11.3.1用函数观点看方程(组)与不等式

合集下载

株洲数学家教周余:初中数学教材版本目录比较

株洲数学家教周余:初中数学教材版本目录比较

株洲数学家教周余:初中数学教材版本目录比较因为经常涉及到不同同学所使用的教材不同,所以,特意整理出来分享给大家。

注意:株洲地区使用的教材是湘教版,这里没有罗列出来。

长沙地区使用的是人教版。

株洲数学家教周余老师因为手机号码变更,导致以前的联系信息有误,最新信息请以本文右上角页眉为准。

七年级上册华师大版七年级上第1章走进数学世界§1.1与数学交朋友1.数学伴我们成长2.人类离不开数学3.人人都能学会数学§1.2 让我们来做数学1.跟我学2.试试看第2章有理数§2.1 正数和负数1.相反意义的量2.正数和负数3.有理数§2.2 数轴1.数轴2.在数轴上比较数的大小§2.3 相反数§2.4 绝对值§2.5 有理数的大小比较§2.6 有理数的加法1.理数的加法法则2.有理数加法的运算律§2.7有理数的减法§2.8有理数的加减混合运算1.加减法统一成加法2.加法运算律在加减混合运算中的应用§2.9;有理数的乘法1.有理数的乘法法则2.有理数乘法的运算律§2.10有理数的除法§2.11有理数的乘方§2.12 科学记数法§2.13有理数的混合运算§2.14近似数和有效数字§2.15用计算器进行数的简单运算第3章整式的加减§3.1 列代数式1.用字母表示数2.代数式3.列代数式§3.2代数式的值§3.3 整式1.单项式2.多项式3.升幂排列与降幂排列§3.4 整式的加减1.同类项2.合并同类项3.去括号与添括号4.整式的加减第4章图形的初步认识§4.1生活中的立体图形§4.2画立体图形1.由立体图形到视图2.由视图到立体图形§4.3立体图形的表面展开图§4.4平面图形§4.5最基本的图形——点和线1.点和线2.线段的长短比较§4.6角1.角2.角的比较和运算3.角的特殊关系§4.7相交线1.垂线2.相交线中的角§4.8 平行线1.平行线2.平行线的识别3.平行线的特征第5章数据的收集与表示§5.1 数据的收集1.数据有用吗2.数据的收集§5.2数据的表示1.利用统计图表传递信息2.从统计图表获取信息七年级下册华师大版第6章一元一次方程§6.1从实际问题到方程§6.2解一元一次方程1.方程的简单变形2.解一元一次方程阅读材料丢番图的墓志铭与方程§6.3实践与探索阅读材料 2=3吗小结复习题第7章二元一次方程组§7.1二元一次方程组和它的解§7.2二元一次方程组的解法§7.3实践与探索阅读材料鸡兔同笼小结复习题第8章一元一次不等式§8.1;认识不等式§8.2;解一元一次不等式1.不等式的解集2.不等式的简单变形3.解一元一次不等式§8.3 一元一次不等式组小结复习题第9章多边形§9.1 瓷砖的铺设§9.2 三角形1.认识三角形2.三角形的外角和3.三角形的三边关系§9.3 多边形的内角和与外角和§9.4 用正多边形拼地板1.用相同的正多边形拼地板2.用多种正多边形拼地板阅读材料多姿多彩的图案小结复习题课题学习图形的镶嵌第10章轴对称§10.1 生活中的轴对称阅读材料剪正五角星§10.2 轴对称的认识1.简单的轴对称图形2.画图形的对称轴3.画轴对称图形4.设计轴对称图案阅读材料对称拼图游戏§10.3 等腰三角形1.等腰三角形2.等腰三角形的识别阅读材料 Times;and;dates小结复习题第11章体验不确定现象§11.1 可能还是确定1. 不可能发生、可能发生和必然发生2. 不太可能是不可能吗§11.2 机会的均等与不等1. 成功与失败2. 游戏的公平与不公平阅读材料搅匀对保证公平很重要§11.3在反复实验中观察不确定现象阅读材料计算机帮我们处理数据八年级上册八年级下册九年级上册九年级下册。

人教版八年级上册数学教材分析.doc

人教版八年级上册数学教材分析.doc

第十一章“一次函数”简介一、教科书内容和课程学习目标(一) 教科书内容木章的主要内容包括:变量与函数的概念,函数的三种表示法,正比例函数和一次函数 的概念、图象、性质和应用举例,用函数观点再认识一元一次方程、一元一次不等式和二元 一次方程组。

全章共包括三节:11. 1变量与函数11. 2 一次函数11. 3用函数观点看方程(组)与不等式其中,11. 1节是全章的基础部分,11. 2节是全章的重点内容,11. 3节是引申的内 容。

函数的概念是数学中极为重要的基木概念,它的抽象性较强,接受并理解它有一定难度, 这也是本章的难点。

变化与对应的思想体现在函数概念之中,用运动变化的眼光,以函数为工具,从数量关 系和图象两方面动态地分析问题,是本章学习的特点。

(二)木章知识结构框图新课程教材 培训资料 人教版八年级上册•数学 教材分析—兀一次方程 一元一次不等式 二元一次方程(组)(三)课程学习目标本章内容的设计与编写以下列目标为出发点:1.以探索实际问题中的数量关系和变化规律为背景,经历“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻州i现实世界中变化规律的重要数学模型;2.结合实例,了解常量、变量和函数的概念,体会“变化与对应''的思想,了解函数的三种表示方法(列表法、解析式法和图象法),能利用图象数形结合地分析简单的函数关系;3.理解正比例函数和一次函数的概念,会画它们的图象,能结合图象讨论这些函数的基本性质,能利用这些函数分析和解决简单实际问题;4.通过讨论一次函数与方程(组)及不等式的关系,从运动变化的角度,用函数的观点加深对己经学习过的方程(组)及不等式等内容的认识,构建和发展相互联系的知识体系。

(四)课时安排本章教学时间约需15课时,具体分配如下(仅供参考):11. 1变量与函数5课时11.2 一次函数5课时11. 3用函数观点看方程(组)与不等式3课时数学活动小结2课时二、本章的编写特点(一)反映函数概念的实际背景,渗透“变化与对应”的思想在建立和运用函数这种数学模型的过程之中,“变化与对应”的思想是重要的基础,所谓变化与对应的思想包括两个基本意思:1.世界是变化的,客观事物中存在大量的变量;2.在同一个变化过程中,变量之间不是孤立的,而是相互联系的,一个变量的变化会引起其他变量的相应变化,这些变化之间存在对应关系。

用函数观点看方程(组)与不等式知识点讲解

用函数观点看方程(组)与不等式知识点讲解

5万 吨 ,乙地 需水 1 I1 3万 吨 , B 两水库 各可调 出水 1 A, 4万 吨 .
任何一个一元一次不等式都可 从 A 水 库 到 甲地 5 0千 米 , 乙地 3 到 0千 米 ; B 水 库 到 甲 地 6 从 0 化简成 似 + > 或 似 + < a≠ . 千 米 到 乙地 4 b 0 b 0 I 5千米 . 你设 计 一个 调运 方 案使 水 的调 运 量 请

每 个 二 元 一 次 方 程 组 都 对 应
两 个函数 . 是 也 对应 两 条 直线 . 于 从 “ ” 角 度 看 . 方 程 组 相 当 于 数 的 解 考虑 自变 最 为 何 值 时 两 个 函 数 值 相 本地 通 话 费 04 . 0元 / 分 06 . 0元 / 分
00 . x+5 4 0元 , 神州 行月 消费 . Y=06 x元. . 0
在 同一坐标 系 中画 出这两 个一 次 函数 的图像 .
解 程 【 ・ +0 I =5 方 f o x. 5 y0. ,得f 2, 4 l0 Y= 60 Y= 5 O.

T eb s yo e p n t st e p ah a t o n . h e t wa f e igf k e e r y u g k i i o

0 , 常 ) 形 其 恰 就j 万 千米、 } ,b 数 的 式, 解 好 吨. 景, 0为 r >
常) 值于小 数的 :霎矗大或于 欠 7函

自 ;
解 设 调 量 万吨・ 米A 库 往 地 Y 万 千米,水库调往甲地水 解 运 为 . , 调 甲 水 7 设总调 运量为Y 吨千 水
Y=( .0 04 x+5 )一06 x 0 .0 .

人教版八年级数学目录

人教版八年级数学目录
八年级
(暑期辅导)
八年级

上册
第十一章:全等三角形
第十二章:轴对称
第十三章:实数
第十四章:一次函数 第十五章:整式的乘除与因式分解

八年级
下册
第十六章:分式
第十七章:反比例函数
第十八章:勾股定理 第十九章:四边形 第二十章:数据的分析
知 识 点 总 结

八年级
• 第十一章 一次函数

• •
11.1 变量与函数
• 第十七章 反比例函数

17.1
反比例Байду номын сангаас数
• 第十八章 勾股定理 •

18.1
勾股定理
18.2 勾股定理的逆定理
• 第十九章 四边形 •
• •
19.1
平行四边形
19.1 特殊的平行四边形 19.1 梯形
• 第二十章 数据的分析 •

20.1
数据的代表
20.2 数据的波动
14.2 轴对称变换 14.3 等腰三角形 14.4 三角形中边与角之间的不等关系
• 第十五章 整式
• • 15.1 整式的加减 15.2 整式的乘法

• •
15.3
乘法公式
15.4 整式的除法 15.5 因式分解
• 第十六章 分式 •
• •
16.1 分式
16.1 16.1 分式的运算 分式方程
11.2 一次函数 11.3 用函数观点看方程(组)与不等式
• 第十二章 数据的描述 •

12.1
几种常见的统计图表
12.2 用图表描述数据
• 第十三章 全等三角形 •
• •

新人教版初中数学八年级上册全册精品课件(分章分课时来整理)-56.ppt

新人教版初中数学八年级上册全册精品课件(分章分课时来整理)-56.ppt

需要更完整的资源请到 新世纪教 育网 -
八年级 数学
第十一章 函数 一元函数与二元一次方程组
11.3用函数观点看方程(组)与不等式
练习
市内通话问题
全球通:月租费50元,0.4元/分 神州行:0.6元/分
如何选择计费方式更省钱?
需要更完整的资源请到 新世纪教 育网 -
需要更完整的资源请到 新世纪教 育网 -
八年级 数学
第十一章 函数 一元函数与二元一次方程组
11.3用函数观点看方程(组)与不等式
需要更完整的资源请到 新世纪教 育网 -
八年级 数学
第十一章 函数 一元函数与二元一次方程组
11.3用函数观点看方程(组)与不等式
11.3用函数观点看方程(组)与不等式
作业: P46页第6题、第9题
需要更完整的资源请到 新世纪教 育网 -
是方程组_______的解( D ) •
y 3x 6 A. 2 y x 4
x a 1.如果直线y=3x+6与y=2x-4交点坐标为(a,b),则 y b

( 11,4) .• y=-x+15和y=x-7的交点坐标是 ________ 7.已知函数y=mx-(4m-3)的图象过原点,则m 3 应取值为__________ . 4 8.直线y=2x-1与y=x+4的交点是(5,9),则当 >5 x_______ 时,直线y=2x-1• 上的点在直线y=x+4上 相应点的上方;当x_______ <5 时,直线y=2x-1上的 点在直线y=x+4上相应点的下方.
八年级 数学
第十一章 函数 一元函数与二元一次方程组
11.3用函数观点看方程(组)与不等式

用函数观点看方程(组)与不等式

用函数观点看方程(组)与不等式

【本讲主要内容】用函数观点看方程(组)与不等式1. 一次函数与一元一次方程的关系2. 一次函数与一元一次不等式的关系3. 一次函数与二元一次方程(组)的关系【知识掌握】【知识点精析】一. 一次函数与一元一次方程的关系由于任何一元一次方程都可以转化为ax b+=0(a b、是常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看这相当于已知直线y ax b=+,确定它与x轴交点的横坐标的值.二. 一次函数与一元一次不等式的关系由于任何一元一次不等式都可以转化为ax b+>0或ax b+<0(a b、是常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围.从图象上看,解ax b+>0相当于已知直线y ax b=+在x轴上方时,自变量x 相应的取值范围;解ax b+<0相当于已知直线y ax b=+在x轴下方时,自变量x相应的取值范围.三. 一次函数与二元一次方程(组)的关系每个二元一次方程组都对应两个一次函数,于是也对应两条直线.从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标.方程(组)、不等式与函数之间互相联系,用函数观点可以把它们统一起来,解决问题时,应根据具体情况灵活地、有机地把它们结合起来使用.【解题方法指导】例1. (2006年重庆市中考题)(课改实验区考生做)如图,已知函数y ax b y kx=+=和的图像交于点P,则根据图像可得,关于x y、的二元一次方程组y ax by kx=+=⎧⎨⎩的解是______.∴l2的函数表达式为y x=-10075(2)乙车先到达B地.3001007515 4=-∴=x x,设l1的函数表达式是y k x=1O图像过点()154300,∴k 1=80.即y x =80当y =400时,400805=∴=x x , ∴-=519414(小时)键性词语;三要有一定的生产、生活常识,对当前市场经济条件下各种常见的现象有所了解,能抓住它们的本质和规律,恰当地构建出数学模型.【典型例题分析】例1. (2006年云南省课改实验区中考题)如图,直线l l 12与相交于点P ,l 1的函数表达式为y x =+23,点P 的横坐标为-1,且l 2交y 轴于点A (0,-1).求直线l 2的函数表达式.若x y ==23,,则0621342..⨯+⨯=(万元)∴电视台选择15秒广告播放4次、30秒广告播放2次的方式,收益较大. 点评:本题综合应用了二元一次方程与一次函数的知识解决实际问题.例3. (2006年浙江省中考题)宁波市土地利用现状通过国土资源部验收,我市在节约集约用地方面已走在全国前列.1996~2004年,市区建设用地总量从33万亩增加到48万亩,相应的年GDP从295亿元增加到985亿元.宁波市区年GDP y(亿元)与建设用地总量x(万亩)之间存在着如图所示的一次函数关系.(1)求y关于x的函数关系式.(2)据调查2005年市区建设用地比2004年增加4万亩,如果这些土地按以上函数关系式开发使用,那么2005年市区可以新增GDP多少亿元?(3)按以上函数关系式,我市年GDP每增加1亿元,需增建设用地多少万亩?(精确到0.001万亩)∴-=≈x x21460022.(万亩)即年GDP每增加1亿元,需增加建设用地约0.022万亩.例4. (2006年云南省中考题)云南省公路建设发展速度越来越快,通车总里程已位居全国第一,公路的建设促进了广大城乡客运的发展.某市扩建了市县际公路,运输公司根据实际需要计划购买大、中两型客车共10辆,大型客车每辆价格为25万元,中型客车每辆价格为15万元.(1)设购买大型客车x(辆),购车总费用为y(万元),求y与x之间的函数表达式;(2)若购车资金为180万元至200万元(含180万元和200万元),那么有几种购车方案?在确保交通安全的前提下,根据客流量调查,大型客车不能少于4辆,此时如何确定购车方案可使该运输公司购车费用最少?解:(1)设购买大型客车x辆,则购买中型客车()10-x辆.由题意得:y x x=+-251510(),即y x=+10150(2)1015018010150200xx+≥+≤⎧⎨,解得xx≥≤⎧⎨35,∴≤≤35x(山西省课改实验区)如图,是某函数的图象,则下列结论中正确的是(的取值是-325,B. 当y=-3时,x的近似值是0,2C. 当x=-32时,函数值y最大D. 当x>-3时,y随x的增大而增大2. (太原市)小亮用作图象的方法解二元一次方程组时,在同一直角坐标系内作出了相应的两个一次函数的图象l l12、如图所示,他解的这个方程组是()2xy+-=,2(黄冈市课改实验区)如图,在光明中学学生耐力测试比赛中,甲、乙两学生测试的(秒)之间的函数关系图像分别为折线OABC正确的是()A. 乙比甲先到达终点B. 乙测试的速度随时间增加而增大C. 比赛进行到29.4秒时,两人出发后第一次相遇D. 比赛全程甲的测试速度始终比乙的测试速度快二. 填空题:某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么每毫升血液中含药量y (微克)随时间x (小时)的变化情况如图所示,当成人按规定剂量服用后,(1)服药后________小时,血液中含药量最高,达每毫升______毫克,接着逐步衰减; (2)服药5小时,血液中含药量_______毫克;(3)当x ≤2时,y 与x 之间的函数关系式是___________; (4)当x ≥2时,y 与x 之间的函数关系式是___________;(5)如果每毫升血液中含药量3毫克或3毫克以上时,治疗疾病最有效,那么这个有效时间是_________小时.三. (昆明市课改实验区)如图,直线l 1与l 2相交于点P ,l 1的函数表达式为y x =+23,点P 的横坐标为-1,且l 2交y 轴于点A (0,-1).求直线l 2的函数表达式.四. (河北省课改实验区)甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)乙队开挖到30m时,用了__________h.开挖6h时甲队比乙队多挖了______m;(2)请你求出:①甲队在06x的时段内,y与x之间的函数关系式;≤≤②乙队在26x的时段内,y与x之间的函数关系式;≤≤(3)当x为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?五. (2004年黑龙江省中考题)某送奶公司计划在三栋楼之间建一个取奶站,三栋楼在同一条直线上,顺次为A楼、B楼、C楼,其中A楼与B楼之间的距离为40米,B楼与C楼之间的距离为60米.已知A楼每天有20人取奶,B楼每天有70人取奶,C楼每天有60人取奶,送奶公司提出两种建站方案.方案一:让每天所有取奶的人到奶站的距离总和最小;方案二:让每天A楼与C楼所有取奶的人到奶站的距离之和等于B楼所有取奶的人到奶站的距离之和.(l)若按照方案一建站,取奶站应建在什么位置?(2)若按照方案二建站,取奶站应建在什么位置?(3)在(2)的情况下,若A楼每天取奶的人数增加(增加的人数不超过22人),那么取奶站将离B楼越来越远,还是越来越近?请说明理由.【综合测试答案】一. 选择题:1. B2. D3. C4. C二. 填空题:(1)2,6; (2)3 (3)y x =3(4)y x =-+8 (5)4三. 解:设点P 坐标为(-1,y ),代入y x =+23,得y =∴1,点P (-1,1)设直线l 2的函数表达式为y kx b =+,把P (-1,1)、A (0,-1)分别代入y kx b =+,得11=-+-=⎧⎨⎩k b b∴=-=-⎧⎨⎩k b 21,∴直线l 2的函数表达式为y x =--21.四. 解:(1)2,10;(2分)(2)①设甲队在06≤≤x 的时段内y 与x 之间的函数关系式为y k x =1, 由图可知,函数图像过点(6,60), ∴=6601k ,解得k y x 11010=∴=,(4分)②设乙队在26≤≤x 的时段内y 与x 之间的函数关系式为y k x b =+2, 由图可知,函数图像过点(2,30),(6,50), ∴+=+=⎧⎨⎩23065022k b k b ,解得k b 2520==⎧⎨⎩,∴=+y x 520 (6分)(3)由题意,得10520x x =+,解得x h =4(). ∴当x 为4h 时,甲、乙两队所挖的河渠长度相等.五. 解:(1)设取奶站建在距A 楼x 米处,所有取奶的人到奶站的距离总和为y 米, ①当040≤≤x 时,y x x x x =+-+-=-+207040601001108800()()∴当x =40时,y 的最小值为4400②当40100<≤x 时,y x x x x =+-+-=+20704060100303200()(),此时,y 的值大于4400因此按方案一建奶站,取奶站应建在B 楼处 (2)设取奶站建在距A 楼x 米处,①当040≤≤x 时,20601007040x x x +-=-()()解得x =-<32030(舍去)②当40100<≤x 时,20601007040x x x +-=-()()解得x =80 因此按方案二建奶站,取奶站应建在距A 楼80米处 (3)设A 楼取奶人数增加a 人,第11页 版权所有 不得复制 11①当040≤≤x 时,()()()20601007040++-=-a x x x , 解得x a =-+320030(舍去),②当40100<≤x 时, ()()()20601007040++-=-a x x x 解得x a =-∴8800110,当a 增大时,x 增大,∴当A 楼取奶的人数增加时,按照方案二建奶站,取奶站仍建在B 、C 两楼之间,且随着人数的增加,离B 楼越来越远。

八年级数学一次函数与一元一次不等式1

八年级数学一次函数与一元一次不等式1

八年级 数学
第十一章 函数 一次函数与一元一次不等式
11.3用函数观点看方程(组)与不等式
已知一次函数 y = 2x+1,根据它的图象回答下列问题. (1) x 取什么值时,函数值 y 为1? (2) x 取什么值是,函数值 y 大于3? (3) x 取什么值时,函数值 y 小于3?
解:作出函数 y = 2x+1的图象 及直线y = 3 (如图)
八年级 数学
第十一章 函数 一次函数与一元一次不等式
11.3用函数观点看方程(组)与不等式
作业: P45页第3、4题,P46页第7题。
某电信公司的A类手机收费标准:不管通话时间 多长,每部手机必须缴月租费50元,另外每通 话1分钟交费0.4元;B类手机收费如下:没 有月租费,但每通话1分钟收费0.6元。 (1)分别写出A类、B类标准下每月应交费 用y元与通话时间x(分)之间的关系式; (2)什么情况下选择A类收费标准? (3)什么情况下选择B类收费标准?
从图中可知:
y = 2x +1 y= 3
(1)当 x = 1 时,函数值 y 为1。 (2)当x > 1 时,函数值 y 大于3。 (3)当x <1 时,函数值 y 小于3。
八年级 数学
第十一章 函数 一次函数与一元一次不等式
11.3用函数观点看方程(组)与不等式
八年级 数学
第十一章 函数 一次函数与一元一次不等式
即这时y = 3x -6 <0 所以不等式的解集为x<2
八年级 数学
第十一章 函数 一次函数与一元一次不等式
11.3用函数观点看方程(组)与不等式
解法二:画出函数 y = 2x+10 y = 5x+4图象 从图中看出:当x <2时

用函数观点看方程(组)与不等式专题训练

用函数观点看方程(组)与不等式专题训练

的 纵 坐 标 就 可 以 看 作 方

. . . . . . .



的解 .

2 . 如 所 尔 ,A线 的解 析 式





【 { 1 表 永 的 是
5 . 直线 Y=2 x+8的 函数 值 为 2 0 . 则 自变 量
的值 为 (
A. 一6 C. I 4

图所示.
所 学校 , 他们 距 学 校 的路 程 s ( 千米 ) 与
行走时 间 t ( 时) 之 间 的关 系 如 图所 示 . 请 根 据 图像 所提 供 的信息 , 解答 下列 问题 : Βιβλιοθήκη “j ¨l
第 l 2题 图


( 1 )分 别 求 出 ≤ 2和 ≥ 2时 , 与 Y

一 一 ~ ~ 一 一 一
一 一 一 一 一 一 ~ 一 一 ~















如果 你 不 比别 人 十 得 多 , 你 的价 值 也 就 不 会 比别 人 更 高
/f ,
2 3



塞 万 提 斯
爹 爹 i l l 函 数 观 点 看 方 程 ( 组) 与 不 等 式 专 题 训 练
。 的图像 交点 在第 j象 限 ,那 么 的取值
范 围是 (
A. <0
( 2 ) 如 果 每 毫 升 血 液 中含 药 量 为 4微 克
或 4微 克 以上 时在 治 疗 疾 病 时 是 有

用函数观点看方程(组)与不等式(解答应用)

用函数观点看方程(组)与不等式(解答应用)

用函数观点看方程(组)与不等式(解答应用)一、解答题1.作出函数y=-x+5的图象,观察图象回答下列问题:(1)x___________时,-x+5≤0;(2)x___________时,-x+5≥0;(3)x___________时,-x+5<2;(4)x___________时,-x+5>3.2.若正比例函数2m -21)x -(2m y =中,y 随x 的增大而减小,求这个正比例函数.3.已知3x+y=2,当y 取何值时,-1<x ≤2?4.【2008·浙江台州】在数学学习中,及时对知识进行归纳和整理是改善学习的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:①___________;②___________;③___________;④___________;(2)如果点C 的坐标为(1,3),那么不等式11b x k b kx +≥+的解集是_________ .5.已知y+5与3x+4成正比例,当x=1时,y=2. (1)求y 与x 的函数关系式;(2)求当x=-1时的函数值;(3)如果y 的取值范围是0≤y ≤5,求x 的取值范围.6.已知一次函数y=(6+3m)x+(n-4)求:(1)m 为何值时,y 随x 的增大而减小;(2)m 、n 分别为何值时,函数的图象与y 轴的交点在x 轴的下方?(3)m 、n 分别为何值时,函数图象经过原点?7.一次函数y=-3x+12与x 轴的交点坐标是多少,当函数值大于0时,x 的取值范围是多少,当函数值小于0时,x 的取值范围是多少?8.【2007·山东日照】某水产品市场管理部门规划建造面积为24002m 的集贸大棚,大棚内设A 种类型和B 种类型的店面共80间,每间A 种类型的店面的平均面积为282m ,月租费为400元;每间B 种类型的店面的平均面积为202m ,月租费为360元.全部店面的建造面积不低于大棚总面积的80%,又不能超过大棚总面积的85%.(1)试确定A 种类型店面的数量;(2)该大棚管理部门通过了解业主的租赁意向得知,A 种类型店面的出租率为75%,B 种类型店面的出租率为90%.为使店面的月租费最高,应建造A 种类型的店面多少间?9.用作图象的方法解方程组⎩⎨⎧==-12y -x 1y -x .10.作出函数y=-4x+2的图象,并回答下列问题:(1)x 取什么值时,y 大于-2?(2)x 取什么值时,y 小于-2?(3)x 取什么值时,y 等于0?11.已知2-2x y x 5y 21+=+=,.当x 取何值时,21y y ≥?12.作出函数12x 512-y +=的图象,观察图象并回答下列问题: (1)x 取何值时,y>0?(2)x 取何值时,y=0?(3)x 取何值时,y<0?13.利用图象求出二元一次方程2x-y=2的两个整数解.二、应用题14.【2008·四川广安】“5.12”汶川地震发生后,某天广安先后有两批自愿者救援队分别乘客车和出租车沿相同路线从广安赶往重灾区平武救援,下图表示其行驶过程中路程随时间的变化图象.(1)根据图象,请分别写出客车和出租车行驶过程中路程与时间之间的函数关系式(不写出自变量的取值范围);(2)写出客车和出租车行驶的速度分别是多少?(3)试求出出租车出发后多长时间赶上客车?15.某辆汽车油箱中原有汽油100L,汽车每行驶50km耗油9L.设汽车行驶路程为xkm时,油箱剩余油量为yL.(1)求y与x之间的函数关系式.(2)汽车行驶多少千米时,油箱剩余油量不足55L?16.某校计划购买若干台微机,现从两家商场了解到同一型号的微机每台报价均为a元,甲商场经理说:“第一台按原价收费,其余每台优惠25%”,乙商场经理说:“每台优惠20%”.(1)分别写出两家商场收费的函数关系式;(2)试讨论该校到哪家商场买微机较优惠.17.如图,L1表示某机床公司一天的销售收入1y与机床销售量x之间的函数关y与机床销售量x之间的函数关系.系,L2表示该公司一天的销售成本2(1)1y关于x的函数关系式是______________,2y关于x的函数关系式是______________;(2)求出一天的销售利润y关于销售量x之间的函数关系式(销售利润=销售收入-销售成本);(3)要使一天的销售利润不低于3万元,则一天的销售量应是多少?18.【2008·湖南益阳】乘坐益阳市某种出租汽车.当行驶路程小于2千米时,乘车费用都是4元(即起步价4元);当行驶路程大于或等于2千米时,超过2千米部分每千米收费1.5元.(1)请你求出x≥2时乘车费用y(元)与行驶路程x(千米)之间的函数关系式;(2)按常规,乘车付费时按计费器上显示的金额进行“四舍五入”后取整(如记费器上的数字显示范围大于或等于9.5而小于10.5时,应付车费10元),小红一次乘车后付了车费8元,请你确定小红这次乘车路程x的范围.19.【2008·浙江衢州】1月底,某公司还有11000千克椪柑库存,这些椪柑的销售期最多还有60天,60天后库存的椪柑不能再销售,需要当垃圾处理,处理费为0.05元/千克.经测算,椪柑的销售价格定为2元/千克时,平均每天可售出100千克,销售价格降低,销售量可增加,每降低0.1元/千克,每天可多售出50千克.(1)如果按2元/千克的价格销售,能否在60天内售完这些椪柑?按此价格销售,获得的总毛利润是多少元(总毛利润=销售总收入-库存处理费)?(2)设椪柑销售价格定为x(0<x≤2)元/千克时,平均每天能售出y千克,求y关于x的函数解析式;如果要在2月份售完这些椪柑(2月份按28天计算),那么销售价格最高可定为多少元/千克(精确到0.1元/千克)?20.文具商场画夹每个定价20元,水彩每盒5元. 为了促销,商场制定了两种办法:一种是买一个画夹送一盒水彩;另一种是画夹和水彩一律按九折付款. 小王需购画夹4个,水彩若干盒(不少于4盒),哪种方法对他来说更优惠?21.【2005·云南(课改实验区)】某单位团支部组织青年团员参加登山比赛.比赛奖次所设等级分为:一等奖1人,二等奖4人,三等奖5人.团支部要求一等奖奖品单价比二等奖奖品单价高15元,二等奖奖品单价比三等奖奖品单价高15元.设一等奖奖品的单价为x(元),团支部购买奖品总金额为y(元).(1)求y与x的函数关系式(即函数表达式);(2)因为团支部活动经费有限,购买奖品的总金额应限制在:500≤y≤600.在这种情况下,请根据备选奖品表提出购买一、二、三等奖奖品有哪几种方案?然后本着尽可能节约资金的原则,选出最佳方案,并求出这时全部奖品所需总金额是多少?备选奖品及单价如下表(单价:元)备选奖品足球篮球排球羽毛球拍乒乓球拍旱冰鞋运动衫象棋围棋单价(元) 84 79 74 69 64 59 54 49 4422.某移动通讯公司开设两种通讯业务:“全球通”用户先交25元月租费,5元来电显示费,然后每通话1分钟,再付话费0.20元;“乡情卡”不交月租费,而交5元来电显示费,每通话1分钟,付话费0.3元.若一个月通话x分钟,两种方式的费用分别为1y和2y元.(1)写出1y,2y与x之间的函数关系式;(2)一个月内通话多少分钟,两种通讯业务的费用相同;(3)某人估计一个月内通话400分钟,应选择哪种通讯业务合算.23.聊城市委、市政府为进一步改善投资环境和居民生活环境,并吸收更多的人来观光旅游,决定对古运河城区实施二期开发工程,现需要A ,B 两种花砖共50万块,全部由砖厂完成此项生产任务,该厂现有甲种原料180万千克,乙种原料145万千克.已知生产1万块A 砖,用甲种原料4.5万千克,乙种原料1.5万千克,造价1.2万元;生产1万块B 砖,用甲种原料2万千克,乙种原料5万千克,造价1.8万元.(1)利用现有原料,该厂是否能按要求完成任务,若能,按A ,B 两种花砖的生产块数,有哪几种方案?请你设计出来(以万块为1个单位且取整数).(2)试分析你设计的哪种生产方案总造价最低?最低造价是多少?24.【2008·四川南充】某乒乓球训练馆准备购买10副某种品牌的乒乓球拍,每副球拍配x(x ≥3)个乒乓球,已知A ,B 两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元,现两家超市正在促销,A 超市所有商品均打九折(按原价的90%付费)销售,而B 超市买1副乒乓球拍送3个乒乓球,若仅考虑购买球拍和乒乓球的费用,请解答下列问题:(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A 超市还是B 超市买更合算?(2)当x=12时,请设计最省钱的购买方案.25.某单位急需汽车,但无力购买,单位领导想租一辆. 一国营汽车出租公司的出租条件为每百千米租费100元;一个体出租车司机的条件为每月付800元工资,另外每百千米付10元,问该单位租哪家的汽车合算?26.某服装厂现有甲种布料42m 、乙种布料30m ,现计划用这两种布料生产M 、L 两种型号的服装共40件.已知做一件M 型服装用甲种布料0.8m ,乙种布料1.1m ,可获利45元;做一件L 型服装用甲、乙两种布料分别为1.2m 和0.5m ,可获利30元.设生产M 型服装件数为x ,用这批布料生产这两种型号服装所获利润为y(元).(1)写出y(元)与x(件)的函数关系式,并求自变量x 的取值范围;(2)该厂在生产这批服装时,当M 型号的服装为多少时,能使该厂所获的利润最大?最大利润为多少?27.王颖和刘丽原有存款分别为80元和180元,从本月开始,王颖每月存款40元,刘丽每月存款20元.如果设两人存款时间为x(月),王颖的存款额是1y (元),刘丽的存款额为2y (元).(1)试写出1y 与x 及2y 与x 之间的关系式;(2)到第几个月时,王颖的存款额能超过刘丽的存款额?28.某公司以每吨200元的价格购进某种矿石原料300吨,用于生产甲、乙两种产品.生产1吨甲产品或1吨乙产品所需该矿石和煤原料的吨数如下表:煤的价格为400元/吨,生产1吨甲产品除原料费用外,还需其他费用400元,甲产品每吨售价4600元;生产1吨乙产品除原料费用外,还需其他费用500元,乙产品每吨售价5500元.现将该矿石原料全部用完.设生产甲产品x 吨,乙产品m 吨,公司获得的总利润为y 元.(1)写出m 与x 之间的函数关系式;(2)写出y 与x 的函数关系式(不要求写自变量的范围);(3)若用煤不超过200吨,生产甲产品多少吨时,公司获得的总利润最大?最大利润是多少?29.某工厂生产某种产品,每件产品的出厂价为1万元.其原材料成本价(含设备损耗等)为0.55万元,同时在生产过程中平均每生产一件产品有1吨的废渣产生,为达到国家环保要求,需要对废渣进行脱硫、脱氮等处理,现有两种方案可供选择:方案一:由工厂对废渣直接进行处理,每处理1吨废渣所用的原料费为0.05万元,并且每月设备维护及损耗费为20万元.方案二:工厂将废渣集中到废渣处理厂统一处理,每处理一吨废渣需付0.1万元的处理费.问:(1)设工厂每月生产x 件产品,每月利润为y 万元,分别求出用方案一和方案二处理废渣时,y 与x 之间的函数关系式;(利润=总收入-总支出)(2)若你作为工厂负责人,如何根据月生产量选择处理方案,既达到环保要求又合算?30.一个由父亲、母亲、叔叔和x 个孩子组成的家庭去某地旅游,甲旅行社的收费标准:如果买4张全票,则其余人按半价优惠;乙旅行社的收费标准是:家庭旅游算团体票,按原价43优惠,这两家旅行社的原价均为100元/人. (1)写出两家旅行社的收费总额y(元)与孩子数x(个)的函数关系式;(2)试比较随着孩子人数的变化,哪家旅行社的收费更优惠?31.某企业想租一辆车,现有甲、乙两家汽车出租公司,甲公司的出租条件是:每千米租车费为1.10元;乙公司的出租条件是:每月付800元的租车费,另外每千米付0.10元油费.该企业租哪家公司的车合算?32.如图表示一骑自行车者和一骑摩托者沿相同路线由甲地到乙地行驶过程的函数图象(分别为正比例函数和一次函数),两地间的距离是80km ,请你根据图象解决下列问题:(1)请你分别求出表示自行车和摩托车行驶过程的函数关系式(不要求写出自变量的取值范围);(2)请你分别求出下列时间:①自行车行驶在摩托车前面;②自行车与摩托车相遇;③自行车行驶在摩托车后面.33.某班去商店为体育比赛优胜者买奖品,书包每个定价30元,文具盒每个定价5元,商店实行两种优惠方案:①买1个书包赠送一个文具盒;②按总价的九折付款.若该班需购书包8个,设实际购文具盒x 个(x ≥8),付款共y 元.(1)分别求出这两种优惠方案中,y 与x 之间的函数关系式;(2)若购文具盒30个,应选哪种优惠方案?付多少元;(3)比较购买同样多的文具盒时,按哪种优惠办法付款更省钱.34.(2006·苏州)司机在驾驶汽车时,发现紧急情况到踩下刹车这段时间之后还会继续行驶一段距离.我们把司机从发现紧急情况到汽车停止所行驶的这段距离叫“刹车距离”(如图所示).已知汽车的刹车距离s(单位:m)与车速v(单位:m/s)之间有如下关系:2kv tv s +=.其中t 为司机的反应时间(单位:s),k 为制动系数.某机构与测试司机饮酒后刹车距离的变化,对某种型号的汽车进行了“醉汉”驾车测试,已知该型号汽车的制动系数k=0.08,并测得志愿者在未饮酒时的反应时间t=0.7s.(1)若志愿者未饮酒,且车速为11m/s ,则该汽车的刹车距离为_______m(精确到0.1m).(2)当志愿者在喝下一瓶啤酒半小时后,以17m/s 的速度驾车行驶,测得刹车距离为46m.假如该志愿者当初是以11m/s 的车速行驶,则刹车距离将比未饮酒时增加多少?(精确到0.1m)(3)假如你以后驾驶该型号的汽车以11m/s 至17m/s 的速度行驶,且与前方车辆的车距保持在40m 至50m 之间.若发现前方车辆突然停止,为防止“追尾”.则你的反应时间应不超过多少秒?(精确到0.01s)35.【2009·山东潍坊】某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱,供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本2.4元.(1)若需要这种规格的纸箱x 个,请分别写出从纸箱厂购买纸箱的费用1y (元)和蔬菜加工厂自己加工制作纸箱的费用2y (元)关于x(个)的函数关系式;(2)假设你是决策者,你认为应该选择哪种方案?并说明理由.36.【2009·内蒙古赤峰】“教师节”快要到了,张爷爷用120元钱,为“光明”幼儿园购买价格分别为8元、6元和5元的图书20册,(1)若设8元的图书购买x 册,6元的图书购买y 册,求y 与x 之间的函数关系式.(2)若每册图书至少要购买2册,求张爷爷有几种购买方案?并写出y 取最大值和y 取最小值时的购买方案.37.某市自来水公司收费标准如下:每户每月用水不超过53m 收费1.5元/3m ,若超过53m ,超过的部分收费2元/3m .小明家某月水费不超过12元,若设小明家该月的用水量为x 3m .(1)x 应满足什么条件?写出其关系式.(2)x 可能取6,8吗?(3)它最多不超过多少立方米?38.【2009·广西南宁】南宁市狮山公园计划在健身区铺设广场砖.现有甲、乙两个工程队参加竞标,甲工程队铺设广场砖的造价y 甲(元)与铺设面积x(2m )的函数关系如图所示;乙工程队铺设广场砖的造价y 乙(元)与铺设面积x(2m )满足函数关系式:y 乙=kx .(1)根据图写出甲工程队铺设广场砖的造价y 甲(元)与铺设面积x(2m )的函数关系式;(2)如果狮山公园铺设广场砖的面积为16002m ,那么公园应选择哪个工程队施工更合算?39.某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆,已知从甲仓库调运一辆农用车到A县和B县的运费分别是40和80元;从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.(1)设从乙仓库调往A县的农用车x辆,求总运费y关于x的函数关系式;(2)若要求总运费不超过900元,问共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少元?40.某公司到果园基地购买某种优质水果,慰问医务工作者.果园基地对购买量在3000kg以上(含3000kg)的有两种销售方案.甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回.已知该公司租车从基地到公司的运输费为5000元.(1)分别写出该公司两种购买方案的付款y(元)与所买的水果x(千克)之间的函数关系式,并写出自变量x的取值范围;(2)当购买量在什么范围内时,选择哪种购买方案付款最少?并说明理由.41.通过电话拨号上网的费用由电话费和上网费两部分组成.以前我市通过拨号上网的费用为电话费0.18元/3分钟,上网费为7.2元/时,后根据信息产业部调整上网资费的要求,自2001年起上网费用调整为电话费0.22元/3分钟,上网费为每月不超过60小时,按4元/时计算,超过60小时部分,按8元/时计算.试根据以上信息提出你的问题,并做出解答.42.(2003·大连)某水产养殖加工厂有200名工人,每名工人每天平均捕捞水产品50kg,或将当日所捕捞的水产品40kg进行精加工.已知每千克水产品直接出售可获得利润6元,精加工后再出售,可获利润18元.设每天安排x名工人进行水产品精加工.(1)每天做水产品精加工所得利润y(元)与x的函数关系式;(2)如果每天精加工的水产品和未来得及精加工的水产品全部出售,那么如何安排生产可使一天所获利润最大?最大利润是多少?43.A、B两个商场平时以同样价格出售相同的商品,在春节期间让利酬宾,A商场所有商品8折出售,在B商场消费金额超过200元后,可在这家商场7折购物,试问如何选择商场来购物更经济?44.某电信公司手机的A类收费标准如下:不管通话时间多长,每部手机每月必须缴月租费50元,另外,每通话1分钟交费0.4元;B类收费标准如下:没有月租费,但每通话1分钟收费0.6元,完成下列各题.(1)写出每月应缴费用y(元)与通话时间x(分钟)之间的关系式;(2)若每月通话时间为300分钟,你选择哪类收费方式?(3)每月通话时间多长时,按A、B两类收费标准缴费,所缴话费相等?(4)你选择哪类收费标准?45.某自行车保管站在某个星期日接受保管的自行车共有3500辆,其中变速车保管费是每辆一次0.5元,一般车保管费是每辆一次0.3元.(1)若设一般车停放的辆数为x,总保管费的收入为y元,试写出y与x的关系式;(2)若估计前来停放的3500辆自行车,变速车的辆数不少于25%,但不大于40%,试求该保管站这个星期日保管费收入总数的范围.设定间隔行数:46.(2003·四川)东风商场文具部的某种毛笔每支零售价为25元,书法练习本每本售价5元.该商场为促销制定了两种优惠办法,甲:买一支毛笔就赠一本书法练习本;乙:按购买金额九折付款.某校欲为校书法兴趣小组购买这种毛笔10支,书法练习本x本(x≥10).(1)写出每种优惠办法实际付款金额y甲(元)、y乙(元)与x(本)之间的函数关系式.(2)比较购买同样多的书法练习本时,按哪种优惠办法付款更省钱?(3)如果商场允许可以任意选择一种优惠办法购买,也可以同时用两种优惠办法购买,请你就购买这种毛笔10支和书法练习60本设计一种最省钱的购买方案.47.某学校计划购买若干台电脑,现从两家商场了解到同一型号电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原价收费,其余每台优惠25%.乙商场的优惠条件是:每台优惠20%.(1)分别写出两家商场的收费与所买电脑台数之间的关系式.(2)什么情况下到甲商场购买更优惠?(3)什么情况下到乙商场购买更优惠?(4)什么情况下两家商场的收费相同?48.某公司到果园基地购买某种优质水果,慰问医务工作者,果园基地对购买量在3000kg以上(含3000kg)的有两种销售方案,甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元.(1)分别写出该公司两种购买方案的付款y(元)与所购买的水果量x(千克)之间的函数关系式,并写出自变量x的取值范围;(2)当购买量在什么范围时,选择哪种购买方案付款最少?并说明理由.49.某单位要制作一批宣传材料.甲公司提出每份材料收费20元,另收3000元设计费;乙公司提出每份材料收费30元,不收设计费.(1)什么情况下选择甲公司比较合算?(2)什么情况下选择乙公司比较合算?(3)什么情况下两公司的收费相同?50.一报刊销售亭从报社订购某晚报的价格是每份0.7元,销售价是每份1.0元,卖不掉的报纸还可以以每份0.2元的价格退回报社,在一个月内(以30天计算),有20天每天可以卖出100份,其余10天每天只能卖60份,但每天报亭从报社订购的份数必须相同,若以报亭每天从报社订购报纸的份数为自变量x ,每月所得利润为y.从节约资源的角度出发,在保证利润的前提下,问:(1)写出y 与x 之间的函数关系,并指出自变量x 的取值范围;(2)报亭应该每天从报社订购多少份报纸,才能使每月获得的利润最大?最大利润是多少?(3)报亭每天应该从报社订购多少份报纸,才能使每月获得的利润不少于560元?51.【2009·山东泰安】某旅游商品经销店欲购进A 、B 两种纪念品,若用380元购进A 种纪念品7件,B 种纪念品8件;也可以用380元购进A 种纪念品10件,B 种纪念品6件.(1)求A 、B 两种纪念品的进价分别为多少?(2)若该商店每销售1件A 种纪念品可获利5元,每销售1件B 种纪念品可获利7元,该商店准备用不超过900元购进A 、B 两种纪念品40件,且这两种纪念品全部售出后总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少?52.折线ABC 是某人乘出租汽车所付的费用y(元)与乘车的里程数x(km)之间的函数关系的图象,如图.(1)观察图象,乘车3km 和6km 各需付乘车费用多少元?(2)当x ≥3时,求乘车费用y(元)与乘车的里程数x(km)之间的函数关系式;(3)某乘客所付车费在14~18元之间,求他乘车路程的范围.53.我市某中学要印刷本校高中招生的录取通知书,有两个印刷厂前来联系制作业务,甲厂的优惠条件是:按每份定价1.5元的八折收费,另收900元制版费;乙厂的优惠条件是:每份定价1.5元的价格不变,而制版费900元,按六折优惠.且甲乙两厂都规定:一次印刷数量至少500份.(1)分别求两个印刷厂收费y(元)与印刷数量x(份)的函数关系,并指出自变量x 的取值范围;(2)如何根据印刷的数量选择比较合算的方案?如果这个中学要印刷2000份录取通知书,那么应选择哪一个厂?需要多少费用?54.某企业为解决部分职工(人数多于100)午餐,联系了两家快餐公司.两家公司的报价、质量和服务承诺都相同,且都表示对职工优惠:甲公司表示每份按报价的90%收费,乙公司表示购买100份以上部分按报价的80%收费.问应选择哪家公司较好.55.声音在空气中的传播速度y(m/s)(简称音速)与气温x(℃)的关系是:331x 53y +=.求音速超过340m/s 时的气温.56.下图表示一骑自行车者和一骑摩托车者沿相同路线由甲地到乙地行驶过程的函数图象(分别为正比例函数和一次函数),两地间的距离是80km.请你根据图象回答或解决下面的问题:(1)谁出发的较早?早多长时间?谁到达乙地较早?早到多长时间?(2)两人在途中行驶的速度分别是多少?(3)请你分别求出表示自行车和摩托车行驶过程的函数表达式;(4)指出在什么时间段内两车均行驶在途中(不包括端点);在这一时间段内,请你分别按下列条件列出关于时间x的方程或不等式.①自行车行驶在摩托车前面;②自行车与摩托车相遇;③自行车行驶在摩托车后面.57.某座水库的最大库容量是26.2万立方米,库区面积为100平方公里,其中林地占60%,经测定,每次降雨,林地有10%的降水流入水库,非林地有85%的降水进入水库.预测今后一段时间内库区连续降雨,且单位面积降水量相同,设降水总量为Q万立方米,进入水库的水量为y万立方米.(1)用含Q的代数式分别表示在降雨期间林地、非林地进入水库的水量.(2)预计今后x天内降水总量Q(万立方米)与天数x的函数关系式为Q=3+2x,写出y关于x的函数关系式.(3)若水库原有水量20万立方米,在降雨的第2天就开闸泄洪,每天泄洪量为0.2万立方米,问连续降雨几天后,该水库会发生险情(水库里水量超过最大库容量就有危险).58.为了鼓励节能降耗,某市规定如下用电收费标准:每户每月的用电量不超过120度时,电价为a元/度;超过120度时,不超过部分仍为a元/度,超过部分为b元/度.已知某用户五月份用电115度,交电费是69元,六月份用电140度,交电费是94元.(1)求a、b的值;(2)设该用户每月用电量为x(度),应付电费为y(元).①分别求0≤x≤120和x>120时,y与x之间的函数关系式;②若该用户计划七月份所付电费不超过83元,问该用户七月份最多可用电多少度?59.小刚有60枚1角和5角的硬币. 这些硬币的总值小于20元. 那他最少拥有多少枚1角硬币呢?60.某企业生产每种吉祥物所需材料及所获利润如下表:。

怎样教“用函数的观点看方程(组)与不等式”

怎样教“用函数的观点看方程(组)与不等式”

怎样教“用函数的观点看方程(组)与不等式”?作者:向利平曾辉来源:《湖南教育·下》2012年第01期人教版初中教材用三个课时的篇幅安排了“用函数的观点看方程(组)与不等式”的内容。

该教学内容的安排,有利于学生进一步体会函数的价值,整体上理解方程、不等式与函数的联系,构建统一的知识体系。

但一些老师由于没能很好地领会教材安排这一教学内容的意图,对本教学内容的教育价值理解不够,在教学该内容时,把目标仅定位在“估计方程、不等式解”的结果上,而对学习“用函数的观点看方程(组)与不等式”的必要性渗透不够,对估计解的过程及过程中隐含的数学思想和方法挖掘、提炼不够,致使实际操作中往往是蜻蜒点水、草草收场,给习题课让路。

本文试图从“教学内容分析”、“教学难点分析”两个方面阐述该教学内容的地位和作用,通过具体的教学案例说明该教学内容应该教什么和怎么教,以求引发更深层次的思考:在数学教学中,除了知识和技能以外,我们还应该教给学生些什么?一、教学内容分析看似简单的教学内容实际上蕴含丰富的教育价值。

“用函数的观点看方程(组)与不等式”这一教学内容从函数的角度对学过的一元一次方程、一元一次不等式和二元一次方程组重新进行了分析。

这种认识不是原来水平上的回顾与复习,而是站在更高的起点上的动态分析,用函数把三个不同的数学模型有机地结合和统一起来。

揭示三个不同数学模型间的内在联系,有利于学生从整体上把握数学知识间的联系,体会数学知识、研究方法的发展过程,进而提高学生的数学素养。

用函数的观点看方程(组)与不等式,实质上就是借助函数的图像(几何图形)研究方程(组)的解和不等式的解集。

这一教学内容是渗透数形结合思想、使学生体会数学的和谐美等方面很好的教学素材。

用函数的观点看方程(组)与不等式是后续学习用二次函数的观点看一元二次方程,高中阶段函数的零点、二分法求方程的近似解、一元二次不等式的解法、线性规划、曲线与方程等内容的基础。

11.3.3一次函数与二元一次方程组(王老师)

11.3.3一次函数与二元一次方程组(王老师)

y 例 用画函数图象的方法解不等式:
5x+4<2x+10
解: 把 5x+4<2x+10 看做两个一次
函数y1=5x+4和y2=2x+10,
画出y1=5x+4和y2=2x+10的图像. 下面只需要判断当x满足______ 条件时,y1<y2即可; 必须要求出点A的坐标.
-5 y2=2x+10 4 10
0
x
y=5x+4
例3、一家电信公司给顾客提供两种上网收费方式:方式A以每分 钟0.1元的价格按上网时间计费;方式B除收月基费20元外再以每 分0.05元的价格按上网时间计费。如何选择收费方式能使上网者 更合算? 解法1: 设上网时间为x分,若按方式A收y=0.1x元;若按方式 B收则收y=0.05x+20元 在同一坐标系中分别画出 两函数的图象,
11.3 用函数观点看方程(组)与不等式
11.3.2
一次函数与二元一次方程组
音乐
y
_____________时,
y1>y2;
14
x>2 (2)当x满足_____________ 时, y1<y2;
10
4
-5 y1=2x+10
0
2
x
y2=5x+4
当x>400时,y<0,即选择方式B省钱
答:(略)
小 结:
1、一次函数与二元一次方程组之间的关系: 二元一次方程组的解 两个一次函数图象的交点坐标
2、由函数图象求方程组的方法为: 应由交点坐标得出对应方程组的解; 3、求两个函数的图象的交点: (1)将两个解析式联列成方程组 (2)求出方程组的解 (3)写出交点坐标 4、方程组、不等式与函数之间互相联系,用函数观点处理 时,应根据具体情况灵活、有机地结合起来使用。

用函数观点看方程与不等式

用函数观点看方程与不等式
从图象上看,这相当已知直线y= kx+b确定它 与x轴交点的横坐标。
第四页,共8页。
一个物体现在(xiànzài)的速度是5m/s,其速度每秒增加2 m/s,再过几分钟速 度为17 m/s?
解法(jiě fǎ)1:设再过x秒物体的速度为17 m/s。根据 题意得:2x+15=17 解之得:x=6
解法2:速度y(m/s)是时间t(s)的函数关系,关系式为: y=2t+5
用函数(hánshù)ຫໍສະໝຸດ 点看 方程与不等式2021/11/11
第一页,共8页。
我们来看下面(xiàmian)两个问 题: 1.解方程:2x+20=0 2.当自变量x为何值时,函数 y=2x+20的值为0 这两个问题之间有什么关系吗?
第二页,共8页。
任何一个一元(yī yuán)一次方程都可以转化为: kx+b=0(k、 b是常数,k≠0)的形式。而一次函数解析 式y= kx+b (k、 b是常数,k≠0),当函数值为0时,即 kx+b=0就与一元(yī yuán)一次方程完全相同。
(1,3)
第八页,共8页。
当函数为17时,即17 = 2t+15,解之得:x=6
y=2x-1 6
方法三:由于2t+5=17可变形为:2t-12=0从图象上看,直线 -12
y=2t-12与x轴的交点为(6,0)得x=6
第五页,共8页。
由于(yóuyú)任何一元一次方程都可转 化为kx+b=0(k、 b是常数,k≠0)的形式 所以解一元一次方可以转化为:当一次 函数值为0时,求相应的自变量的值。 从图象上看,这相当已知直线y= kx+b 确定它与x轴交点的横坐标。

用函数观点看方程与不等式

用函数观点看方程与不等式

用函数观点看方程与不等式知识梳理1.一元一次方程、一元一次不等式及一次函数的关系一次函数及其图像与一元一次方程及一元一次不等式有着密切的关系,函数y=ax+b (a≠0,a ,b 为常数)中,函数的值等于0时自变量x 的值就是一元一次方程ax+•b=0(a≠0)的解,所对应的坐标(-ba,0)是直线y=ax+b 与x 轴的交点坐标,反过来也成立;•直线y=ax+b 在x 轴的上方,也就是函数的值大于零,x 的值是不等式ax+b>0(a≠0)的解;在x 轴的下方也就是函数的值小于零,x 的值是不等式ax+b<0(a≠0)的解. 2.坐标轴的函数表达式函数关系式x=0的图像是y 轴,反之,y 轴可以用函数关系式x=0表示;•函数关系式y=0的图像是x 轴,反之,x 轴可以用函数关系式y=0表示. 3.一次函数与二元一次方程组的关系一般地,每个二元一次方程组,都对应着两个一次函数,于是也就是对应着两条直线,从“数”的角度看,解方程相当于考虑自变量为何值时两个函数的值相等,以及这两函数值是何值;从形的角度考虑,解方程组相当于确定两条直线的交点坐标,所以一次函数及其图像与二元一次方程组有着密切的联系. 4.两条直线的位置关系与二元一次方程组的解 (1)二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩有唯一的解⇔直线y=k 1x+b 1不平行于直线y=k 2x+b 2 ⇔k 1≠k 2.(2)二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩无解⇔直线y=k 1x+b 1∥直线y=k 2x+b 2 ⇔k 1=k 2,b 1≠b 2.(3)二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩有无数多个解⇔直线y=k 1x+b 1与y=k 2x+b 2重合⇔k 1=k 2,b 1=b 2.5、二次函数与一元二次方程组的关系(1)如果抛物线y ax bx c =++2与x 轴有公共点,公共点的横坐标是x 0,那么当x x =0时,函数的值是0,因此x x =0就是方程ax bx c 20++=的一个根。

14.3用函数观点看方程(组)与不等式教案

14.3用函数观点看方程(组)与不等式教案

14.3用函数观点看方程(组)与不等式(第1课时)一、教学目标1.以一个一次函数的解析式和图象的关系为例,经历观察思考过程,初步理解数形结合思想.2.知道一次函数y=kx+b 的图象与x 轴交点的横坐标是一元一次方程ax+b=0的解. 二、教学重点和难点 1.重点:数形结合思想.2.难点:一次函数y=kx+b 的图象与x 轴交点的横坐标是一元一次方程ax+b=0的解. 三、教学过程(一)尝试指导,讲授新课师:前面我们学习了一次函数,什么是一次函数?形如y=kx+b 的函数叫做一次函数.譬如,y=2x+3就是一个一次函数. 师:一次函数的图象是一条直线. (师出示下图,如板书设计所示)师:(指准图象)这条直线就是一次函数y=2x+20的图象.师:(指y=2x+20和图象)式子y=2x+20和它的图象是密切相关的,这个式子能反映这个图象,反过来这个图象也能反映这个式子.式子反映图象,图象反映式子,这话是什么意思?让我们来看一个例子.师:(指准y=2x+20)当x=-5时,y 等于多少?(板书:当x=-5,y=,如板书设计所示) 生:y=10.(师板书:10)师:(指准板书)当x=-5,y=10,这是式子y=2x+20的情况,式子的这个情况能反映出图象有什么情况?生:……(多让几位同学发表看法)师:式子y=2x+20,当x=-5,y=10,反映图象经过(-5,10)这一点(板书:图象经过点(-5,10),如板书设计所示).师:(遮住“当x=-5,y=10”,并指准板书)反过来,图象经过(-5,10)这一点,又能反映出式子y=2x+20有什么情况?生:……(多让几位同学回答)师:(指准板书)图象经过(-5,10)这一点,反映式子y=2x+20当x=-5,y=10.师:(指准板书)从这个例子我们看到,式子能反映图象,反过来图象也能反映式子.下面我们再看一个例子.师:(指图象)这个图象从左向右是上升的(板书:图象从左向右上升,如板书设计所示),图象的这个情况能反映出式子y=2x+20有什么情况?生:……(多让几名同学发表看法)师:(指准y=2x+20)图象从左向右上升,能反映出式子y=2x+20的k>0,而且y随x的增大而增大(板书:k>0,y随x的增大而增大,如板书设计所示).师:(指准板书)反过来,式子y=2x+20的k>0,y随x的增大而增大,又能反映出图象有什么情况?生:图象从左向右上升.师:(指准板书)从这个例子我们同样看到,式子能反映图象,反过来,图象也能反映式子. 师:式子能反映图象,图象也能反映式子.这是数学中一个很重要的思想,这个思想还有一个专门的名字,叫什么?叫数形结合思想(板书:数形结合思想).师:(指准板书)“数形结合”中的“数”指的是式子的情况,“形”指的是图象的情况,“数形结合”就是从式子的情况反映出图象的情况,或者从图象的情况反映出式子的情况.这两个例子正是体现了数形结合的思想.(二)试探练习,回授调节1.已知一次函数y=kx+b,填空:(1)如果当x=3,y=4,那么图象经过点(,);(2)如果图象经过点(5,-1),那么当x= ,y= ;(3)如果k<0,y随x增大而,那么图象从左向右;(4)如果图象从左向右上升,那么k 0,y随x的增大而 .2.填空:(1)方程2x+20=0的解x= ;(2)一次函数y=2x+20,当x= 时,y=0.(三)尝试指导,讲授新课师:前面我们介绍了数形结合思想,下面我们再来看一个数形结合的例子.师:(指准图象)这一点是什么?这一点是图象与x 轴的交点.这一点的横坐标是什么?纵坐标是什么?生:横坐标是-10,纵坐标是0.(师板书:-10是图象与x 轴交点的横坐标,如板书设计所示)师:(指准图象)-10是图象与x 轴交点的横坐标,这是我们从图象中看到的情况,根据数形结合的思想,图象反映式子,图象的这个情况反映式子的什么情况呢? 生:……(多让几名同学发表看法)师:(指准图象)-10是图象与x 轴交点的横坐标,(指准y=2x+20)它反映这个式子当x=-10,y=0(板书:当x=-10,y=0,如板书设计所示).师:(指准y=2x+20)这个式子当x=-10,y=0,还可以换一种说法,怎么换一种说法?(板书:或者说,x=-10是方程2x+20=0的解,如板书设计所示)师:(指准板书)式子y=2x+20当x=-10,y=0与x=-10是方程2x+20=0的解这两句话说的是一个意思吗?(稍停)它们说的是一个意思.师:(指准图象)这个例子说明什么?说明y=2x+20的图象与x 轴交点的横坐标实际上就是方程2x+20=0的解,反过来也一样.这个例子同样体现了数形结合思想. (四)试探练习,回授调节 3.根据下列一次函数的图象填空:(1)题 (2)题(1)一次函数y=0.5x+4的图象与x 轴交点的横坐标是 ,说明方程 =0的解是x= ;(2)一次函数y=-0.5x+4的图象与x 轴交点的横坐标是 ,说明方程 =0的解是x= . 4.填空:(1)方程0.5x-4=0的解x= ,说明一次函数y= 的图象与x 轴交点的横坐标是;(2)方程-0.5x-4=0的解x= ,说明一次函数y= 的图象与x轴交点的横坐标是 .5.选做题:方程5x-1=2x+5的解是一次函数y= 的图象与x轴交点的横坐标. (五)归纳小结,布置作业师:本节课我们学习了什么?我们学习了数形结合的思想.什么是数形结合的思想?式子的情况能反映图象的情况,反过来图象的情况也能反映式子的情况,这就是数形结合的思想.有了这种思想,我们可以从式子的角度看图象,也可以从图象的角度看式子.譬如,(指板书)我们可以从图象的角度看方程2x+20=0的解,可以把这个方程的解看成是一次函数y=2x+20的图象与x轴交点的横坐标.(作业:P129习题1.5.)四、板书设计14.3用函数观点看方程(组)与不等式(第2课时)一、教学目标1.知道简单的一元一次不等式(右边为0)的解集与一次函数图象的关系.2.知道二元一次方程组的解与一次函数图象的关系.3.加深理解数形结合思想.二、教学重点和难点1.重点:简单的一元一次不等式的解集、二元一次方程组的解与一次函数图象的关系.2.难点:简单的一元一次不等式的解集与一次函数图象的关系.三、教学过程(一)基本训练,巩固旧知 1.如图,填空:(1)式子y=-0.5x-4当x=2,y=-5,说明直线y=-0.5x-4经过点( , ); (2)直线y=-0.5x-4经过(-10,1),说明式子y=-0.5x-4当x= ,y= ; (3)直线y=-0.5x-4与x 轴的交点的横坐标是 ,说明方程 =0的解是x = ;(4)方程-0.5x-4=0的解是x= ,说明直线y= 与x 轴交点的横坐标是 . 2.填空:一次函数y=2x+20, (1)当x 时,y=0; (2)当x 时,y >0; (3)当x 时,y <0. (二)创设情境,导入新课 (师出示下面的板书和图象)当x=-10,y=0,或者说, -10是图象与x 轴交点的横坐标 x=-10是方程2x+20=0的解师:上节课我们介绍了数形结合思想,什么是数形结合思想?(指板书)式子的情况能反映图象的情况,反过来图象的情况也能反映式子的情况,这就是数形结合思想.师:(指准图象)譬如,-10是一次函数y=2x+20的图象与x轴交点的横坐标,这是图象的情况,图象的这个情况反映了式子的什么情况?师:(指准板书)反映了式子y=2x+20当x=-10,y=0,换一种说法,也就是x=-10是方程2x+20=0的解.师:根据数形结合思想,我们就可以从式子的角度看图象,或者从图象的角度看式子,这就把式子和图象联系起来,或者说是把“数”和“形”结合起来.师:为了加深对数形结合思想的理解,本节课我们再来看两个体现数形结合思想的例子,先看第一个例子.(三)尝试指导,讲授新课师:(指准图象)大家看这个图象,从这个图象我们可以看到一个情况,什么情况?在-10的右边,图象在x轴的上方(板书:在-10的右边,图象在x轴的上方,如板书设计所示). 师:(指图象)图象的这个情况能反映出式子有什么情况?生:……(多让几名同学发表看法)师:(指准图象)图象在x轴的上方,这说明什么?说明图象上的点的纵坐标大于0.(指板书)所以图象的这个情况反映出(指准y=2x+20)式子y=2x+20当x>-10,y>0(板书:当x>-10,y>0,如板书设计所示).师:(指准板书)式子y=2x+20当x>-10,y>0,还可以换一种说法,怎么换一种说法?(板书:或者说,x>-10是不等式2x+20>0的解集,如板书设计所示)师:(指准板书)大家可以比较一下这两句话,一句话是式子y=2x+20当x>-10,y>0,另一句话是x>-10是不等式2x+20>0的解集.它们实际上说的是一个意思.师:(指准板书)从这个例子我们看到,在-10的右边,图象在x轴上方,这反映出x>-10是不等式2x+20>0的解集,反过来也一样.这个例子体现了数形结合思想.师:(指准图象)从这个图象我们还可以看到一个情况,在-10的左边,图象在哪儿?生:图象在x轴的下方.(师板书:在-10的左边,图象在x轴的下方,如板书设计所示)师:(指图象)图象的这个情况能反映出式子有什么情况?(稍停)能反映出式子y=2x+20当x<-10,y<0(板书:当x<-10,y<0,如板书设计所示)师:(指准板书)式子y=2x+20当x<-10,y<0,还可以换一种说法,怎么换一种说法? 生:……(多让几名同学说,然后师板书:或者说,x<-10是不等式2x+20<0的解集)师:(指板书和图象)从这三个数形结合的例子,我们看到,一元一次方程2x+20=0、一元一次不等式2x+20>0,2x+20<0与一次函数y=2x+20的图象有着密切的联系,只要画出一次函数y=2x+20的图象,我们从图象中就能看出相应的一元一次方程的解、相应的一元一次不等式的解集. (四)试探练习,回授调节 3.看图象填空:(1)一元一次方程0.5x-4=0的解是 ; (2)一元一次不等式0.5x-4>0的解集是 ; (3)一元一次方不等式0.5x-4<0的解集是 .4.看图象填空:(1)一元一次方程-0.5x-4=0的解是 ; (2)一元一次不等式-0.5x-4>0的解集是 ; (3)一元一次不等式-0.5x-4<0的解集是 . (五)尝试指导,讲授新课师:下面我们再来看一个数形结合的例子. (师出示下图)师:(指准图象)这条直线是一次函数y=2x-1的图象,这条直线是一次函数38y x 55=-+的图象,这两条直线相交于点P ,点P 的坐标是(1,1).(板书:点P (1,1)是两个图象的交点,如板书设计所示)师:(指准板书)点P (1,1)是两个图象的交点,这是我们从图象中看到的,图象的这个情况能反映式子的什么情况?(让生思考一会儿)师:(指准图象)因为直线y=2x-1经过点P ,所以点P 的坐标(1,1)满足y=2x-1;又因为直线38y x 55=-+也经过点P ,所以点P 的坐标(1,1)也满足 38y x 55=-+.(1,1)既满足这个式子,又满足这个式子,这说明什么? 生:……(多让几名同学发表看法,然后师板书:x 1y 1⎧=⎨=⎩是方程组y 2x 138y x 55⎧=-⎪⎨=-+⎪⎩的解)师:(指板书)这说明x=1,y=1是方程组y=2x-1,38y x 55=-+的解. 师:(指准图象)从这个例子我们可以看到,两条直线的交点坐标实际上就是相应的二元一次方程组的解,反过来也一样,二元一次方程组的解实际上就是相应的两条直线的交点坐标.(六)试探练习,回授调节 5.填空:(1)直线y=3x+2与直线y=2x-1的交点是(-3,-7),则方程组y 3x 2y 2x 1⎧=+⎨=-⎩的解是x _______,y _______;⎧=⎨=⎩ (2)方程组y x 3y x 1⎧=-+⎨=+⎩的解是x 1y 2⎧=⎨=⎩,则直线y=-x+3与直线y=x+1的交点坐标是( , ).6.填空:方程组3x5y82x y1⎧+=⎨-=⎩的解是直线y= 与直线y= 的交点坐标.(五)归纳小结,布置作业师:本节课我们学习了数形结合的两个例子.(指准图象)从第一个例子我们可以看到,一次函数与一元一次方程、一元一次不等式有着密切的联系,只要画出一次函数的图象,看图象我们就能说出相应的一元一次方程的解、相应的一元一次不等式的解集.师:(指准图象)从第二个例子我们可以看到,一次函数与二元一次方程组也有着密切的联系,两个一次函数图象的交点坐标实际上就是相应的二元一次方程组的解.师:从函数图象的角度去看方程、不等式、方程组,这是数形结合思想的体现,这种认识问题的方法对以后学习数学是很重要的.(作业:P126练习1.)四、板书设计。

用函数的观点看方程(组)与不等式

用函数的观点看方程(组)与不等式

用函数的观点看方程(组)与不等式1.一元一次方程、一元一次不等式及一次函数的关系函数y=ax+b (a≠0,a ,b 为常数)中,函数的值等于0时自变量x 的值就是一元一次方程ax+•b=0(a≠0)的解,所对应的坐标(-ba,0)是直线y=ax+b 与x 轴的交点坐标。

•直线y=ax+b 在x 轴的上方,也就是函数的值大于零,x 的值是不等式ax+b>0(a≠0)的解;在x 轴的下方也就是函数的值小于零,x 的值是不等式ax+b<0(a≠0)的解. 例 1、已知函数12,5421+=-=x y x y ,请回答下列问题: (1)求当x 取什么值时,函数1y 的值等于0? (2)当x 取什么值时,函数2y 的值恒小于0? (3)当x 取何值时函数2y 的值不小于1y 的值。

例2、在同一坐标系下,函数45102+=+=x y x y 与的图象如图所示:请根据图象回答:(1)方程组⎩⎨⎧-=--=-45102y x y x 的解为_____。

(2)不等式0102<+x 的解集为_____。

(3)方程045=+x 的解为_____。

(4)不等式45102+<+x x 的解集为_____。

2.坐标轴的函数表达式函数关系式x=0的图像是y 轴,反之,y 轴可以用函数关系式x=0表示;•函数关系式y=0的图像是x 轴,反之,x 轴可以用函数关系式y=0表示. 3.一次函数与二元一次方程组的关系一般地,每个二元一次方程组,都对应着两个一次函数,于是也就是对应着两条直线,从“数”的角度看,解方程相当于考虑自变量为何值时两个函数的值相yxy=5x+4y=2x+10-4514-502等,以及这两函数值是何值;从形的角度考虑,解方程组相当于确定两条直线的交点坐标,所以一次函数及其图像与二元一次方程组有着密切的联系.例1、 如图,表示甲骑电动车与乙驾驶汽车匀速行驶120km 的过程,行驶的路程y 与经过的时间x 之间的函数图象,请根据图象解答下列问题:(1)分别写出甲乙行驶的路程y (千米)与x (小时)之间的函数关系; (2)乙出发几小时他们相遇?(3)何时甲在乙的前面,何时乙在甲的前面?4.两条直线的位置关系与二元一次方程组的解(1)二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩有唯一的解⇔直线y=k 1x+b 1不平行于直线y=k 2x+b 2 ⇔k 1≠k 2.(2)二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩无解⇔直线y=k 1x+b 1∥直线y=k 2x+b 2⇔k 1=k 2,b 1≠b 2.(3)二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩有无数多个解⇔直线y=k 1x+b 1与y=k 2x+b 2重合⇔k 1=k 2,b 1=b 2.14.3练习题一、填空1、若32k -有意义,则函数1y kx =-的图象不经过第 象限。

用函数的观点看方程组和不等式

用函数的观点看方程组和不等式
14
皮肌炎图片——皮肌炎的症状表现
• 皮肌炎是一种引起皮肤、肌肉、 心、肺、肾等多脏器严重损害的, 全身性疾病,而且不少患者同时 伴有恶性肿瘤。它的1症状表现如 下:
• 1、早期皮肌炎患者,还往往伴 有全身不适症状,如-全身肌肉酸 痛,软弱无力,上楼梯时感觉两 腿费力;举手梳理头发时,举高 手臂很吃力;抬头转头缓慢而费 力。
设计意图: 通过综合运用一次函数与不等式、方程(组) 解决实际问题,让学生体会方程组、不等式与 函数之间的联系,尝试用函数的观点认识问题17 。
教学过程 巩固练习,深化理解
练习 下面有两种移动电话计费方式: 你知道如何选择计费方式更省钱吗?
全球通
神州行
月租费
50元/月 0
本地通话费 0.40元/分 0.60元/分
节期间A商场打8折,B商场消费超过200元后,
可打7折。试问如何选择购物更经济?
设计意图: 巩固本节所学知识,运用于实际生活问题;布置 不同层次的作业,满足不同学生不同发展需求20。
21
人教版数学八年级上册第十四章《一次函数》第三节第三课时
用函数观点看 二元一次方程(组)
华南师范大学数学科学学院 李博姿
设计意图:
通过小结明确本节的主要内容、思想和方法,
培养学生善于反思的良好习惯.
19
教学过程 归纳小结,布置作业
复习巩固:
6.利用函数图象解方程组:
(1) 3x + 2y = 5, (2) x + 2y = 4,
2x – y = 1;
2x - y = 6.
综合运用:
8.A、B商场平时以同样价格出售相同商品,春
设计意图: 引导学生探索二元一次方程与一次函数的对应 关系;

用函数观点看方程(组)与不等式

用函数观点看方程(组)与不等式

用函数观点看方程(组)与不等式一、知识归纳1、一元一次方程与一次函数的关系任何一元一次方程都可以转化为ax+b=0 (a, b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值。

从图象上看,相当于已知直线y=ax+b,确定它与x轴的交点的横坐标的值。

2、一次函数与一元一次不等式的关系任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0 (a, b为常数,a≠0)的形式,所以解一元一次不等式可以看成:当一次函数值大(小)于0时,求自变量的取值范围。

3、规律总结一次函数y=kx+b与一元一次方程kx+b=0及一元一次不等式的关系:函数y=kx+b的图象在x轴上方的点所对应的自变量x的值,即为不等式kx+b>0的解集;在x轴上所对应的点的自变量的值即为方程kx+b=0的解;在x轴下方的点所对应的自变量的值即为不等式kx+b<0的解集。

4、一次函数与一次方程(组)(1)以二元一次方程ax+by=c的解为坐标的点组成的图象与一次函数的图象相同。

(2)二元一次方程组的解可以看成是两个一次函数的图象的交点。

5、一次函数与方程(组)的应用在实际生活中,如何应用函数知识解决实际问题,关键是建立函数模型,即列出符合题意的函数解析式,再利用方程(组)求解。

二、典型例题例1、某市电力公司为了鼓励居民用电,采用分段计费的方法计算电费:每月用电不超过100千瓦时,按每千瓦时0.57元计费;每月用电超过100千瓦时,前100千瓦时仍按原标准收费,超过部分按每千瓦时0.50元计费。

(1)设月用x千瓦时电时,应交电费y元,当x≤100和x>100时,分别写出y (元)关于x (千瓦时)的函数关系式;(2)小王家第一季度交纳电费情况如下:问:小王家第一季度用电多少千瓦时?分析:(1)当x≤100时,费用为0.57x元,当x>100时,前100千瓦时应交电费100×0.57=57(元),剩下的(x-100)千瓦时应交电费0.50 (x-100)元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y
16
y=2x+4 y=2x+4
4 -2 0 2 6
一元一次方程ax+b=c也可以 一元一次方程ax+b=c也可以 ax+b=c 转化为函数y=ax+b y=ax+b的函数值 转化为函数y=ax+b的函数值 时的自变量的值. 为c时的自变量的值.
-2
x
2、利用图象求方程6x-3=x+2的解 、利用图象求方程 的解
1.
已知方程3x-6=0的解为 的解为x=2, 则函数 已知方程 的解为 , y=3x-6图像与 轴的交点的横坐标为 图像与x轴的交点的横坐标为 图像与 在一次函数y=-5x+2中,当x= 中 在一次函数 =0;当x = ; 时, y =2。 。

2.
时, y
3.
4.
若直线y=ax+b的图像经过点(2, 若直线 的图像经过点( , 的图像经过点 3),则方程ax+b=3的解为 ) 则方程 的解为 。 方程x-3=0的解也是直线 的解也是直线y=(4k+1)x方程 的解也是直线 15与x轴的交点的横坐标,则k的值 轴的交点的横坐标, 与 轴的交点的横坐标 的值 为 。
P76 :1、2
解一元一次方程 ax + b = 0(a、 为 b 常数, 可转化为: 常数, ≠ 0 )可转化为: a 值为0时 求一次函数 y = ax + b 值为 时 的值。 的自变量 x 的值。
目标2、 目标 、会用画图象的方 法解一元一次方程. 法解一元一次方程
一个物体现在的速度是2米 秒 一个物体现在的速度是 米/秒, 其速度每秒增加2米 秒 其速度每秒增加 米/秒,再过几 秒它的速度为8米/秒 秒它的速度为8米/秒?
所以方程6x-3=x+2的解是x=1 所以方程6x-3=x+2的解是x=1 6x 的解是
方法二: 方法二: 把方程6x 3=x+2看成是两个 6x把方程6x-3=x+2看成是两个 函数: y=6x函数:即y=6x-3,y=x+2
y
转化为两个函数 画出两个函数图象 找出交点
0 1 2 -2
x (交点的横坐标就是方程的解.) 交点的横坐标就是方程的解.) 所以方程6x-3=x+2的解是x=1 所以方程6x-3=x+2的解是x=1 6x 的解是
方法一:(方程方法) 方法一:(方程方法) :(方程方法
解:设再过 秒物体的速度为8米 秒 x秒物体的速度为 米/秒 列方程得 解得
2x+5 = 8 x =3
秒物体的速度为17米 秒 答:再过6秒物体的速度为 米/秒。 再过 秒物体的速度为
方法二:(函数方法) 方法二:(函数方法) :(函数方法
一次函数
动 态
变化 对应
分 析
化 数 函数
一 一次
一 一次
一次
11.3.1 一次函数与一元一次方程
目标一、 目标一、理解一次函数与 一元一次方程的对应关系. 一元一次方程的对应关系
通过下面的习题你能 得出什么结论? 得出什么结论?
1、解方程: (1) 、解方程: )
(2) )
2x + 4 = 0 6−3x = 0
1.求函数 y = 3x −15 与 x 轴的交点坐标 求函数 2.已知函数 y = 3x + 6与 x 轴的交点坐 已知函数 标是( , ), ),则方程 标是(-2,0),则方程2x + 4 = −2− x 的解是什么? 的解是什么?
1、一次函数与一元一次方程 、 是相互联系的 2、数形结合解决问题清晰明了 、 3、辩证看一次函数和一元一次方程 、
解:设再过
y
y = 2x −6
秒物体的速度为8米 秒 x秒物体的速度为 米/秒
列方程得 整理得
2x + 2 = 8 2x −6 = 0
y = 2x −6
0 -6
3
x

由图像可看出直线 y = 2x − 6 与 x 轴的交点为( , ), ),得 轴的交点为(3,0),得 x = 3 再过3秒物体的速度为 秒物体的速度为8米 秒 答:再过 秒物体的速度为 米/秒。
x 2、当自变量 、
为何值时, 为何值时
的值为0? (1) 函数 y = 2x + 4 的值为 ? ) 的值为0? (2) 函数 y = 6−3x的值为 ? )
请填写表格, 请填写表格,使得以下的一元一次方程问题与一次 函数问题是同一问题. 函数问题是同一问题. 序号 一元一次方程问题 一次函数问题 1 2 3 4 解方程5x- 解方程5x-3=0 5x 解方程9x+2=0 解方程9x+2=0 解方程解方程-4x+7=0 当x为何值时, 为何值时, y=5x- 的值为0 y=5x-3的值为0 为何值时, 当x为何值时, y=9x+2的值为 的值为0 y=9x+2的值为0 为何值时, 当x为何值时, y=-4x+7的值为 的值为0 y=-4x+7的值为0
1、能否利用函数y=2x+4 能否利用函数y=2x+4 y= x+4=16 的图象求出方程2x+4=16 的解呢? 的解呢?
可看成函数y=2x+ 的函数 可看成函数y=2x+4的函数 y= 值为16 16时所对应的自变量的值 值为16时所对应的自变量的值 如图: x+ 的解是x 如图:2x+4 =16的解是x=6 的解是
2、利用图象求方程6x-3=x+2的解 利用图象求方程6x-3=x+2的解 6x 方法一:Βιβλιοθήκη 方法一: 5x-5=0 y=5x-5
y 0 -1 1
将方程变形为ax+b=0的形式 将方程变形为ax+b=0的形式 ax+b=0 转化为函数解析式 画图象 找与x x 找与x轴交点 (与x轴的交点的横坐标就是方程的解) 轴的交点的横坐标就是方程的解)
相关文档
最新文档