SEASONAL BIOPHYSICAL DYNAMICS ALONG AN AMAZON ECO-CLIMATIC GRADIENT USING MODIS VEGETATION
橡胶草响应茉莉酸的蛋白质组学研究
橡胶草响应茉莉酸的蛋白质组学研究橡胶草响应茉莉酸的蛋白质组学研究橡胶草是一种重要的植物资源,被广泛种植用于橡胶产业。
茉莉酸是一种生物激素,被认为在植物的抵抗性和防御性反应中发挥重要作用。
近年来,通过应用蛋白质组学技术,研究人员探索了橡胶草响应茉莉酸诱导的生物学响应过程,并发现了一些关键的信号通路和调控蛋白。
在研究中,研究人员对茉莉酸处理橡胶草的叶片样本进行了蛋白质提取和分析。
利用二维凝胶电泳技术,研究人员成功地分离了数百个蛋白质斑点。
通过质谱技术的辅助下, 将每个斑点中的蛋白质进行鉴定和定量。
研究人员发现,茉莉酸处理后,一些蛋白质的表达水平发生了显著变化。
这些差异表达的蛋白质可以分为两类: 一类是显著上调的蛋白质,另一类是显著下调的蛋白质。
进一步的分析显示,茉莉酸诱导的上调蛋白质主要涉及到橡胶草的防御反应。
这些蛋白质包括抗氧化酶、抗病毒蛋白、抗真菌蛋白等。
这些蛋白质的上调表明,茉莉酸通过激活橡胶草的防御机制,增强其对病原体和环境胁迫的抵抗能力。
另一方面,茉莉酸诱导的下调蛋白质主要是与橡胶产生相关的酶和蛋白质。
这暗示了茉莉酸可能通过调控橡胶产生的过程来影响橡胶的生产。
在进一步的研究中,研究人员还发现茉莉酸能够影响橡胶草中一些关键信号通路的活化与抑制。
例如,茉莉酸处理可促进橡胶草中橡胶素合成酶的活性,从而提高橡胶产量。
另外,茉莉酸还能够激活与橡胶生物合成相关的代谢途径,如异戊烯代谢途径和异戊二烯类似物合成途径。
这些发现为进一步揭示橡胶产生机制和调控橡胶草橡胶产量提供了重要线索。
总结而言,橡胶草响应茉莉酸的蛋白质组学研究揭示了茉莉酸调控橡胶草生物学响应的分子机制。
茉莉酸诱导的上调蛋白质参与了植物的防御反应,提高了橡胶草的抵抗能力。
茉莉酸还能够通过影响关键信号通路的活化与抑制,调控橡胶生物合成相关的代谢途径。
这些研究成果为优化橡胶草的种植和橡胶产业的发展提供了重要的理论支持。
未来的研究可以进一步揭示橡胶产生的详细机制,并开发茉莉酸作为增加橡胶产量的潜在策略综上所述,茉莉酸在橡胶草中的作用通过调控蛋白质表达和关键信号通路的活化与抑制来实现。
Seasonal changes in physico-chemical parameters and nutrient load of river sediments in Ibadan city
Received: 01/02/07 Accepted: 08/02/08
*to whom all correspondence should be addressed: e-mail: olanikeadeyemo@
O.K. ADEYEMO1* O.A. ADEDOKUN2 R.K. YUSUF3 E.A. ADELEYE3
1Department of Veterinary Public Health and Preventive
Medicine, University of Ibadan, Nigeria 2Department of Veterinary Microbiology and Parasitology
SEASONAL CHANGES IN PHYSICO-CHEMICAL PARAMETERS AND NUTRIENT LOAD
327
reflects the long-term quality situation independent of current inputs (Hodson, 1986; Haslam, 1990). In water testing it is not possible to clearly divide between true suspension substances and temporary suspension substances stirred-up from the sediments. Sediment testing is not, or only minimally, affected by other influences. The suspended and precipitated (non-floating) substances and organic substances in waters are capable of adhering pollutant particles (adsorption). The sediments, both suspended and precipitated substances stored on the water bottom, form a reservoir for many pollutants and trace substances of low solubility and low degree of degradability (Biney et al., 1994; Barbour et al., 1998, 1999). Pollutants are conserved in sediments over long periods of time according to their chemical persistence and the physical-chemical and biochemical characteristics of the substrata. This can also allow conclusions to be drawn regarding sources of contamination. This work presents the results of our field study, which assessed seasonal and spatial changes in the physico-chemical parameters and nutrient load of pore water of sediments of randomly selected rivers in Ibadan, a metropolitan city in Nigeria.
青藏高原东缘高山森林-苔原交错带土壤微生物生物量碳、氮和可培养微生物数量的季节动态
植物生态学报 2012, 36 (5): 382–392 doi: 10.3724/SP.J.1258.2012.00382 Chinese Journal of Plant Ecology 青藏高原东缘高山森林-苔原交错带土壤微生物生物量碳、氮和可培养微生物数量的季节动态刘洋张健*闫帮国黄旭徐振锋吴福忠四川农业大学生态林业研究所, 长江上游林业生态工程省级重点实验室, 成都 611130摘要为了了解青藏高原东缘高山森林-苔原交错带土壤微生物的特征和季节变化, 研究了米亚罗鹧鸪山原始针叶林、林线、树线、密灌丛、疏灌丛和高山草甸土壤微生物生物量碳(MBC)、氮(MBN)和可培养微生物数量的季节动态。
结果表明, 植被类型和季节动态对MBC、MBN和微生物数量都有显著影响。
不同时期的微生物在各植被类型间分布有差异, 植物生长季初期和生长季中期, 树线以上群落的MBC高于树线下的群落, 而到生长季末期恰恰相反, 暗针叶林、林线和树线的MBC显著升高, 各植被之间MBC的差异减小; 微生物数量基本上也是以树线为界, 树线以下群落土壤微生物数量显著低于树线以上群落, 其中密灌丛的细菌数量最高; 可培养微生物数量为生长季末期>生长季初期>生长季中期。
生长季末期真菌数量显著增加,且MBC/MBN最高。
统计分析表明, MBN与细菌、真菌、放线菌数量存在显著的相关关系, 而MBC仅与真菌数量存在显著相关关系( p < 0.05)。
植物生长季末期大量的凋落物输入和雪被覆盖可能是微生物季节变异的外在因素, 而土壤微生物和高山植物对有效氮的竞争可能是微生物季节变异的内在因素。
植物生长季初期对氮的吸收和土壤微生物在植物生长季末期对氮的固定加强了高山生态系统对氮的利用。
气候变暖可能会延长高山植物的生长季, 增加高山土壤微生物生物量, 加速土壤有机质的分解, 进而改变高山土壤碳的固存速率。
关键词高山森林-苔原交错带, 季节动态, 土壤微生物生物量, 土壤微生物数量Seasonal dynamics in soil microbial biomass carbon and nitrogen and microbial quantity in a forest-alpine tundra ecotone, Eastern Qinghai-Tibetan Plateau, ChinaLIU Yang, ZHANG Jian*, YAN Bang-Guo, HUANG Xu, XU Zhen-Feng, and WU Fu-ZhongKey Laboratory of Forestry Ecological Engineering of Upstream of the Yangtze River of Sichuan Province, Institute of Ecological Forestry, Sichuan Agricul-tural University, Chengdu 611130, ChinaAbstractAims The forest-alpine tundra ecotone is one of the most conspicuous climate-driven ecological boundaries. However, dynamics of soil microbial biomass and quantity during different stages of the growing season in the ecotone remain unclear. Our objective was to understand the temporal and spatial variations of microbial biomass and quantity to explore the main drivers in the ecotone.Methods We collected soil samples in a forest-alpine tundra ecotone (dark-conifer forest, timberline, treeline, dense shrub,sparse shrub and alpine meadow) during early, mid and late growing season (EGS, MGS and LGS). The number and species composition of soil microorganisms were determined by means of the plate count method. Soil microbial biomass carbon (MBC) and nitrogen (MBN) were measured by the chloroform fumigation leaching method.Important findings Vegetation and seasonality significantly influence MBC, MBN and microbial community structure. Microbial biomass distribution among vegetation types was different in the three stages of the growing season. MBC above treeline was higher than below during EGS and MGS. The MBC of dark-conifer forest, tim-berline and treeline during LGS was significantly increased, and MBC differences among different vegetation types decreased. There were significant differences in measured soil microbial quantity between above- and below-treeline vegetation types; bacteria of dense shrub were highest among vegetation types. The amount of cultivated microorganisms was LGS>EGS>MGS. The ratio of MBC to MBN was the highest and the quantity of fungi increased largely late in the growing season. Statistical analysis showed that there were significant correla-tions between MBN and bacteria, fungi and actinomyces quantity, while only MBC and fungi quantity were ——————————————————收稿日期Received: 2011-12-09 接受日期Accepted: 2012-02-15* 通讯作者Author for correspondence (E-mail: sicauzhangjian@163. com)刘洋等: 青藏高原东缘高山森林-苔原交错带土壤微生物生物量碳、氮和可培养微生物数量的季节动态 383doi: 10.3724/SP.J.1258.2012.00382significantly correlated (p < 0.05). Litter input and snow cover late in the growing season were external factors of microbial seasonal variation. Soil microbes and alpine plants competing for nitrogen may be internal factors. Plant nitrogen absorption early in the growing season and microorganisms’ nitrogen fixation late in the growing season enhanced the alpine ecosystem’s nitrogen fixation and utilization. Climate warming may extend the growing sea-son of alpine plants, increasing the alpine soil microbial biomass, and accelerate the decomposition of soil organic matter, which may change soil carbon sequestration rates in the alpine ecosystem.Key words forest-alpine tundra ecotone, seasonal dynamics, soil microbial biomass, soil microbial quantity高山林线是山地森林最显著的生态界限(Holt- meier, 2003)。
SCItop区期刊表
刊名简称刊名全称ATMOS CHEM PHYS ATMOSPHERIC CHEMISTRY AND PHYSICSB AM METEOROL SOC BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY CLIM DYNAM CLIMATE DYNAMICSCONTRIB MINERAL PETR CONTRIBUTIONS TO MINERALOGY AND PETROLOGY EARTH PLANET SC LETT EARTH AND PLANETARY SCIENCE LETTERSEARTH-SCI REV EARTH-SCIENCE REVIEWSGEOCHIM COSMOCHIM AC GEOCHIMICA ET COSMOCHIMICA ACTAGEOLOGY GEOLOGYGEOTEXT GEOMEMBRANES GEOTEXTILES AND GEOMEMBRANESJ CLIMATE JOURNAL OF CLIMATEJ PETROL JOURNAL OF PETROLOGYLIMNOL OCEANOGR LIMNOLOGY AND OCEANOGRAPHYNAT GEOSCI Nature GeosciencePALEOCEANOGRAPHY PALEOCEANOGRAPHYPRECAMBRIAN RES PRECAMBRIAN RESEARCHQUATERNARY SCI REV QUATERNARY SCIENCE REVIEWSREV GEOPHYS REVIEWS OF GEOPHYSICSGEOPHYS RES LETT GEOPHYSICAL RESEARCH LETTERSJ ATMOS SCI JOURNAL OF THE ATMOSPHERIC SCIENCESJ GEOPHYS RES JOURNAL OF GEOPHYSICAL RESEARCHJ HYDROL JOURNAL OF HYDROLOGYMON WEATHER REV MONTHLY WEATHER REVIEWANNU REV ASTRON ASTR ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS ASTRON ASTROPHYS REV ASTRONOMY AND ASTROPHYSICS REVIEWASTROPHYS J SUPPL S ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES ASTROPHYS J ASTROPHYSICAL JOURNALACM COMPUT SURV ACM COMPUTING SURVEYSACM T GRAPHIC ACM TRANSACTIONS ON GRAPHICSACS NANO ACS NanoACTA BIOMATER Acta BiomaterialiaACTA MATER ACTA MATERIALIAADV APPL MECH ADVANCES IN APPLIED MECHANICSADV BIOCHEM ENG BIOT ADVANCES IN BIOCHEMICAL ENGINEERING / BIOTECHNOL ADV FUNCT MATER ADVANCED FUNCTIONAL MATERIALSADV MATER ADVANCED MATERIALSANNU REV BIOMED ENG ANNUAL REVIEW OF BIOMEDICAL ENGINEERINGANNU REV MATER RES ANNUAL REVIEW OF MATERIALS RESEARCHAPPL SPECTROSC REV APPLIED SPECTROSCOPY REVIEWSARTIF INTELL ARTIFICIAL INTELLIGENCEBIOMATERIALS BIOMATERIALSBIORESOURCE TECHNOL BIORESOURCE TECHNOLOGYBIOSENS BIOELECTRON BIOSENSORS & BIOELECTRONICSBIOTECHNOL ADV BIOTECHNOLOGY ADVANCESBIOTECHNOL BIOENG BIOTECHNOLOGY AND BIOENGINEERINGBIOTECHNOL BIOFUELS Biotechnology for BiofuelsCARBON CARBONCHEM MATER CHEMISTRY OF MATERIALSCOMPUT INTELL COMPUTATIONAL INTELLIGENCECRIT REV BIOTECHNOL CRITICAL REVIEWS IN BIOTECHNOLOGYCRIT REV FOOD SCI CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION CURR OPIN BIOTECH CURRENT OPINION IN BIOTECHNOLOGY ELECTROCHEM COMMUN ELECTROCHEMISTRY COMMUNICATIONSHUM-COMPUT INTERACT HUMAN-COMPUTER INTERACTIONIEEE J SEL AREA COMM IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS IEEE SIGNAL PROC MAG IEEE SIGNAL PROCESSING MAGAZINEIEEE T EVOLUT COMPUT IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION IEEE T IND ELECTRON IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS IEEE T NEURAL NETWOR IEEE TRANSACTIONS ON NEURAL NETWORKSIEEE T PATTERN ANAL IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHIN IEEE T SOFTWARE ENG IEEE TRANSACTIONS ON SOFTWARE ENGINEERINGINT J COMPUT VISION INTERNATIONAL JOURNAL OF COMPUTER VISIONINT J HYDROGEN ENERG INTERNATIONAL JOURNAL OF HYDROGEN ENERGYINT J NONLIN SCI NUM INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND INT J PLASTICITY INTERNATIONAL JOURNAL OF PLASTICITYINT MATER REV INTERNATIONAL MATERIALS REVIEWSJ CATAL JOURNAL OF CATALYSISJ HAZARD MATER JOURNAL OF HAZARDOUS MATERIALSJ MATER CHEM JOURNAL OF MATERIALS CHEMISTRYJ MECH BEHAV BIOMED Journal of the Mechanical Behavior of Biomedical J NEURAL ENG Journal of Neural EngineeringJ POWER SOURCES JOURNAL OF POWER SOURCESJ WEB SEMANT Journal of Web SemanticsLAB CHIP LAB ON A CHIPMACROMOL RAPID COMM MACROMOLECULAR RAPID COMMUNICATIONS MACROMOLECULES MACROMOLECULESMAT SCI ENG R MATERIALS SCIENCE & ENGINEERING R-REPORTS MATER TODAY Materials TodayMED IMAGE ANAL MEDICAL IMAGE ANALYSISMETAB ENG METABOLIC ENGINEERINGMIS QUART MIS QUARTERLYMOL NUTR FOOD RES MOLECULAR NUTRITION & FOOD RESEARCHMRS BULL MRS BULLETINNANO LETT NANO LETTERSNANO TODAY Nano TodayNANOMED-NANOTECHNOL Nanomedicine-Nanotechnology Biology and Medicine NANOTECHNOLOGY NANOTECHNOLOGYNAT BIOTECHNOL NATURE BIOTECHNOLOGYNAT MATER NATURE MATERIALSNAT NANOTECHNOL Nature NanotechnologyORG ELECTRON ORGANIC ELECTRONICSP IEEE PROCEEDINGS OF THE IEEEPLASMONICS PlasmonicsPOLYM REV Polymer ReviewsPROG CRYST GROWTH CH PROGRESS IN CRYSTAL GROWTH AND CHARACTERIZATION PROG ENERG COMBUST PROGRESS IN ENERGY AND COMBUSTION SCIENCEPROG MATER SCI PROGRESS IN MATERIALS SCIENCEPROG PHOTOVOLTAICS PROGRESS IN PHOTOVOLTAICSPROG QUANT ELECTRON PROGRESS IN QUANTUM ELECTRONICSPROG SURF SCI PROGRESS IN SURFACE SCIENCERENEW SUST ENERG REV RENEWABLE & SUSTAINABLE ENERGY REVIEWSSMALL SMALLSOFT MATTER Soft MatterTRENDS BIOTECHNOL TRENDS IN BIOTECHNOLOGYTRENDS FOOD SCI TECH TRENDS IN FOOD SCIENCE & TECHNOLOGYVLDB J VLDB JOURNALAICHE J AICHE JOURNALAPPL MICROBIOL BIOT APPLIED MICROBIOLOGY AND BIOTECHNOLOGYCHEM ENG SCI CHEMICAL ENGINEERING SCIENCEELECTROCHIM ACTA ELECTROCHIMICA ACTAFOOD CHEM FOOD CHEMISTRYIEEE T ANTENN PROPAG IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION IEEE T AUTOMAT CONTR IEEE TRANSACTIONS ON AUTOMATIC CONTROLIEEE T INFORM THEORY IEEE TRANSACTIONS ON INFORMATION THEORYIEEE T MICROW THEORY IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNI IEEE T SIGNAL PROCES IEEE TRANSACTIONS ON SIGNAL PROCESSINGIND ENG CHEM RES INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCHINT J HEAT MASS TRAN INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER J AM CERAM SOC JOURNAL OF THE AMERICAN CERAMIC SOCIETYJ ELECTROCHEM SOC JOURNAL OF THE ELECTROCHEMICAL SOCIETYJ MEMBRANE SCI JOURNAL OF MEMBRANE SCIENCEMATER LETT MATERIALS LETTERSSCRIPTA MATER SCRIPTA MATERIALIASENSOR ACTUAT B-CHEM SENSORS AND ACTUATORS B-CHEMICALSURF COAT TECH SURFACE & COATINGS TECHNOLOGYSYNTHETIC MET SYNTHETIC METALSTHIN SOLID FILMS THIN SOLID FILMSJ OPER MANAG JOURNAL OF OPERATIONS MANAGEMENTMANAGE SCI MANAGEMENT SCIENCEOMEGA-INT J MANAGE S OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENC PROD OPER MANAG PRODUCTION AND OPERATIONS MANAGEMENTEUR J OPER RES EUROPEAN JOURNAL OF OPERATIONAL RESEARCH ACCOUNTS CHEM RES ACCOUNTS OF CHEMICAL RESEARCHACTA CRYSTALLOGR A ACTA CRYSTALLOGRAPHICA SECTION AALDRICHIM ACTA ALDRICHIMICA ACTAANGEW CHEM INT EDIT ANGEWANDTE CHEMIE-INTERNATIONAL EDITIONANNU REV PHYS CHEM ANNUAL REVIEW OF PHYSICAL CHEMISTRYCATAL REV CATALYSIS REVIEWS-SCIENCE AND ENGINEERINGCHEM REV CHEMICAL REVIEWSCHEM SOC REV CHEMICAL SOCIETY REVIEWSCOORDIN CHEM REV COORDINATION CHEMISTRY REVIEWSENERG ENVIRON SCI Energy & Environmental ScienceINT REV PHYS CHEM INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRYJ AM CHEM SOC JOURNAL OF THE AMERICAN CHEMICAL SOCIETYJ PHOTOCH PHOTOBIO C JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHO NAT PROD REP NATURAL PRODUCT REPORTSPROG POLYM SCI PROGRESS IN POLYMER SCIENCESURF SCI REP SURFACE SCIENCE REPORTSTRAC-TREND ANAL CHEM TRAC-TRENDS IN ANALYTICAL CHEMISTRYANAL CHEM ANALYTICAL CHEMISTRYJ ORG CHEM JOURNAL OF ORGANIC CHEMISTRYJ PHYS CHEM B JOURNAL OF PHYSICAL CHEMISTRY BLANGMUIR LANGMUIRAPPL CATAL B-ENVIRON APPLIED CATALYSIS B-ENVIRONMENTALB AM MUS NAT HIST BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTO CRIT REV ENV SCI TEC CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TE ECOL LETT ECOLOGY LETTERSECOL MONOGR ECOLOGICAL MONOGRAPHSECOLOGY ECOLOGYENVIRON HEALTH PERSP ENVIRONMENTAL HEALTH PERSPECTIVESENVIRON MICROBIOL ENVIRONMENTAL MICROBIOLOGYEVOLUTION EVOLUTIONFRONT ECOL ENVIRON FRONTIERS IN ECOLOGY AND THE ENVIRONMENT GLOBAL CHANGE BIOL GLOBAL CHANGE BIOLOGYGLOBAL ECOL BIOGEOGR GLOBAL ECOLOGY AND BIOGEOGRAPHYISME J ISME JournalATMOS ENVIRON ATMOSPHERIC ENVIRONMENTCHEMOSPHERE CHEMOSPHEREENVIRON SCI TECHNOL ENVIRONMENTAL SCIENCE & TECHNOLOGYWATER RES WATER RESEARCHADV AGRON ADVANCES IN AGRONOMYAGR FOREST METEOROL AGRICULTURAL AND FOREST METEOROLOGYATLA-ALTERN LAB ANIM ATLA-ALTERNATIVES TO LABORATORY ANIMALSEUR J SOIL SCI EUROPEAN JOURNAL OF SOIL SCIENCEFISH FISH FISH AND FISHERIESFISH OCEANOGR FISHERIES OCEANOGRAPHYFISH SHELLFISH IMMUN FISH & SHELLFISH IMMUNOLOGYFOOD BIOPROCESS TECH Food and Bioprocess TechnologyGEODERMA GEODERMAILAR J ILAR JOURNALJ AGR FOOD CHEM JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRYJ ANIM SCI JOURNAL OF ANIMAL SCIENCEJ DAIRY SCI JOURNAL OF DAIRY SCIENCEMOL BREEDING MOLECULAR BREEDINGREV FISH BIOL FISHER REVIEWS IN FISH BIOLOGY AND FISHERIESSOIL BIOL BIOCHEM SOIL BIOLOGY & BIOCHEMISTRYSOIL SCI SOC AM J SOIL SCIENCE SOCIETY OF AMERICA JOURNALTREE PHYSIOL TREE PHYSIOLOGYVET MICROBIOL VETERINARY MICROBIOLOGYVET RES VETERINARY RESEARCHAQUACULTURE AQUACULTURECAN J FISH AQUAT SCI CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENC FOREST ECOL MANAG FOREST ECOLOGY AND MANAGEMENTJAVMA-J AM VET MED A JAVMA-JOURNAL OF THE AMERICAN VETERINARY MEDICAL PLANT SOIL PLANT AND SOILAM J BIOETHICS AMERICAN JOURNAL OF BIOETHICSECONOMETRICA ECONOMETRICAJ ECONOMETRICS JOURNAL OF ECONOMETRICSAM J HUM GENET AMERICAN JOURNAL OF HUMAN GENETICSANNU REV BIOCHEM ANNUAL REVIEW OF BIOCHEMISTRYANNU REV BIOPH BIOM ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STR ANNU REV BIOPHYS Annual Review of BiophysicsANNU REV CELL DEV BI ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY ANNU REV ECOL EVOL S ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATI ANNU REV ENTOMOL ANNUAL REVIEW OF ENTOMOLOGYANNU REV GENET ANNUAL REVIEW OF GENETICSANNU REV GENOM HUM G ANNUAL REVIEW OF GENOMICS AND HUMAN GENETICS ANNU REV MICROBIOL ANNUAL REVIEW OF MICROBIOLOGYANNU REV PHYTOPATHOL ANNUAL REVIEW OF PHYTOPATHOLOGYANNU REV PLANT BIOL ANNUAL REVIEW OF PLANT BIOLOGYCELL CELLCELL HOST MICROBE Cell Host & MicrobeCELL METAB Cell MetabolismCELL STEM CELL Cell Stem CellCRIT REV BIOCHEM MOL CRITICAL REVIEWS IN BIOCHEMISTRY AND MOLECULAR B CURR BIOL CURRENT BIOLOGYCURR OPIN CELL BIOL CURRENT OPINION IN CELL BIOLOGYCURR OPIN GENET DEV CURRENT OPINION IN GENETICS & DEVELOPMENTCURR OPIN PLANT BIOL CURRENT OPINION IN PLANT BIOLOGYCURR OPIN STRUC BIOL CURRENT OPINION IN STRUCTURAL BIOLOGYDEV CELL DEVELOPMENTAL CELLGENE DEV GENES & DEVELOPMENTGENOME RES GENOME RESEARCHJ CELL BIOL JOURNAL OF CELL BIOLOGYMICROBIOL MOL BIOL R MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWSMOL CELL MOLECULAR CELLMOL SYST BIOL Molecular Systems BiologyNAT CELL BIOL NATURE CELL BIOLOGYNAT CHEM BIOL Nature Chemical BiologyNAT GENET NATURE GENETICSNAT METHODS NATURE METHODSNAT REV GENET NATURE REVIEWS GENETICSNAT REV MICROBIOL NATURE REVIEWS MICROBIOLOGYNAT REV MOL CELL BIO NATURE REVIEWS MOLECULAR CELL BIOLOGYNAT STRUCT MOL BIOL NATURE STRUCTURAL & MOLECULAR BIOLOGYPLANT CELL PLANT CELLPLOS BIOL PLOS BIOLOGYPLOS GENET PLoS GeneticsPLOS PATHOG PLoS PathogensPROG LIPID RES PROGRESS IN LIPID RESEARCHQ REV BIOPHYS QUARTERLY REVIEWS OF BIOPHYSICSTRENDS BIOCHEM SCI TRENDS IN BIOCHEMICAL SCIENCESTRENDS CELL BIOL TRENDS IN CELL BIOLOGYTRENDS ECOL EVOL TRENDS IN ECOLOGY & EVOLUTIONTRENDS GENET TRENDS IN GENETICSTRENDS PLANT SCI TRENDS IN PLANT SCIENCEAPPL ENVIRON MICROB APPLIED AND ENVIRONMENTAL MICROBIOLOGY BIOCHEM J BIOCHEMICAL JOURNALBIOPHYS J BIOPHYSICAL JOURNALDEVELOPMENT DEVELOPMENTEMBO J EMBO JOURNALJ BACTERIOL JOURNAL OF BACTERIOLOGYJ BIOL CHEM JOURNAL OF BIOLOGICAL CHEMISTRYJ MOL BIOL JOURNAL OF MOLECULAR BIOLOGYMOL CELL BIOL MOLECULAR AND CELLULAR BIOLOGYNUCLEIC ACIDS RES NUCLEIC ACIDS RESEARCHPLANT PHYSIOL PLANT PHYSIOLOGYACTA MATH-DJURSHOLM ACTA MATHEMATICAANN MATH ANNALS OF MATHEMATICSANN STAT ANNALS OF STATISTICSB AM MATH SOC BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY COMMUN PUR APPL MATH COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS FOUND COMPUT MATH FOUNDATIONS OF COMPUTATIONAL MATHEMATICS INVENT MATH INVENTIONES MATHEMATICAEINVERSE PROBL INVERSE PROBLEMSJ AM MATH SOC JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETYJ AM STAT ASSOC JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION J R STAT SOC B JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES MATH MOD METH APPL S MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCE MATH PROGRAM MATHEMATICAL PROGRAMMINGMEM AM MATH SOC MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY MULTISCALE MODEL SIM MULTISCALE MODELING & SIMULATIONMULTIVAR BEHAV RES MULTIVARIATE BEHAVIORAL RESEARCHNONLINEAR ANAL-REAL NONLINEAR ANALYSIS-REAL WORLD APPLICATIONSRISK ANAL RISK ANALYSISSIAM REV SIAM REVIEWSTAT SCI STATISTICAL SCIENCESTRUCT EQU MODELING STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY FUZZY SET SYST FUZZY SETS AND SYSTEMSJ COMPUT APPL MATH JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS J DIFFER EQUATIONS JOURNAL OF DIFFERENTIAL EQUATIONSJ MATH ANAL APPL JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONNONLINEAR ANAL-THEOR NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS SIAM J NUMER ANAL SIAM JOURNAL ON NUMERICAL ANALYSISSIAM J SCI COMPUT SIAM JOURNAL ON SCIENTIFIC COMPUTINGACTA CRYSTALLOGR A ACTA CRYSTALLOGRAPHICA SECTION AADV PHYS ADVANCES IN PHYSICSANNU REV FLUID MECH ANNUAL REVIEW OF FLUID MECHANICSANNU REV NUCL PART S ANNUAL REVIEW OF NUCLEAR AND PARTICLE SCIENCE CRIT REV SOLID STATE CRITICAL REVIEWS IN SOLID STATE AND MATERIALS SC J HIGH ENERGY PHYS JOURNAL OF HIGH ENERGY PHYSICSLASER PHOTONICS REV Laser & Photonics ReviewsLIVING REV RELATIV Living Reviews in RelativityMASS SPECTROM REV MASS SPECTROMETRY REVIEWSNAT PHOTONICS Nature PhotonicsNAT PHYS Nature PhysicsPHYS REP PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTER PHYS REV LETT PHYSICAL REVIEW LETTERSPROG NUCL MAG RES SP PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSC REP PROG PHYS REPORTS ON PROGRESS IN PHYSICSREV MOD PHYS REVIEWS OF MODERN PHYSICSAPPL PHYS LETT APPLIED PHYSICS LETTERSJ CHEM PHYS JOURNAL OF CHEMICAL PHYSICSPHYS REV B PHYSICAL REVIEW BPHYS REV D PHYSICAL REVIEW DADV DRUG DELIVER REV ADVANCED DRUG DELIVERY REVIEWSADV IMMUNOL ADVANCES IN IMMUNOLOGYAM J CLIN NUTR AMERICAN JOURNAL OF CLINICAL NUTRITIONAM J GASTROENTEROL AMERICAN JOURNAL OF GASTROENTEROLOGYAM J PSYCHIAT AMERICAN JOURNAL OF PSYCHIATRYAM J RESP CRIT CARE AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CAR AM J TRANSPLANT AMERICAN JOURNAL OF TRANSPLANTATIONANN INTERN MED ANNALS OF INTERNAL MEDICINEANN NEUROL ANNALS OF NEUROLOGYANN RHEUM DIS ANNALS OF THE RHEUMATIC DISEASESANN SURG ANNALS OF SURGERYANNU REV IMMUNOL ANNUAL REVIEW OF IMMUNOLOGYANNU REV MED ANNUAL REVIEW OF MEDICINEANNU REV NEUROSCI ANNUAL REVIEW OF NEUROSCIENCEANNU REV NUTR ANNUAL REVIEW OF NUTRITIONANNU REV PATHOL-MECH Annual Review of Pathology-Mechanisms of Disease ANNU REV PHARMACOL ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY ANNU REV PHYSIOL ANNUAL REVIEW OF PHYSIOLOGYANNU REV PSYCHOL ANNUAL REVIEW OF PSYCHOLOGYANNU REV PUBL HEALTH ANNUAL REVIEW OF PUBLIC HEALTHARCH GEN PSYCHIAT ARCHIVES OF GENERAL PSYCHIATRYARCH INTERN MED ARCHIVES OF INTERNAL MEDICINEARTERIOSCL THROM VAS ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY ARTHRITIS RHEUM-US ARTHRITIS AND RHEUMATISMBBA-REV CANCER BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER BEHAV BRAIN SCI BEHAVIORAL AND BRAIN SCIENCESBIOL PSYCHIAT BIOLOGICAL PSYCHIATRYBLOOD BLOODBLOOD REV BLOOD REVIEWSBRAIN BRAINBRAIN RES REV BRAIN RESEARCH REVIEWSBRIT MED J BRITISH MEDICAL JOURNALCA-CANCER J CLIN CA-A CANCER JOURNAL FOR CLINICIANSCAN MED ASSOC J CANADIAN MEDICAL ASSOCIATION JOURNALCANCER CELL CANCER CELLCANCER METAST REV CANCER AND METASTASIS REVIEWSCANCER RES CANCER RESEARCHCEREB CORTEX CEREBRAL CORTEXCIRC RES CIRCULATION RESEARCHCIRCULATION CIRCULATIONCLIN CANCER RES CLINICAL CANCER RESEARCHCLIN INFECT DIS CLINICAL INFECTIOUS DISEASESCLIN MICROBIOL REV CLINICAL MICROBIOLOGY REVIEWSCLIN PHARMACOL THER CLINICAL PHARMACOLOGY & THERAPEUTICSCRIT CARE MED CRITICAL CARE MEDICINECURR OPIN IMMUNOL CURRENT OPINION IN IMMUNOLOGYCURR OPIN LIPIDOL CURRENT OPINION IN LIPIDOLOGYCURR OPIN NEUROBIOL CURRENT OPINION IN NEUROBIOLOGYCURR OPIN PHARMACOL CURRENT OPINION IN PHARMACOLOGYDIABETES DIABETESDIABETES CARE DIABETES CAREDIABETOLOGIA DIABETOLOGIADRUG DISCOV TODAY DRUG DISCOVERY TODAYDRUG RESIST UPDATE DRUG RESISTANCE UPDATESEMERG INFECT DIS EMERGING INFECTIOUS DISEASESENDOCR REV ENDOCRINE REVIEWSEPIDEMIOL REV EPIDEMIOLOGIC REVIEWSEUR HEART J EUROPEAN HEART JOURNALEUR UROL EUROPEAN UROLOGYFRONT NEUROENDOCRIN FRONTIERS IN NEUROENDOCRINOLOGY GASTROENTEROLOGY GASTROENTEROLOGYGASTROINTEST ENDOSC GASTROINTESTINAL ENDOSCOPYGUT GUTHEPATOLOGY HEPATOLOGYHUM MUTAT HUMAN MUTATIONHUM REPROD UPDATE HUMAN REPRODUCTION UPDATEHYPERTENSION HYPERTENSIONIMMUNITY IMMUNITYIMMUNOL REV IMMUNOLOGICAL REVIEWSJ ALLERGY CLIN IMMUN JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGYJ AM COLL CARDIOL JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGYJ AM SOC NEPHROL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGYJ AUTOIMMUN JOURNAL OF AUTOIMMUNITYJ BONE MINER RES JOURNAL OF BONE AND MINERAL RESEARCHJ CLIN INVEST JOURNAL OF CLINICAL INVESTIGATIONJ CLIN ONCOL JOURNAL OF CLINICAL ONCOLOGYJ EXP MED JOURNAL OF EXPERIMENTAL MEDICINEJ HEPATOL JOURNAL OF HEPATOLOGYJ NATL CANCER I JOURNAL OF THE NATIONAL CANCER INSTITUTEJ NEUROSCI JOURNAL OF NEUROSCIENCEJ NUCL MED JOURNAL OF NUCLEAR MEDICINEJAMA-J AM MED ASSOC JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION LANCET LANCETLANCET INFECT DIS LANCET INFECTIOUS DISEASESLANCET NEUROL LANCET NEUROLOGYLANCET ONCOL LANCET ONCOLOGYLEUKEMIA LEUKEMIAMED RES REV MEDICINAL RESEARCH REVIEWSMOL ASPECTS MED MOLECULAR ASPECTS OF MEDICINEMOL PSYCHIATR MOLECULAR PSYCHIATRYNAT CLIN PRACT ONCOL Nature Clinical Practice OncologyNAT IMMUNOL NATURE IMMUNOLOGYNAT MED NATURE MEDICINENAT NEUROSCI NATURE NEUROSCIENCENAT REV CANCER NATURE REVIEWS CANCERNAT REV DRUG DISCOV NATURE REVIEWS DRUG DISCOVERYNAT REV IMMUNOL NATURE REVIEWS IMMUNOLOGYNAT REV NEUROSCI NATURE REVIEWS NEUROSCIENCENEUROLOGY NEUROLOGYNEURON NEURONNEUROPSYCHOPHARMACOL NEUROPSYCHOPHARMACOLOGYNEUROSCI BIOBEHAV R NEUROSCIENCE AND BIOBEHAVIORAL REVIEWSNEW ENGL J MED NEW ENGLAND JOURNAL OF MEDICINEOBES REV Obesity ReviewsONCOGENE ONCOGENEPHARMACOL REV PHARMACOLOGICAL REVIEWSPHARMACOL THERAPEUT PHARMACOLOGY & THERAPEUTICSPHYSIOL REV PHYSIOLOGICAL REVIEWSPHYSIOLOGY PHYSIOLOGYPLOS MED PLOS MEDICINEPROG NEUROBIOL PROGRESS IN NEUROBIOLOGYPROG RETIN EYE RES PROGRESS IN RETINAL AND EYE RESEARCHPSYCHOL BULL PSYCHOLOGICAL BULLETINPSYCHOL REV PSYCHOLOGICAL REVIEWREV MED VIROL REVIEWS IN MEDICAL VIROLOGYSCHIZOPHRENIA BULL SCHIZOPHRENIA BULLETINSEMIN CANCER BIOL SEMINARS IN CANCER BIOLOGYSEMIN IMMUNOL SEMINARS IN IMMUNOLOGYSTEM CELLS STEM CELLSSTROKE STROKETHORAX THORAXTRENDS COGN SCI TRENDS IN COGNITIVE SCIENCESTRENDS ENDOCRIN MET TRENDS IN ENDOCRINOLOGY AND METABOLISMTRENDS IMMUNOL TRENDS IN IMMUNOLOGYTRENDS MOL MED TRENDS IN MOLECULAR MEDICINETRENDS NEUROSCI TRENDS IN NEUROSCIENCESTRENDS PHARMACOL SCI TRENDS IN PHARMACOLOGICAL SCIENCESWHO TECH REP SER WHO TECHNICAL REPORT SERIESAM J CARDIOL AMERICAN JOURNAL OF CARDIOLOGYAM J EPIDEMIOL AMERICAN JOURNAL OF EPIDEMIOLOGYAM J PATHOL AMERICAN JOURNAL OF PATHOLOGYAM J PHYSIOL-HEART C AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULA ANTIMICROB AGENTS CH ANTIMICROBIAL AGENTS AND CHEMOTHERAPYBRIT J CANCER BRITISH JOURNAL OF CANCERCANCER-AM CANCER SOC CANCERCHEST CHESTCNS NEUROL DISORD-DR CNS & Neurological Disorders-Drug Targets ENDOCRINOLOGY ENDOCRINOLOGYEUR J NEUROSCI EUROPEAN JOURNAL OF NEUROSCIENCEFREE RADICAL BIO MED FREE RADICAL BIOLOGY AND MEDICINEINFECT IMMUN INFECTION AND IMMUNITYINT J CANCER INTERNATIONAL JOURNAL OF CANCERINT J RADIAT ONCOL INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOL INVEST OPHTH VIS SCI INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCEJ APPL PHYSIOL JOURNAL OF APPLIED PHYSIOLOGYJ CLIN ENDOCR METAB JOURNAL OF CLINICAL ENDOCRINOLOGY AND METABOLISM J CLIN MICROBIOL JOURNAL OF CLINICAL MICROBIOLOGYJ COMP NEUROL JOURNAL OF COMPARATIVE NEUROLOGYJ IMMUNOL JOURNAL OF IMMUNOLOGYJ INFECT DIS JOURNAL OF INFECTIOUS DISEASESJ MED CHEM JOURNAL OF MEDICINAL CHEMISTRYJ NEUROCHEM JOURNAL OF NEUROCHEMISTRYJ NEUROPHYSIOL JOURNAL OF NEUROPHYSIOLOGYJ NUTR JOURNAL OF NUTRITIONJ PHARMACOL EXP THER JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPE J PHYSIOL-LONDON JOURNAL OF PHYSIOLOGY-LONDONJ UROLOGY JOURNAL OF UROLOGYJ VIROL JOURNAL OF VIROLOGYKIDNEY INT KIDNEY INTERNATIONALNEUROIMAGE NEUROIMAGENEUROSCIENCE NEUROSCIENCEPEDIATRICS PEDIATRICSRADIOLOGY RADIOLOGYTRANSPLANTATION TRANSPLANTATIONVIROLOGY VIROLOGYNATURE NATUREP NATL ACAD SCI USA PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES SCIENCE SCIENCEANN NY ACAD SCI ANNALS OF THE NEW YORK ACADEMY OF SCIENCESISSN大类名称复分大类分区是否top期刊2009年影响因子1680-7316地学1Y 4.881 0003-0007地学1Y 6.123 0930-7575地学1Y 3.917 0010-7999地学1Y 3.497 0012-821X地学1Y 4.062 0012-8252地学1Y 6.942 0016-7037地学1Y 4.385 0091-7613地学1Y 4.368 0266-1144地学1Y 4.039 0894-8755地学1Y 3.363 0022-3530地学1Y 3.738 0024-3590地学1Y 3.545 1752-0894地学1Y8.108 0883-8305地学1Y 3.644 0301-9268地学1Y 3.574 0277-3791地学1Y 4.245 8755-1209地学1Y8.021 0094-8276地学2Y 3.204 0022-4928地学2Y 2.911 0148-0227地学2Y 3.082 0022-1694地学2Y 2.433 0027-0644地学2Y 2.238 0066-4146地学天文1Y25.640 0935-4956地学天文1Y11.857 0067-0049地学天文1Y12.771 0004-637X地学天文2Y7.364 0360-0300工程技术1Y7.667 0730-0301工程技术1Y 3.619 1936-0851工程技术1Y7.493 1742-7061工程技术1Y 3.975 1359-6454工程技术1Y 3.760 0065-2156工程技术1Y 5.500 0724-6145工程技术1Y 4.165 1616-301X工程技术1Y 6.990 0935-9648工程技术1Y8.379 1523-9829工程技术1Y11.235 1531-7331工程技术1Y7.911 0570-4928工程技术1Y 3.243 0004-3702工程技术1Y 3.036 0142-9612工程技术1Y7.365 0960-8524工程技术1Y 4.253 0956-5663工程技术1Y 5.429 0734-9750工程技术1Y8.250 0006-3592工程技术1Y 3.377 1754-6834工程技术1Y 4.118 0008-6223工程技术1Y 4.5040897-4756工程技术1Y 5.368 0824-7935工程技术1Y 5.378 0738-8551工程技术1Y 3.567 1040-8398工程技术1Y 3.725 0958-1669工程技术1Y7.820 1388-2481工程技术1Y 4.243 0737-0024工程技术1Y 6.190 0733-8716工程技术1Y 3.758 1053-5888工程技术1Y 4.914 1089-778X工程技术1Y 4.589 0278-0046工程技术1Y 4.678 1045-9227工程技术1Y 2.889 0162-8828工程技术1Y 4.378 0098-5589工程技术1Y 3.750 0920-5691工程技术1Y 3.508 0360-3199工程技术1Y 3.945 1565-1339工程技术1Y 5.276 0749-6419工程技术1Y 4.791 0950-6608工程技术1Y 4.857 0021-9517工程技术1Y 5.288 0304-3894工程技术1Y 4.144 0959-9428工程技术1Y 4.795 1751-6161工程技术1Y 3.176 1741-2560工程技术1Y 3.739 0378-7753工程技术1Y 3.792 1570-8268工程技术1Y 3.412 1473-0197工程技术1Y 6.306 1022-1336工程技术1Y 4.263 0024-9297工程技术1Y 4.539 0927-796X工程技术1Y12.217 1369-7021工程技术1Y11.452 1361-8415工程技术1Y 3.093 1096-7176工程技术1Y 4.725 0276-7783工程技术1Y 4.485 1613-4125工程技术1Y 4.356 0883-7694工程技术1Y 6.330 1530-6984工程技术1Y9.991 1748-0132工程技术1Y13.237 1549-9634工程技术1Y 5.440 0957-4484工程技术1Y 3.137 1087-0156工程技术1Y29.495 1476-1122工程技术1Y29.504 1748-3387工程技术1Y26.309 1566-1199工程技术1Y 3.262 0018-9219工程技术1Y 4.878 1557-1955工程技术1Y 3.723 1558-3724工程技术1Y 5.6120960-8974工程技术1Y9.250 0360-1285工程技术1Y11.024 0079-6425工程技术1Y15.769 1062-7995工程技术1Y 4.702 0079-6727工程技术1Y 4.091 0079-6816工程技术1Y7.913 1364-0321工程技术1Y 4.842 1613-6810工程技术1Y 6.171 1744-683X工程技术1Y 4.869 0167-7799工程技术1Y 6.909 0924-2244工程技术1Y 4.051 1066-8888工程技术1Y 4.517 0001-1541工程技术2Y 1.955 0175-7598工程技术2Y 2.896 0009-2509工程技术2Y 2.136 0013-4686工程技术2Y 3.325 0308-8146工程技术2Y 3.146 0018-926X工程技术2Y 2.011 0018-9286工程技术2Y 2.556 0018-9448工程技术2Y 2.357 0018-9480工程技术2Y 2.076 1053-587X工程技术2Y 2.212 0888-5885工程技术2Y 1.758 0017-9310工程技术2Y 1.947 0002-7820工程技术2Y 1.944 0013-4651工程技术2Y 2.241 0376-7388工程技术2Y 3.203 0167-577X工程技术2Y 1.940 1359-6462工程技术2Y 2.949 0925-4005工程技术2Y 3.083 0257-8972工程技术2Y 1.793 0379-6779工程技术2Y 1.901 0040-6090工程技术2Y 1.727 0272-6963管理科学1Y 3.238 0025-1909管理科学1Y 2.227 0305-0483管理科学1Y 3.101 1059-1478管理科学1Y 2.080 0377-2217管理科学2Y 2.093 0001-4842化学1Y18.203 0108-7673化学化学-晶体1Y49.926 0002-5100化学1Y18.688 1433-7851化学1Y11.829 0066-426X化学1Y17.464 0161-4940化学1Y7.765 0009-2665化学1Y35.957 0306-0012化学1Y20.086 0010-8545化学1Y11.2251754-5692化学1Y8.500 0144-235X化学1Y 5.000 0002-7863化学1Y8.580 1389-5567化学1Y7.952 0265-0568化学1Y9.202 0079-6700化学1Y23.753 0167-5729化学1Y13.462 0165-9936化学1Y 6.546 0003-2700化学2Y 5.214 0022-3263化学2Y 4.219 1520-6106化学2Y 3.471 0743-7463化学2Y 3.898 0926-3373环境科学1Y 5.252 0003-0090环境科学1Y 4.133 1064-3389环境科学1Y7.091 1461-023X环境科学1Y10.318 0012-9615环境科学1Y 4.862 0012-9658环境科学1Y 4.411 0091-6765环境科学1Y 6.191 1462-2912环境科学1Y 4.909 0014-3820环境科学1Y 5.429 1540-9295环境科学1Y 6.922 1354-1013环境科学1Y 5.561 1466-822X环境科学1Y 5.913 1751-7362环境科学1Y 6.397 1352-2310环境科学2Y 3.139 0045-6535环境科学2Y 3.253 0013-936X环境科学2Y 4.630 0043-1354环境科学2Y 4.355 0065-2113农林科学1Y 3.800 0168-1923农林科学1Y 3.197 0261-1929农林科学1Y 1.580 1351-0754农林科学1Y 2.131 1467-2960农林科学1Y 4.489 1054-6006农林科学1Y 2.427 1050-4648农林科学1Y 2.892 1935-5130农林科学1Y 2.238 0016-7061农林科学1Y 2.461 1084-2020农林科学1Y 2.806 0021-8561农林科学1Y 2.469 0021-8812农林科学1Y 2.466 0022-0302农林科学1Y 2.463 1380-3743农林科学1Y 2.272 0960-3166农林科学1Y 2.161 0038-0717农林科学1Y 2.978 0361-5995农林科学1Y 2.179 0829-318X农林科学1Y 2.2920378-1135农林科学1Y 2.874 0928-4249农林科学1Y 3.579 0044-8486农林科学2Y 1.925 0706-652X农林科学2Y 1.951 0378-1127农林科学2Y 1.950 0003-1488农林科学2Y 1.714 0032-079X农林科学2Y 2.517 1526-5161社会科学1Y 4.000 0012-9682社会科学1Y 4.000 0304-4076社会科学2Y 1.902 0002-9297生物1Y12.303 0066-4154生物1Y29.875 1056-8700生物1Y18.955 1936-122X生物1Y19.304 1081-0706生物1Y19.571 1543-592X生物1Y8.190 0066-4170生物1Y11.271 0066-4197生物1Y13.235 1527-8204生物1Y11.568 0066-4227生物1Y12.804 0066-4286生物1Y11.212 1543-5008生物1Y23.460 0092-8674生物1Y31.152 1931-3128生物1Y13.021 1550-4131生物1Y17.350 1934-5909生物1Y23.563 1040-9238生物1Y10.216 0960-9822生物1Y10.992 0955-0674生物1Y14.153 0959-437X生物1Y8.987 1369-5266生物1Y10.333 0959-440X生物1Y9.344 1534-5807生物1Y13.363 0890-9369生物1Y12.075 1088-9051生物1Y11.342 0021-9525生物1Y9.575 1092-2172生物1Y12.585 1097-2765生物1Y14.608 1744-4292生物1Y12.125 1465-7392生物1Y19.527 1552-4450生物1Y16.058 1061-4036生物1Y34.284 1548-7091生物1Y16.874 1471-0056生物1Y27.822 1740-1526生物1Y17.644 1471-0072生物1Y42.198 1545-9985生物1Y12.2731040-4651生物1Y9.293 1544-9173生物1Y12.916 1553-7390生物1Y9.532 1553-7366生物1Y8.978 0163-7827生物1Y8.167 0033-5835生物1Y10.200 0968-0004生物1Y11.572 0962-8924生物1Y12.115 0169-5347生物1Y11.564 0168-9525生物1Y8.689 1360-1385生物1Y9.883 0099-2240生物2Y 3.686 0264-6021生物2Y 5.155 0006-3495生物2Y 4.390 0950-1991生物2Y7.194 0261-4189生物2Y8.993 0021-9193生物2Y 3.940 0021-9258生物2Y 5.328 0022-2836生物2Y 3.871 0270-7306生物2Y 6.057 0305-1048生物2Y7.479 0032-0889生物2Y 6.235 0001-5962数学1Y 2.619 0003-486X数学1Y 4.174 0090-5364数学1Y 3.185 0273-0979数学1Y 3.294 0010-3640数学1Y 2.657 1615-3375数学1Y 1.905 0020-9910数学1Y 2.794 0266-5611数学1Y 1.900 0894-0347数学1Y 3.411 0162-1459数学1Y 2.322 1369-7412数学1Y 3.473 0218-2025数学1Y 2.095 0025-5610数学1Y 2.048 0065-9266数学1Y 2.240 1540-3459数学1Y 2.198 0027-3171数学1Y 2.328 1468-1218数学1Y 2.381 0272-4332数学1Y 1.953 0036-1445数学1Y 3.391 0883-4237数学1Y 3.523 1070-5511数学1Y 3.153 0165-0114数学2Y 2.138 0377-0427数学2Y 1.292 0022-0396数学2Y 1.426 0022-247X数学2Y 1.2250362-546X数学2Y 1.487 0036-1429数学2Y 1.840 1064-8275数学2Y 1.595 0108-7673物理物理-晶体1Y49.926 0001-8732物理1Y19.632 0066-4189物理1Y9.353 0163-8998物理1Y11.964 1040-8436物理1Y 5.167 1126-6708物理1Y 6.019 1863-8880物理1Y 5.814 1433-8351物理1Y10.600 0277-7037物理1Y10.623 1749-4885物理1Y22.869 1745-2473物理1Y15.491 0370-1573物理1Y17.752 0031-9007物理1Y7.328 0079-6565物理1Y 6.742 0034-4885物理1Y11.444 0034-6861物理1Y33.145 0003-6951物理2Y 3.554 0021-9606物理2Y 3.093 1098-0121物理2Y 3.475 1550-7998物理2Y 4.922 0169-409X医学1Y11.957 0065-2776医学1Y7.725 0002-9165医学1Y 6.307 0002-9270医学1Y 6.012 0002-953X医学1Y12.522 1073-449X医学1Y10.689 1600-6135医学1Y 6.433 0003-4819医学1Y16.225 0364-5134医学1Y9.317 0003-4967医学1Y8.111 0003-4932医学1Y7.900 0732-0582医学1Y37.902 0066-4219医学1Y9.940 0147-006X医学1Y24.822 0199-9885医学1Y8.783 1553-4006医学1Y13.500 0362-1642医学1Y22.468 0066-4278医学1Y18.170 0066-4308医学1Y22.750 0163-7525医学1Y7.915 0003-990X医学1Y12.257 0003-9926医学1Y9.813 1079-5642医学1Y7.235 0004-3591医学1Y7.332。
产低温脂肪酶菌株鉴定、发酵条件优化及酶学性质分析
刘思远,申东晨,刘峥,等. 产低温脂肪酶菌株鉴定、发酵条件优化及酶学性质分析[J]. 食品工业科技,2023,44(20):116−125. doi:10.13386/j.issn1002-0306.2022120159LIU Siyuan, SHEN Dongchen, LIU Zheng, et al. Identification of A Cold-active Lipase Producing Strain, Optimization of Fermentation Conditions and Analysis of Enzymatic Properties[J]. Science and Technology of Food Industry, 2023, 44(20): 116−125. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120159· 生物工程 ·产低温脂肪酶菌株鉴定、发酵条件优化及酶学性质分析刘思远,申东晨,刘 峥,鲁丽颖,徐 恒,董爱荣*(东北林业大学 林学院,黑龙江哈尔滨 150040)摘 要:为筛选高产低温脂肪酶的菌株,并对产酶条件进行优化,同时为脂肪酶的工业化开发提供生产资料。
从黑龙江省漠河县土壤样品中筛选出一株产低温脂肪酶菌株,通过形态学鉴定、生理生化实验及分子生物学鉴定,确定该菌株为普城沙雷氏菌(Serratia plymuthica )。
通过单因素实验,探究温度、pH 、装液量、接种量、碳源、氮源、金属离子、诱导剂等不同因素对菌株产酶的影响,通过Plackett-Burman 实验,爬坡试验及响应曲面设计,优化橄榄油、蛋白胨、装液量等因素的添加量。
结果表明:该菌株最优产酶条件为20 ℃、pH7.5、装液量42 mL 、接种量0.5%、20 g/L 麦芽糖、14 g/L 蛋白胨、0.5 g/L 的MgSO 4·7H 2O 及46 mL/L 橄榄油。
《2024年穿龙薯蓣皂苷对胶原诱导性关节炎小鼠CD4~+T细胞亚群平衡的影响及其调控机制研究》范文
《穿龙薯蓣皂苷对胶原诱导性关节炎小鼠CD4~+T细胞亚群平衡的影响及其调控机制研究》篇一摘要:本研究探讨了穿龙薯蓣皂苷对胶原诱导性关节炎(CIA)小鼠模型中CD4~+T细胞亚群平衡的影响及其可能的调控机制。
结果表明,穿龙薯蓣皂苷可以有效地调整CD4~+T细胞亚群的失衡,改善小鼠关节炎的病理过程,且该效应可能与其调节细胞信号转导、促进抗炎和抗增殖的作用相关。
一、引言关节炎是一种常见的慢性自身免疫性疾病,其发病机制复杂,涉及免疫系统紊乱。
穿龙薯蓣皂苷作为一种天然植物提取物,具有多种生物活性,包括抗炎、抗氧化和免疫调节等作用。
本研究旨在探讨穿龙薯蓣皂苷对胶原诱导性关节炎(CIA)小鼠模型中CD4~+T细胞亚群平衡的影响及其调控机制。
二、材料与方法1. 实验材料:穿龙薯蓣皂苷、CIA小鼠模型、相关试剂与仪器等。
2. 实验方法:(1)建立CIA小鼠模型;(2)分组及给药:将小鼠随机分为正常对照组、模型组、穿龙薯蓣皂苷治疗组;(3)检测各组小鼠CD4~+T细胞亚群平衡;(4)分析穿龙薯蓣皂苷对CIA小鼠的病理过程的影响;(5)研究穿龙薯蓣皂苷的调控机制。
三、实验结果1. 穿龙薯蓣皂苷对CIA小鼠CD4~+T细胞亚群平衡的影响:穿龙薯蓣皂苷治疗组小鼠的CD4~+T细胞亚群平衡得到显著改善,与模型组相比,治疗组中Th1/Th2比例趋于正常,Th17细胞数量减少。
2. 穿龙薯蓣皂苷对CIA小鼠病理过程的影响:穿龙薯蓣皂苷治疗组小鼠的关节炎症状得到明显缓解,关节肿胀程度减轻,关节滑膜炎症反应减弱。
3. 穿龙薯蓣皂苷的调控机制研究:(1)穿龙薯蓣皂苷可能通过调节细胞信号转导途径,如NF-κB、MAPK等,从而影响CD4~+T细胞的活化与分化;(2)穿龙薯蓣皂苷可能通过促进抗炎和抗增殖的作用,抑制关节炎症反应和关节损伤;(3)穿龙薯蓣皂苷还可能通过调节免疫相关基因的表达,如IL-17、IFN-γ等,进一步影响CD4~+T细胞的亚群平衡。
liquid–liquid phase separation
Biophysical Chemistry 109(2004)105–1120301-4622/04/$-see front matter ᮊ2003Elsevier B.V .All rights reserved.doi:10.1016/j.bpc.2003.10.021Cloud-point temperature and liquid–liquid phase separation ofsupersaturated lysozyme solutionJie Lu *,Keith Carpenter ,Rui-Jiang Li ,Xiu-Juan Wang ,Chi-Bun Ching a ,a a b bInstitute of Chemical and Engineering Sciences,Ayer Rajah Crescent 28,࠻02-08,Singapore 139959,Singapore aChemical and Process Engineering Center,National University of Singapore,Singapore 117576,SingaporebReceived 31July 2003;received in revised form 8October 2003;accepted 16October 2003AbstractThe detailed understanding of the structure of biological macromolecules reveals their functions,and is thus important in the design of new medicines and for engineering molecules with improved properties for industrial applications.Although techniques used for protein crystallization have been progressing greatly,protein crystallization may still be considered an art rather than a science,and successful crystallization remains largely empirical and operator-dependent.In this work,a microcalorimetric technique has been utilized to investigate liquid–liquid phase separation through measuring cloud-point temperature T for supersaturated lysozyme solution.The effects of cloud ionic strength and glycerol on the cloud-point temperature are studied in detail.Over the entire range of salt concentrations studied,the cloud-point temperature increases monotonically with the concentration of sodium chloride.When glycerol is added as additive,the solubility of lysozyme is increased,whereas the cloud-point temperature is decreased.ᮊ2003Elsevier B.V .All rights reserved.Keywords:Biocrystallization;Microcalorimetry;Cloud-point temperature;Liquid–liquid phase separation1.IntroductionKnowledge of detailed protein structure is essen-tial for protein engineering and the design of pharmaceuticals.Production of high-quality pro-tein crystals is required for molecular structure determination by X-ray crystallography.Although considerable effort has been made in recent years,obtaining such crystals is still difficult in general,and predicting the solution conditions where pro-*Corresponding author.Tel.:q 65-6874-4218;fax:q 65-6873-4805.E-mail address:lujie@.sg (J.Lu ).teins successfully crystallize remains a significant obstacle in the advancement of structural molecu-lar biology w 1x .The parameters affecting protein crystallization are typically reagent concentration,pH,tempera-ture,additive,etc.A phase diagram can provide the method for quantifying the influence of solu-tion parameters on the production of crystals w 2,3x .To characterize protein crystallization,it is neces-sary to first obtain detailed information on protein solution phase behavior and phase diagram.Recently physics shows that there is a direct relationship between colloidal interaction energy106J.Lu et al./Biophysical Chemistry109(2004)105–112and phase diagram.Gast and Lekkerkerker w4,5x have indicated that the range of attraction between colloid particles has a significant effect on the qualitative features of phase diagram.A similar relationship should hold for biomacromolecules, i.e.the corresponding interaction potentials govern the macromolecular distribution in solution,the shape of the phase diagram and the crystallization process w6x.Many macromolecular crystallizations appear to be driven by the strength of the attractive interactions,and occur in,or close to,attractive regimes w7,8x.Recent intensive investigation has revealed that protein or colloidal solution possesses a peculiar phase diagram,i.e.liquid–liquid phase separation and sol–gel transition exists in general in addition to crystallization w9,10x.The potential responsible for the liquid–liquid phase separation is a rather short range,possibly van der Waals,attractive potential w11,12x.The measurement of cloud-point temperature T can provide useful informationcloudon the net attractive interaction between protein molecules,namely,the higher the cloud-point tem-perature,the greater the net attractive interaction. Herein Taratuta et al.w13x studied the effects of salts and pH on the cloud-point temperature of lysozyme.Broide et al.w14x subsequently meas-ured the cloud-point temperature and crystalliza-tion temperature for lysozyme as a function of salt type and concentration.From these works the cloud-point temperature was found to be typically 15–458C below the crystallization temperature. Furthermore,Muschol and Rosenberger w15x deter-mined the metastable coexistence curves for lyso-zyme through cloud-point measurements,and suggested a systematic approach to promote pro-tein crystallization.In general,an effective way to determine the strength of protein interactions is to study temperature-induced phase transitions that occur in concentrated protein solutions.Liquid–liquid phase separation can be divided into two stages w11x:(1)the local separation stage at which the separation proceeds in small regions and local equilibrium is achieved rapidly;and(2) the coarsening stage at which condensation of these small domains proceeds slowly to reduce the loss of interface free energy w16x.The coexisting liquid phases both remain supersaturated but differ widely in protein concentration.The effect of a metastable liquid–liquid phase separation on crystallization remains ambiguous w17x.Molecular dynamics simulations and analyt-ical theory predict that the phase separation will affect the kinetics and the mechanisms of protein crystal nucleation w18x.tenWolde and Frenkel w19x have demonstrated that the free energy barrier for crystal nucleation is remarkably reduced at the critical point of liquid–liquid phase separation, thus in general,after liquid–liquid phase separa-tion,crystallization occurs much more rapidly than in the initial solution,which is typically too rapid for the growth of single crystal with low defect densities w15x.The determination of the location of liquid–liquid phase separation curve is thus crucial for efficiently identifying the optimum solution conditions for growing protein crystals. Microcalorimetry has the potential to be a useful tool for determining:(1)the metastable-labile zone boundary;(2)the temperature-dependence of pro-tein solubility in a given solvent;and(3)the crystal-growth rates as a function of supersatura-tion w20x.Microcalorimeters can detect a power signal as low as a few microwatts whereas standard calorimeters detect signals in the milliwatt range. Because of this greater sensitivity,samples with small heat effects can be analyzed.In addition, microcalorimetry has the advantage of being fast, non-destructive to the protein and requiring a relatively small amount of material.The present work is concerned with the analysis of the transient heat signal from microcalorimeter to yield liquid–liquid phase separation information for lysozyme solutions at pH4.8.To further examine the role of salt and additive on interprotein interactions, cloud-point temperature T has been determinedcloudexperimentally as a function of the concentrations of salt,protein and glycerol.2.Materials and methods2.1.MaterialsSix times crystallized lysozyme was purchased from Seikagaku Kogyo,and used without further107J.Lu et al./Biophysical Chemistry 109(2004)105–112purification.All other chemicals used were of reagent grade,from Sigma Chemical Co.2.2.Preparation of solutionsSodium acetate buffer (0.1M )at pH 4.8was prepared with ultrafiltered,deionized water.Sodi-um azide,at a concentration of 0.05%(w y v ),was added to the buffer solution as an antimicrobial agent.Protein stock solution was prepared by dissolving protein powder into buffer.To remove undissolved particles,the solution was centrifuged in a Sigma centrifuge at 12000rev.y min for 5–10min,then filtered through 0.22-m m filters (Mil-lex-VV )into a clean sample vial and stored at 48C for further experiments.The concentration of protein solution was determined by measuring the absorbance at 280nm of UV spectroscopy (Shi-madzu UV-2550),with an extinction coefficient of 2.64ml y (mg cm )w 21x .Precipitant stock solution was prepared by dissolving the required amount of sodium chloride together with additive glycerol into buffer.The pH of solutions was measured by a digital pH meter (Mettler Toledo 320)and adjusted by the addition of small volumes of NaOH or HAc solution.2.3.Measurement of solubilitySolubility of lysozyme at various temperatures and precipitant y additive concentrations was meas-ured at pH 4.8in 0.1M acetate buffer.Solid–liquid equilibrium was approached through both crystallization and dissolution.Dissolving lasted 3days,while the period of crystallization was over 2weeks.The supernatant in equilibrium with a macroscopically observable solid was then filtered through 0.1-m m filters (Millex-VV ).The concen-tration of diluted supernatant was determined spec-troscopically and verified by refractive meter(Kruss)until refractive index remained unchanged ¨at equilibrium state.Solubility of each sample was measured in duplicate.2.4.Differential scanning microcalorimetry Calorimetric experiments were performed with a micro-differential scanning calorimeter with anultra sensitivity,micro-DSC III,from Setaram SA,France.The micro-DSC recorded heat flow in microwatts vs.temperature,thus can detect the heat associated with phase transition during a temperature scan.The sample made up of equal volumes of protein solution and precipitant solu-tion was filtered through 0.1-m m filters to remove dust particles further.To remove the dissolved air,the sample was placed under vacuum for 3min while stirring at 500rev.y min by a magnetic stirrer.The degassed sample was placed into the sample cell of 1.0ml,and a same concentration NaCl solution was placed into the reference cell.The solutions in the micro-DSC were then cooled at the rate of 0.28C y min.After every run,the cells were cleaned by sonicating for 10–15min in several solutions in the following order:deionized water,methanol,ethanol,acetone,1M KOH and finally copious amounts of deionized water.This protocol ensured that lysozyme was completely removed from the cells.The cells were then placed in a drying oven for several hours.The rubber gaskets were cleaned in a similar manner except acetone and 1M KOH were omitted and they were allowed to dry at low temperature.3.Results and discussionA typical micro-DSC scanning experiment is shown in Fig.1.The onset of the clouding phe-nomenon is very dramatic and easily detected.The sharp increase in the heat flow is indicative of a liquid–liquid phase separation process producing a latent heat.This is much consistent with many recent investigations of the liquid–liquid phase separation of lysozyme from solution w 22,23x .In fact,such a liquid–liquid phase separation is a phase transition with an associated latent heat of demixing.In this work,the cloud-point tempera-tures at a variety of lysozyme,NaCl and glycerol concentrations are determined by the micro-DSC at the scan rate of 128C y h.3.1.Effect of protein concentrationIn semilogarithmic Fig.2we plot the solid–liquid and liquid–liquid phase boundaries for lyso-108J.Lu et al./Biophysical Chemistry 109(2004)105–112Fig.1.Heat flow of a typical micro-DSC scan of lysozyme solution,50mg y ml,0.1M acetate buffer,pH 4.8,3%NaCl.The scan rate 128C y h is chosen referenced to the experimental results of Darcy and Wiencek w 23x .Note the large deflection in the curve at approximately 4.38C indicating a latent heat resulting from demixing (i.e.liquid–liquid phase separation )process.Fig.2.Cloud-point temperature and solubility determination for lysozyme in 0.1M acetate buffer,pH 4.8:solubility (5%NaCl )(s );T (5%NaCl,this work )(d );T (5%cloud cloud NaCl,the work of Darcy and Wiencek w 23x )(*);solubility (3%NaCl )(h );T (3%NaCl )(j ).cloud Fig.3.Cloud-point temperature determination for lysozyme as a function of the concentration of sodium chloride,50mg y ml,0.1M acetate buffer,pH 4.8.zyme in 0.1M acetate buffer,pH 4.8,for a range of protein concentrations.It is worth noting that,at 5%NaCl,our experimental data of T from cloud micro-DSC are quite consistent with those from laser light scattering and DSC by Darcy and Wiencek w 23x ,with difference averaging at approx-imately 0.88C.This figure demonstrates that liquid–liquid phase boundary is far below solid–liquid phase boundary,which implies that the liquid–liquid phase separation normally takes place in a highly metastable solution.In addition,cloud-point temperature T increases with the cloud concentration of protein.3.2.Effect of salt concentrationFig.3shows how cloud-point temperature changes as the concentration of NaCl is varied from 2.5to 7%(w y v ).The buffer is 0.1M acetate (pH 4.8);the protein concentration is fixed at 50mg y ml.Over the entire range of salt concentrations studied,the cloud-point temperature strongly depends on the ionic strength and increases monotonically with the concentration of NaCl.Crystallization is driven by the difference in chemical potential of the solute in solution and in the crystal.The driving force can be simplified as w 24xf sy Dm s kT ln C y C (1)Ž.eq109J.Lu et al./Biophysical Chemistry 109(2004)105–112Fig.4.The driving force required by liquid–liquid phase sep-aration as a function of the concentration of sodium chloride,50mg y ml lysozyme solution,0.1M acetate buffer,pH 4.8.In the same way,we plot the driving force,f ,required by liquid–liquid phase separation as a function of the concentration of sodium chloride in Fig.4.At the moderate concentration of sodium chloride,the driving force required by liquid–liquid phase separation is higher than that at low or high salt concentration.As shown in Fig.3,with NaCl concentration increasing,the cloud-point temperature increases,which is in accord with the results of Broide et al.w 14x and Grigsby et al.w 25x .It is known that protein interaction is the sum of different potentials like electrostatic,van der Waals,hydrophobic,hydration,etc.The liquid–liquid phase separation is driven by a net attraction between protein molecules,and the stronger the attraction,the higher the cloud-point temperature.Ionic strength is found to have an effect on the intermolecular forces:attractions increase with ionic strength,solubility decreases with ionic strength,resulting in the cloud-point temperature increases with ionic strength.It is worth noting that,the effect of ionic strength on cloud-point temperature depends strongly on the specific nature of the ions w 13x .Kosmotropic ions bind adjacent water molecules more strongly than water binds itself.When akosmotropic ion is introduced into water,the entro-py of the system decreases due to increased water structuring around the ion.In contrast,chaotropes bind adjacent water molecules less strongly than water binds itself.When a chaotrope is introduced into water,the entropy of the system increases because the water structuring around the ion is less than that in salt-free water.This classification is related to the size and charge of the ion.At high salt concentration ()0.3M ),the specific nature of the ions is much more important w 25x .The charges on a protein are due to discrete positively and negatively charged surface groups.In lysozyme,the average distance between thesecharges is approximately 10Aw 26x .As to the salt ˚NaCl used as precipitant,Na is weakly kosmo-q tropic and Cl is weakly chaotropic w 27x .At low y NaCl concentrations,as the concentration of NaCl increases,the repulsive electrostatic charge–charge interactions between protein molecules decrease because of screening,resulting in the increase of cloud-point temperature.While at high NaCl con-centrations,protein molecules experience an attrac-tion,in which differences can be attributed to repulsive hydration forces w 14,25x .That is,as the ionic strength increases,repulsive electrostatic or hydration forces decrease,protein molecules appear more and more attractive,leading to higher cloud-point temperature.At various salt concentra-tions,the predominant potentials reflecting the driving force for liquid–liquid phase separation are different.Fig.4shows that the driving force,f ,is parabolic with ionic strength,while Grigsby et al.w 25x have reported that f y kT is linear with ionic strength for monovalent salts.The possible reasons for that difference include,their model is based on a fixed protein concentration of 87mg y ml,which is higher than that used in our study,yet f y kT is probably dependent on protein concentration,besides the solutions at high protein and salt concentrations are far from ideal solutions.3.3.Effect of glycerolFig.5compares cloud-point temperature data for 50mg y ml lysozyme solutions in absence of glycerol and in presence of 5%glycerol,respec-110J.Lu et al./Biophysical Chemistry109(2004)105–112parison of cloud-point temperatures for lysozyme at different glycerol concentrations as a function of the con-centration of sodium chloride,50mg y ml,0.1M acetate buffer, pH4.8:0%glycerol(s);5%glycerol(j).Fig.6.Cloud-point temperatures for lysozyme at different glycerol concentrations,50mg y ml lysozyme,5%NaCl,0.1M acetate buffer,pH4.8.Fig.7.Cloud-point temperature and solubility determination for lysozyme at different concentrations of glycerol in0.1M acetate buffer,5%NaCl,pH4.8:solubility(0%glycerol)(s); T(0%glycerol)(d);solubility(5%glycerol)(h);cloudT(5%glycerol)(j).cloudtively.Fig.6shows the cloud-point temperature as a function of the concentration of glycerol.The cloud-point temperature is decreased as the addi-tion of glycerol.In semilogarithmic Fig.7we plot the solid–liquid and liquid–liquid phase boundaries at dif-ferent glycerol concentrations for lysozyme in0.1 M acetate buffer,5%NaCl,pH4.8,for a range of protein concentration.This figure demonstrates that liquid–liquid and solid–liquid phase bounda-ries in the presence of glycerol are below those in absence of glycerol,and the region for growing crystals is narrowed when glycerol is added. Glycerol has the property of stabilizing protein structure.As a result,if crystallization occurs over a long period of time,glycerol is a useful candidate to be part of the crystallization solvent and is often included for this purpose w28x.In addition,glycerol is found to have an effect on the intermolecular forces:repulsions increase with glycerol concentra-tion w29x.Our experiment results of solubility and cloud-point temperature can also confirm the finding.The increased repulsions induced by glycerol can be explained by a number of possible mecha-nisms,all of which require small changes in the protein or the solvent in its immediate vicinity.The addition of glycerol decreases the volume of protein core w30x,increases hydration and the size of hydration layer at the particle surface w31,32x. In this work,we confirm that glycerol shifts the solid–liquid and liquid–liquid phase boundaries. The effect of glycerol on the phase diagram strong-111 J.Lu et al./Biophysical Chemistry109(2004)105–112ly depends on its concentration and this canprovide opportunities for further tuning of nuclea-tion rates.4.ConclusionsGrowing evidence suggests protein crystalliza-tion can be understood in terms of an order ydisorder phase transition between weakly attractiveparticles.Control of these attractions is thus keyto growing crystals.The study of phase transitionsin concentrated protein solutions provides one witha simple means of assessing the effect of solutionconditions on the strength of protein interactions.The cloud-point temperature and solubility datapresented in this paper demonstrate that salt andglycerol have remarkable effects on phase transi-tions.The solid–liquid and liquid–liquid bounda-ries can be shifted to higher or lower temperaturesby varying ionic strength or adding additives.Ourinvestigation provides further information upon therole of glycerol used in protein crystallization.Glycerol can increase the solubility,and decreasethe cloud-point temperature,which is of benefit totuning nucleation and crystal growth.In continuingstudies,we will explore the effects of other kindsof additives like nonionic polymers on phasetransitions and nucleation rates.Much more theo-retical work will be done to fully interpret ourexperimental results.AcknowledgmentsThis work is supported by the grant from theNational Natural Science Foundation of China(No.20106010).The authors also thank Professor J.M.Wiencek(The University of Iowa)for kinddiscussion with us about the thermal phenomenaof liquid–liquid phase separation.Referencesw1x A.McPherson,Current approaches to macromolecular crystallization,Eur.J.Biochem.189(1990)1–23.w2x A.M.Kulkarni, C.F.Zukoski,Nanoparticle crystal nucleation:influence of solution conditions,Langmuir18(2002)3090–3099.w3x E.E.G.Saridakis,P.D.S.Stewart,L.F.Lloyd,et al., Phase diagram and dilution experiments in the crystal-lization of carboxypeptidase G2,Acta Cryst.D50(1994)293–297.w4x A.P.Gast, C.K.Hall,W.B.Russel,Polymer-induced phase separations in non-aqueous colloidal suspensions,J.Colloid Interf.Sci.96(1983)251–267.w5x H.N.W.Lekkerkerker,W.C.K.Poon,P.N.Pusey,et al., Phase-behavior of colloid plus polymer mixtures,Euro-phys.Lett.20(1992)559–564.w6x A.Tardieu,S.Finet,F.Bonnete,Structure of the´macromolecular solutions that generate crystals,J.Cryst.Growth232(2001)1–9.w7x D.Rosenbaum,C.F.Zukoski,Protein interactions and crystallization,J.Cryst.Growth169(1996)752–758.w8x A.George,W.W.Wilson,Predicting protein crystalli-zation from a dilute solution property,Acta Cryst.D50(1994)361–365.w9x D.Rosenbaum,P.C.Zamora, C.F.Zukoski,Phase-behavior of small attractive colloidal particles,Phys.Rev.Lett.76(1996)150–153.w10x V.J.Anderson,H.N.W.Lekkerkerker,Insights into phase transition kinetics from colloid science,Nature416(2002)811–815.w11x S.Tanaka,K.Ito,R.Hayakawa,Size and number density of precrystalline aggregates in lysozyme crys-tallization process,J.Chem.Phys.111(1999)10330–10337.w12x D.W.Liu,A.Lomakin,G.M.Thurston,et al.,Phase-separation in multicomponent aqueous-protein solutions,J.Phys.Chem.99(1995)454–461.w13x V.G.Taratuta,A.Holschbach,G.M.Thurston,et al., Liquid–liquid phase separation of aqueous lysozymesolutions:effects of pH and salt identity,J.Phys.Chem.94(1990)2140–2144.w14x M.L.Broide,T.M.Tominc,M.D.Saxowsky,Using phase transitions to investigate the effect of salts onprotein interactions,Phys.Rev.E53(1996)6325–6335. w15x M.Muschol,F.Rosenberger,Liquid–liquid phase sep-aration in supersaturated lysozyme solutions and asso-ciated precipitate formation y crystallization,J.Chem.Phys.107(1997)1953–1962.w16x C.Domb,J.H.Lebowitz,Phase Separation and Critical Phenomena,Academic,London,1983.w17x D.F.Rosenbaum,A.Kulkarni,S.Ramakrishnan,C.F.Zukoski,Protein interactions and phase behavior:sen-sitivity to the form of the pair potential,J.Chem.Phys.111(1999)9882–9890.w18x O.Galkin,P.G.Vekilov,Nucleation of protein crystals: critical nuclei,phase behavior and control pathways,J.Cryst.Growth232(2001)63–76.w19x P.R.tenWolde, D.Frenkel,Enhancement of protein crystal nucleation by critical density fluctuations,Sci-ence277(1997)1975–1978.w20x P.A.Darcy,J.M.Wiencek,Estimating lysozyme crystal-lization growth rates and solubility from isothermalmicrocalorimetry,Acta Cryst.D54(1998)1387–1394.112J.Lu et al./Biophysical Chemistry109(2004)105–112w21x A.J.Sophianopoulos,C.K.Rhodes,D.N.Holcomb,K.E.vanHolde,Physical studies of lysozyme.I.Characteri-zation,J.Biol.Chem.237(1962)1107–1112.w22x Y.Georgalis,P.Umbach, A.Zielenkiewicz,et al., Microcalorimetric and small-angle light scattering stud-ies on nucleating lysozyme solutions,J.Am.Chem.Soc.119(1997)11959–11965.w23x P.A.Darcy,J.M.Wiencek,Identifying nucleation tem-peratures for lysozyme via differential scanning calorim-etry,J.Cryst.Growth196(1999)243–249.w24x M.L.Grant,Effects of thermodynamics nonideality in protein crystal growth,J.Cryst.Growth209(2000)130–137.w25x J.J.Grigsby,H.W.Blanch,J.M.Prausnitz,Cloud-point temperatures for lysozyme in electrolyte solutions:effectof salt type,salt concentration and pH,Biophys.Chem.91(2001)231–243.w26x D.Voet,J.Voet,Biochemistry,Wiley,New Y ork,1990. w27x K.D.Collins,Charge density-dependent strength of hydration and biological structure,Biophys.J.72(1997)65–76.w28x R.Sousa,Use of glycerol and other protein structure stabilizing agents in protein crystallization,Acta Cryst.D51(1995)271–277.w29x M.Farnum, C.F.Zukoski,Effect of glycerol on the interactions and solubility of bovine pancreatic trypsininhibitor,Biophys.J.76(1999)2716–2726.w30x A.Priev,A.Almagor,S.Yedgar,B.Gavish,Glycerol decreases the volume and compressibility of proteininterior,Biochemistry35(1996)2061–2066.w31x S.N.Timasheff,T.Arakawa,Mechanism of protein precipitation and stabilization by co-solvents,J.Cryst.Growth90(1988)39–46.w32x C.S.Miner,N.N.Dalton,Glycerol,Reinhold Publishing, New Y ork,1953.。
离子液体对β-糖苷酶催化合成红景天苷的影响(英文)
I ncL q i fcs nt e t i f - y oiaefr h y t ei o o i iudEf t i t o Glc s s eS n h s f e o h Ac v y p d ot s
Sai o i ei - ove yse s ldr sd n Co s l ntS t m
文章编号: 2 3 8 72 1 )716 —5 0 5 — 3 (0 20 —1 10 9
离子 液体对 p糖 苷酶 催化 合成 红景 天苷 的影 响 .
毕 艳红,王朝 宇 ,茅 燕勇,郑 尚永 ,张海 江,时 号
淮 阴工 学 院 生命 科 学 与化 学 工 程 学 院,江 苏 淮 安 2 3 0 203
摘要 :研 究 了混 合 溶 剂 体 系 中 阴 离 子 分 别 为 B 4, F一C一B 一 I的 1 F一P 6 1 r和 一 4种 离子 液体 对 来 源 于 黑 布 林 糖 苷 酶 催 化 合 成 红 景 天 , , 苷反 应 的影 响.结果 表 明, 最 佳反 应条 件 下, . 苷 酶 的反 应 初 速 度 和 红 景 天 苷 的产 率 分 别 为 33 在 D糖 .mmo/ -) 2 . lLh 和 45 ( %.离 子
B ah n , N h ou, OY n o gZ E G S ag o g Z A a i g S I a I n o g WA G Z ay MA ay n , H N hn y n , H NGH ia , H p Y jn H
Sh o L e cec n hmc l n i ei , a i Istt oTcnlg, a' 3 0,ins, h a col i i e d e i gn r g Hui n ntue ehooyHu i n 2 0 3J gu C i f O rS n a C aE e n y i f a2 a n
蛞蝓提取物对肺癌细胞周期的影响
内蒙古 中医药
蛞蝓 提取 物对 肺癌 细胞 周 期 的影 响△
韦金 育 曾振 东 曾翠 琼 俸 曙光 杨 增艳 摘 要: 目的 : 了解 蛞蝓提 取 物对肺 癌 细胞 周期 的影 响 。 法 : 流式 细胞 仪 分析蛞 蝓提 取物 对A 4 N胞周 期 的影响 。结果 : 方 用 59 蛞蝓 提取 物 能使 细胞 的S ( N 合 成期 ) 降。结论 : 蝓提取 物 可能通 过诱 导A 4 N胞 周期 阻滞从 而发挥 抗癌 作 用。 期 DA 下 蛞 59
中 图分类 号 : 63 R 8. 2
1 材料 与方 法
文献标 识码 : B
文章编 号 :0 6 07 (0 2— 09 0 10— 992 1)4 03— 2 1
神 经与 椎体 外缘 的夹 角 。 1 标本制备 : . 1 尽量不损伤神经血管 , 暴露 T L 的椎体 、 弓根、 22 1 椎 .左右 两侧 椎 间孔外 口处 神经 血 管 的排列 走行 是 : 自上 而下为 椎 间孑 、 神 经 、 管等 结构 。 L脊 血 椎 间静 脉 、 神经 、 动 脉 即节段 动脉 的中 间支 ( 1; 脊 根 图 )出椎 间孔
21年 1 01 2月
3 9
其 抑制作 用 主要是 通过 抑 制细 胞 内 D A的合 成 而实 现 的 。本实 嘲. N 中国 中西 医结合 杂志, 9 , ()2 . 1 91 94 3 9 9 : 验 结果 也许 提示这 可 能是 蛞蝓 抗肿 瘤 作用 的 机理 之一 。 [ 甄永 苏. 瘤 药物 研 究与 开发『 ] 3 】 抗肿 M. 北京: 工 出版社. 0 . 1 化 2 41 . 0 0
蛞蝓 提取 物对 人肺 癌 的作 用 良好 、 毒性 较小 、 资源 丰 富 , 得 【 郭岳峰 , 守章, 民, . 蝓胶 囊治疗 晚期 非 小细胞肺 癌 3 值 4 ] 王 焦智 等 蛞 2 进一 步研 究 。 例 疗 效观察 中医研 无 19 ,3: . 947 ) 4 ( 2 参 考文献 [] 金魁 漕 建 国. 蝓 对人 肺鳞 癌 、 5 谢 蛞 肺腺 癌 细胞抑 瘤作 用初 探 『. J 1 [ 李仪 奎. 1 ] 中药药理 实验 方 法 学【 . 1 . 海: 海科 学技 术 出 M】 第 版上 上 肿 瘤 防治研 究, 9 , () 4 . 1 7 46: 4 9 2 3
The Properties and Applications of Biochemistry
The Properties and Applications ofBiochemistry生物化学的性质与应用生物化学是研究生命活动的化学基础的学科。
它涉及许多重要的生物大分子,如蛋白质、核酸、多糖和脂质等。
这些生物大分子具有各自独特的性质和广泛的应用。
本文将介绍这些生物大分子的性质和应用。
蛋白质蛋白质是一种拥有复杂结构的生物大分子,是组成人体的重要物质之一。
蛋白质的结构可分为四级,分别是原位结构、二级结构、三级结构和四级结构。
蛋白质的性质包括酶促活性、免疫性、分子识别性和构象可变性等。
蛋白质的应用非常广泛,如生物制药、食品添加剂、工业酶、生物传感器等。
核酸核酸是生物体内遗传信息的主要存储和传递分子,包括脱氧核糖核酸(DNA)和核糖核酸(RNA)两种。
DNA是双链结构,RNA是单链结构。
核酸的主要功能是编码蛋白质的氨基酸序列。
核酸包括许多重要的结构和功能性元素,如基序、剪接位点、启动子和转录因子结合位点等。
核酸的应用领域涉及多方面,如基因工程、药物研究、生物信息学等。
多糖多糖是一类由单糖分子组成的高分子化合物,是植物和动物细胞壁、软组织、骨骼等的主要组成部分。
多糖分子结构单一,但其结构与含量却具有很大的变异性。
多糖具有多种生物学功能,如细胞识别、浸润和保护、免疫调节等。
多糖也被广泛应用在食品工业、药物研究、生物传感器等领域中。
脂质脂质是一类极为广泛的生物大分子,包括脂肪酸、甘油三酯、磷脂、鞘磷脂、皂质和固醇等。
脂质具有多种生命活动的功能,如细胞膜形成、激素合成、能量储存等。
脂质的应用也非常广泛,如人体营养、洗涤剂、润滑剂、药物传递等。
总体来说,生物化学是非常重要的研究领域,其研究内容和应用都非常广泛。
各种生物大分子都有其独特的性质和应用,深入研究这些生物大分子能为广大科学工作者提供更多的理论基础和实践应用价值。
2024年英语四级考试试卷
What is the main idea of the passage?A. The history of technology development.B. The impact of technology on society.C. The future predictions of technological advancements.D. The challenges faced by technologists.The author mentions "digital divide" to refer to:A. The gap between urban and rural areas.B. The difference in access to technology.C. The divide between generations.D. The variation in educational levels.According to the passage, which of the following is NOT a benefit of online learning?A. Flexibility in scheduling.B. Reduced social interaction.C. Access to a wide range of courses.D. Personalized learning experience.What does the phrase "climate change" primarily signify?A. Seasonal variations.B. Long-term alterations in weather patterns.C. Occasional extreme weather events.D. Changes in ocean currents.The passage argues that sustainable development requires:A. Rapid industrialization.B. Balancing economic growth and environmental protection.C. Decreased use of renewable resources.D. Limited social welfare programs.Which of the following is an example of a non-renewable resource?A. Solar energy.B. Fossil fuels.C. Wind power.D. Hydroelectric power.The term "biodiversity" refers to:A. The variety of life in a particular habitat.B. The study of genetic mutations.C. The process of natural selection.D. The conservation of endangered species.What is the author's attitude towards the use of artificial intelligence in healthcare?A. Cautious.B. Optimistic.C. Critical.D. Neutral.The passage suggests that effective communication can be enhanced by:A. Avoiding difficult topics.B. Active listening and clear expression.C. Limiting nonverbal cues.D. Relying solely on technology.。
海洋天然产物抑癌有新机制
『缶床 研 究 , 是 极有希望 的新 型 抗 癌 药物 , 然而 其 抗癌 机 理 , 尤其 是 抗 肿瘤转 移 的机 理 目前 尚不 清 楚 。
月球最 高点高于 珠峰
月球最 高峰的高度是 9 8 4 0 米 , 比珠 穆 朗玛 峰还 高出近 1 0 0 0 米 !这 是 中国科 学 家根据
嫦 娥 “ 一
要 的生 理 功 能 , 其 中还 含有种名 叫降钙 素 的激 素 , 能够有效促 进 骨钙 的 吸 收 。
海洋天然产物抑癌有新机制
鼯
1 1 月 1 日出版 的C a n c e r R e s e a r c h 发 表 了 中科 院上 海 药物 所 谢 欣 研 究 组 和 第 二 军 医 大 学 药学 院海 洋 药物 研 究 中心 易 杨 华研 究 组 的最 新 研 究成 果 , 他 们 揭 示 了海 洋 天 然 产物 B r y o s t a t i n s 在 抗 肿 瘤 转 移 方 面 的作 用 机 理 。
B r y o s t a t i n s 是 从 海 洋 生 物 草 苔 虫 中分离 得 到 的一 类 大 环 内酯 类化 合 物 , 有 近 2 0 个 结 构 类似 物 。 研
究 显 示 , B r y o s t a t i n s 对 肿 瘤 生 长 、 转 移 及 血 管新 生 都有 抑 制作 用 , 其 中B r y o s t a t i n — l 已 经 在 美 国进 入
疲劳驾驶可 预警
不是用 手而是用意念控制车速 , 并让车左右转弯绕过障碍— — 2 2 日, 上海交通 大 学 计算机 系 的专 家现 场 演 示 了这 个 以前只 在科幻 电影 中出现 的场 面 。
据张丽清教授 介绍 , 这项科研 成果可 用来预 警疲劳驾驶 。 当驾驶 员的疲劳程 度 改变 时 , 大 脑 内部 不 同脑 区神 经 元 放 电的 同步性 会 发 生 改变 , 这 些 改 变 可 以通 过 脑 电检 测 到 , 通 过 对脑 电的模式进行分析 , 便可 对 驾驶 员 的疲 劳程 度进 行估 计 , 从 而 做 出预警 , 减少 因疲劳驾驶而 导致 的交通事故 。
用于治疗神经性、神经变性和情绪障碍的水华束丝藻制剂、提取物及
专利名称:用于治疗神经性、神经变性和情绪障碍的水华束丝藻制剂、提取物及其纯化的组分
专利类型:发明专利
发明人:S·斯科利奥,F·卡内斯特拉里,S·贝内代蒂,Y·贝内代蒂,M·德尔加多-埃斯特班
申请号:CN200780023485.4
申请日:20070626
公开号:CN101478980A
公开日:
20090708
专利内容由知识产权出版社提供
摘要:本发明提供了用于预防或治疗神经性、神经变性和情绪病症或疾病的微藻水华束丝藻(Aquae Ralfs ex Born.& Flah.Var.flos aquae)(AFA Klamath)的提取物及其纯化的组分。
申请人:营养技术责任有限公司
地址:意大利乌尔比诺
国籍:IT
代理机构:北京市中咨律师事务所
更多信息请下载全文后查看。
MODIS数据产品标准问题
王正兴 2019年11月2日,兰州
2019/9/7
1
前言:标准问题的提出,影响植被指数标准的一般因素
1、一般植被指数原理:Red, NIR 差异 2、单日植被指数:多样性以及 MODIS-VI的选择
- 基本输入数据可能的多种选择 - 单日植被指数定义:NDVI,EVI
VI Usefulness (four bit range) (0) highest quality
(13) no atmospheric correction performed (14) quality too low to be useful
(15) not useful for any other reason
2019/9/7
19
2019/9/7
20
0-1
2-5
6-7 8 9 10 11-12 2019/9/7
NDVI Quality (00) NDVI produced, good quality; (01) NDVI produced, but check QA (10 ) pixel not produced due to cloud effects (11) pixel not produced due to other reasons than clouds
(2)空间系列:
• 基本单元:最大分辨率的一个pixel • 合成空间:几个Pixels 合并为 1 个? • 合成标准:平均数值 、中值?…..
2019/9/7
11
像元数(No. of Pixels):x 10000
最大值合成:不能保障最小视角,倾向前向反射 Pixel
70
细胞周期的调控
(Cyclin) ”。
Your company slogan
细胞周期调控的分子机制
三位科学家的重大发现促使了细胞 周期调控 分子机制的阐明。在多细胞真核生 物中, 物中,参与细胞周期调控的核心蛋 白分子主要分为3大类,分别是: 白分子主要分为3大类,分别是:Cdk 、Cyclin及“细胞周期蛋白依赖性 Cyclin及 激酶抑制因子” 激酶抑制因子”(Cdk inhibitor, CKI) 。其中, 。其中, Cdk是细胞周期调节的中心环节,Cy Cdk是细胞周期调节的中心环节,Cy clin是Cdk的正调节因子, clin是Cdk的正调节因子, CKI是Cdk的抑制因子 CKI是Cdk的抑制因子
细
调控
赵
识 顾
LOGO
1
细 细 细 间 哪 个阶 个时
2
3
Your company slogan
LOGO
Your company slogan
LOGO
2001年10月8日,瑞典研究院诺贝尔生理学或医学奖评审委员会宣布,美 国科学家LelandH.Hartwell及英国科学家RTimothyHunt和PaulM.Nur se在发现“细胞周期的关键调控因子”这一方面做出了杰出贡献,共同获得 2001年诺贝尔生理学或医学奖。三位科学家的重大贡献促进了人们对细 胞周期调控分子机制的了解,使人们可以借助对有丝分裂细胞周期的分子 调控机制,去了解减数分裂、细胞分化等过程的分子机制,并为细胞生长、 组织器官发育、肿瘤发生机制等多个科学领域的研究奠定了坚实的基础
Your company slogan
LOGO
Your company slogan
text2 因编码一种分子量为34kD 的丝氨酸/苏氨酸 蛋白激酶[ 8 ] ,其作用于细胞周期中的“启动 点”和G2 /M控制点。当细胞具备了足够的 生长因子信号时,该蛋白激酶中保守的苏氨酸 和酪氨酸残基将被磷酸化,蛋白激酶被激活,促 使细胞由早G1 期不可逆地通过R点进入晚G1 期,并定向进入S期进行DNA复制;或由G2 期 进入M期,开始进行有丝分裂[ 9 ] ;而丧失 cdc2功能的突变株在细胞分裂周期中则不能 通过“启动点”和G2 /M控制点 后来的研究发现,芽殖酵母的cdc28基因与 裂殖酵母的cdc2基因具有较高的同源性,它们
利用大肠杆菌全细胞催化赖氨酸发酵液生产1,5-戊二胺
2017年第36卷第5期 CHEMICAL INDUSTRY AND ENGINEERING PROGRESS·1843·化 工 进展利用大肠杆菌全细胞催化赖氨酸发酵液生产1,5-戊二胺齐雁斌,马伟超,陈可泉(南京工业大学生物与制药工程学院,江苏 南京 211816)摘要:1,5-戊二胺是一种具有生物活性的生物胺。
赖氨酸脱羧酶可以催化L-赖氨酸生产1,5-戊二胺。
为了减少生产成本,本文利用大肠杆菌AST1以赖氨酸发酵液作为底物进行全细胞催化生产1,5-戊二胺。
研究转化pH 、菌体浓度、转化温度、磷酸吡哆醛(PLP )添加量以及不同酸种类对转化的影响,并对菌体的重复利用性进行了研究。
在最优条件下:pH6.8、转化温度37℃、PLP 添加量0.1mmol/L 、菌体浓度(DCW )2.5g/L ,用乙酸来调节转化过程pH ,可以转化含有赖氨酸123.8g/L 的发酵液,得到含有86.18g/L 戊二胺的转化液,转化率可达到99.61%。
并且菌体在赖氨酸发酵液中重复利用5次的情况下转化率可以达到50%以上,重复利用性明显比在赖氨酸溶液中转化时强,这极大程度地节约了生产成本,为1,5-戊二胺连续工业化生产打下了基础。
关键词:1,5-戊二胺;赖氨酸发酵液;全细胞转化;工业化生产中图分类号:TQ033 文献标志码:A 文章编号:1000–6613(2017)05–1843–05 DOI :10.16085/j.issn.1000-6613.2017.05.0361,5-pentanediamine production by using Escherichia coli whole-cellbiocatalysis lysine fermentation liquidQI Yanbin ,MA Weicao ,CHEN Kequan(Biotechnology and Pharmaceutical Engineering ,Nanjing University of Technology ,Nanjing 211816,Jiangsu ,China )Abstract:1,5-pentanediamine is a bioactive biogenic amine. L-lysine decarboxylase can catalyze with L-lysine to produce 1,5-pentanediamine. To reduce the production cost ,whole cell catalytic production of 1,5-pentanediamine was outperformed using Escherichia coli AST1 and with lysine fermentation broth as the substrate. The effects of transformation pH ,cell concentration ,transformation temperature ,PLP addition amount ,and different kinds of acid on the transformation and the reusability of the cells were investigated. At the optimal condition ,0.1mmol/L PLP ,2.5g/L DCW and pH as 6.8,37℃,86.18g/L of 1,5-pentanediamine was obtained by transforming the fermentation broth containing 123.8 g/L L-lysine ,and adjusting the pH using the acetic acid during conversion process. Furthermore ,the cells can be reused five times and the substrate conversion rate maintained above 50% in the lysine fermentation broth. The reusability was better than that in the lysine solution ,which greatly reduces the production cost and lays a foundation for 1,5-pentanediamine commercial production. Key words :1,5-pentanediamine ;lysine fermentation liquid ;whole-cell biocatalysis ;commercial process1,5-戊二胺(1,5-pentanediamine ,简称戊二胺),即尸胺,是生物体内广泛存在的具有生物活性的含氮碱,为蛋白质腐败时赖氨酸在脱羧酶作用下发生脱羧反应时生成的产物。
冷藏三疣梭子蟹腹部和螯足肌肉品质特性变化
董儒仪,杜琪,吴盈茹,等. 冷藏三疣梭子蟹腹部和螯足肌肉品质特性变化[J]. 食品工业科技,2024,45(2):92−100. doi:10.13386/j.issn1002-0306.2023040192DONG Ruyi, DU Qi, WU Yingru, et al. Changes in Quality Characteristics of Abdomen and Cheliped Muscle of Swimming Crab (Portunus trituberculatus ) during Chilled Storage[J]. Science and Technology of Food Industry, 2024, 45(2): 92−100. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023040192· 研究与探讨 ·冷藏三疣梭子蟹腹部和螯足肌肉品质特性变化董儒仪1,杜 琪1,吴盈茹1,周 婷1,水珊珊1,2, *,张 宾1, *(1.浙江海洋大学食品与药学学院,浙江舟山 316022;2.浙江省海洋开发研究院,浙江舟山 316021)摘 要:目的:探究冷藏过程中三疣梭子蟹腹部和螯足肌肉品质特性变化情况。
方法:以三疣梭子蟹为对象,在4 ℃冷藏过程中,对蟹腹部和螯足肌肉进行定量描述分析,同时测定肌肉持水力、水分含量、水分活度、pH 、挥发性盐基氮、三甲胺、TCA-可溶性肽、肌原纤维蛋白含量及其小片化指数等理化指标。
结果:随着冷藏时间延长,三疣梭子蟹腹部和螯足肌肉特性出现相似的变化趋势,其中肌肉品质感官特性、持水力、水分含量和水分活度均呈下降趋势;肌肉pH 呈先下降后上升趋势,腹部肌肉pH 在冷藏第5 d 时为7.7,而螯足肌肉pH 在冷藏第4 d 时已达7.99;挥发性盐基氮、三甲胺、TCA-可溶性肽含量和肌原纤维小片化指数则呈不断上升趋势;肌原纤维蛋白含量呈显著下降趋势(P <0.05),腹部和螯足肌肉在冷藏5 d 后分别下降了38.11%和49.51%。
《2024年野黄芩苷对人舌鳞癌Tca8113细胞细胞周期及Fas-FasL介导的细胞凋亡的影响》范文
《野黄芩苷对人舌鳞癌Tca8113细胞细胞周期及Fas-FasL介导的细胞凋亡的影响》篇一野黄芩苷对人舌鳞癌Tca8113细胞细胞周期及Fas-FasL介导的细胞凋亡的影响摘要:本文研究了野黄芩苷对人舌鳞癌Tca8113细胞的细胞周期及Fas/FasL介导的细胞凋亡的影响。
通过实验发现,野黄芩苷能够显著抑制Tca8113细胞的增殖,并诱导其发生细胞周期阻滞和细胞凋亡。
这一研究为野黄芩苷在抗肿瘤领域的应用提供了理论依据。
一、引言舌鳞癌是一种常见的口腔恶性肿瘤,其发病机制复杂,目前的治疗手段主要包括手术、放疗和化疗等。
然而,传统的治疗方法往往存在疗效不佳、副作用明显等问题。
因此,寻找新的抗肿瘤药物和治疗方法成为研究的重要方向。
野黄芩苷是一种从中药中提取的天然活性成分,具有抗氧化、抗炎、抗肿瘤等多种生物活性。
本研究旨在探讨野黄芩苷对人舌鳞癌Tca8113细胞的细胞周期及Fas/FasL介导的细胞凋亡的影响,为野黄芩苷在抗肿瘤领域的应用提供理论依据。
二、材料与方法1. 材料人舌鳞癌Tca8113细胞株、野黄芩苷、细胞培养基、血清、试剂等。
2. 方法(1)细胞培养:将Tca8113细胞在适宜的培养条件下进行培养。
(2)药物处理:将不同浓度的野黄芩苷加入细胞中,观察其对细胞生长的影响。
(3)流式细胞术:检测细胞周期及细胞凋亡情况。
(4)Western blot:检测相关蛋白的表达情况。
三、实验结果1. 野黄芩苷对Tca8113细胞增殖的影响实验结果显示,野黄芩苷能够显著抑制Tca8113细胞的增殖,且呈剂量依赖性。
随着野黄芩苷浓度的增加,细胞增殖抑制率逐渐升高。
2. 野黄芩苷对Tca8113细胞周期的影响流式细胞术检测结果显示,野黄芩苷能够诱导Tca8113细胞发生G0/G1期阻滞,使细胞无法进入S期进行复制,从而抑制细胞的增殖。
3. 野黄芩苷对Tca8113细胞凋亡的影响实验发现,野黄芩苷能够诱导Tca8113细胞发生凋亡,且呈时间依赖性。
太湖化学耗氧量和生化需氧量的时空分布特征
第30卷第12期2010年12月环境科学学报Acta Scientiae CircumstantiaeVol.30,No.12Dec.,2010基金项目:水体污染控制与治理科技重大专项(No.2009ZX07101-013);国家自然科学基金项目(No.40971252,40825004,40730529);中国科学院知识创新工程项目(No.KZCX2-YW-QN312)Supported by the Major Projects on Control and Rectification of Water Body Pollution (No.2009ZX07101-013),the National Natural Science Foundation of China (No.40971252,40825004,40730529)and the Knowledge Innovation Project of the Chinese Academy of Sciences (No.KZCX2-YW-QN312)作者简介:殷燕(1987—),女,E-mail :yinxu1225123@yahoo.com.cn ;*通讯作者(责任作者),E-mail :ylzhang@niglas.ac.cn Biography :YIN Yan (1987—),female ,E-mail :yinxu1225123@yahoo.com.cn ;*Corresponding author ,E-mail :ylzhang@niglas.ac.cn殷燕,张运林,时志强,等.2010.太湖化学耗氧量和生化需氧量的时空分布特征[J ].环境科学学报,30(12):2544-2552Yin Y ,Zhang Y L ,Shi Z Q ,et al .2010.Temporal-spatial variations of chemical oxygen demand and biochemical oxygen demand in Lake Taihu [J ].Acta Scientiae Circumstantiae ,30(12):2544-2552太湖化学耗氧量和生化需氧量的时空分布特征殷燕1,2,张运林1,*,时志强1,冯龙庆1,朱广伟11.中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室太湖湖泊生态系统研究站,南京2100082.中国科学院研究生院,北京100049收稿日期:2010-04-09修回日期:2010-05-09录用日期:2010-05-13摘要:基于2009年2月(冬季)、5月(春季)、8月(夏季)、11月(秋季)全太湖32个站点的化学耗氧量(COD )、生化需氧量(BOD )、溶解性总氮(DTN )、溶解性总磷(DTP )、浮游植物色素数据,分析了太湖COD 、BOD 的时空分布特征,并探讨了影响COD 、BOD 时空分布的因素.结果表明,2009年太湖COD 值为3.40 6.16mg ·L -1,平均值为(4.38ʃ0.72)mg ·L -1;BOD 为0.64 5.93mg ·L -1,平均值为(1.91ʃ1.63)mg ·L -1.COD 值在秋冬季节较高,其值显著大于春夏季(p <0.001);而BOD 值冬季较高,其它季节都较低.COD 与BOD 的空间分布格局相似,呈现出自竺山湾、太湖西北沿岸区向梅梁湾区、湖心区、东南湖湾区依次递减的趋势.分类统计结果显示,河口沿岸区COD 、BOD 值显著高于开敞水域区(p <0.001).相关性分析结果表明,COD 、BOD 与DTN 、DTP 、浮游植物色素的相关性存在季节性差异.夏季浮游植物色素浓度与COD 、BOD 相关系数最高,说明夏季浮游植物降解对水体内COD 和BOD 的贡献要高于其它季节.COD 与BOD 的时空分布特征主要受降雨量、河流输入、“引江济太”及太湖浮游植物活动等的影响.关键词:化学耗氧量;生化需氧量;时空分布;太湖文章编号:0253-2468(2010)12-2544-09中图分类号:X171.1文献标识码:ATemporal-spatial variations of chemical oxygen demand and biochemical oxygendemand in Lake TaihuYIN Yan 1,2,ZHANG Yunlin 1,*,SHI Zhiqiang 1,FENG Longqing 1,ZHU Guangwei 11.Taihu Lake Laboratory Ecosystem Research Station ,State Key Laboratory of Lake Science and Environment ,Nanjing Institute of Geography and Limnology ,Chinese Academy of Sciences ,Nanjing 2100082.Graduate University of Chinese Academy of Sciences ,Beijing 100049Received 9April 2010;received in revised form 9May 2010;accepted 13May 2010Abstract :The temporal-spatial distribution of chemical oxygen demand (COD ),biochemical oxygen demand (BOD ),and the relationships between COD ,BOD and phytoplankton pigment ,dissolved total nitrogen (DTN )and dissolved total phosphorus (DTP )concentrations are presented based on the conventional monitoring data of COD ,BOD ,phytoplankton pigment ,DTN and DTP from four seasons (winter :February ;spring :May ;summer :August ;autumn :November )in 2009including 32samplings in Lake Taihu.The results showed that the COD concentration ranged from 3.40to 6.16mg ·L -1with a mean value of (4.38ʃ0.72)mg ·L -1and the BOD concentration ranged from 0.64to 5.93mg ·L -1with a mean value of (1.91ʃ1.63)mg·L -1.COD concentrations in winter and autumn were significantly higher than those in spring and summer (ANOVA ,p <0.001),while BOD concentration was higher in winter and lower in other seasons.A significant spatial difference was found in COD concentration and BOD concentration ,decreasing from Zhushan Bay and the river inflows of northwest Lake Taihu to Meiliang Bay ,and from the central lake to the southeast lake basin.Apparently ,COD and BOD concentrations were higher in the mouths of inflowing rivers and in bays ,compared with the concentration in open water in Lake Taihu (ANOVA ,p <0.001).Seasonal differences of relationships between COD ,BOD and DTN ,DTP ,phytoplankton pigment are discussed.The highest correlation between COD ,BOD and phytoplankton pigment concentration found in summer indicated a more important contribution of12期殷燕等:太湖化学耗氧量和生化需氧量的时空分布特征phytoplankton degradation to COD and BOD in summer than other seasons.The temporal-spatial distribution characterizations of COD and BOD were affected by the rainfall,the river inflows,the hydraulic project“Yangtze River-Taihu Lake Water Transfer Project”and the degradation of phytoplankton blooms in Lake Taihu.Keywords:chemical oxygen demand;biochemical oxygen demand;temporal-spatial distribution;Lake Taihu1引言(Introduction)近年来,随着长江中下游地区工业和经济的快速发展,太湖和巢湖等一些浅水湖泊的水体污染问题也越来越严重.在环太湖地区,工厂排放的大量废水以及周边农业、生活污水等伴随入湖河流进入太湖,致使太湖地区的水质污染、蓝藻爆发等问题突出,并已严重影响到该地区的日常生活和经济发展.目前,随着人们对太湖水质问题重视程度的增加,已对太湖进行生态修复、蓝藻人工打捞、“引江济太”等水体污染治理措施,使得太湖水质得到了很大程度的改善.化学耗氧量(COD)可作为表征水体中有机物含量的有效指标,COD值越大,说明水体中有机污染物污染越严重(Kawabe et al.,1997a;吕俊杰等,2004).而生化需氧量(BOD)是在好气条件下微生物分解水体中有机物质生物化学过程以及氧化无机物质所需要的溶解氧(吕俊杰等,2004;金相灿等,1990),与COD类似,BOD能间接反映出湖泊中有机污染的污染程度.目前已有很多研究用COD来反映水质的好坏程度(Kawabe et al.,1997a,1997b;王泽良等,2004),如吕俊杰等(2004)分析了滇池水体BOD5和COD Mn的空间变化,进而探讨了水体有机污染物的空间变化特征;郭全等(2005)利用COD 在渤海海区的分布规律研究了其对海洋富营养化的贡献;此外,在珠江口附近,林卫强等(2003)利用数学模型探讨了COD的分布规律,为珠江口的水体污染治理提供了有力的依据.关于太湖COD的监测研究已有一些报道(范成新等,1998;张孝飞等,2006;张运林等,2008),但调查区域主要集中在太湖的西北部区域,着重探讨的是太湖局部区域的COD变化规律.迄今为止还未见对全太湖地区COD、BOD时空分布规律的研究报道,对其来源、转化规律等也知之甚少.因此,本研究通过对2009年各个季节不同湖区COD、BOD分布特征进行研究,着重探讨其时空变化规律及与溶解性总氮(dissolved total nitrogen,DTN)、溶解性总磷(dissolved total phosphorus,DTP)、浮游植物色素之间的相关关系,以期能更全面地掌握太湖地区的COD、BOD时空变化规律和来源,为太湖水体的污染治理工作提供参考.2材料与方法(Materials and methods)2.1研究区域太湖位于30ʎ56' 31ʎ34'N,119ʎ54' 120ʎ36' E,面积约为2338km2,最大水深3.3m,平均水深1.9m,是一个典型的浅水平原型湖泊.本研究分别于2009年2月13 15日(冬季)、5月13 15日(春季)、8月14 15日(夏季)、11月20 22日(秋季)对整个太湖水域进行调查监测.在全湖共设置了32个采样站点,涵盖了各个湖湾及不同类型湖区(图1).水样为上、中、下3层的混合样,上层为水面下50cm处水样,下层为水-沉积物界面上50cm处水样,中层为上下层中间处水样.每个站点在采样前先测定水深,然后根据水深确定下层和中层水样的采集深度,并将上、中、下3层水样倒入一大塑料桶混合搅拌然后取水样.为探讨外源河流输入对水体COD、BOD的贡献,将采样站点分成河口沿岸区和开敞水域两类,河口沿岸区包括1# 12#站点,开敞水域包括13# 32#站点.每次采样后,样品立即送回实验室进行各项水质指标测定,主要检测指标包括COD、BOD、DTN、DTP、浮游植物色素.图1采样站点Fig.1Distribution of sampling stations5452环境科学学报30卷2.2测定及分析方法COD 的测定采用酸性高锰酸钾法(国家环境保护总局,2002).BOD 测定的是20ħ培养5d 的生物化学过程需氧量,一般采用稀释培养法(国家环境保护总局,2002).DTN 和DTP 的测定均参照《湖泊富营养化调查规范》(金相灿等,1990).浮游植物色素的测定:取100 250mL 备用液(每个站点根据水样中色素含量来决定),用Whatman GF /F 滤膜抽滤;然后将滤膜放在离心管中,在冰箱冷冻(≥24h )后,加入90%的乙醇在控温水浴锅中进行加热水浴3 5min ;之后将样品存放在暗室里经乙醇萃取4 6h 后取出,用90%的乙醇过滤洗涤,并记下总体积.上述叶绿素样品萃取液在分光光度计上用90%乙醇作为参比液进行比色,分别测定波长在665nm 和750nm 处吸光度,测定后加1 2滴1%的稀盐酸进行酸化后重新测定其吸光度.然后通过计算得到叶绿素a (chlorophyll a :Chla )和脱镁叶绿素(phaeophytin-a :Pa )浓度,浮游植物色素浓度为叶绿素a 和脱镁叶绿素浓度之和(Chla +Pa ).2.3数据的处理使用Surfer8.0软件绘制等值线图,组间方差、统计回归等分析采用SPSS16.0统计软件.3结果(Results )3.1COD 时空分布图2给出了2009年不同季节COD 的空间分布情况.由图2a 可知,冬季太湖水域COD 范围为3.76 7.30mg ·L -1,平均值为(4.72ʃ0.73)mg·L -1;最大值出现在靠近太滆运河的竺山湾内(7#站点),并以此站点为中心向四周扩散形成了一个高值区(>4.8mg ·L -1),高值区COD 值大体呈现出自沿岸向湖中心逐渐递减的趋势;在东太湖沿岸的12#站点处同时也形成了一个高值区(>5.0mg·L -1);图2太湖水域不同季节的COD 空间分布Fig.2Spatial distributions of COD in four different seasons in Lake Taihu645212期殷燕等:太湖化学耗氧量和生化需氧量的时空分布特征在太湖的中心区域及其东部沿岸区COD值均小于4.6mg·L-1,且分布比较均匀.而春季COD的空间分布与冬季相似,在太湖西北部的竺山湾区、靠近梁溪河处及12#站位处都形成了COD分布高值区(>4.4mg·L-1),最大值出现在靠近大浦河附近的9#站点(图2b);春季东太湖出现了多个COD分布低值区(<3.2mg·L-1),而冬季却没有这么明显的低值区,这主要是因为春季东太湖沉水植物的大量生长对水体起到了一定的净化作用.由图2c可知,夏季各个站点COD值为2.77 6.05mg·L-1,平均值为(3.99ʃ0.96)mg·L-1;COD 高值区分布在太湖北部、西部沿岸区以及在太湖中心24#站点,最大值(6.05mg·L-1)出现在靠近直湖港附近的6#站点,并从此站点逐渐递减扩散至梅梁湾口的高值区.与春季和冬季COD的空间分布不同,夏季在太湖开敞水域也同样出现了一个COD高值区(>5mg·L-1).从图2c中还可以看出,COD相对低值区出现在太湖东部水域,且在东太湖地区COD分布比较均匀.由此可知,夏季太湖地区COD 分布呈现以下规律:竺山湾区>西部沿岸区>梅梁湾区>湖心区>东太湖.秋季COD高值区由太湖西北部沿岸继续向太湖中心延伸,在24#站点和25#站点周围形成了两个高值区(>5mg·L-1),并且在12#站点出现了最大值(7.09mg·L-1).而在靠近太浦河附近的32#站点及靠近胥江的26#站位分别出现了两个低值区(图2d),这两个点分别位于草型湖区的东太湖和胥口湾沉水植物非常茂盛的区域,可能是由于沉水植物的净化作用使这两个区域的COD值偏低.秋季太湖水域COD范围在3.23 7.09mg·L-1之间,平均值为(4.88ʃ0.96)mg·L-1.图3是太湖COD的全年平均值空间分布.由图3可知,COD的全年平均值范围为3.40 6.16 mg·L-1,总平均值为(4.38ʃ0.72)mg·L-1.与图2中COD的季节性分布相似,太湖COD的全年平均值分布规律大致为:西北部竺山湾区>西部沿岸区>北部梅梁湾水域>东太湖沿岸区>太湖湖心区>东南湖湾水草区.COD值季节性变化呈现出秋季>冬季>春、夏季的趋势(图4),但春季与夏季、秋季与冬季之间的差异较小.单因素组间方差分析(ANOVA)显示,春季与夏季、冬季与秋季间的COD值没有显著性差异,但春夏季COD值显著要低于秋冬季(p<0.001),秋冬季COD均值分别是春夏季COD均值图3太湖水域COD全年平均值空间分布Fig.3Spatial distribution of yearly average COD in Lake Taihu的1.22倍.这与在珠江口广州海域COD值的季节性分布一致(魏鹏等,2009).然而,张运林等(2008)在2004年8月份在太湖北部区域的研究却得出夏季COD值显著高于冬季的结论,与本文的结论差异较大,这可能是由于太湖北部区域靠近无锡市,生活污水和工业废水大量的排入对太湖局部区域的影响很大,尤其在夏季北部梅梁湾区域蓝藻爆发时会使此处COD值增大,由此导致局部区域夏季COD 值比冬季高.图4全太湖COD值季节性变化Fig.4Seasonal variations of COD for all32stations造成太湖COD季节性差异的原因主要为2009年为丰水年及“引江济太”工程.据“引江济太”网站(http://www.tba.gov.cn/ztbd/yjjt/index.asp)上数据显示,望亭水利枢纽从2009年4月28日开始从长江调水,至6月29日停止,期间总共调水4.88亿m3,占到太湖年均贮水量的11.0%左右.调水期间,7452环境科学学报30卷引水中COD 值为3.63mg ·L -1,明显低于太湖水体中COD 值,从图2b 中也可以发现,COD 值在“引江济太”进入太湖的贡湖湾望虞河河口区域较低,因此,引水在很大程度上稀释了湖体中COD 值,使得春季水体中COD 值较低.进入7月份后,太湖降水明显增加,据位于梅梁湾湾口岸边中国科学院太湖湖泊生态系统研究站的降水观测数据显示,2009年全年及6 8月份夏季降水都分别要高于2006 2008年各年值及6 8月夏季值(图5),其中,夏季降水达692.5mm ,占到太湖平均水深的36.6%,尽管降雨会引起太湖周边河流径流量的增大,进而会增加外源有机物的输入,尤其是靠近沿岸区的站点,但单纯湖面降水也会造成水容量增加而使得水体内COD 得以稀释,从而使春夏季COD 低于冬秋季.2009年冬季太湖COD 值较高,一方面源自夏秋季节藻类及沉水植物死亡降解产物的累积,另一方面则源于周边河流的外源输入.图52006 2009年太湖流域降水量变化Fig.5Rainfall variations of Taihu Lake from 2006to 20093.2BOD 时空分布图6为2009年不同季节BOD 的空间分布.由图6a 可知,冬季太湖BOD 与COD 呈现出相同的分布规律,BOD 变化范围是0.49 8.32mg ·L -1,平均值为(2.51ʃ2.10)mg·L -1,但变化幅度比冬季COD 值大,BOD 最大值(8.32mg ·L -1)同样出现在太湖图6太湖水域不同季节BOD 空间分布Fig.6Spatial distributions of BOD in four different seasons845212期殷燕等:太湖化学耗氧量和生化需氧量的时空分布特征西北部竺山湾沿岸区的7#号站点(对应于冬季COD的最大值区域),而最小值(0.49mg ·L -1)出现在靠近西洞庭山的25#站点.与COD 相同,呈现出从近岸水域向湖中心递减的趋势.而从图6b 可以看出,春季太湖BOD 最小值(0.63mg ·L -1)与最大值(6.75mg ·L -1)分别出现在靠近东洞庭山的29#站点和太湖西部沿岸区的9#站点(与春季COD 极值分布相同,如图2b 所示).春季BOD 在太湖中心水域形成了小于1mg ·L -1的低值区,相对高值区(>2mg ·L -1)位于太湖西北部河口沿岸区和靠近望虞河的贡湖湾区.图7太湖水域BOD 全年平均值空间分布Fig.7Spatial distribution of yearly average BOD in Lake Taihu夏季BOD 值变化范围在0.65 5.74mg·L -1之间,与冬季相似,最大值(5.74mg ·L -1)出现在7#站点,而最小值(0.65mg·L -1)却出现在太湖东南水域的31#站点.与春季太湖BOD 分布相比,高值区(>3.60mg ·L -1)向太湖西南沿岸水域和北部五里河延伸,而在东太湖靠近西洞庭山和东洞庭山水域周围则形成了低值区(<1mg·L -1)(图6c ).夏季太湖BOD 值变化幅度没有冬季大,平均值是(2.18ʃ1.37)mg·L -1.秋季太湖BOD 的值变化范围在0.30 3.05mg ·L -1之间,与其他季节相比变化范围幅度最小,平均值是(1.07ʃ0.84)mg ·L -1,最大值(3.05mg ·L -1)出现在靠近直湖港的6#站点,并形成一个以此为中心的高值区(>2.30mg·L -1).与其它季节相同,在太湖的西北部存在相对高值区,6#站点出现了次极大值3.04mg·L -1.秋季太湖水域BOD 的低值区逐渐从东太湖水域向太湖中心内部扩散,太湖整个开敞水域BOD 的值都很低(图6d ),这与COD 在秋季的空间分布略有不同.从BOD 全年平均值空间分布图来看(图7),其空间分布格局与COD 基本一样,大致规律为:西北部竺山湾区>西部沿岸区>北部梅梁湾水域>东太湖沿岸区>太湖湖心区>东南湖湾水草区.太湖年平均BOD 值是(1.91ʃ1.33)mg·L -1,BOD 值季节变化呈现出冬季>夏季>春季>秋季(图8),冬季BOD 均值分别是春季和秋季的1.35倍、2.33倍,太湖BOD 季节性变化的原因与COD 相似.图8全太湖BOD 值季节性变化Fig.8Seasonal variations of BOD for all 32stations3.3河口沿岸区与开敞水域区COD 、BOD 的分类比较图9显示了不同季节及全年平均河口沿岸区和开敞水域区COD 和BOD 值均值的差异.由图9a 可知,河口沿岸区COD 值在3.72 6.16mg ·L -1之间,年平均值为(4.86ʃ0.83)mg·L -1;开敞水域区COD 值在3.40 5.17mg ·L -1之间,年平均值为(4.09ʃ0.46)mg ·L -1.单因素组间方差分析结果显示,2009年冬季和春季太湖COD 值在这两类区域存在显著的空间差异(p <0.01),河口沿岸区COD 均极显著高于开敞区COD 均值(p <0.01),而夏季则是前者显著高于后者(p <0.05),秋季COD 均值在这两类区域之间无显著性差异.而对太湖河口沿岸区和开敞水域区BOD 值进行单因素方差分析发现(图9b ),这两类区域在不同的季节都有着显著的空间差异(p <0.001),河口沿岸区BOD 均值均显著高于开敞水域区.河口沿岸区BOD 值为1.32 5.93mg ·L -1,年平均值为(3.06ʃ1.47)mg·L -1;开敞水域区BOD 值为0.64 2.51mg ·L -1,年平均值为(1.21ʃ0.54)mg ·L -1.河口沿岸区BOD 年平均值是开敞水域区的2.53倍.刘明亮等(2009)对河口区和开敞区有色可溶解性有机物(CDOM )进行研究的同时也发现,太湖COD 在入湖河口区的值大于开9452环境科学学报30卷敞区值.Yang 等(2006)在珠江口水域研究也得出COD 值在近岸水域大于远岸水域的结论.图9河口沿岸区和开敞水域区COD 值(a )和BOD 值(b )比较Fig.9Comparison of COD (a )and BOD (b )for inshore and offshore stations河口沿岸区多分布在携带外源污染物进入太湖的众多环湖河港水域.研究表明,无锡的陈东港、大浦港和漕桥河是太湖主要的3条纳污河流(逢勇等,2008;许朋柱等,2005),采样位点7#、8#、9#多分布在此区域.河流输入携带大量的污染物进入太湖,且在河口沿岸区积聚,从而导致沿岸区COD 、BOD 值增大.而太湖开敞水域区(包括东太湖区和湖心区)远离沿岸区,当河流输入带来的污染物进入太湖时,受波浪、风向等因素的影响无法进一步进入到太湖湖心区,而且太湖受到自身自净能力的影响,也使得湖心区COD 、BOD 值维持在较低的水平(图2、图6).另外,东太湖区虽然也靠近沿岸,但东太湖是水生植被生长之地,植被有净化水质的作用.许朋柱等(2005)利用2001 2002年水文年太湖及环太湖河道水量资料证实,太湖的出水主要集中在东太湖区域,出水量占太湖总出水量的47%左右,少量污染物随出湖河流流出太湖.由此可知,东太湖的COD 、BOD 处于全太湖最低水平.不同季节河口沿岸区COD 、BOD 都比开敞水域区高,这也说明河流输入对太湖COD 、BOD 值有一定影响,且这种影响在春季更加明显.这是因为春季降雨量开始增加,径流增大,入湖河流开始携带污染物进入太湖但还没有向太湖内部迁移,此时COD 、BOD 在两类区域的差异最大,其中,河口沿岸区BOD 是开敞水域区的2.53倍.当进入夏季丰水期时,陆源上的有机污染物大量进入太湖,一方面受风浪等因素的影响使污染物向湖心区扩散,COD 、BOD 在湖心区形成了一个高值区(图2c 、图6c );另一方面,大量的降水冲淡了河口沿岸区的污染物,从而导致夏季两类区域的COD 、BOD 差异没有春季大.3.4COD 、BOD 与浮游植物色素、DTN 、DTP 相关性分析对不同季节及全年COD 、BOD 值与浮游植物色素、DTN 、DTP 值进行相关分析,结果见表1.由表1可知,夏季COD 、BOD 与浮游植物色素浓度的相关系数最高,分别为0.92和0.91(p <0.001).由此对夏季COD 、BOD 与浮游植物色素进行回归分析,结果如图10所示.夏季,浮游植物色素浓度出现最大值的站点同时也是COD 最大值出现的站点,最小值出现的站点则是BOD 最小值出现的站点.张运林等(2008)在2007年对太湖北部区域COD 与Chla 之间相关性进行研究时发现,夏季COD 与Chla 之间显著正相关.另外,2007年5月底6月初在贡湖湾口南泉水厂附近富集了大量蓝藻水华,死亡腐烂后释放出大量溶解性有机物,形成黑水团,大量消耗水体中的溶解氧,致使水体中COD 高达53.64mg ·L -1(张运林等,2008).韦蔓新等(2002)在对广西北海湾的研究也证实了浮游植物现存量与COD 在夏季呈显著正相关关系.在日本Tokyo 湾,夏季COD 的高值也与由浮游植物藻华引起的色素值密切相关(Kawabe et al.,1997b ).这说明夏季蓝藻水华死亡降解是水体内COD 、BOD 的重要潜在来源之一.至于水华暴发、浮游植物降解对COD 的具体贡献率,则需采集水华回实验室进行降解实验,从而验证野外观测的结果并定量反映浮游植物降解对总CDOM 的贡献份额.其它季节以及全年水平上COD 、BOD 值均与浮游植物色素值显著正相关,表明富营养化湖泊浮游植物的生长死亡降解对太湖有机污染有很大贡献.55212期殷燕等:太湖化学耗氧量和生化需氧量的时空分布特征表1COD 、BOD 与Chla +Pa 、DTN 、DTP 的相关系数Table 1Correlation coefficients between COD ,BOD and phytoplankton pigment ,DTN ,DTP concentrationsCOD冬春夏秋全年BOD冬春夏秋全年COD 1.001.001.001.001.000.88***0.84***0.82***0.59***0.58***BOD 0.88***0.84***0.82***0.59***0.58***1.001.001.001.001.00Chla +Pa 0.81***0.70***0.92***0.69***0.62***0.66***0.85***0.91***0.44*0.73***DTN 0.74***0.51**0.170.45**0.36***0.88***0.50**0.320.71***0.56***DTP0.61***0.71***0.72***0.44*0.58***0.83***0.92***0.90***0.74***0.65***注:***p <0.001,**p <0.01,*p <0.05,不同季节样本数均为32,全年样本数为128.图10COD 、BOD 与浮游植物色素值线性关系Fig.10Linear regression between COD ,BOD and phytoplankton pigment concentration太湖COD 与DTN 、DTP 之间的相关关系存在季节性差异.春季,由于环太湖周边地区进行农田灌溉,化肥污水随着降雨以及径流进入太湖,COD 、BOD 值分别与DTN 、DTP 呈现出正相关关系.从表1中可以看出,COD 、BOD 与DTN 的相关系数都要明显低于其与DTP 的相关系数,与DTN 和DTP 分别在95%和99%置信水平上显著正相关,说明春季河流输入携带的有机污染物经氧化还原后主要释放溶解性磷.夏季,COD 、BOD 与DTN 相关性不显著,而与DTP 仍显著正相关,这说明夏季太湖COD 、BOD 来源主要是由于湖内浮游植物大量生长死亡降解造成.另外,也不排除随着径流的增加,输入的能释放溶解性磷的有机物也相应增加,从而对太湖COD 、BOD 有所贡献.而对于冬季枯水期,COD 、BOD 与DTN 、DTP 都显著正相关(置信水平99%),说明冬季太湖内源营养盐得到释放,再加上外源营养盐的输入很少,致使太湖COD 、BOD 受氮、磷影响比较大.4结论(Conclusions )1)太湖流域COD 和BOD 空间分布上呈现出相似的格局,从太湖西北部竺山湾区向北部梅梁湾区再往湖心区最后至东太湖依次递减.总体而言,各个季节河口沿岸区COD 、BOD 均值都显著高于开敞水域区,这主要是受环太湖众多入湖河流输入污染源及径流的影响.COD 、BOD 值季节性分布差异很大程度上受到2009年丰水年降雨量及“引江济太”工程的影响,由于降雨量的增加及低COD 引水使得湖体内COD 降低,从而呈现出枯水期COD 高,丰水期或平水期COD 低的特点,表现出与2004年太湖局部地区不同的季节性变化.2)COD 、BOD 与浮游植物色素、DTP 、DTN 之间的相关关系存在季节性差异.COD 、BOD 与浮游植物色素在夏季的相关系数最大,这是因为夏季浮游植物大量生长死亡降解产生有机物,浮游植物色素与COD 、BOD 有着部分相同来源.在其它季节COD 、BOD 与浮游植物色素相关系数则有所下降,反映COD 、BOD 受浮游植物色素控制下降.COD 、BOD 与溶解性营养盐之间也存在显著相关性,但与浮游植物色素不同,在夏季相关性不显著,而在冬季COD 、BOD 与DTN 、DTP 都显著正相关.这与太湖流域降雨量、径流不同而造成入湖河流携带陆地上有机污1552环境科学学报30卷染物量不同有关.致谢(Acknowledgement):太湖湖泊生态系统研究站为本研究提供了COD、BOD、DTN、DTP监测数据及降雨量数据,钱荣树、陈非洲、王永平、蔡永久、商景阁等参加了2009野外采样工作,在此表示感谢.责任作者简介:张运林(1976—),男,博士,研究员,主要从事内陆水体生物光学特性、CDOM生物地球化学循环、UV-B 辐射环境效应、湖泊水质遥感、湖泊初级生产力等研究.E-mail:ylzhang@niglas.ac.cn.参考文献(References):范成新,陈宇炜,杨龙元,等.1998.太湖梅梁湾南部水体有机污染物降解表观动力学初步分析[J].湖泊科学,10(4):48—52 Fan C X,Chen Y W,Yang L Y,et al.1998.Preliminary analysis on apparent dynamics of organic pollutants on the decline in the south of Meiliang Bay,Taihu Lake[J].Journal of Lake Sciences,10(4):48—52(in Chinese)郭全,王修林,韩秀荣,等.2005.渤海海区COD分布及对海水富营养化贡献的分析[J].海洋科学,29(9):71—74Guo Q,Wang X L,Han X R,et al.2005.Spatial distribution of COD and its contribution to the eutrophication in Bohai Sea[J].Marine Science,29(9):71—74(in Chinese)国家环境保护总局.2002.水和废水监测分析方法(第4版)[M].北京:中国环境科学出版社.210—234State Environment Protection Administration of China.2002.Monitoring and analytical Method of Water and Waste Water(4th Edition)[M].Beijing:China Environment Science Press.210—234(in Chinese)金相灿,屠清瑛.1990.湖泊富营养化调查规范(第2版)[M].北京:中国环境科学出版社.197—206Jing X C,Tu Q Y.1990.The Specification for Eutrophication Survey in Lakes(2th Edtion)[M].Beijing:China Environment Science Press.197—206(in Chinese)Kawabe M,Kawabe M.1997a.Factors determining chemical oxygen demand in Tokyo Bay[J].Journal of Oceanography,53:443—453 Kawabe M,Kawabe M.1997b.Temporal and spatial characteristics of chemical oxygen demand in Tokyo Bay[J].Journal of Oceanography,53:19—26林卫强,李适宇,历红梅.2003.夏季珠江口COD的浓度分布及影响因素[J].海洋与湖沼,34(1):67—73Lin W Q,Li S Y,Li H M.2003.The distribution and their influencing factors of COD in Zhujiang River estuary[J].Oceanologia Et Limnologia Sinica,34(1):67—73(in Chinese)刘明亮,张运林,秦伯强.2009.太湖入湖河口和开敞区CDOM吸收和三维荧光特征[J].湖泊科学,21(2):234—241Liu M L,Zhang Y L,Qin B Q.2009.Characterization of absorption and three-dimensional excitation-emission matrix spectra of chromophoric dissolved organic matter at the river inflow and the open area in LakeTaihu[J].Journal of Lake Science,21(2):234—241(in Chinese)吕俊杰,杨浩,陈捷,等.2004.滇池水体BOD5和COD Mn空间变化研究[J].中国环境科学,24(3):307—310LüJ J,Yang H,Chen J,et al.2004.Studies on the spatial variation of BOD5and COD Mn in Dianchi Lake waters[J].China Environmental Science,24(3):307—310(in Chinese)逢勇,颜润润,李一平,等.2008.内外源共同作用对太湖营养盐贡献量的研究[J].水利学报,39(9):1051—1059Pang Y,Yan R R,Li Y P,et al.2008.Contribution of combined action of exogenous source and internal load on water nutrient in Taihu Lake[J].Journal of Hydraulic Engineering,39(9):1051—1059(in Chinese)王泽良,陶建华,季民,等.2004.渤海湾中化学需氧量(COD)扩散、降解过程研究[J].海洋通报,23(1):21—31Wang Z L,Tao J H,Ji M,et al.2004.Study on Dispersion and Degradation of COD in the Bohai Bay[J].Marine Science Bulletin,23(1):21—31(in Chinese)韦蔓新,童万平,赖廷和,等.2002.广西北海湾COD与水文生物要素及不同形态氮磷的关系[J].台湾海峡,21(2):162—166 Wei M X,Tong W P,Lai T H,et al.2002.Relationship between COD,hydrological and biological elements,various states of nitrate and phosphate in Beihai Bay,Guangxi[J].Journal of Oceanography in Taiwan Strait,21(2):162—166(in Chinese)魏鹏,黄良民,冯佳和,等.2009.珠江口广州海域COD与DO的分布特征及影响因素[J].生态环境学报,18(5):1631—1637 Wei P,Huang L M,Feng J H,et al.2009.Distribution characteristics of COD and Do and its influencing factors in the Guangzhou sea zone of the Pearl River Estuary[J].Ecology and Environment Sciences,18(5):1631—1637(in Chinese)许朋柱,秦伯强.2005.2001—2002水文年环太湖河道的水量及污染物通量[J].湖泊科学,17(3):213—218Xu P Z,Qin B Q,2005.Water quantity and pollutant fluxes of the surrounding rivers of Lake Taihu during the hydrological year of20012002[J].Journal of Lake Science,17(3):213—218(in Chinese)Yang M L,Liu Q,Huang H H,et al.2006.Distribution characteristics of COD in the waters of Pearl River Estuary[J].Marine Science Bulletin,8(1):68—74张孝飞,林玉锁,俞飞,等.2006.太滆流域典型水体中总氮、总磷及COD含量变化研究[J].江苏环境科技,19(5):1—3 Zhang X F,Lin Y S,Yu F,et al.2006.The change of TN,TP and COD in representative water body of Tai-Ge valley[J].Jiangsu Environment Science and Technology,19(5):1—3(in Chinese)张运林,杨龙元,秦伯强,等.2008.太湖北部湖区COD浓度空间分布及与其他要素的相关性研究[J].环境科学,29(6):1457—1462Zhang Y L,Yang L Y,Qin B Q,et al.2008.Spatial distribution of COD and the correlations with other parameters in the northern region of Lake Taihu[J].Environmental Science,29(6):1457—1462(in Chinese)2552。
[生物工程]Nature-medicine近期精彩文章摘要
[生物工程]Nature medicine近期精彩文章摘要2004年10月大麻素可能与异位妊娠有关发表在10月号《自然—医学》上的一篇研究报告首次揭示了大麻素与异位妊娠的关系。
这篇研究报告表明,胚胎在输卵管内的运送过程中,大麻素类受体起了重要作用。
异位妊娠是指受精卵在子宫内膜以外的部位植入和发育生长,胚胎持续停留在输卵管就会形成输卵管妊娠。
Sudhansu Dey及合作者通过老鼠实验发现,如果由于遗传或药物作用使得大麻素受体CB1不起作用,则大量胚胎会滞留在输卵管内,最终导致受孕失败。
因为乙型交感神经刺激剂能够部分抵消这种效应,研究人员提出,在胚胎正常进入子宫的“旅途”中,大麻素和肾上腺素受体共同调节着输卵管的运动。
除了揭示出生殖管道中胚胎运送的新的调节机制而外,这一成果对于异位妊娠的临床研究也颇具价值。
2004年10月新生儿肺性高血压新疗法在发生氰化物中毒时,常常采用吸入亚硝酸盐来消除毒性。
10月号《自然—医学》发表的一篇“快报”表明,吸入亚硝酸盐还可用于治疗新生儿肺性高血压。
这是一种具有致命危险的疾病,会引起肺部血管收缩,导致机体血氧水平低下。
Gordon Power等利用患此病的新生羊羔测试吸入亚硝酸盐的疗效,结果发现这种疗法能使血压持续保持较低水平,并且没有明显副作用。
2004年10月精密观察血管10月号《自然—医学》发表了一篇技术报告,介绍了一种能比以往更清晰地观察活体组织及其相连血管的新方法,这一新方法可望为诊断治疗研究“锻造”一柄利器。
Fabian Kiessling及合作者试验了一种新型的“测定体积计算断层摄影扫描仪”,能够实现高分辨率三维成像。
利用此项技术,研究人员对移植到老鼠体内的人类肿瘤结构进行了分析,比现有技术如磁共振和血管造影等更清楚地观察到了肿瘤的状况。
他们甚至成功地观察到了肿瘤中直径50微米的小血管,同时还能清楚地区分活组织与死组织。
2004年9月肿瘤追踪9月号《自然医学》上发表的一篇研究报告介绍了一项在活体内追踪肿瘤细胞的新技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
97834Anais XI SBSR, Belo Horizonte, Brasil, 05 - 10 abril 2003, INPE, p. 665 -672.SEASONAL BIOPHYSICAL DYNAMICS ALONG AN AMAZON ECO-CLIMATIC GRADIENT USING MODIS VEGETATION INDICES ALFREDO HUETE 1 PIYACHAT RATANA1 , KAMEL DIDAN1 , YOSIO SHIMABUKURO2 HUMBERTO BARBOSA LAERTE FERREIRA3 TOMOAKI MIURA11University of Arizona – Department Soil, Water, Environmental Science P.O. Box 210038 – Tucson - AZ 85721, U.S.A. INPE – Instituto Nacional de Pesquisas Espaciais Caixa Postal 515 - 12201-970 - São José dos Campos - SP, Brasilyosio@ltid.inpe.br2{ahuete, piyachat, kamel, humberto, tomoaki}@Universidade Federal de Goias Caixa Postal 131 - 74001-970 - Goiania - GO, Brasillaerte@iesa.ufg.br Abstract. We utilized the Terra- MODIS Vegetation Index (VI) products to characterize the variability in seasonal and spatial patterns of photosynthetic vegetation activity along an eco-climatic gradient extending from the diverse Brazilian cerrado to the seasonal tropical forest at Tapajos National Forest, including transitional biomes at Santana do Araguaia and land conversion areas. The NDVI and EVI at 500-m and 1-km were used to generate the seasonal profile curves with the aid of quality assurance (QA) parameters for noise removal and data filtering. The seasonal patterns of the cerrado were pronounced with distinct dry and wet seasonal trends. We observed decreasing dry -wet seasonal patterns northward along the transect and in the transitional areas near Santana do Araguaia. However, we observed a reversed seasonal pattern at Tapajos National Forest in which vegetation activity increased during the shorter dry season. This was attributed to the flush of new leaf growth in the dry season and the influence of epiphyll-covered, older leaves in the wetter periods. Keywords: MODIS, vegetation index, phenology, cerrado, Amazon.31. Introduction Seasonal measurements of vegetation activity and associated ecosystem fluxes of carbon, nitrogen, and water are difficult to obtain over the Amazon Basin. Seasonal and spatial patterns of vegetation variability are crucial in understanding how the dynamics of rainfall patterns interact with land cover types and soils to control carbon fluxes (Potter et al., 1998). Satellite data sets such as the Pathfinder Advanced Very High Resolution Radiometer (AVHRR) Land (PAL) data have been used successfully for studies of temporal and interannual behavior of surface vegetation and to derive estimates of spatial variations in annual net primary production (NPP). However, the low spatial resolution and large errors inherent in the AVHRR normalized difference vegetation index (NDVI) time series data sets (poor sensor calibration, insufficient cloud screening, variable acquisition geometry) have been major impediments to their effective utilization, particularly in the Amazon Basin where extreme levels of cloud contamination afford665Anais XI SBSR, Belo Horizonte, Brasil, 05- 10 abril 2003, INPE, p. 665- 672.limited views of the surface vegetation (Goward et al., 1991). The Landsat TM and ETM+ imagery offer much better quality data sets, particularly for spectral differentiation of land cover types, but at infrequent intervals to capture their seasonal dynamics. The recently launched Terra MODIS instrument with newly developed terrestrial products, at 250m, 500m, and 1km resolutions, may contribute significantly to further investigations and monitoring of the Earth’s vegetation. In comparison to the AVHRR sensor, the MODIS sensor offers improved cloud screening, finer spatial resolution, and atmosphere correction with no water vapor influence. This may better depict the regional seasonal behavior of the various Amazon land cover types for improved carbon metabolism studies and improved discrimination of the components of interannual variability, and improved land cover differentiation. The seasonality of a specific biome or land cover type is a combination of several factors including changes in leaf physiology (chlorophyll content, water and nutrient availability, leaf aging, flowering), leaf morphology, canopy structure, specific leaf area (SLA), leaf area index, and the proportions of woody, herbaceous, and understory vegetation. Seasonal patterns of vegetation variability as well as NPP have been found to vary inversely with duration of the dry season. Deep rooting and drought tolerance by trees in seasonally dry evergreen forests of the Amazon maintains primary production during dry seasons. On the other hand, Roberts et al. (1998) conducted leaf optical measurements of a series of tropical broadleaf species near Manaus in the Amazon Basin and found NIR reflectances to decrease with leaf aging. Older, primary forests had lower NIR reflectances and broadleaf trees with the older leaves had the lowest reflectances, while second growth forests and new leaf growth ‘flushes’ had the highest NIR reflectances. Although not synchronous between plants and species (genetic variability), leaf flush tend to occur approximately 1 month after the start of the dry season. Roberts found leaf flush was restricted to the dry season. With rapid changes due to the natural maturation of leaves over the first ~2 months. In the humid tropics, leaf optical properties also vary due to colonization by epiphylls (fungi, lichens, algae, bacteria) that cover the mature leaf surfaces and reduce light transmission and limit photosynthesis. Spectral differences among species, in comparison to differences between epiphyll cover categories was relatively minor (Roberts et al. 1998). In the Terra Firme tropical forest with high species dive rsity, there would be considerable variation in phenology, leaf turnover, and susceptibility to epiphylls. The impact of leaf aging and epiphyll cover on vegetation indices should be significant but remain unresolved. The resulting VI behavior would further impact estimates of ecologically significant parameters including NPP, APAR, canopy resistance, and photosynthetic capacity. In this study, we evaluated the utility of the MODIS VI products for moderate resolution land surface monitoring and ecology over Amazonia. We investigate the performance of MODIS in characterizing the seasonal patterns and dynamics of the cerrado, transition, and forested biomes. 2. Methods & Study Sites The MODIS VI products ingest the level 2G (gridded) daily surface reflectances (MOD09 series), which are corrected for molecular scattering, ozone absorption, and aerosols. Two VI’s, the NDVI and the enhanced vegetation index (EVI), are produced:666Anais XI SBSR, Belo Horizonte, Brasil, 05- 10 abril 2003, INPE, p. 665- 672.NDVI =ρ NIR − ρ Re d ρ NIR + ρ Re d(1) ρ NIR − ρ Re dEVI = G ×L + ρ NIR + C1 × ρ Re d − C2 × ρ Blue(2)where ρNIR, ρRed, and ρBlue are the surface reflectances in their respective sensor bands; L is a canopy background adjustment that addresses non-linear, differential NIR and red radiant transfer through a canopy, and C1 , C2 are the coefficients of the aerosol term, which uses the blue band to correct for aerosols in the red band. We used the coefficients adopted in the MODIS EVI standard product, L=1, C1 = 6, C2 = 7.5, and G (gain factor) is 2.5 (Huete et al. 2002). Whereas the NDVI is chlorophyll sensitive and responds mostly to the visible or ‘red’ band variations, the EVI has been shown to be more ‘near-infrared’ (NIR) sensitive and responsive to canopy structural variations, including LAI, canopy type, and canopy architecture (Gao et al. 2000). The two VI’s may complement each other in global vegetation studies and improve upon the extraction of canopy biophysical parameters. Currently, the MODIS VI compositing algorithm utilizes the constrained view anglemaximum value composite (CV-MVC) criterion, whereby the NDVI value with the view zenith angle closest to nadir from the two highest NDVI values is selected. Once all 16 days of observations are collected, the MODIS VI algorithm applies a filter to the data based on input quality analysis (QA), cloud, and viewing geometry. Cloud-contaminated pixels and extreme off-nadir sensor view angles (± 55º) are considered lower quality, while cloud free, nadir-view pixels with no residual atmospheric contamination represent the best quality pixels. The composited VI product contains a variable number of ‘Science Data Sets’ that include the 16-day NDVI and EVI along with output quality assurance (QA), geometry of observation (view zenith, solar zenith, and relative azimuthal angles), and four residual reflectances (band 1 -red, band 2near-infrared, band 3-blue, band 7- middle-infrared) from the selected, composited pixels. In contrast to the AVHRR-NDVI datasets with interpolation and reconstruction methods added, the MODIS data sets offer a QA-based scheme to enable the filtering of data to provide spatial and temporal consistency in VI values on an operational basis. Each observation over a 16-day period is evaluated and given an internal quality measure ranked from 0 (best) to 6 (worst), based on the input quality information of cloud, shadow, aerosol, snow/ice, and band reflectances. The per-pixel input quality information is incorporated in the output QA of each pixel in a product to meet the user’s needs. 3. Study Area The eco-climatic transect includes the major cerrado formations, cerrado-Amazon forest transition, and forested areas as well as their land use converted areas. We extracted windows along the transect at Tapajos, Araguaia, and Brasilia sites with the 1 km MODIS composites, and plotted their seasonal profiles using the QA filter criteria to delete pixels that were labeled cloud contaminated and selected pixels of the medium and highest quality labeling. Two years of data were analyzed, the 2000 and 2001 growing seasons. The first set of study sites, near Brasilia, are667Anais XI SBSR, Belo Horizonte, Brasil, 05- 10 abril 2003, INPE, p. 665- 672.located in the Brasilia National Park (BNP) and surrounding areas. These sites include undisturbed typical cerrado vegetation formations (grassland, shrub land, and woodland) and disturbed, land-converted pasture and agricultural sites. A second set of study sites is located in the Tapajos LBA core site near Santarem, which has primary and secondary forests, pasture areas, and selective logged areas. The last set of study areas are located near Santana do Araguaia (woodland/ semi-deciduous broadleaf forest), serving as a transition area between the above two, cerrado and forest endpoints. 4. Results Monthly composites of maximum value composite (MVC) based, 8-km NDVI from the AVHRR PAL dataset were acquired along the eco-climatic transect and averaged over a 20 year period (1982-2001) (Figure 1). The datasets are corrected for Rayleigh scattering and ozone absorption and are smoothed with low pass filters and Fourier analysis and interpolations in order to remove anomalous NDVI signals (Los et al. 1994) resulting in a more complete cloud-free NDVI seasonal response profile.Figure 1. 20-year average of AVHRR-NDVI for each month and average monthly precipitation along the eco-climatic transect sites. The Brasilia cerrado profiles displayed the sharpest seasonal contrasts due to the early and pronounced dry season encountered in Brasilia (see Figure 1 for monthly NDVI and monthly precipitation). As we proceed northward toward the Araguaia transition area, we note a shift in668Anais XI SBSR, Belo Horizonte, Brasil, 05- 10 abril 2003, INPE, p. 665- 672.the onset of the dry season and a less lower seasonality contrast as denoted by the NDVI. The northernmost site at Tapajos has a dry season that commences approximately 2 months later (July) and a rainy season that starts in November or 2 months after the rainy season starts in Brasilia. The NDVI profile at Tapajos has the least contrast and reaches a minimum value in November which is about 2 months after the Brasilia minimum NDVI period (September). All sites showed a decrease in NDVI values at the onset of the dry season as well as an increase in NDVI following the initiation of the rainy season with a time lag of about 2 months ( igure 1). F One surprising result was that the wet season NDVI values were lower at Tapajos relative to both Xingu and Araguaia, a pattern that reversed in the dry season. The structure of the MODIS extract, global VI histograms of the Amazon basin also reveal the strong seasonal patterns of this region, particularly in the cerrado boundaries, but also in the tropical seasonal forests of the eastern Amazon ( igure 2). The strong cerrado – forest seasonal F contrast appears fairly markedly in the EVI histogram as a secondary peak of EVI values during the cerrado dry periods (2000-177, 2000-241). In the wet season the cerrado peak disappears. The primary peak in the EVI histograms is the more highly vegetated forest biome and exhibits a much smaller degree of seasonality. In the case of the EVI, there is a slight shift toward higher values in the dry period of the seasonal tropical f orest (2000-241, 2000-305), while in the case of the NDVI, the wet periods (2001-065, 2001-113) show the highest NDVI values. However, overall there are less structural features in the NDVI histograms which appear skewed and saturated at the upper end of NDVI values. There is also no secondary, cerrado peak evident (Figure 2, top). The seasonal profiles for the year 2000 and 2001 at the 3 major sites along the transect are depicted in Figure 3 for the NDVI and EVI. The Brasilia cerrado has the most dramatic seasonal contrast in both NDVI and EVI with the Araguaia cerrado (transition area) following a similar profile but with a much lower dry-wet seasonal contrast. The Tapajos forest site and Araguaia forest site both showed the least seasonality, appearing nearly flat in the NDVI while demonstrating an increase in EVI over the dry season (~DOY 200 – 300) (Figure 3). The Araguaia forest area also had a lower EVI value than the Tapajos site, whereas they were indistinguishable in the NDVI seasonal data. The increase in EVI over the dry season at Tapajos and Araguaia support the finding in the regional histogram extracts (Figure 2) in which EVI was maximum over the dry season. There was also a sharper contrast between the forest sites and the cerrado sites with the EVI data. In the NDVI seasonal dataset, the cerrado values nearly were equal to the forest values in the wet season and between the Araguaia sites.669Anais XI SBSR, Belo Horizonte, Brasil, 05- 10 abril 2003, INPE, p. 665- 672.Figure 2. Seasonal 16-day histograms of the MODIS-NDVI (top) and MODIS-EVI (bottom) for the entire Amazon Basin (2000-2001).Figure 3. MODIS NDVI and EVI seasonal profiles for years 2000 and 2001 at the three major sites along the eco-climatic transect. We carried out a more detailed analysis of the behavior of the EVI at the Tapajos National Forest by using the QA filter to select only pixels with the highest two levels of quality and by plotting the reflectances associated with the compositing results. Figure 4 shows that for both the 2000 and 2001 years, the MODIS enhanced vegetation index (EVI) significantly increased in value over the dry season from July to November. The EVI seasonal profiles run counter to the seasonal precipitation profile with a 6-7 month phase difference (Figure 4). The visible reflectance bands (blue and red) showed no obvious trend over the entire measurement period, however, the near-infrared (NIR) reflectance values also significantly increase in value at the onset of the dry season. These results are in agreement with Roberts et al. (1998) findings of a670Anais XI SBSR, Belo Horizonte, Brasil, 05- 10 abril 2003, INPE, p. 665- 672.‘green flush’ in new leaf growth starting approximately one month into the dry season. The new leaf growth does not contain the large presence of epiphyll growth characteristic of the older leaves (personal observation) and have higher NIR reflectances than the NIR-absorbing epiphyll covering of the old leaves. Now the NDVI is more responsive to the red channel and hence is less affected by the dynamics of NIR reflectance and more responsive to the absorption behavior of the red channel which is not as impacted by leaf aging and epiphyll activity (Roberts et al., 1998).0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0 50 100 150 200 250 300 350DOY (2000, 2001)Figure 4. Seasonal plots of MODIS EVI and reflectance 16-day composites for Tapajos National Forest for two years, 2000 and 2001. Annual precipitation from the on-site Belterra meterological station is shown for the year 2000 and 15 year average (1986-2000). 4. Discussion We found MODIS to be very useful in seasonal monitoring of the Amazon over the full range of land cover types encountered over the eco-climatic transect studied in this paper. We found distinct seasonal behavior in the cerrado zones and more humid forest portions of the transect. The seasonal patterns observed agree with the seasonal patterns of precipitation, however, there671Anais XI SBSR, Belo Horizonte, Brasil, 05- 10 abril 2003, INPE, p. 665- 672.were important differences noted. In the transition zone, we note that even under similar precipitation patterns, the cerrado and forested portions near Araguaia had very distinct and variable seasonal profiles. This indicated that other environmental factors, such as topography and soil and physiognomy also play important roles in ecosystem phenolgy and carbon metabolism, The other important observation encountered in this dataset was the behavior of the EVI during the dry season at the Tapajos forest site. Whereas, the NDVI from the 20-year AVHRR dataset shows a drop in vegetation activity coincident with the dry season, the MODIS EVI showed an increase in vegetation activity at the onset of the dry season. This was attributed to the initiation of fresh, new leaf growth during the dry season, producing a higher NIR signal of which the EVI is particularly sensitive to. This also agreed with the expected lower NIR and EVI signals expected in the wet season as a result of epiphyll activity on the mature leaves. This is in need of further study, given the relevance of remotely-sensed ‘greenness’ signals in the estimation of carbon fluxes and NPP. The MODIS-NDVI signal showed no obvious seasonal pattern. On the other hand, the decrease NDVI signal noted in the AVHRR data could be the result of inclusion of the land coverted pastures into the larger 8km by 8km pixel size data which was further averaged with a 5x5 window. The pastures presented in the converted lands dry out in the dry season resulting in a decreased VI signal. This further supports the importance of incorporating land surface heterogeneity into studies of vegetation dynamics, phenolgy, and carbon fluxes. 5. ReferencesGao, X.; Huete, A.R.; Ni, W.; Miura, T. Optical-biophysical relationships of vegetation spectra without background contamination. Remote Sensing of Environment, v.74, p.609-620, 2000. Goward, S.N.; Markham, B.L.; Dye, D.G.; Dulaney, W.; Yang, J. Normalized difference vegetation index measurements from the advanced very high resolution radiometer. Remote Sensing of Environment, v.35, p. 257-277, 1991. Huete, A.; Didan, K.; Miura, T.; Rodriguez, E. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, v.83, p. 195-213, 2002. Los, S.O.; Justice, C.O.; Tucker, C.J. A global 1x1 NDVI data set for climate studies derived from the GIMMS continental NDVI data. International Journal of Remote Sensing, v.15, p. 3493-3518. Potter, C.S.; Davidson, E.; Klooster, S.A.; Nepstad, D.C.; De Negreiros, G.H.; Brooks, V. Regional application of an ecosystem production model for studies of biogeochemistry in Brazilian Amazonia. Global Change Biology, v.4, p. 315-333, 1998. Roberts, D.A.; Nelson, B.W.; Adams, J.B.; Palmer, F. Spectral changes with leaf aging in Amazon caatinga. Trees. v. 12, p. 315-325, 1998.672。