD(HL),∴BE=DF.【点评】本题考查了角平分线的性质的运用,全等三角形的判定与性质的运用,解答时证明△CEB≌△CFD是关键.19.(8分)(2017春•永定区期末)已知一次函数y=(2m+1)x+m ﹣3.(1)若这个函数的图象经过原点,求m的值;(2)若这个函数的图象经过一、三、四象限,求m的取值范围.【分析】(1)由一次函数图象经过原点,可得出m﹣3=0,解之即可得出结论;(2)由一次函数图象经过一、三、四象限,即可得出关于m的一元一次不等式组,解之即可得出结论.【解答】解:(1)∵一次函数y=(2m+1)x+m﹣3的图象经过原点,∴m﹣3=0,解得:m=3.(2)∵一次函数y=(2m+1)x+m﹣3的图象经过一、三、四象限,∴,解得:﹣<m<3.【点评】本题考查了一次函数图象与系数的关系以及一次函数图象上点的坐标特征,解题的关键是:(1)根据一次函数图象上点的坐标特征,找出m﹣3=0;(2)根据一次函数图象与系数的关系,找出关于m的一元一次不等式组.20.(8分)(2017春•永定区期末)已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.【分析】先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△ACD的形状,再利用三角形的面积公式求解即可.【解答】解:连接AC.∵∠ABC=90°,AB=1,BC=2,∴AC==,在△ACD中,AC2+CD2=5+4=9=AD2,∴△ACD是直角三角形,∴S四边形ABCD=AB•BC+AC•CD,=×1×2+××2,=1+.故四边形ABCD的面积为1+.【点评】本题考查的是勾股定理的逆定理及三角形的面积,能根据勾股定理的逆定理判断出△ACD的形状是解答此题的关键.21.(10分)(2017春•永定区期末)为了进一步了解某校八年级学生的身体素质情况,体育老师对该校八年级(1)班50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图,图表如下所示:组别次数x 频数(人数)第1组80≤x<100 6第2组100≤x<120 8第3组120≤x<140 a第4组140≤x<160 18第5组160≤x<180 6请结合图表完成下列问题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若在一分钟内跳绳次数少于120次的为测试不合格,则该校八年级共1000人中,一分钟跳绳不合格的人数大约有多少?【分析】(1)本题需先根据表中所给的数据以及频数与频率之间的关系即可求出答案;(2)本题需根据频数分布表中的数据即可将直方图补充完整;(3)从表格中可以知道在一分钟内跳绳次数少于120次的有两个小组,共6+8=14人,然后除以总人数即可求出该校九年级(1)班学生进行一分钟跳绳不合格的概率,然后即可得出人数;【解答】解:(1)a=50﹣(6+8+18+6)=12;(2)频数分布直方图如图所示:(3)抽样调查中不合格的频率为:=0.28,估计该年级学生不合格的人数大约有1000×0.28=280(个)答:估计该年级学生不合格的人数大约有280个人.【点评】此题主要考查读频数分布直方图的能力和利用统计图获取信息的能力.用到的知识点为:概率=所求情况数与总情况数之比.22.(10分)(2017春•永定区期末)如图,在菱形ABCD中,∠ABC 与∠BAD的度数比为1:2,周长是32cm.求:(1)两条对角线的长度;(2)菱形的面积.【分析】(1)首先证明△ABC是等边三角形,解直角三角形OAB即可解决问题;(2)菱形的面积等于对角线乘积的一半;【解答】解:(1)菱形ABCD的周长为32cm,∴菱形的边长为32÷4=8cm∵∠ABC:∠BAD=1:2,∠ABC+∠BAD=180°(菱形的邻角互补),∴∠ABC=60°,∠BCD=120°,∴△ABC是等边三角形,∴AC=AB=8cm,∵菱形ABCD对角线AC、BD相交于点O,∴AO=CO,BO=DO且AC⊥BD,∴BO=4cm,∴BD=8cm;(2)菱形的面积=AC•BD=×8×8=32(cm2).【点评】本题考查菱形的性质、等边三角形的判定和性质、解直角三角形等知识,解题的关键是证明△ABC是等边三角形,属于中考常考题型.23.(10分)(2017春•永定区期末)甲、乙两地相距300km,一辆货车和一辆轿车先后从甲地出发向乙地.如图,线段OA表示货车离甲地距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地距离y(km)与时间x(h)之间的函数关系.请根据图象,解答下列问题:(1)线段CD表示轿车在途中停留了0.5 h;(2)货车的平均速度是60 km/h;(3)求线段DE对应的函数解析式.【分析】(1)根据点C、D的横坐标,即可求出轿车在途中停留的时间;(2)根据速度=路程÷时间,即可求出货车的平均速度;(3)观察函数图象,找出点的坐标,利用待定系数法即可求出线段DE对应的函数解析式.【解答】解:(1)2.5﹣2=0.5(h).故答案为:0.5.(2)300÷5=60(km/h).故答案为:60.(3)设线段DE对应的函数解析式为y=kx+b(2.5≤x≤4.5),将点D(2.5,80)、点E(4.5,300)代入y=kx+b,,解得:.∴线段DE对应的函数解析式为y=110x﹣195(2.5≤x≤4.5).【点评】本题考查了一次函数的应用以及待定系数法求一次函数解析式,解题的关键是:(1)利用点D的横坐标﹣点C的横坐标,求出停留时间;(2)根据数量关系,列式计算;(3)根据点的坐标,利用待定系数法求出线段DE的函数解析式.24.(12分)(2017春•永定区期末)如图,在矩形ABCD中,AB=1cm,AD=3cm,点Q从A点出发,以1cm/s的速度沿AD向终点D运动,点P从点C出发,以1cm/s的速度沿CB向终点B运动,当这两点中有一点到达自己的终点时,另一点也停止运动,两点同时出发,运动了t秒.(1)当0<t<3,判断四边形BQDP的形状,并说明理由;(2)求四边形BQDP的面积S与运动时间t的函数关系式;(3)求当t为何值时,四边形BQDP为菱形.【分析】(1)先判断出AD∥BC,AD=BC=3,再由运动知,AQ=PC=t,即可得出结论;(2)利用平行四边形的面积公式即可得出结论;(3)利用勾股定理表示出BQ,再由BQ=BP建立方程求解即可得出结论.【解答】解:(1)∵四边形ABCD是矩形,∴AD∥BC,AD=BC=3,由运动知,AQ=t,PC=t,∴AQ=PC,∴AD﹣AQ=BC﹣PC,∴DQ=BP,∵AD∥BC,∴四边形BQDP为平行四边形,(2)由(1)知,四边形BQDP是平行四边形,∵PC=t,∴BP=BC﹣PC=3﹣t,∴S=BP×AB=(3﹣t)×1=﹣t+3(3)如图,在Rt△ABQ中,AQ=t,AB=1,根据勾股定理得,BQ==,由运动知,CP=t,∴BP=3﹣t,∵平行四边形BQDP是菱形,∴BQ=BP,∴=3﹣t,∴t=,当时,四边形BQDP为菱形.【点评】此题是四边形综合题,主要考查了矩形的性质,平行四边形的判定和性质,菱形的性质,解(1)的关键是得出AQ=PC,解(2)的关键是利用平行四边形的面积公式求解,解(3)的关键是表示出BQ,用BQ=BP建立方程求解,是一道中等难度的题目.厚薄读书法:复习课本要厚薄结合著名数学家华罗庚先生说:“书要能从薄读到厚,还要能从厚读到薄。
三角形的中位线(专项练习)-2020-2021学年八年级数学下册基础知识专项讲练(华东师大版)
专题18.6 三角形的中位线(专项练习)一、单选题1.如图,AD 为△ABC 中△ BAC 的外角平分线,BD△AD 于D ,E 为BC 中点,DE=5,AC=3,则AB 长为()A .8.5B .8C .7.5D .72.顺次连接矩形各边中点得到的四边形是( )A .平行四边形B .矩形C .菱形D .正方形 3.如图,在四边形ABCD 中,AD BC =,BC ,E 、F 、G 分别是AB 、CD 、AC 的中点,若10DAC ∠=︒,66ACB ∠=︒,则FEO ∠等于( )A .76°B .56°C .38°D .28° 4.如图,在四边形ABCD 中,点P 是边CD 上的动点,点Q 是边BC 上的定点,连接AP PQ ,,EF ,分别是AP PQ ,的中点,连接EF .点P 在由C 到D 运动过程中,线段EF 的长度( )A .保持不变B .逐渐变小C .先变大,再变小D .逐渐变大5.ABC 中,D 、E 分别为AB 、AC 边的中点,若BC=8cm ,则DE 为( ) A .16cm B .8cm C .4cm D .2cm6.在Rt ABC △中,90,13,5ACB AB AC ︒∠===,点D 是AB 上一动点,作//DE AC ,且2DE =,连结,BE CD P Q ,,分别是BE DC 、的中点连结PQ ,则PQ 长为( )A B .C .6 D .6.57.如图,已知△ABC 中,点M 是BC 边上的中点,AN 平分△BAC ,BN△AN 于点N ,若AB =8,MN =2,则AC 的长为( )A .12B .11C .10D .98.如图,将三角形纸片ABC 沿过,AB AC 边中点D 、E 的线段DE 折叠,点A 落在BC 边上的点F 处,下列结论中,一定正确的个数是( )△BDF 是等腰三角形 △12DE BC = △四边形ADFE 是菱形 △2BDF FEC A ∠+∠=∠A .1B .2C .3D .4二、填空题9.如图,在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,点D ,E 分别是AB 和AC 边的中点,若4CD =,则DE =__________.10.如图,,,D E F 分别是ABC ∆各边的中点,AH 是高,,5AB AC ED ≠=,判断AD ________AH (大小),FHC ∆是___________(类别),四边形AEDF 是______________________(类别)11.如图,在Rt △ABC 中,△ACB =90°,点D 、E 、F 分别为AB 、AC 、AD 的中点,若AB =12,则EF 的长为__________.12.如图,CD 是ABC ∆的中线,点E 、F 分别是AC 、DC 的中点,3BD =,则EF =_________.13.如图,在ABC中,AB=AC,AM BC⊥,延长AC到点D,连接BD,取BD的中点N,连接MN.若AB=3,AD=5,则MN=_______________.14.如图,在△ABC中,D是AC边的中点,且BD△AC,ED△BC,ED交AB于点E,若AC=4,BC=6,则△ADE的周长为______.15.如图,△ABC的中位线DE=6cm,把△ABC沿DE折叠,使点A落在边BC上的点F处,若A、F两点间的距离是8cm,则△ABC的面积为_____cm2.16.如图,在ABC中,△ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=13BD,连接DM、DN、MN.若AB=4,则DN=_____.17.如图,在ABC∆中,D、E分别为BC、AC的中点,且ABC的面积为16,则ADE 的面积是______.18.如图,面积为16的菱形ABCD 中,点O 为对角线的交点,点E 是边BC 的中点,过点E 作EF BD ⊥ 于点F ,EG AC ⊥于点G ,则四边形EFOG 的面积为__.19.如图,在菱形ABCD 中,45B ∠=︒,BC =E ,F 分别是边CD ,BC 上的动点,连接AE ,EF ,G ,H 分别为AE ,EF 的中点,连接GH ,则GH 的最小值为________.20.如图,有一块形状为Rt △ABC 的斜板余料,△A =90°,AB =6cm ,AC =8cm ,要把它加工成一个形状为□DEFG 的工件,使GF 在边BC 上,D 、E 两点分别在边AB 、AC 上,若点D 是边AB 的中点,则DEFG 的面积为_________2cm .21.如图,在平行四边形纸片ABCD 中,2cm AB =,将纸片沿对角线AC 对折至CF ,交AD 边于点E ,此时BCF △恰为等边三角形,则图中折叠重合部分的面积是________.22.如图,在ABC 中,点D E 、分别在边AB 、 AC 上,//DE BC ,将ADE 沿直线DE 翻折后与 FDE 重合,DF 、EF 分别与边BC 交于点M 、N ,如果 8DE =,23AD AB =,那么MN 的长是 _____ .23.如图,△ABC 是边长为1的等边三角形,取BC 边中点E ,作ED △AB ,EF △AC ,得到四边形EDAF ,它的周长记作C 1;取BE 中点E 1,作E 1D 1△FB ,E 1F 1△EF ,得到四边形E 1D 1FF 1,它的周长记作C 2.照此规律作下去,则C 2020=__.24.如图,在Rt ABC △中,90A ︒∠=,2AB =,点D 是BC 边的中点,点E 在AC 边上,若45DEC ︒∠=,那么DE 的长是__________.三、解答题25.在正方形ABCD 中,点E 是边CD 的中点,点P 是边AD 上一点(与点A 、D 不重合),射线PE 与BC 的延长线交于点Q .(1)如图,求证:PE QE =;(2)如图,连接PB ,PB PQ =,过点E 作//EF BC 交PB 于点F ,连接AF ,在不添加任何辅助线的情况下,请直接写出与线段AF 相等的所有线段.26.如图,在ABC 中,AB AC =,E ,F 分别是BC ,AC 的中点,连接EF ,以AC 为斜边作直角三角形ADC ,连接DE 、DF .(1)求证:FE FD =.(2)若24CAD CAB ∠=∠=︒,求EDF ∠的度数.27.如图,在△ABC 中,点D ,E 分别是BC ,AC 的中点,延长BA 至点F ,使得AF =12AB ,连接DE ,AD ,EF ,DF .(1)求证:四边形ADEF 是平行四边形;(2)若AB =6,AC =8,BC =10,求EF 的长.28.如图,等边ABC ∆中,D ,E 分别是AB ,AC 的中点,延长BC 到点F ,使12CF BC =,连结DE ,CD ,EF .(1)求证:四边形DCFE 是平行四边形;(2)若等边ABC ∆的边长为6,求EF 的长.29.如图,在ABC 中,D E 、分别是AB AC 、的中点,延长DE 到点,F 使得,EF BE =连接CF .若EC 平分BEF ∠.(1)求证:四边形BCFE 是菱形;(2)若8,120AC BCF =∠=︒,求菱形BCFE 的面积.参考答案1.D【分析】延长BD、CA交于点F,易证△ADF≌△ADB(ASA),则BD=DF,AB=AF,得到点D为BF中点,即DE为△BCF的中位线,再根据已知线段的长度,即可顺利求得AB的长.【详解】解:如图,分别延长BD、AC交于点F,△AD为△ABC中△BAC的外角平分线,△△FAD=△BAD,△BD△AD,△△FDA=△BDA=90°,在△BDA和△FDA中,FAD BAD AD ADFDA BDA ∠=∠⎧⎪=⎨⎪∠=∠⎩,△△BDA≌△FDA(ASA),△AB=AF,BD=FD,即D为BF的中点,△E为BC中点,△DE为△BCF的中位线,△DE=5,AC=3,△CF=2DE=2⨯5=10,△AF=CF-AC=10-3=7.△AB=AF=7.故选D.【点拨】本题考查三角形的综合,涉及的知识点有全等三角形的判定,中位线定理等,难度一般,是中考的常考知识点,正确作出辅助线并证明全等是顺利解题的关键.2.C【分析】根据三角形的中位线定理,得新四边形各边都等于原四边形的对角线的一半,进而可得连接对角线相等的四边形各边中点得到的四边形是菱形.【详解】解:如图,矩形ABCD 中,,AC BD ∴=,,,E F G H 分别为四边的中点,1//,,2EF BD EF BD ∴=1//,,2GH BD GH BD = 1,2FG AC = //,,EF GH EF GH ∴=∴ 四边形ABCD 是平行四边形, 11,,,22AC BD EF BD FG AC === ,EF FG ∴=∴ 四边形EFGH 是菱形.故选C .【点拨】本题主要考查了矩形的性质、菱形的判定,以及三角形中位线定理,关键是掌握三角形的中位线定理及菱形的判定.3.D 【分析】利用EG 、FG 分别是ABC ∆和ADC ∆两个三角形的中位线,求出EG FG =,从而得出FGC ∠和EGC ∠,再根据EG FG =,利用三角形内角和定理即可求出FEG ∠的度数.【详解】解:△E 、F 、G 分别是AB 、CD 、AC 的中点, △EG 、FG 分别是ABC ∆和ADC ∆两个三角形的中位线, △//EG BC ,//FG AD ,且22AD BCEG FG ===, △10FGC DAC ∠=∠=︒,180114EGC ACB ∠=︒-∠=︒, △124EGF FGC EGC ∠=∠+∠=︒, 又△EG FG =, △()()111801801242822FEG EGF ∠=-∠=-︒=︒︒︒. 故本题答案为:D . 【点拨】本题考查了三角形内角和定理,等腰三角形的判定与性质,三角形中位线定理.解决本题的关键是正确理解题意,熟练掌握三角形中位线定理,通过等腰三角形的性质找到相等的角. 4.A 【分析】连接AQ ,则可知EF 为△PAQ 的中位线,可知EF =12AQ ,可知EF 不变. 【详解】 如图,连接AQ ,△E 、F 分别为PA 、PQ 的中点, △EF 为△PAQ 的中位线, △EF =12AQ , △Q 为定点,△AQ 的长不变, △EF 的长不变, 故选:A .【点拨】本题主要考查三角形中位线定理,掌握三角形中位线平行第三边且等于第三边的一半是解题的关键. 5.C 【分析】先画出图形,再根据三角形的中位线定理即可得. 【详解】由题意,画出图形如下:点D 、E 分别为AB 、AC 边的中点,DE ∴是ABC 的中位线, 1184()22DE BC cm ∴==⨯=, 故选:C . 【点拨】本题考查了三角形的中位线定理,熟记三角形的中位线定理是解题关键. 6.A 【分析】由勾股定理得出,取BD 中点F ,连接PF 、QF ,证出PF 是△BDE的中位线,FQ是△BCD的中位线,由三角形中位线定理得出PF△ED,PF=12DE=1,FQ△BC,FQ=12BC=6,证出PF△FQ,再由勾股定理求出PQ即可.【详解】解:△△ACB=90°,AB=13,AC=5,,取BD中点F,连接PF、QF,如图所示:△P、Q分别是BE、DC的中点,△PF是△BDE的中位线,FQ是△BCD的中位线,△PF△ED,PF=12DE=1,FQ△BC,FQ=12BC=6,△DE△AC,AC△BC,△PF△FQ,==故选:A.【点拨】本题考查了三角形中位线定理、勾股定理、平行线的性质;熟练掌握勾股定理,由三角形中位线定理得出PF△ED,FQ△BC是解题的关键.7.A【分析】延长BN交AC于D,证明△ANB△△AND,根据全等三角形的性质、三角形中位线定理计算即可.【详解】解:延长BN交AC于D,在△ANB 和△AND 中,90NAB NAD AN ANANB AND ∠∠⎧⎪⎨⎪∠∠︒⎩====, △△ANB△△AND , △AD=AB=8,BN=ND , △M 是△ABC 的边BC 的中点, △DC=2MN=4, △AC=AD+CD=12, 故选:A . 【点拨】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半. 8.C 【分析】根据菱形的判定和等腰三角形的判定,采用排除法,逐条分析判断. 【详解】 解:△△DE △BC ,△△ADE =△B ,△EDF =△BFD , 又△△ADE △△FDE ,△△ADE =△EDF ,AD =FD ,AE =CE , △△B =△BFD ,△△BDF 是等腰三角形,故△正确; 同理可证,△CEF 是等腰三角形, △BD =FD =AD ,CE =FE =AE , △DE 是△ABC 的中位线,△DE =12BC ,故△正确; △△B =△BFD ,△C =△CFE ,又△△A +△B +△C =180°,△B +△BFD +△BDF =180°,△C +△CFE +△CEF =180°, △△BDF +△FEC =2△A ,故△正确.而无法证明四边形ADFE 是菱形,故△错误. 所以一定正确的结论个数有3个, 故选:C . 【点拨】本题考查了菱形的判定,中位线定理,等腰三角形的判定和性质,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:△定义;△四边相等;△对角线互相垂直平分.具体选择哪种方法需要根据已知条件来确定. 9.2 【分析】由直角三角形斜边上的中线等于斜边的一半可得出28AB CD ==,又因为30A ∠=︒,所以4BC =,由三角形的中位线定理可得出122DE BC ==. 【详解】解:△CD 是Rt ABC 中斜边上的中线,4CD = △28AB CD ==△90ACB ∠=︒,30A ∠=︒ △4BC =△点D ,E 分别是AB 和AC 边的中点 △122DE BC == 故答案为:2. 【点拨】本题考查的知识点是三角形的中位线定理,由直角三角形斜边上的中线等于斜边的一半可得出28AB CD ==,是解此题的关键. 10.> 等腰三角形 平行四边形 【分析】(1)连接AD 可知,在Rt ADH 中,AH 为直角边,AD 为斜边,可得AH 与AD 大小关系;(2)在Rt AHC 中,11,22HF AC FC AC ==,可得HF FC =,可得FHC 为等腰三角形;(3)根据中位线的性质,可得//,//DE AF AE DF ,可得AEDF 的形状 【详解】(1)连接AD ,在Rt ADH 中,AH 为直角边,AD 为斜边,得AD AH >; 故答案为:>(2)在Rt ADC 中,F 为AC 中点 △11,22HF AC FC AC ==, △HF FC =,△FHC 为等腰三角形; 故答案为:等腰三角形(3)△,,D E F 分别是ABC ∆各边的中点 △//,//DE AF AE DF△四边形AEDF 为平行四边形 故答案为:平行四边形 【点拨】本题考查了直角三角形的边角关系,以及中点的应用,熟知中点的作用是解题的关键. 11.3 【分析】根据直角三角形的性质求出CD ,根据三角形中位线定理计算即可. 【详解】在Rt△ABC中,△ACB=90°,D为AB的中点,△CD12=AB=6△E,F分别为AC,AD的中点,△EF12=CD=3.故答案为:3【点拨】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.12.1.5【分析】先由中线知BD=AD,求出AD,再利用三角形中位线是性质即可解答.【详解】解:△CD是ABC的中线,3BD=△AD=BD= 3△点E、F分别是AC、DC的中点,△EF是ACD的中位线,△EF=12AD=1.5,故答案为:1.5.【点拨】本题考查了三角形的中线和中位线,熟练掌握三角形中位线的性质是解答的关键.13.1【分析】由题意易得BM=MC,则有MN△CD,12MN CD=,进而可求解.【详解】解:AB=AC,AM BC⊥,∴BM=MC,BN=ND,∴MN△CD,12MN CD=,AB=3,AD=5,∴CD=2,∴MN=1;故答案为1.【点拨】本题主要考查等腰三角形的性质及三角形中位线,熟练掌握等腰三角形的性质及三角形中位线是解题的关键.14.8【分析】根据线段垂直平分线的性质得到AB=BC=6,根据三角形中位线定理求出DE,根据直角三角形的性质求出AE,根据三角形的周长公式计算,得到答案.【详解】△D是AC边的中点,BD△AC,△BD是线段AC的垂直平分线,AD12=AC=2,△AB=BC=6,△D是AC边的中点,ED△BC,△点E是AB的中点,DE12=BC=3,在Rt△ADB中,点E是AB的中点,△DE12=AB=3,△△ADE的周长=AE+DE+AD=8,故答案为:8.【点拨】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.15.48【分析】根据对称轴垂直平分对应点连线,可得AF即是△ABC的高,再由中位线的性质求出BC,继而可得△ABC的面积.【详解】解:连接AF,△DE是△ABC的中位线,△DE△BC,BC=2DE=12cm;由折叠的性质可得:AF△DE,△AF△BC,△S△ABC=12BC×AF=12×12×8=48cm2.故答案为:48.【点拨】本题考查了翻折变换的性质及三角形的中位线定理,解答本题的关键是得出AF是△ABC的高.16.2【分析】连接CM,根据直角三角形的性质求出CM,根据三角形中位线定理得到MN=12BC,MN//BC,证明四边形NDCM是平行四边形,根据平行四边形的性质解答.【详解】解:连接CM,△△ACB=90°,M是AB的中点,△CM=12AB=2,△M、N分别是AB、AC的中点,△MN=12BC,MN//BC,△CD=13 BD,△CD=12 BC,△MN=CD,又MN//BC,△四边形NDCM是平行四边形,△DN=CM=2,故答案为:2.【点拨】本题考查直角三角形斜边的中线定理、三角形中位线定理、平行四边形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.17.4【分析】先根据D点是BC的中点,E点是AC的中点,得出S△ADE=14×S△ABC,即可得出答案.【详解】△D点是BC的中点,△S△ABD=S△ADC=12S△ABC,△E点是AC的中点,△S△ADE=S△DCE=12S△ADC=14×S△ABC△S△ABC=16,△S△ADE=4,故答案为:4.【点拨】本题考查了三角形中线的性质,得出S△ADE=14×S△ABC是解题关键.18.2【分析】由菱形的性质得出OA=OC,OB=OD,AC△BD,面积=12AC×BD,证出四边形EFOG是矩形,EF//OC,EG//OB,得出EF、EG都是△OBC的中位线,则EF=12OC=14AC,EG =12OB =14BD ,由矩形面积即可得出答案. 【详解】解:△四边形ABCD 是菱形,△OA =OC ,OB =OD ,AC△BD ,面积=12AC×BD=16, △AC×BD=32△EF△BD 于F ,EG△AC 于G ,△四边形EFOG 是矩形,EF//OC ,EG//OB ,△点E 是线段BC 的中点,△EF 、EG 都是△OBC 的中位线,△EF =12OC =14AC ,EG =12OB =14BD , △矩形EFOG 的面积=EF×EG =14AC×14BD =116×32=2; 故答案为:2.【点拨】本题考查了菱形的性质、矩形的判定与性质、三角形中位线定理等知识;熟练掌握菱形的性质和矩形的性质是解题的关键.19.2【分析】连结AF ,利用中位线的性质GH=12AF ,要使GH 最小,只要AF 最小,由点F 在BC ,当AF△BC 时,AF 最小,利用菱形性质求出AB =45B ∠=︒确定△ABF 为等腰直角三角形,得出AF=BF ,由勾股定理得:22222AB BF AF AF =+=求出AF 即可.【详解】连结AF ,△G ,H 分别为AE ,EF 的中点,△GH△AF ,且GH=12AF , 要使GH 最小,只要AF 最小,由点F 在BC ,当AF△BC 时,AF 最小,在菱形ABCD 中,BC = △AB =在Rt△ABF 中,45B ∠=︒,△△ABF 为等腰直角三角形,△AF=BF ,由勾股定理得:22222AB BF AF AF =+=,△(22=2AF ,△AFGH 最小=12【点拨】本题考查动点图形中的中位线,菱形的性质,等腰直角三角形的性质,勾股定理应用问题,掌握中位线的性质,菱形性质,等腰直角三角形的性质, 点F 在BC 上,AF 最短,点A 到BC 直线的距离最短时由点A 向直线BC 作垂线,垂线段AF 为最短是解题关键. 20.12【分析】作AH BC ⊥交BC 于H 点,交DE 于I 点,根据90,6,8A AB cm AC cm 可得BC 10cm =,根据D 是边AB 的中点可知DE 是ABC 的中位线,得12AIIH AH ,利用三角形面积1122ABC S AC AB BC AH ,可得245AH =,11225IH AH ,则根据DEFG S DE IH ,计算可得结果.【详解】如图示,作AH BC ⊥交BC 于H 点,交DE 于I 点,△90,6,8A AB cm AC cm△BC 10cm =△D 是边AB 的中点,//DE BC ,△DE 是ABC 的中位线,5DE cm = △12AIIH AH , 又△1122ABCS AC AB BC AH , 即有6810AH , △245AH =, △1124122255IHAH , △2125125DEFG S DE IHcm , 故答案为:12.【点拨】本题考查了三角形中位线的应用,勾股定理,三角形的面积和平行四边形的面积,熟悉相关性质定理是解题的关键.中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.212cm【分析】BCF △为等边三角形,点A 为BF 的中点,可得90BAC ∠=︒,求得12ACD S AC CD =,再证明出点E 为AD 的中点,得到12ACE ACD S S =,可求出面积. 【详解】解:ABC 折叠至ACF 处,∴AB=AF=2cm ,BC=BF=CF=4cm ,BCF △为等边三角形,AC BF ∴⊥,90BAC ∠=︒, 又四边形ABCD 为平行四边形,∴//AB CD ,90ACD ∴∠=︒,AC ==,CD=AB=2cm ,12ACD S AC CD ∴==212⨯=2cm , 点A 为BF 的中点,//AE BC ,∴AE 为BCF △的中位线,1122AE BC AD ∴==, ∴点E 为AD 的中点, 12ACE ACD S S ∴==12⨯2cm 为折叠重合部分的面积,2cm .【点拨】本题考查了折叠问题以及等边三角形和平行四边形的综合问题,还涉及勾股定理,需要有一定的推理论证能力,熟练掌握等边三角形和平行四边形的性质是解题的关键.22.4【分析】设3AB a =,从而可得2,a AD a BD ==,先根据平行线的性质可得,ADE B EDM BMD ∠=∠∠=∠,再根据翻折的性质可得,2ADE EDM DF AD a ∠=∠==,从而可得B BMD ∠=∠,然后根据等腰三角形的判定可得DM BD a ==,从而可得FM a =,最后根据三角形的中位线定理即可得.【详解】设3AB a =,则2,BD D a A a A AB D =-==,//DE BC ,,ADE B EDM BMD ∠=∠∠=∠∴,由翻折的性质得:,2ADE EDM DF AD a ∠=∠==,B BMD ∴∠=∠,DM BD a ∴==,FM DF DM a DM ∴=-==,即点M 是DF 的中点,又//DE BC ,MN ∴是FDE 的中位线,118422MN DE ∴==⨯=, 故答案为:4.【点拨】本题考查了翻折的性质、等腰三角形的判定、三角形的中位线定理等知识点,熟练掌握翻折的性质是解题关键.23.201812【分析】先计算出C 1、C 2的长,进而得到规律,最后求出C 2020的长即可.【详解】解:△E 是BC 的中点,ED △AB ,△DE 是△ABC 的中位线,△DE =12AB =12,AD =12AC =12, △EF △AC ,△四边形EDAF 是菱形,△C 1=4×12, 同理C 2=4×12×12=4×212, …C n =4×12n , △20202020201811422C =⨯=. 故答案为:201812.【点拨】本题考查了中位线的性质,菱形的判定与性质,根据题意得到规律是解题关键.24【分析】过D作DF△AC于F,得到AB△DF,求得AF=CF,根据三角形中位线定理得到DF=12 AB=1,根据等腰直角三角形的性质即可得到结论.【详解】解:过D作DF△AC于F,△△DFC=△A=90°,△AB△DF,△点D是BC边的中点,△BD=DC,△AF=CF,△DF=12AB=1,△△DEC=45°,△△DEF是等腰直角三角形,△DE DF,【点拨】本题考查了三角形的中位线定理,平行线的判定和性质,等腰直角三角形的性质,正确的作出辅助线构造等腰直角三角形是解题的关键.25.(1)见解析;(2)BF、PF、PE、QE.【分析】(1)根据正方形的性质及对顶角相等利用ASA即可证明PDE QCE≌,再利用全等三角形的性质即可得证;(2)根据三角形中位线的判定及性质定理、直角三角形斜边上的中线即可得出答案.【详解】(1)证明:如图,△四边形ABCD 是正方形△90D ECQ ∠=∠=︒,△E 是CD 的中点△DE CE =,又△DEP CEQ ∠=∠△()PDE QCE ASA ≌△△△PE QE =(2)如图,BF 、PF 、PE 、QE,//PB PQ EF BC =,PE QE =∴EF 为PBQ △的中位线PF FB PE EQ ∴===,四边形ABCD 为正方形,90BAP ∴∠=︒,∴AF 为BAP Rt △斜边的中线12AF BP BF PF ∴=== ∴与线段AF 相等的所有线段为:BF 、PF 、PE 、QE .【点拨】本题考查了正方形的性质、三角形中位线的判定及性质定理、直角三角形斜边上的中线、全等三角形的判定及性质,熟练掌握性质定理是解题的关键.26.(1)见解析;(2)54︒【分析】(1)根据三角形中位线定理推出12FE AB =,根据直角三角形斜边上的中线等于斜边的一半推出12FD AC =,即可证明FE FD =; (2)根据三角形中位线定理推出24EFC BAC ∠=∠=︒,根据直角三角形斜边上的中线的性质结合三角形的外角性质推出48DFC ∠=︒,利用(1)的结论结合三角形内角和定理即可求得EDF ∠的度数.【详解】(1)△E ,F 分别是BC ,AC 的中点, △12FE AB =, △F 是AC 的中点,90ADC ∠=︒, △12FD AC =, △AB AC =,△FE FD =;(2)△E ,F 分别是BC ,AC 的中点,△//FE AB ,△24EFC BAC ∠=∠=︒,△F 是AC 的中点,90ADC ∠=︒,△FD AF =,△24ADF CAD ︒∠=∠=,△48DFC ∠=︒,△72EFD ∠=︒,△FE FD=,△18072542FED EDF︒-︒∠=∠==︒.【点拨】本题考查了三角形中位线定理,直角三角形斜边上的中线等于斜边一半,平行线的性质,三角形的外角性质等,灵活运用有关定理来分析、判断、推理或解答是解题的关键.27.(1)见解析;(2)EF=5.【分析】(1)利用三角形的中位线的性质与等量代换得出DE=AF,DE△AF,从而得出结论.(2)先利用(1)中的结论得出EF=AD,再利用勾股定理的逆定理,求出△ABC是直角三角形,再利用直角三角形斜边上的中线等于斜边的一半求出。
八年级数学三角形中位线,直角三角形斜边上的中线
三角形中位线、直角三角形斜边上的中线练习题1.如图,为了测量池塘边A、B两地之间的距离,在线段AB的同侧取一点C,连结CA并延长至点D,连结CB并延长至点E,使得A、B分别是CD、CE的中点,若DE=18m,则线段AB的长度是()A.9m B.12m C.8m D.10m2.如图,在△ABC中,点D是BC的中点,点E是AC 的中点,若DE=3,则AB等于()A.4 B.5 C.5.5 D.63.如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠EPF=136°,则∠EFP的度数是()A.68°B.34°C.22°D.44°4.如图,在△ABC中,D是AC边的中点,且BD⊥AC,ED∥BC,ED交AB于点E,若AC=4,BC=6,则△ADE的周长为()A.6 B.8 C.10 D.125.如图,在△ABC中,AB=AC,D、E、F分别是边AB、AC、BC的中点,若CE=2,则四边形ADFE的周长为()A.2 B.4 C.6 D.86.△ABC的周长是24cm,则它的三条中位线所围成的三角形的周长是()(自己画图)A.6 cm B.18cm C.12cm D.24cm7.如图,在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,AD=BC,∠PEF=18°,则∠PFE的度数是()A.9°B.18°C.27°D.36°8.如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=4,F为CE的中点,连接DF,则AF的长等于()A.2 B.3 C .D.2第1页(共4页)9.如图,Rt△AMC中,∠C=90°,∠AMC=30°,N,B分别是MC,AC的中点,CN=2cm,则AM的长度为()A.4cm B.8cm C.9cm D.6cm10.如图是一块等腰三角形空地ABC,已知点D,E分别是边AB,AC的中点,量得AC=10米,AB=BC=6米,若用篱笆围成四边形BCED来放养小鸡,则需要篱笆的长是()A.22米B.17米C.14米D.11米11.如图,a∥b,点A在直线a上,点B,C在直线b 上,AC⊥b,如果AB=5cm,BC=3cm,那么平行线a,b之间的距离为()A.5cm B.4cm C.3cm D.不能确定12.如图,AD,CE是△ABC的高,过点A作AF∥BC,则下列线段的长可表示图中两条平行线之间的距离的是()A.AB B.AD C.CE D.AC13.如图,直线a∥b,点A、B分别在直线a、b上,∠1=45°,若点C在直线b上,∠BAC=105°,且直线a和b的距离为3,则线段AC的长度为()A .B .C.3 D.614.到x轴的距离等于2的点组成的图形是()A.过点(0,2)且与x轴平行的直线B.过点(2,0)且与y轴平行的直线C.过点(0,﹣2)且与x轴平行的直线D.分别过(0,2)和(0,﹣2)且与x轴平行的两条直线(自己画图)16.如图,a∥b,下列线段中是a,b之间的距离的是()A.AB B.AE C.EF D.BC第2页(共4页)17.如图,在△ABC中,∠ACB=90°,点D是AB的中点,CD=3,且∠A=30°,则△ABC的周长为()A.6 B.9+3C.6+3D.318.如图,在△ABC中,AB=AC,AD为BC边上的高,点E为AC的中点,连接DE.若△ABC的周长为20,则△CDE的周长为()A.10 B.12 C.14 D.1619.如图,一根竹竿AB,斜靠在竖直的墙上,P是AB 中点,A′B′表示竹竿AB端沿墙上、下滑动过程中的某个位置,则在竹竿AB滑动过程中OP()A.下滑时,OP增大B.上升时,OP减小C.无论怎样滑动,OP不变D.只要滑动,OP就变化20.如图,在△ABC中,∠BAC=90°,AD⊥BC,垂足为D,E是边BC的中点,ED=3,AD=4,则DC的长是()A.1 B .C.2 D .21.到直角三角形的三个顶点距离相等的点()A.是该三角形三个内角平分线的交点B.是斜边上的中点C.在直角三角形的外部D.在直角三角形的内部22.如果一个直角三角形的两边分别是6,8,那么斜边上的中线长为()(自己画图)A.4 B.5 C.3或5 D.4或523.如图,每个小正方形的边长为1,在△ABC中,点D为AB的中点,则线段CD的长为()A .B .C .D .第3页(共4页)24.如图,一根木棍斜靠在与地面(OM)垂直的墙(ON)上,设木棍中点为P,若木棍A端沿墙下滑,且B沿地面向右滑行.在此滑动过程中,点P到点O的距离()A.不变B.变小C.变大D.无法判断25.如图,公路AC,BC互相垂直,公路AB的中点M 与点C被湿地隔开,若测得BM的长为12km,则M,C两点间的距离为()A.5km B.6km C.9km D.12km26.如图,△ABC中,D为AB的中点,BE⊥AC,垂足为E.若DE=4,AE=6,则BE的长度是()A.10 B .C.8 D .27.在△ABC中,∠B=90°,D是AC的中点,若∠A =20°,则∠BDC的度数为()(自己画图)A.20°B.30°C.40°D.50°第4页(共4页)。
三角形的中位线(作业课件)-初中数学北师大版八年级下册
7.【2019·河池】如图,在△ABC中,D,E分别是AB, BC的中点,点F在DE延长线上,添加一个条件使四边 形ADFC为平行四边形,则这个条件是( B ) A.∠B=∠F B.∠B=∠BCF C.AC=CF D.AD=CF
8.如图,在△ABC(纸片)中,AB=BC>AC,点D是AB边 的中点,点E在边AC上,将纸片沿DE折叠,使点A落在 BC边上的点F处.则下列结论成立的个数有( B )
1.【2020·广州】在△ABC中,点D,E分别是△ABC 的边AB,AC的中点,连接DE.若∠C=68°,则 ∠AED=( B ) A.22° B.68° C.96° D.112°
2.【2020·福建】如图,在面积为 1 的等边三角形 ABC 中,D, E,F 分别是 AB,BC,CA 的中点,则△ DEF 的面积是( D ) A.1 B.12 C.13 D.14
5.【2020·凉山州】如图,▱ABCD的对角线AC,BD 相交于点O,OE∥AB交AD于点E,若OA=1, △AOE的周长等于5,则▱ABCD的周长等于 ___1_6____.
6.【2020·沈阳】如图,在平行四边形ABCD中,点M为 边AD上一点,AM=2MD,点E,点F分别是BM,CM 的中点,若EF=6,则AM的长为____8____.
解:如图②,连接 BD,取 BD 的中点 H,连接 EH,FH. ∵E,H,F 分别是 AD,BD,BC 的中点, ∴EH=12AB,FH=12CD,FH∥AC. ∴∠HFE=∠FEC=45°.
∵AB=CD=2, ∴FH=EH=1. ∴∠HEF=∠HFE=45°. ∴∠EHF=180°-∠HFE-∠HEF=90°. ∴EF= EH2+FH2= 2.
11.(1)如图①,在四边形ABCD中,AB=CD,E,F分别 是AD,BC的中点,连接FE并延长与BA,CD的延长 线分别交于M,N.求证:∠BME=∠CNE. (2)如图②,在△ ABC 中,F 是 BC 的中点,D 是 AC 边上 一点,E 是 AD 的中点,直线 FE 交 BA 的延长线于点 G.若 AB=DC=2,∠FEC=45°,求 EF 的长.
鲁教版八年级数学上册5.3三角形的中位线基础达标训练题(附答案)
鲁教版八年级数学上册5.3三角形的中位线基础达标训练题(附答案)一.选择题(共10小题)1.如图,A,B两地被池塘隔开,小明通过下列方法测出了A、B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为6m,由此他就知道了A、B间的距离.有关他这次探究活动的描述错误的是()A.AB=12m B.MN∥AB C.△CMN∽△CAB D.CM:MA=1:2 2.如图,在△ABC中,BD、CE是△ABC的中线,BD与CE相交于点O,点F、G分别是OB、OC的中点,连接AO.若AO=3cm,BC=4cm,则四边形DEFG的周长是()A.7cm B.9 cm C.12cm D.14cm3.如图,A、B两处被池塘隔开,为了测量A、B两处的距离,在AB外选一适当的点C,连接AC、BC,并分别取线段AC、BC的中点E、F,测得EF=20m,则AB长为()A.10m B.20m C.30m D.40m4.如图,在△ABC中,动点P在AB边上由点A向点B以3cm/s的速度匀速运动,则线段CP的中点Q运动的速度为()A.3cm/s B.2cm/s C.1.5cm/s D.1cm/s5.在△ABC中,点D,E分别是边AB,BC的中点,若DE=3,则AC=()A.3B.6C.9D.126.如图,点B是直线l外一点,在l的另一侧任取一点K,以B为圆心,BK为半径作弧,交直线l与点M、N;再分别以M、N为圆心,以大于MN为半径作弧,两弧相交于点P;连接BP交直线l于点A;点C是直线l上一点,点D、E分别是线段AB、BC的中点;F在CA的延长线上,∠FDA=∠B,AC=8,AB=6,则四边形AEDF的周长为()A.8B.10C.16D.187.如图,若DE是△ABC的中位线,△ADE的周长为1,则△ABC的周长为()A.1B.2C.3D.48.如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=8,BC=14,则线段EF的长为()A.2B.3C.5D.69.如图,四边形ABCD中,点E、F、G分别是线段AD、BC、AC的中点,则△EFG的周长()A.与AB、BC、AC的长有关B.与AD、DC、AC的长有关C.与AB、DC、EF的长有关D.与AD、BC、EF的长有关10.如图,A、B两点被池塘隔开,在AB外选一点C,连结AC、BC.分别取AC、DC的中点写D、E,连结DE,若测得DE=40m,则A、B两点之间的距离是()A.40m B.60m C.80m D.100m二.填空题(共10小题)11.△ABC中,BC=8,AB,AC的中点分别为D,E,则DE=.12.如图,跷板AB的支柱OD经过它的中点O,且垂直于地面BC,垂足为D,OD=0.8m;当它的一端B地时,另一端A离地面的高度AC为m.13.京珠高速公路粤北段地势十分复杂,所以当年在建这段路时,要开很多隧道,如图是一个要开挖的隧道,为保证按时完成工程,必须先要知道所挖隧道的长度,于是测量人员在山外取一点O,并取AO,BO的中点C,D,测得CD=237m,则隧道AB的长是m.14.如图,已知等边三角形ABC边长为16,△ABC的三条中位线组成△A1B1C1,△A1B1C1的三条中位线组成△A2B2C2,依此进行下去得到△A4B4C4的周长为.15.如图,在△ABC中,点D、E、F分别是BC、AB、AC的中点,如果△ABC的周长为20+2,那么△DEF的周长是.16.如图,在△ABC中,D,E分别是AB和AC的中点,F是BC延长线上一点,CF=1,DF交CE于点G,且EG=CG,则BC=.17.若三角形各边长分别为8cm、10cm、16cm,则以各边中点为顶点的三角形的周长是.18.如图,在△ABC中,D、E分别为AB、AC的中点,点F在DE上,且AF⊥CF,若AC =3,BC=5,则DF=.19.等边三角形的中位线与高之比为.20.如图,在四边形ABCD中,∠A=90°,M、N分别为线段BC、AB上的动点(含端点,但点M不与点B重合),E、F分别为DM、MN的中点,若AB=2,AD=2,则EF 长度的最大值为.三.解答题(共8小题)21.如图,在△ABC中,点D,E分别是AB,AC的中点,F是BC延长线上的一点,且CF =BC.试猜想DE与CF有怎样的数量关系,并说明理由.22.如图,在△ABC中,M是BC的中点,AN平分∠BAC,AN⊥BN于N,延长BN交AC 于点D,已知AB=10,MN=4,BM=7,求△ABC的周长.23.如图,在Rt△ABC中,∠A=90°,∠B=30°,D、E分别是AB、BC的中点,若DE =3,求BC的长.24.如图,四边形ABCD中,AB=AD,对角线BD平分∠ABC,E,F分别是BD,CD的中点.求证:AD∥EF.25.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,过点E作EF∥CD交BC的延长线于点F,连接CD.(1)求证:DE=CF;(2)求EF的长.26.证明:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.(要求:在给出的△ABC中用尺规作出AB、AC边的中点M、N,保留作图痕迹,不要求写作法,并根据图形写出已知、求证和证明)27.“过三角形一边的中点,且平行于另一边的直线,必过第三边的中点”.根据这个结论解决问题:如图,S△ABC=32,AC=8,BC=10,点M为BC的中点,MN⊥AC于点N,求NC的长.28.如图,在四边形ABCD中,AB=CD,M、N、P分别是AD、BC、BD的中点,求证:PM=PN.参考答案与试题解析一.选择题(共10小题)1.如图,A,B两地被池塘隔开,小明通过下列方法测出了A、B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为6m,由此他就知道了A、B间的距离.有关他这次探究活动的描述错误的是()A.AB=12m B.MN∥AB C.△CMN∽△CAB D.CM:MA=1:2【解答】解:∵M、N分别是AC、BC的中点,∴MN是△ABC的中位线,CM=AM,∴MN∥AB,MN=AB,AB=2MN=12m,CM:MA=1:1,∴△CMN∽△CAB;故A,B,C正确,故选:D.2.如图,在△ABC中,BD、CE是△ABC的中线,BD与CE相交于点O,点F、G分别是OB、OC的中点,连接AO.若AO=3cm,BC=4cm,则四边形DEFG的周长是()A.7cm B.9 cm C.12cm D.14cm【解答】解:∵BD、CE是△ABC的中线,∴DE=BC=2,同理,FG=BC=2,EF=OA=1.5,DG=OA=1.5,∴四边形DEFG的周长=DE+EF+FG+DG=7(cm),故选:A.3.如图,A、B两处被池塘隔开,为了测量A、B两处的距离,在AB外选一适当的点C,连接AC、BC,并分别取线段AC、BC的中点E、F,测得EF=20m,则AB长为()A.10m B.20m C.30m D.40m【解答】解:∵E、F是AC,AB的中点,∴EF是△ABC的中位线,∴EF=AB∵EF=20m,∴AB=40m.故选:D.4.如图,在△ABC中,动点P在AB边上由点A向点B以3cm/s的速度匀速运动,则线段CP的中点Q运动的速度为()A.3cm/s B.2cm/s C.1.5cm/s D.1cm/s【解答】解:取AC的中点H,连接QH,当点P与点A重合时,点Q与点H重合,∵点Q是线段CP的中点,点H为AC的中点,∴QH=AP,∵动点P在AB边上由点A向点B以3cm/s的速度匀速运动,∴点Q运动的速度为1.5cm/s,故选:C.5.在△ABC中,点D,E分别是边AB,BC的中点,若DE=3,则AC=()A.3B.6C.9D.12【解答】解:∵点D,E分别是边AB,BC的中点,∴AC=2DE=6,故选:B.6.如图,点B是直线l外一点,在l的另一侧任取一点K,以B为圆心,BK为半径作弧,交直线l与点M、N;再分别以M、N为圆心,以大于MN为半径作弧,两弧相交于点P;连接BP交直线l于点A;点C是直线l上一点,点D、E分别是线段AB、BC的中点;F在CA的延长线上,∠FDA=∠B,AC=8,AB=6,则四边形AEDF的周长为()A.8B.10C.16D.18【解答】解:由题意得,BA⊥MN,∴BC==10,∵∠BAC=90°,点D是线段BC的中点,∴AE=BE=BC=5,∴∠EAB=∠B,∵∠FDA=∠B,∴∠FDA=∠EAB,∴DF∥AE,∵点D、E分别是线段AB、BC的中点,∴DE∥AC,DE=AC=4,∴四边形AEDF是平行四边形,∴四边形AEDF的周长=2×(4+5)=18,故选:D.7.如图,若DE是△ABC的中位线,△ADE的周长为1,则△ABC的周长为()A.1B.2C.3D.4【解答】解:∵DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∵△ADE的周长为1,∴△ABC的周长为2,故选:B.8.如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=8,BC=14,则线段EF的长为()A.2B.3C.5D.6【解答】解:延长AF交BC于G,在△BF A和△BFG中,,∴△BF A≌△BFG(ASA)∴BG=AB=8,AF=FG,∴GC=BC﹣BG=6,∵AF=FG,AE=EC,∴EF=GC=3,故选:B.9.如图,四边形ABCD中,点E、F、G分别是线段AD、BC、AC的中点,则△EFG的周长()A.与AB、BC、AC的长有关B.与AD、DC、AC的长有关C.与AB、DC、EF的长有关D.与AD、BC、EF的长有关【解答】解:∵点E、G分别是线段AD、AC的中点,∴EG=CD,∵点F、G分别是线段BC、AC的中点,∴GF=AB,则△EFG的周长=EG+GF+EF=CD+AB+EF,∴△EFG的周长与AB、DC、EF的长有关,故选:C.10.如图,A、B两点被池塘隔开,在AB外选一点C,连结AC、BC.分别取AC、DC的中点写D、E,连结DE,若测得DE=40m,则A、B两点之间的距离是()A.40m B.60m C.80m D.100m【解答】解:∵D、E分别是AC、DC的中点,∴AB=2DE=80(m),故选:C.二.填空题(共10小题)11.△ABC中,BC=8,AB,AC的中点分别为D,E,则DE=4.【解答】解:∵D,E分别是边AC、AC的中点,∴BC=2DE,∵BC=8,∴DE=×8=4,故答案为:4.12.如图,跷板AB的支柱OD经过它的中点O,且垂直于地面BC,垂足为D,OD=0.8m;当它的一端B地时,另一端A离地面的高度AC为 1.6m.【解答】解:∵AC∥OD,O是AB的中点,∴D是BC的中点,∵O是AB的中点,D是BC的中点,∴AC=2OD=1.6,故答案为:1.6.13.京珠高速公路粤北段地势十分复杂,所以当年在建这段路时,要开很多隧道,如图是一个要开挖的隧道,为保证按时完成工程,必须先要知道所挖隧道的长度,于是测量人员在山外取一点O,并取AO,BO的中点C,D,测得CD=237m,则隧道AB的长是474 m.【解答】解:∵点C,D是AO,BO的中点,∴AB=2CD,∵CD=237m,∴AB=474m,故答案为:474.14.如图,已知等边三角形ABC边长为16,△ABC的三条中位线组成△A1B1C1,△A1B1C1的三条中位线组成△A2B2C2,依此进行下去得到△A4B4C4的周长为3.【解答】解:∵等边三角形ABC边长为16,∴△ABC的周长为48,∵△A1B1C1是△ABC的三条中位线组成,∴△A1B1C1的周长=×△ABC的周长=24,同理,△A2B2C2,的周长=24×=12,△A3B3C3的周长=12×=6,△A4B4C4的周长=6×=3,故答案为:3.15.如图,在△ABC中,点D、E、F分别是BC、AB、AC的中点,如果△ABC的周长为20+2,那么△DEF的周长是10+.【解答】解:∵△ABC的周长为20+2,∴AB+AC+BC=20+2,∵点D、E、F分别是BC、AB、AC的中点,∴EF=BC,DF=AB,DE=AC,∴△DEF的周长=DE+EF+DF=(AC+BC+AB)=10+,故答案为:10+.16.如图,在△ABC中,D,E分别是AB和AC的中点,F是BC延长线上一点,CF=1,DF交CE于点G,且EG=CG,则BC=2.【解答】解:∵D、E分别是AB和AC的中点∴DE∥BC,DE=BC∴△ADE∽△ABC,△GED≌△GCF∴DE=CF=1∴CF=BC∴BC=2故答案为2.17.若三角形各边长分别为8cm、10cm、16cm,则以各边中点为顶点的三角形的周长是17cm.【解答】解:∵D、E分别是AB、AC的中点,∴DE=BC=8,同理,DF=5=8,FE=BA=4,∴△DEF的周长=DE+EF+DF=17故答案为:17cm.18.如图,在△ABC中,D、E分别为AB、AC的中点,点F在DE上,且AF⊥CF,若AC =3,BC=5,则DF=1.【解答】解:∵D、E分别为AB、AC的中点,∴DE=BC=2.5,∵AF⊥CF,E为AC的中点,∴EF=AC=1.5,∴DF=DE﹣EF=1,故答案为:1.19.等边三角形的中位线与高之比为1:.【解答】解:设等边三角形的边长为2a,则中位线长为a,高线的长为=a,所以等边三角形的中位线与高之比为a:a=1:,故答案为:1:.20.如图,在四边形ABCD中,∠A=90°,M、N分别为线段BC、AB上的动点(含端点,但点M不与点B重合),E、F分别为DM、MN的中点,若AB=2,AD=2,则EF 长度的最大值为2.【解答】解:连接BD、DN,在Rt△ABD中,DB==4,∵点E、F分别为DM、MN的中点,∴EF=DN,由题意得,当点N与点B重合时,DN最大,∴DN的最大值是4,∴EF长度的最大值是2,故答案为:2.三.解答题(共8小题)21.如图,在△ABC中,点D,E分别是AB,AC的中点,F是BC延长线上的一点,且CF =BC.试猜想DE与CF有怎样的数量关系,并说明理由.【解答】解:DE=CF,理由如下:∵点D,E分别是AB,AC的中点,∴DE=BC,∵CF=BC,∴DE=CF.22.如图,在△ABC中,M是BC的中点,AN平分∠BAC,AN⊥BN于N,延长BN交AC 于点D,已知AB=10,MN=4,BM=7,求△ABC的周长.【解答】解:在△ANB和△AND中,,∴△ANB≌△AND(ASA)∴AD=AB=10,BN=BD,∵M是BC的中点,BN=BD,∴BC=2BM=14,CD=2MN=8,∴△ABC的周长=AB+BC+AC=10+14+8+10=42.23.如图,在Rt△ABC中,∠A=90°,∠B=30°,D、E分别是AB、BC的中点,若DE =3,求BC的长.【解答】解:∵D、E是AB、BC的中点,DE=3∴AC=2DE=6,∵∠A=90°,∠B=30°,∴BC=2AC=12.24.如图,四边形ABCD中,AB=AD,对角线BD平分∠ABC,E,F分别是BD,CD的中点.求证:AD∥EF.【解答】证明:∵E,F分别是BD,CD的中点,∴EF∥BC,∵AB=AD,∴∠ADB=∠ABD,∵BD平分∠ABC,∴∠DBC=∠ABD,∴∠ADB=∠DBC,∴AD∥BC,∴AD∥EF.25.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,过点E作EF∥CD交BC的延长线于点F,连接CD.(1)求证:DE=CF;(2)求EF的长.【解答】解:(1)∵D、E分别为AB、AC的中点,∴DE∥BC,DE=BC,∵EF∥CD∴四边形DEFC是平行四边形,∴DE=CF.(2)∵四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=.26.证明:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.(要求:在给出的△ABC中用尺规作出AB、AC边的中点M、N,保留作图痕迹,不要求写作法,并根据图形写出已知、求证和证明)【解答】解:如图,点M,N即为所求作的点,已知:如图,△ABC中,点M,N分别是AB,AC的中点,连接MN,求证:MN∥BC,MN=BC证明:延长MN至点D,使得MN=ND,连接CD,在△AMN和△CDN中,,∴△AMN≌△CDN(SAS)∴∠AMN=∠D,AM=CD,∴AM∥CD,即BM∥CD,∵AM=BM=CD,∴四边形BMDC为平行四边形,∴MN∥BC,MD=BC,∵,∴.27.“过三角形一边的中点,且平行于另一边的直线,必过第三边的中点”.根据这个结论解决问题:如图,S△ABC=32,AC=8,BC=10,点M为BC的中点,MN⊥AC于点N,求NC的长.【解答】解:过点B作MN的平行线BD,∵S△ABC=32,∴BD=8,∵点M为BC的中点,∴MN=4,∵BC=10,∴CM=5,在Rt△MNC中,CM=5,MN=4,可得:CN=.28.如图,在四边形ABCD中,AB=CD,M、N、P分别是AD、BC、BD的中点,求证:PM=PN.【解答】解:∵M、N、P分别是AD、BC、BD的中点,∴PM=AB,PN=CD,∵AB=CD,∴PM=PN。
北师大版数学八年级下册:6.3 三角形的中位线 同步练习(附答案)
3 三角形的中位线知识点1 三角形中位线定理1.如图,点D ,E 分别是△ABC 边BA ,BC 的中点,AC =3,则DE 的长为( ) A .2B.43C .3D.32第1题图 第2题图2.如图,M ,N 分别是△ABC 的边AB ,AC 的中点.若∠A =65°,∠ANM =45°,则∠B =( )A .20°B .45°C .65°D .70°3.已知△ABC 的周长为16,点D ,E ,F 分别为△ABC 三条边的中点,则△DEF 的周长为( )A .8B .2 2C .16D .44.如图,在△ABC 中,D ,E 分别是AB ,BC 的中点,点F 在DE 延长线上,添加一个条件使四边形ADFC 为平行四边形,则这个条件是( )A .∠B =∠F B .∠B =∠BCFC .AC =CFD .AD =CF第4题图 第5题图5.如图,在▱ABCD 中,点M 为边AD 上一点,AM =2MD ,点E ,F 分别是BM ,CM 的中点.若EF =6,则AM 的长为 .6.如图,在△ABC 中,点D ,E ,F 分别为边AB ,BC ,CA 的中点.求证:四边形DECF 是平行四边形.7.如图,在等腰△ABC中,AB=AC=8,AD是∠BAC的平分线,交BC于点D,点E是AB的中点,连接DE.求线段DE的长.知识点2三角形中位线定理的应用8.如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50 m,则AB的长是m.第8题图第9题图9.如图,吴伯伯家有一块等边三角形的空地ABC,已知点E,F分别是边AB,AC的中点,量得EF=5米,他想把四边形BCFE用篱笆围成一圈放养小鸡,则需用篱笆的长是()A.15米B.20米C.25米D.30米10.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7B.8C.9D .1011.如图,D 是△ABC 内一点,BD ⊥CD ,AD =7,BD =4,CD =3,E ,F ,G ,H 分别是AB ,BD ,CD ,AC 的中点,则四边形EFGH 的周长为( )A .12B .14C .24D .21第11题图 第12题图12.如图,在四边形ABCD 中,点P 是对角线BD 的中点,点E ,F 分别是AB ,CD 的中点,AD =BC ,∠PEF =35°,则∠PFE 的度数是 .13.如图,在△ABC 中,∠BAC =90°,延长BA 到点D ,使AD =12AB ,E ,F 分别是边BC ,AC 的中点.求证:DF =BE.14.如图,在△ABC 中,AB =4,AC =3,AD ,AE 分别是△ABC 的角平分线和中线,过点C 作CG ⊥AD 于点F ,交AB 于点G ,连接EF ,求线段EF 的长.15.如图,在四边形ABCD中,已知AB=CD,点E,F分别为AD,BC的中点,延长BA,CD,分别交射线FE于P,Q两点.求证:∠P=∠CQF.参考答案:3 三角形的中位线知识点1 三角形中位线定理1.如图,点D ,E 分别是△ABC 边BA ,BC 的中点,AC =3,则DE 的长为(D ) A .2B.43C .3D.32第1题图 第2题图2.如图,M ,N 分别是△ABC 的边AB ,AC 的中点.若∠A =65°,∠ANM =45°,则∠B =(D )A .20°B .45°C .65°D .70°3.已知△ABC 的周长为16,点D ,E ,F 分别为△ABC 三条边的中点,则△DEF 的周长为(A )A .8B .2 2C .16D .44.如图,在△ABC 中,D ,E 分别是AB ,BC 的中点,点F 在DE 延长线上,添加一个条件使四边形ADFC 为平行四边形,则这个条件是(B )A .∠B =∠F B .∠B =∠BCFC .AC =CFD .AD =CF第4题图 第5题图5.如图,在▱ABCD 中,点M 为边AD 上一点,AM =2MD ,点E ,F 分别是BM ,CM 的中点.若EF =6,则AM 的长为8.6.如图,在△ABC 中,点D ,E ,F 分别为边AB ,BC ,CA 的中点.求证:四边形DECF 是平行四边形.证明:∵D ,F 分别是边AB ,AC 的中点, ∴DF ∥BC.同理:DE ∥AC.∴四边形DECF 是平行四边形.7.如图,在等腰△ABC 中,AB =AC =8,AD 是∠BAC 的平分线,交BC 于点D ,点E 是AB 的中点,连接DE.求线段DE 的长.解:∵AB =AC ,AD 平分∠BAC , ∴AD 是等腰△ABC 底边BC 上的中线. ∴点D 是BC 的中点. 又∵点E 是AB 的中点, ∴DE 是△ABC 的中位线. ∴DE =12AC =4.知识点2 三角形中位线定理的应用8.如图,要测量池塘两岸相对的A ,B 两点间的距离,可以在池塘外选一点C ,连接AC ,BC ,分别取AC ,BC 的中点D ,E ,测得DE =50 m ,则AB 的长是100m.第8题图 第9题图9.如图,吴伯伯家有一块等边三角形的空地ABC ,已知点E ,F 分别是边AB ,AC 的中点,量得EF =5米,他想把四边形BCFE 用篱笆围成一圈放养小鸡,则需用篱笆的长是(C )A .15米B .20米C .25米D .30米10.如图,在△ABC 中,∠ABC =90°,AB =8,BC =6.若DE 是△ABC 的中位线,延长DE 交△ABC 的外角∠ACM 的平分线于点F ,则线段DF 的长为(B )A .7B .8C .9D .1011.如图,D 是△ABC 内一点,BD ⊥CD ,AD =7,BD =4,CD =3,E ,F ,G ,H 分别是AB ,BD ,CD ,AC 的中点,则四边形EFGH 的周长为(A )A .12B .14C .24D .21第11题图 第12题图12.如图,在四边形ABCD 中,点P 是对角线BD 的中点,点E ,F 分别是AB ,CD 的中点,AD =BC ,∠PEF =35°,则∠PFE 的度数是35°.13.如图,在△ABC 中,∠BAC =90°,延长BA 到点D ,使AD =12AB ,E ,F 分别是边BC ,AC 的中点.求证:DF =BE.证明:∵E ,F 分别是边BC ,AC 的中点, ∴EF =12AB ,EF ∥AB ,AF =FC ,BE =EC.∵AD =12AB ,∴EF =AD.∵∠BAC =90°,EF ∥AB , ∴∠DAF =∠EFC =90°. 又∵AF =FC ,AD =FE , ∴△DAF ≌△EFC (SAS ). ∴DF =EC.又∵BE =EC ,∴DF =BE.14.如图,在△ABC 中,AB =4,AC =3,AD ,AE 分别是△ABC 的角平分线和中线,过点C 作CG ⊥AD 于点F ,交AB 于点G ,连接EF ,求线段EF 的长.解:∵AF 是△ABC 的角平分线,∴∠GAF =∠CAF. 又∵CG ⊥AD ,∴∠AFC =∠AFG =90°. 在△AGF 和△ACF 中,⎩⎨⎧∠GAF =∠CAF ,AF =AF ,∠AFG =∠AFC ,∴△AGF ≌△ACF (ASA ). ∴AG =AC =3,GF =CF. ∴BG =AB -AG =4-3=1.又∵BE =CE ,∴EF 是△BCG 的中位线. ∴EF =12BG =12.15.如图,在四边形ABCD 中,已知AB =CD ,点E ,F 分别为AD ,BC 的中点,延长BA ,CD ,分别交射线FE 于P ,Q 两点.求证:∠P =∠CQF.证明:连接BD ,取BD 的中点M ,连接EM ,FM. ∵点E 是AD 的中点, ∴EM ∥AB ,EM =12AB.∴∠MEF =∠P.同理可证:FM ∥CD ,FM =12CD.∴∠MFE =∠CQF. 又∵AB =CD ,∴EM =FM. ∴∠MEF =∠MFE.∴∠P =∠CQF.。
2020-2021学年苏科版八年级下册数学 9.5三角形的中位线 同步练习 (含答案)
9.5三角形的中位线同步练习一.选择题1.如图,在△ABC中,点D,E分别是边AB,BC的中点,若△DBE的周长是7,则△ABC的周长是()A.8B.10C.12D.142.如图,EF是△ABC的中位线,BD平分∠ABC交EP于D,BE=3,DF=1,则BC的长为()A.2B.4C.6D.83.如图,在△ABC中,D是AC的中点,且BD⊥AC,DE∥BC,交AB于点E,BC=7cm,AC =6cm,则△AED的周长等于()A.12cm B.10cm C.7cm D.9cm4.如图,在Rt△ABC中,∠B=90°,BC=5,AB=12,点D,E分别是AB,AC的中点,CF 平分Rt△ABC的一个外角∠ACM,交DE的延长线于点F,则DF的长为()A.5B.8.5C.9D.125.如图,△ABC是等边三角形,D、E、F分别是边AB、AC、BC的中点,若BC=4,则△DEF的周长等于()A.3B.6C.9D.126.如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF ∥DC交BC的延长线于F.若四边形CDEF的周长是10cm,AC的长为4cm,则△ABC的周长是()A.28B.24C.14D.187.如图,BD、CE是△ABC的中线,P、Q分别是BD、CE的中点,则PQ:BC等于()A.1:4B.1:5C.1:6D.1:78.如图,在四边形ABCD中,AD=BC,E,F,G分别是AB,CD,AC的中点,则下列结论错误的是()A.GF=AD B.EF=AC C.GE=BC D.GE=GF9.如图,△ABC周长20,D,E在边BC上,BN和CM分别是∠ABC和∠ACB的平分线,BN ⊥AE,CM⊥AD,若BC=8,则MN的长为()A.1B.2C.3D.310.如图,△ABC中,∠ACB=90°,点D,E分别在BC,AC边上,且AE=4,BD=6,分别连接AD,BE,点M,N分别是AD,BE的中点,连接MN,则线段MN的长()A.B.3C.3D.二.填空题11.如图,在△ABC中,点D、E分别是边AB、AC的中点,连接DE,∠ABC的平分线BF交DE于点F,若AB=4,BC=6,则EF的长为.12.如图,在△ABC中,点D,E,F分别是边AB,BC,CA上的中点,且AB=10cm,AC=16cm,则四边形ADEF的周长等于cm.13.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别为AB、AC、AD的中点.若AB=6,则EF的长度为.14.如图,在Rt△ABC中,∠ACB=90°,点D、F分别为AC、BC边上的中点,CE是斜边上的中线,若DF=3,则CE=.15.如图,D是△ABC内一点,BD⊥CD,E,F,G,H分别是AB,BD,CD,AC的中点.若AD=5,BD=4,CD=3,则四边形EFGH的周长是.三.解答题16.如图,在△ABC中,AB=AC,D、E分别是AB、BC的中点,EF⊥AC,垂足F;(1)求证:AD=DE;(2)求证:DE⊥EF.17.在△ABC中,E是AC边上一点,线段BE垂直∠BAC的平分线于D点,点M为BC边的中点,连接DM.(1)求证:DM=CE;(2)若AD=6,BD=8,DM=2,求AC的长.18.如图,在四边形ABCD中,∠DAB=90°,DB=DC,点E、F分别为DB、BC的中点,连接AE、EF、AF.(1)求证:AE=EF;(2)当AF=AE时,设∠ADB=α,∠CDB=β,求α,β之间的数量关系.参考答案一.选择题1.解:∵点D、E分别是边AB、BC的中点,∴BD=AB,BE=BC,DE=AC,∴AB=2BD,BC=2BE,AC=2DE,∴△ABC的周长=AB+BC+AC=2BD+2BE+2DE=2(BD+BE+DE)=2×△DBE的周长=2×7=14,故选:D.2.解:∵BD平分∠ABC,∴∠ABD=∠CBD,∵EF是△ABC的中位线,∴EF∥BC,BC=2EF,∴∠EDB=∠CBD,∴∠ABD=∠EDB,∴ED=EB=3,∴EF=ED+DF=4,∴BC=2EF=8,故选:D.3.解:∵D是AC的中点,且BD⊥AC,∴AB=BC=7cm,AD=AC=3cm,∵ED∥BC,∴AE=BE=AB=3.5cm,ED=BC=3.5cm,∴△AED的周长=AE+ED+AD=10(cm).故选:B.4.解:∵∠B=90°,BC=5,AB=12,∴AC==13,∵D,E分别是AB,AC的中点,∴DE=BC=2.5,EC=AC=6.5,DE∥BC,∴∠FCM=∠EFC,∵CF平分Rt△ABC的一个外角∠ACM,∴∠FCM=∠FCE,∴∠EFC=∠FCE,∴EF=EC=6.5,∴DF=DE+EF=9,故选:C.5.解:∵D、E、F分别是AB、AC、BC的中点,AB=BC=AC=4,∴DE=2,EF=2,DF=2,∴△DEF的周长=2+2+2=6,故选:B.6.解:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴BC=2DE,DE∥BC,∵DE∥BC,EF∥DC,∴四边形CDEF为平行四边形,∴CD+DE=×10=5,在Rt△ACB中,D是AB的中点,∴AB=2CD,∴AB+BC=2CD+2DE=2(CD+DE)=10,∵AC=4,∴△ABC的周长=AB+BC+AC=14(cm),故选:C.7.解:连接DE,连接并延长EP交BC于点F,∵DE是△ABC中位线,∴DE=BC,AE=BE,AD=CD,∴∠EDB=∠DBF,∵P、Q是BD、CE的中点,∴DP=BP,∵在△DEP与△BFP中,,∴△DEP≌△BFP(ASA),∴BF=DE=BC,P是EF中点,∴FC=BC,PQ是△EFC中位线,PQ=FC,∴PQ:BC=1:4.故选:A.8.解:∵E,F,G分别是AB,CD,AC的中点,∴,,,故选项A,C正确,∵AD=BC,∴GE=GF,故选项D正确,∵EF不一定等于AG,故选项B不正确;故选:B.9.解:∵BN是∠ABC的平分线,∴∠ABN=∠EBN,在△ABN和△EBN中,,∴△ABN≌△EBN(ASA),∴BE=BA,AN=NE,同理可得,CD=CA,AM=MD,∵△ABC周长20,∴AB+AC+BC=20,∴AB+AC=20﹣BC=12,∴DE=AB+AC﹣BC=4,∵AN=NE,AM=MD,∴MN是△ADE的中位线,∴MN=DE=2,故选:B.10.解:取AB的中点F,连接NF、MF,△ABC中,∵∠ACB=90°,∴∠CAB+∠CBA=90°,∵AM=MD,AF=FB,∴MF是△ABD的中位线,∴MF=BD=3,MF∥BC,∴∠AFM=∠CBA,同理,NF=AE=2,NF∥CC,∴∠BFN=∠CAB,∴∠AFM+∠BFN=∠CAB+∠CBA=90°,∴∠MFN=90°,∴MN==,故选:D.二.填空题11.解:连接AF并延长交BC于H,∵点D、E分别为边AB、AC的中点,∴DE∥BC,DE=BC=3,AF=FH,在△BF A和△BFH中,,∴△BF A≌△BFH(AAS),∴BH=AB=4,∵AD=DB,AF=FH,∴DF=BH=2,∴EF=DE﹣DF=1,故答案为:1.12.解:∵点D,E,F分别是边AB,BC,CA上的中点,∴DE,EF都是△ABC的中位线,∴DE=AC=8cm,DE∥AC,EF=AB=5cm,EF∥AB,∴四边形ADEF是平行四边形,∴四边形ADEF的周长=2(DE+EF)=2×13=26(cm).故答案为:26.13.解:在Rt△ABC中,D为AB的中点,∴CD=AB=3,∵E、F分别为AC、AD的中点,∴EF是△ACD的中位线,∴EF=CD=,故答案为:.14.解:∵D,F分别为AC,BC的中点,∴DF是△ABC的中位线,∴AB=2DF=6,在Rt△ABC中,E为AB的中点,∴EC=AB=3,故答案为:3.15.解:在Rt△BDC中,BD=4,CD=3,∴BC==5,∵F,G分别是BD,CD的中点,∴FG是△DBC的中位线,∴FG=BC=2.5,同理,EF=AD=2.5,EH=BC=2.5,HG=AD=2.5,∴四边形EFGH的周长=FG+EF+EH+HG=10,故答案为:10.三.解答题16.解:(1)∵AB=AC,∴∠B=∠C,∵D、E分别是AB、BC的中点,∴AD=AB,DE=AC,∴AD=DE;(2)∵D、E分别是AB、BC的中点,∴DE∥AC,∵EF⊥AC,∴DE⊥EF.17.(1)证明:在△ADB和△ADE中,,∴△ADB≌△ADE(ASA)∴AE=AB,BD=DE,∵BD=DE,BM=MC,∴DM=CE;(2)解:在Rt△ADB中,AB==10,∴AE=10,由(1)得,CE=2DM=4,∴AC=CE+AE=14.18.(1)证明:∵点E、F分别为DB、BC的中点,∴EF是△BCD的中位线,∴EF=CD,在Rt△ABD中,点E为斜边DB的中点,∴AE=DB,∵DB=DC,∴AE=EF;(2)如图,由(1)知AE=EF,∵AF=AE,∴AE=EF=AF,∴△AEF是等边三角形,∴∠AEF=60°,∵EF是△BCD的中位线,∴EF∥CD,∴∠BEF=∠BDC=β,∴β+∠AEB=60°,又∵∠AEB=α+∠DAE,∴β+α+∠DAE=60°,∵∠DAB=90°,∴AE是斜边BD上的中线,∴AE=DE,∴∠DAE=α,∴β+α+α=60°,即2α+β=60°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.6 三角形的中位线同步练习
解题示范
例如图,在△ABC中,已知AB=6,AC=10,AD平分∠BAC,BD⊥AD于点D,E•为BC 中点.求DE的长.
审题已知AB=6,AC=10,求DE的长,但DE与AB,AC之间没有联系.又AD平分∠BAC,BD⊥AD于点D,易联想到构造等腰三角形.
方案该图不全,可补全图形,延长BD交AC于点F.显然可证△ABD≌△AFD,•从而
AB=AF=6,BD=DF.由条件E为BC中点,可判断DE为△BCF的中位线,即DE=1
2
FC,只要
求出FC的长度即可.
实施延长BD交AC于点F.
∵∠BAD=∠FAD,AD=AD,∠ADB=∠ADF=90°.∴△ABD≌△AFD,
∴AB=AF=6,BD=DF.
又∵E为BC中点,
∴DE=1
2
FC=
1
2
(AC-AF)=
1
2
(10-6)=2.
反思(1)本题采用补全图形的方法,构造三角形中位线,从而把DE与AB,AC联系起来.
(2)如果在条件中出现了线段的中点,不妨尝试通过构造三角形中位线来解决问题.
课时训练
1.如图1,EF是△ABC的中位线.
(1)若BC=6,则EF=_________;(2)若EF=m,则BC=_________.
(1) (2) (3) (4)
2.如图2,EF∥GH∥MN,AE=EG=GM=MB,GH=4,则EF=______,BC=________.
3.如图3,A,B两点分别位于一个池塘的两端,小明想用绳子测量A,B间的距离,•但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接达到A,B的点C,•找到AC,BC的中点D,E,并且测出DE的长为15m,则A,B两点间的距离为_____m.4.三角形的三边长分别是3cm、5cm、6cm,则连结三边中点所围成的三角形的周长是________.
5.三角形的三条中位线长分别为2cm 、3cm 、4cm ,则原三角形的周长为( ). (A )4.5cm (B )18cm (C )9cm (D )36cm
6.已知△ABC 的周长为1,连结△ABC 的三边中点构成第2个三角形,再连结第2•个三角形的三边中点构成第3个三角形,依此类推,第2006个三角形的周长是( ).
(A )
12005 (B )1
2006 (C )
2005
12 (D )
2006
12
7.如图4,已知知形ABCD ,R ,P 分别是DC ,BC 上的点,E ,F 分别
是AP ,RP 的中点.•当点P 在BC 上从点B 向点C 移动而点R 不动时,那么下列结论成立的是( ).
(A )线段EF 的长逐渐增大 (B )线段EF 的长逐渐减少
(C )线段EF 的长不变 (D )线段EF 的长不能确定
8.如图,在△ABC 中,E ,D ,F 分别是AB ,BC ,CA 的中点,AB=6,AC=4,则四边形AEDF•的周长是________.
9.已知:如图,
ABCD 的对角线AC ,BD 相交于点O ,AE=EB .求证:OE ∥BC .
10.已知:如图,在△ABC 中,CF 平分∠ACB ,CA=CD ,AE=EB .求证:EF=
1
2
BD .
11.已知:如图,在 ABCD中,E,F分别是AD,BC的中点.求证:MN∥BC,且MN=12BC.
答案:
1.(1)3 (2)2m 2.2;8 3.30 4.7cm
5.B 6.C 7.C 8.10
9.提示:•证明OE是△ABC的中位线
10.提示:先证明F是AD的中点,再说明EF•是△ABD•的中位线 •
11.提示:证明△AEM≌△FBM,△DEN≌△FCN,得BM=EM,EN=CN,
故MN是△EBC的中位线。