带电粒子在匀强电场中的运动专题
专题:带电粒子在匀强电场中的运动教案+练习
一、教学目标1. 让学生掌握带电粒子在匀强电场中的运动规律。
2. 培养学生运用物理知识解决实际问题的能力。
3. 引导学生运用数学方法分析物理问题。
二、教学内容1. 带电粒子在匀强电场中的运动规律。
2. 带电粒子在匀强电场中的速度与电势关系。
3. 带电粒子在匀强电场中的动能与电势能转化。
4. 带电粒子在匀强电场中的运动轨迹。
5. 带电粒子在匀强电场中的受力分析。
三、教学重点与难点1. 教学重点:带电粒子在匀强电场中的运动规律,速度与电势关系,动能与电势能转化。
2. 教学难点:带电粒子在匀强电场中的运动轨迹,受力分析。
四、教学方法1. 采用讲授法,讲解带电粒子在匀强电场中的运动规律、速度与电势关系、动能与电势能转化等知识点。
2. 利用多媒体展示带电粒子在匀强电场中的运动轨迹,帮助学生直观理解。
3. 引导学生进行受力分析,培养学生的分析能力。
4. 设置练习题,巩固所学知识。
五、教学过程1. 引入:通过回顾初中阶段学习的带电粒子在电场中的基本概念,引导学生进入本节课的学习。
2. 讲解:讲解带电粒子在匀强电场中的运动规律,速度与电势关系,动能与电势能转化。
3. 演示:利用多媒体展示带电粒子在匀强电场中的运动轨迹,让学生直观理解。
4. 分析:引导学生进行受力分析,培养学生运用物理知识解决实际问题的能力。
5. 练习:布置练习题,让学生运用所学知识解决问题,巩固知识点。
6. 小结:总结本节课的主要内容,强调重点和难点。
7. 作业:布置作业,让学生进一步巩固所学知识。
六、教学练习(练习一)题目:一个带电粒子在匀强电场中运动,电荷量q=5×10^-6 C,质量m=2×10^-3 kg,电场强度E=20 N/C,重力加速度g=9.8 m/s^2。
求:1. 粒子在电场中的受力大小。
2. 粒子的加速度。
3. 粒子从静止开始运动2秒后的速度。
4. 粒子在电场中运动一周的周期。
七、教学练习(练习二)题目:一个带电粒子在匀强电场中运动,电荷量q=10^-6 C,质量m=1×10^-3 kg,电场强度E=5 N/C。
带电粒子在匀强电场中的运动 专题
A .同时到达屏上同一点B .先后到达屏上同一点C .同时到达屏上不同点D .先后到达屏上不同点3、带电粒子从静止出发经过电场加速后垂直进入偏转电场,当离开偏转电场时,决定带电粒子侧移距离大小是 ( )(A )带电粒子质量越大侧移越大 (B )带电粒子电量越多侧移越大(C )加速电极间的电压越低侧移越大 (D )偏转电极间的电压越高侧移越大D.粒子在下落前d/4和后d/4内,通过的时间之比为1∶38、图1中A 、B 是一对平行的金属板.在两板间加上一周期为T 的交变电压u .A 板的电势UA=0,B 板的电势UB 随时间的变化规律为:在 0到 T/2的时间内,UB=U0(正的常数);在T /2到T 的时间内,UB=-U0;在T到3T/2的时间内,UB=U0;在3T/2到2T的时间内,UB=-U0…现有一电子从A板上的小孔进入两板间的电场区内,设电子的初速度和重力影响均可忽略,A.若电子是在t=0时刻进入的.它将一直向B板运动B.若电子是在t=T/8时刻进入的,它可能时而向B板运动,时而向A板运动,最后打在B板上C.若电子是在t=3T/8时刻进入的,它可能时而向B板运动,时而向A板运动,最后打在B板上D.若电子是在t=T/2时刻进入的,它可能时而向B板、时而向A板运动8.如图,电子以V O的速度沿与电场垂直的方向从A点飞入匀强电场并且从另一端B点沿与场强方向成150o角的方向飞出。
设电子的电量为e,质量为m,则A、B两点间的电势差大小为。
9.一束质量为m、电量为q的带电粒子以平行于两极板的速度v0进入匀强电场,如图9-5-5所示,如果两极板的电压为U两极板间的距离为d,板长为L,设粒子束不会击中极板,则粒子从进入电场到飞出极板时电势能的变化量为__________。
(粒子的重力忽略不计)10、如图平行金属板长为L,一个带电为+q,质量为m的粒子以初速度v0紧贴上板垂直射入电场,刚好从下板边缘射出,末速度恰与下板成30O角,粒子重力不计。
微专题50 带电粒子在匀强电场中的直线运动-2025版高中物理微专题
微专题50带电粒子在匀强电场中的直线运动【核心考点提示】1.做直线运动的条件(1)粒子所受合外力F 合=0,粒子或静止,或做匀速直线运动.(2)粒子所受合外力F 合≠0,且与初速度方向在同一条直线上,带电粒子将做匀加速直线运动或匀减速直线运动.2.用动力学观点分析a =F 合m,E =U d ,v 2-v 20=2ad .3.用功能观点分析匀强电场中:W =Eqd =qU =12mv 2-12mv 20非匀强电场中:W =qU =E k2-E k13.带电粒子在电场中运动时重力的处理原则(1)基本粒子:如电子、质子、α粒子、离子等,除有说明或明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.【经典例题选讲】【例题】如图所示,电子由静止开始从A 板向B 板运动,到达B 板的速度为v ,保持两极间电压不变,则()A .当减小两板间的距离时,速度v 增大B .当减小两极间的距离时,速度v 减小C .当减小两极间的距离时,速度v 不变D .当减小两极间的距离时,电子在两极间运动的时间变长【解析】由动能定理得eU =12mv 2,当改变两极板间的距离时,U 不变,v 就不变,故选项A 、B 错误,C 正确;粒子在极板间做初速度为零的匀加速直线运动,v =d t ,v 2=d t ,即t =2d v当d减小时,v不变,电子在两极板间运动的时间变短,故选项D错误.【答案】C【变式】电子束焊接机中的电场线如图中虚线所示.K为阴极,A为阳极,两极之间的距离为d,在两极之间加上高压U,有一电子在K极由静止被加速.不考虑电子重力,元电荷为e,则下列说法正确的是()A.A、K之间的电场强度为UdB.电子到达A极板时的动能大于eUC.由K到A电子的电势能减小了eUD.由K沿直线到A电势逐渐减小【解析】A、K之间的电场为非匀强电场,A、K之间的电场强度不是Ud,选项A错误;由动能定理,电子到达A极板时的动能Ek=eU,选项B错误;电子由K到A的过程电场力做正功,电子的电势能减小了eU,选项C正确;电子由K沿电场线反方向到A,电势逐渐升高,选项D错误.【答案】C【巩固习题】1.(多选)如图,平行板电容器的两个极板与水平地面成一角度,两极板与一直流电源相连.若一带电粒子恰能沿图中所示水平直线通过电容器,则在此过程中,该粒子()A.所受重力与电场力平衡B.电势能逐渐增加C.动能逐渐增加D.做匀变速直线运动【解析】对粒子受力分析,粒子所受合外力水平向左,做匀减速直线运动;电场力做负功,电势能增加,动能减少.【答案】BD2.如图所示,从F处释放一个无初速度的电子向B板方向运动,指出下列对电子运动的描述中哪句是错误的(设电源电动势为U)()A.电子到达B板时的动能是UeB.电子从B板到达C板动能变化量为零C.电子到达D板时动能是3UeD.电子在A板和D板之间做往复运动解析:选C电子在A、B之间做匀加速运动,且eU=ΔE k,A正确;在B、C之间做匀速运动,B正确;在C、D之间做匀减速运动,到达D板时,速度减为零,C错误,D正确。
专题 带电粒子在匀强电场中的偏转问题
专题带电粒子在匀强电场中的偏转问题【专题简介】带电粒子在匀强电场中的偏转问题是一种特殊的曲线运动,是高考的高频考点。
此类运动往往与平抛运动类似,故也称之为“类平抛运动”,故在处理此类问题时的方法和思想也是——“化曲为直”,即将运动分解为初速度方向的匀速直线运动和合外力方向的匀变速直线运动。
它与平抛的不同之处就在于要通过受力分析来求解合外力,从而根据牛顿第二定律求出加速度。
带电粒子在匀强电场中的偏转问题的特征:所受合外力为恒力且与初速度垂直。
带电粒子在匀强电场中的偏转问题的相关公式:1.牛顿第二定律:F合=ma2.匀强电场:E=Ud3.水初速度方向:x =v 0t,v x=v04.合外力方向:y=12at2,v y=at5.合运动:v=√v02+v y2,s=√x2+y26.角度问题:(1)速度夹角α:tanα=v yv0;(2)位移夹角θ:tanα=yx【高考真题】1.(2013广东卷)喷墨打印机的简化模型如图所示,重力可忽略的墨汁微滴,经带电室带负电后,以速度v垂直匀强电场飞入极板间,最终打在纸上,则微滴在极板间电场中()A.向负极板偏转B.电势能逐渐增大C.运动轨迹是抛物线D.运动轨迹与带电量无关2.(2022浙江卷)如图所示,带等量异种电荷的两正对平行金属板M、N间存在匀强电场,板长为L(不考虑边界效应)。
t=0时刻,M板中点处的粒子源发射两个速度大小为v0的相同粒子,垂直M板向右的粒子,到达N板时速度大小为√2v0;平行M板向下的粒子,刚好从N板下端射出。
不计重力和粒子间的相互作用,则()A.M板电势高于N板电势B.两个粒子的电势能都增加C.粒子在两板间的加速度a=2v02LD.粒子从N板下端射出的时间t=(√2−1)L2v0速度关系位移关系2.(2007海南卷)一平行板电容器中存在匀强电场,电场沿竖直方向。
两个比荷(即粒子的电荷量与质量之比)不同的带正电的粒子a和b,从电容器的P点(如图)以相同的水平速度射入两平行板之间。
物理带电粒子在电场中的运动专项习题及答案解析及解析
物理带电粒子在电场中的运动专项习题及答案解析及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,光滑绝缘的半圆形轨道ABC 固定在竖直面内,圆心为O ,轨道半径为R ,B 为轨道最低点。
该装置右侧的14圆弧置于水平向右的足够大的匀强电场中。
某一时刻一个带电小球从A 点由静止开始运动,到达B 点时,小球的动能为E 0,进入电场后继续沿轨道运动,到达C 点时小球的电势能减少量为2E 0,试求:(1)小球所受重力和电场力的大小; (2)小球脱离轨道后到达最高点时的动能。
【答案】(1)0E R 02E R(2)8E 0 【解析】 【详解】(1)设带电小球的质量为m ,则从A 到B 根据动能定理有:mgR =E 0则小球受到的重力为:mg =E R方向竖直向下;由题可知:到达C 点时小球的电势能减少量为2E 0,根据功能关系可知:EqR =2E 0则小球受到的电场力为:Eq =2E R方向水平向右,小球带正电。
(2)设小球到达C 点时速度为v C ,则从A 到C 根据动能定理有:EqR =212C mv =2E 0 则C 点速度为:v C 04E m方向竖直向上。
从C 点飞出后,在竖直方向只受重力作用,做匀减速运动到达最高点的时间为:41C v E t g g m== 在水平方向只受电场力作用,做匀加速运动,到达最高点时其速度为:00442E E qE qE v at t m mg m m==== 则在最高点的动能为:2200411(2)822k E E mv m E m===2.如图(a)所示,整个空间存在竖直向上的匀强电场(平行于纸面),在同一水平线上的两位置,以相同速率同时喷出质量均为m 的油滴a 和b ,带电量为+q 的a 水平向右,不带电的b 竖直向上.b 上升高度为h 时,到达最高点,此时a 恰好与它相碰,瞬间结合成油滴p .忽略空气阻力,重力加速度为g .求(1)油滴b 竖直上升的时间及两油滴喷出位置的距离; (2)匀强电场的场强及油滴a 、b 结合为p 后瞬间的速度;(3)若油滴p 形成时恰位于某矩形区域边界,取此时为0t =时刻,同时在该矩形区域加一个垂直于纸面的周期性变化的匀强磁场,磁场变化规律如图(b)所示,磁场变化周期为T 0(垂直纸面向外为正),已知P 始终在矩形区域内运动,求矩形区域的最小面积.(忽略磁场突变的影响)【答案】(12h g 2h (2)2mg q ;P v gh = 方向向右上,与水平方向夹角为45°(3)20min 22ghT s π=【解析】 【详解】(1)设油滴的喷出速率为0v ,则对油滴b 做竖直上抛运动,有2002v gh =- 解得02v gh =000v gt =- 解得02ht g=对油滴a 的水平运动,有000x v t = 解得02x h =(2)两油滴结合之前,油滴a 做类平抛运动,设加速度为a ,有qE mg ma -=,2012h at =,解得a g =,2mg E q =设油滴的喷出速率为0v ,结合前瞬间油滴a 速度大小为a v ,方向向右上与水平方向夹θ角,则0a cos v v θ=,00tan v at θ=,解得a 2v gh =,45θ=︒两油滴的结束过程动量守恒,有:12p mv mv =,联立各式,解得:p v gh =,方向向右上,与水平方向夹45︒角(3)因2qE mg =,油滴p 在磁场中做匀速圆周运动,设半径为r ,周期为T ,则由2082pp v m qv m qT r π= 得04T gh r π=,由2p r T v π= 得02T T = 即油滴p 在磁场中的运动轨迹是两个外切圆组成的“8”字形.最小矩形的两条边长分别为2r 、4r (轨迹如图所示).最小矩形的面积为20min2242ghT s r r π=⨯=3.3L 、间距为L 、水平固定的平行金属板之间,存在方向垂直纸面向外的匀强磁场.现将下板接地,让质量为m 、电荷量为q 的带正电粒子流从两板左端连线的中点O 以初速度v 0水平向右射入板间,粒子恰好打到下板的中点.若撤去平行板间的磁场,使上板的电势φ随时间t 的变化规律如图所示,则t=0时刻,从O 点射人的粒子P 经时间t 0(未知量)恰好从下板右边缘射出.设粒子打到板上均被板吸收,粒子的重力及粒子间的作用力均不计.(1)求两板间磁场的磁感应强度大小B .(2)若两板右侧存在一定宽度的、方向垂直纸面向里的匀强磁场,为了使t=0时刻射入的粒子P 经过右侧磁场偏转后在电场变化的第一个周期内能够回到O 点,求右侧磁场的宽度d 应满足的条件和电场周期T 的最小值T min . 【答案】(1)0mv B qL = (2)223cos 2d R a R L ≥+= ;min 0(632)3L T v π+= 【解析】 【分析】 【详解】(1)如图,设粒子在两板间做匀速圆周运动的半径为R 1,则0102qv B m v R =由几何关系:222113()()22L LR R =+- 解得0mv B qL=(2)粒子P 从O 003L v t =01122y L v t = 解得03y v =设合速度为v ,与竖直方向的夹角为α,则:0tan yv v α== 则=3πα00sin v v α== 粒子P 在两板的右侧匀强磁场中做匀速圆周运动,设做圆周运动的半径为R 2,则212sin LR α= ,解得2R =右侧磁场沿初速度方向的宽度应该满足的条件为22cos 2d R R L α≥+=; 由于粒子P 从O 点运动到下极板右侧边缘的过程与从上板右边缘运动到O 点的过程,运动轨迹是关于两板间的中心线是上下对称的,这两个过程经历的时间相等,则:2min 0(22)2R T t vπα--=解得()min23L T v π=【点睛】带电粒子在电场或磁场中的运动问题,关键是分析粒子的受力情况和运动特征,画出粒子的运动轨迹图,结合几何关系求解相关量,并搞清临界状态.4.如图所示,竖直平面内有一固定绝缘轨道ABCDP ,由半径的圆弧轨道CDP 和与之相切于C 点的水平轨道ABC 组成,圆弧轨道的直径DP 与竖直半径OC 间的夹角θ=37°,A 、B 两点间的距离.质量m 1的不带电绝缘滑块静止在A 点,质量m 2、电荷量q=1×10-5C 的带正电小球静止在B 点,小球的右侧空间存在水平向右的匀强电场.现用大小F=4.5N 、方向水平向右的恒力推滑块,滑块到达月点前瞬间撤去该恒力,滑块与小球发生弹性正碰,碰后小球沿轨道运动,到达P 点时恰好和轨道无挤压且所受合力指向圆心.小球和滑块均视为质点,碰撞过程中小球的电荷量不变,不计一切摩擦.取g=10m /s 2,,.(1)求撤去该恒力瞬间滑块的速度大小v 以及匀强电场的电场强度大小E ; (2)求小球到达P 点时的速度大小v P 和B 、C 两点间的距离x . 【答案】(1) 6m /s ;7.5×104N //s ; 【解析】 【详解】(1)对滑块从A 点运动到B 点的过程,根据动能定理有:2112Fd m v = 解得:v =6m /s小球到达P 点时,受力如图所示:则有:qE =m 2g tan θ, 解得:E =7.5×104N /C(2)小球所受重力与电场力的合力大小为:2cos m gG 等θ=小球到达P 点时,由牛顿第二定律有:2P v G r=等解得:v P /s滑块与小球发生弹性正碰,设碰后滑块、小球的速度大小分别为v 1、v 2, 则有:m 1v =m 1v 1+m 2v 222211122111222m v m v m v =+ 解得:v 1=-2m /s(“-”表示v 1的方向水平向左),v 2=4m /s对小球碰后运动到P 点的过程,根据动能定理有:()()22222211sin cos 22P qE x r m g r r m v m v θθ--+=- 解得:x5.如图甲所示,极板A 、B 间电压为U 0,极板C 、D 间距为d ,荧光屏到C 、D 板右端的距离等于C 、D 板的板长.A 板O 处的放射源连续无初速地释放质量为m 、电荷量为+q 的粒子,经电场加速后,沿极板C 、D 的中心线射向荧光屏(荧光屏足够大且与中心线垂直),当C 、D 板间未加电压时,粒子通过两板间的时间为t 0;当C 、D 板间加上图乙所示电压(图中电压U 1已知)时,粒子均能从C 、D 两板间飞出,不计粒子的重力及相互间的作用.求:(1)C 、D 板的长度L ;(2)粒子从C 、D 板间飞出时垂直于极板方向偏移的最大距离; (3)粒子打在荧光屏上区域的长度. 【答案】(1)02qU L t m =2)2102qU t y md =(3)21032qU t s s md∆== 【解析】试题分析:(1)粒子在A 、B 板间有20012qU mv = 在C 、D 板间有00L v t = 解得:02qU L t m=(2)粒子从nt 0(n=0、2、4……)时刻进入C 、D 间,偏移距离最大 粒子做类平抛运动偏移距离2012y at =加速度1qU a md=得:2102qU t y md=(3)粒子在C 、D 间偏转距离最大时打在荧光屏上距中心线最远ZXXK]出C 、D 板偏转角0tan y v v θ=0y v at =打在荧光屏上距中心线最远距离tan s y L θ=+荧光屏上区域长度21032qU t s s md∆==考点:带电粒子在匀强电场中的运动【名师点睛】此题是带电粒子在匀强电场中的运动问题;关键是知道粒子在水平及竖直方向的运动规律和特点,结合平抛运动的规律解答.6.如图所示,在竖直面内有两平行金属导轨AB 、CD .导轨间距为L ,电阻不计.一根电阻不计的金属棒ab 可在导轨上无摩擦地滑动.棒与导轨垂直,并接触良好.导轨之间有垂直纸面向外的匀强磁场,磁感强度为B .导轨右边与电路连接.电路中的三个定值电阻阻值分别为2R 、R 和R .在BD 间接有一水平放置的电容为C 的平行板电容器,板间距离为d ,电容器中质量为m 的带电微粒电量为q 。
带电粒子在匀强电场中的运动
带电粒子的加速与减速
带电粒子在电场中会受到电场力的作用,根据电场的方向和粒子的电荷性质,粒子 会加速或减速。
加速器是利用电场对带电粒子的加速作用,使粒子获得高能量。加速器在科学研究、 工业应用和医疗等领域有广泛应用。
减速器是利用电场对带电粒子的减速作用,使高速运动的粒子逐渐减速。减速器在 粒子束技术、电子显微镜等领域有重要应用。
粒子的偏转角与速度的关系
总结词
粒子的偏转角与速度的关系是指带电粒子在 匀强电场中的运动轨迹与粒子速度之间的关 系。
详细描述
当带电粒子以不同速度进入匀强电场时,其 运动轨迹的偏转角会发生变化。通过分析粒 子的受力情况和运动轨迹,可以得出粒子的 偏转角与速度之间的关系。这种关系对于理 解带电粒子在电场中的运动规律和实验设计
总结词
带电粒子在垂直于初速度方向的恒定电场力作用下,将做偏转运动。
详细描述
带电粒子在匀强电场中受到的电场力恒定,根据牛顿第二定律,粒子的加速度也恒定。当电场力方向与初速度方 向垂直时,粒子将在垂直于初速度的方向上做类平抛运动,即偏转运动。
03 带电粒子在匀强电场中的 能量分析
电场力做功与能量转化
电场力做功
带电粒子在电场中运动时,电场力对 粒子做功,将电能转化为粒子的动能 或势能。
能量转化方向
电场力做正功时,粒子的动能增加; 电场力做负功时,粒子的动能减少。
电势能与动能的关系
电势能与动能相互转化
带电粒子在匀强电场中运动时,电势能和动能之间相互转化,总能量保持不变。
能量守恒
带电粒子在电场中运动时,总能量守恒,即粒子的动能和电势能之和保持不变。
能量守恒与转化
能量守恒定律
在任何封闭的系统中,能量既不会创生也不会消灭,只会从一种形式转化为另一种形式,或从一个物 体转移到另一个物体。
带电粒子在匀强电场和匀强磁场中的运动
带电粒子在匀强电场和匀强磁场中的运动1. 引言带电粒子在外加电场和磁场的作用下,会受到力的作用而发生运动。
本文将详细讨论带电粒子在匀强电场和匀强磁场中的运动规律。
2. 匀强电场中的运动在匀强电场中,带电粒子受到电场力的作用。
根据库仑定律,带电粒子所受力与其所处位置成正比,方向与电场方向相同或相反。
假设带电粒子的质量为m,带有单位正电荷q,所处位置为r,则其所受力可以表示为F = qE,其中E为电场强度。
根据牛顿第二定律 F = ma,将上式代入可以得到 ma = qE。
由于在匀强电场中,加速度是常量 a = qE/m。
因此,在匀强电场中,带电粒子的加速度与其质量无关。
根据基本物理公式 v = u + at (u为初速度),可以得到 v = u + (qE/m)t。
如果假设初始时刻t=0时,带电粒子具有初始速度v0,则可以得到 v = v0 +(qE/m)t。
这就是带电粒子在匀强电场中的速度公式。
3. 匀强磁场中的运动在匀强磁场中,带电粒子受到洛伦兹力的作用。
洛伦兹力的大小与带电粒子的电荷量、速度以及磁场强度之间有关。
根据洛伦兹力公式 F = q(v × B),其中v为带电粒子的速度,B为磁感应强度。
根据牛顿第二定律 F = ma,将上式代入可以得到ma = q(v × B)。
由于在匀强磁场中,加速度是常量a = q(v × B)/m。
因此,在匀强磁场中,带电粒子的加速度与其质量成反比。
当带电粒子初始时刻t=0时,其速度方向与磁场方向垂直,可以通过右手定则确定。
假设初始时刻t=0时,带电粒子具有初始速度v0,则可以得到 v = v0 +(q/m)(v0 × B)t。
这就是带电粒子在匀强磁场中的速度公式。
4. 匀强电场和匀强磁场共同作用下的运动当带电粒子同时处于匀强电场和匀强磁场中时,将同时受到电场力和磁场力的作用。
根据洛伦兹力公式F = q(E + v × B),带电粒子所受合力为 F = q(E + v × B)。
高中物理必修3带电粒子在电场中的运动选择题专题训练
高中物理必修3带电粒子在电场中的运动选择题专题训练姓名:__________ 班级:__________考号:__________一、选择题(共22题)1、带电粒子垂直进入匀强电场中偏转时(除电场力外不计其它力的作用)A.电势能增加,动能增加 B.电势能减小,动能增加C.电势能和动能都不变 D.上述结论都不正确2、下列粒子从静止状态经过电压为的电场加速后,速度最大的是A.一价氢离子B.一价氦离子C.二价氦离子D.钠离子3、下列粒子从静止状态经过电压为U的电场加速后速度最大的是( )A.质子B.氘核 C.α粒子 D.钠离子Na+4、图示为一带电粒子在水平向右的匀强电场中运动的一段轨迹,A、B为轨迹上的两点.已知该粒子质量为m、电荷量为q,其在A点的速度大小为v o,方向竖直向上,到B点时速度方向与水平方向的夹角为30°,粒子重力不计.则A、B两点间的电势差为A. B. C. D.5、如图所示,正电子垂直电场方向入射到匀强电场中,不计重力,正电子做A .匀速直线运动B .匀加速直线运动C .向下偏转的曲线运动D .向上偏转的曲线运动6、如图所示,在两个固定的等量异种电荷的垂直平分线上,有a,b两点,下列正确的是A.a点电势比b点电势高B.a,b两点电势等高C.a,b两点电场强度大小相等D.无穷远为零电势处,则正电荷在a处电势能大于零7、水平放置的平行板电容器电容为C,两板之间的距离为d,极板面积足够大,当其带电荷量为Q时,沿两板中央水平射人的带电微粒q,恰好能做匀速直线运动,若使电容器带电荷量增大一倍(其它不变),则该带电微粒从射人电容器到落到极板上所用时间为A. B. C. D.8、图中A、B是一对平行的金属板。
在两板间加上一周期为T的交变电压 u,A板的电势UA=0,B板的电势UB随时间的变化规律为:在0~T/2的时间内,UB=U(正的常数);在T/2~T的时间内,UB=U0;在T~3T/2的时间内,UB=U0;在3T/2~2T的时间内,UB=U0;…。
专题24 带电粒子在电场中的运动----2022年高考物理一轮重难点复习(解析版)
专题24 带电粒子在电场中的运动重点知识讲解 一、带电粒子在匀强电场中的加速1.带电粒子在电场中运动时,重力一般远小于静电力,因此重力可以忽略。
2.如图所示,匀强电场中有一带正电q 的粒子(不计重力),在电场力作用下从A 点加速运动到B 点,速度由v 0增加到v.,A 、B 间距为d ,电势差为U AB.(1)用动力学观点分析:Eq a m =, U E d=,2202v v ad -= (2)用能量的观点(动能定理)分析:2201122AB qU mv mv =- 能量观点既适用于匀强电场,也适用于非匀强电场,对匀强电场又有AB W qU qEd ==。
二、带电粒子在匀强电场中的偏转(1)带电粒子以垂直于电场线方向的初速度v 0进入匀强电场时,粒子做类平抛运动。
垂直于场强方向的匀速直线运动,沿场强方向的匀加速直线运动。
(2)偏转问题的处理方法,类似于平抛运动的研究方法,粒子沿初速度方向做匀速直线运动,可以确定通过电场的时间0lt v =。
粒子沿电场线方向做初速度为零的匀加速直线运动,加速度F qE qU a m m md===; 穿过电场的位移侧移量:221at y =222001().22Uq l ql U md v mv d=⋅=; 穿过电场的速度偏转角: 20tan y v qlU v mv dθ==。
两个结论:(1)不同的带电粒子从静止开始,经过同一电场加速后再进入同一偏转电场,射出时的偏转角度总是相同的。
(2)粒子经过电场偏转后,速度的反向延长线与初速度延长线的交点为粒子水平位移的中点。
(与平抛运动的规律一样) 三、示波管的构造原理(1)示波管的构造:示波器的核心部件是示波管,示波管的构造简图如图所示,也可将示波管的结构大致分为三部分,即电子枪、偏转电极和荧光屏。
(2)示波管的原理a 、偏转电极不加电压时,从电子枪射出的电子将沿直线运动,射到荧光屏的中心点形成一个亮斑。
b 、在XX '(或YY ')加电压时,则电子被加速,偏转后射到XX '(或YY ')所在直线上某一点,形成一个亮斑(不在中心),如图所示。
带电粒子在电场中的运动知识点
带电粒子在电场中的运动知识点-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN(一)带电粒子的加速1.运动状态分析带电粒子沿与电场线平行的方向进入匀强电场,受到的电场力与运动方向在同一直线上,做加速(或减速)直线运动。
2.用功能观点分析粒子动能的变化量等于电场力做的功。
(1)若粒子的初速度为零,则qU=mv 2/2, V=2qU m (2)若粒子的初速度不为零,则qU=mv 2/2- mv 02/2, V=202qU V m+ (二)带电粒子的偏转(限于匀强电场)1.运动状态分析:带电粒子以速度V 0垂直电场线方向飞入匀强电场时,受到恒定的与初速度方向成900角的电场力作用而做匀变速曲线运动。
2.偏转问题的分析处理方法:类似平抛运动的分析处理,应用运动的合成和分解知识分析处理。
(1)垂直电场方向的分运动为匀速直线运动:t=L/V 0;v x =v 0 ;x=v 0t(2)平行于电场方向是初速为零的匀加速运动:v y =at ,y=12 at 2经时间t 的偏转位移:y=qU 2md (x V 0 )2; 粒子在t 时刻的速度:Vt=V 02+V y 2 ;时间相等是两个分运动联系桥梁;偏转角:tg φ=V y V 0 =qUx mdv 02 (三)先加速后偏转若带电粒子先经加速电场(电压U 加)加速,又进入偏转电场(电压U 偏),射出偏转电场时的侧移22222012244qU L qU L U L y at dmV dqU dU ====偏偏偏加加偏转角:tg φ=V y V 0 =U 偏L 2U 加d带电粒子的侧移量和偏转角都与质量m 、带电量q 无关。
(四)示波管原理1.构造及功能如图8-5所示图8-2(1)电子枪:发射并加速电子.(2)偏转电极YY':使电子束竖直偏转(加信号电压)偏转电极XX':使电子束水平偏转(加扫描电压)(3)荧光屏.2.原理:○1YY'作用:被电子枪加速的电子在YY'电场中做匀变速曲线运动,出电场后做匀速直线运动打到荧光屏上,由几何知识'22L l y Ly +=,可以导出偏移20'()tan ()22L ql L y l l U mV d θ=+=+。
专题带电粒子在匀强电场中的运动典型例题
专题: 带电粒子在匀强电场中的运动典型例题注意:带电粒子是否考虑重力要依据情况而定(1)基本粒子:如电子、质子、 粒子、离子等,除有说明或明确的暗示外,一般都不考虑重力(但不能忽略质量)。
(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或明确的暗示外,一般都不能忽略重力。
一、带电粒子在匀强电场中的加速运动【例1】如图所示,在真空中有一对平行金属板,两板间加以电压U 。
在板间靠近正极板附近有一带正电荷q 的带电粒子,它在电场力作用下由静止开始从正极板向负极板运动,到达负极板的速度为多大?【例2】如图所示,两个极板的正中央各有一小孔,两板间加以电压U ,一带正电荷q 的带电粒子以初速度v 0从左边的小孔射入,并从右边的小孔射出,则射出时速度为多少? 二、带电粒子在电场中的偏转(垂直于场射入)⑴运动状态分析:粒子受恒定的电场力,在场中作匀变速曲线运动.⑵处理方法:采用类平抛运动的方法来分析处理——(运动的分解).设粒子带电量为q ,质量为m ,如图6-4-3两平行金属板间的电压为U,板长为L ,板间距离为d .则场强U E d=,加速度qE qU am md,通过偏转极板的时间:0L t v 侧移量:y 22221242LU qUL at dU mdv 偏加偏转角:0tanat v 202LU qULdU mdv 偏加(U 偏、U加分别表示加速电场电压与偏转电场电压)M Nq U M N q Uv v 图6-4-带电粒子从极板的中线射入匀强电场,其出射时速度方向的反向延长线交于入射线的中点.所以侧移距离也可表示为: tan 2L y .粒子可看作是从两板间的中点沿直线射出的【例3】质量为m 、电荷量为q 的带电粒子以初速0v 沿垂直于电场的方向,进入长为l 、间距为d 、电压为U(1)粒子穿越电场的时间t : (2)粒子离开电场时的速度v(3)粒子离开电场时的侧移距离y : (4)粒子离开电场时的偏角ϕ:(5)速度方向的反向延长线必过偏转电场的中点 解:(1)粒子穿越电场的时间t :粒子在垂直于电场方向以0v v x =做匀速直线运动, (2)粒子离开电场时的速度v :粒子沿电场方向做匀加速直线运动,加速度mdqU mqE a ==,粒子离开电场时平行电场方向的分速度0mdv qUl at v y ==,所以22022)(mdv qUl v v v v y x +=+=。
高考物理考点一遍过专题带电粒子在匀强电场中的运动
专题36 带电粒子在匀强电场中的运动一、带电粒子(带电体)在电场中的直线运动 1.带电粒子在匀强电场中做直线运动的条件(1)粒子所受合外力F 合=0,粒子或静止,或做匀速直线运动。
(2)粒子所受合外力F 合≠0,且与初速度方向在同一条直线上,带电粒子将做匀加速直线运动或匀减速直线运动。
2.用动力学方法分析mF a 合=,dU E =;v 2–20v =2ad 。
3.用功能观点分析 匀强电场中:W=Eqd=qU=21mv 2–21m 20v 非匀强电场中:W=qU=E k2–E k14.带电体在匀强电场中的直线运动问题的分析方法5.处理带电粒子在电场中运动的常用技巧(1)微观粒子(如电子、质子、α粒子等)在电场中的运动,通常不必考虑其重力及运动中重力势能的变化。
(2)普通的带电体(如油滴、尘埃、小球等)在电场中的运动,除题中说明外,必须考虑其重力及运动中重力势能的变化。
二、带电粒子在电场中的偏转 1.粒子的偏转角(1)以初速度v 0进入偏转电场:如图所示设带电粒子质量为m ,带电荷量为q ,以速度v 0垂直于电场线方向射入匀强偏转电场,偏转电压为U 1,若粒子飞出电场时偏转角为θ则tan θ=y xv v ,式中v y =at=md qU 1·0v L ,v x =v 0,代入得 dmv L qU 201tan =θ 结论:动能一定时tan θ与q 成正比,电荷量一定时tan θ与动能成反比。
(2)经加速电场加速再进入偏转电场若不同的带电粒子都是从静止经同一加速电压U 0加速后进入偏转电场的,则由动能定理有:20021mv qU =,得:d U L U 012tan =θ。
结论:粒子的偏转角与粒子的q 、m 无关,仅取决于加速电场和偏转电场。
2.带电粒子在匀强电场中的偏转问题小结 (1)分析带电粒子在匀强电场中的偏转问题的关键①条件分析:不计重力,且带电粒子的初速度v 0与电场方向垂直,则带电粒子将在电场中只受电场力作用做类平抛运动。
2020版高考物理专题1.16带电粒子在匀强电场中的运动(提高篇)(电磁部分)(含解析)
专题1.16 带电粒子在匀强电场中的运动(提高篇)一.选择题1.(2019·河北省邢台市上学期期末)如图所示,空间存在两块平行的彼此绝缘的带电薄金属板A 、B ,间距为d ,中央分别开有小孔O 、P .现有甲电子以速率v 0从O 点沿OP 方向运动,恰能运动到P 点.若仅将B 板向右平移距离d ,再将乙电子从P ′点由静止释放,则( )A .金属板A 、B 组成的平行板电容器的电容C 不变B .金属板A 、B 间的电压减小C .甲、乙两电子在板间运动时的加速度相同D .乙电子运动到O 点的速率为2v 0【参考答案】 C【名师解析】 两板间距离变大,根据C =εr S 4πkd可知,金属板A 、B 组成的平行板电容器的电容C 减小,选项A 错误;根据Q =CU ,Q 不变,C 减小,则U 变大,选项B 错误;根据E =U d =Q Cd =4πkQ εr S,可知当d 变大时,两板间的场强不变,则甲、乙两电子在板间运动时的加速度相同,选项C 正确;根据e ·E ·2d =12mv 2,e ·E ·d =12mv 02,可知,乙电子运动到O 点的速率v =2v 0,选项D 错误.2.(2018·河南省南阳市上学期期末)如图所示,一充电后与电源断开的平行板电容器的两极板水平放置,板长为L ,板间距离为d ,距板右端L 处有一竖直屏M .一带电荷量为q 、质量为m 的质点以初速度v 0沿中线射入两板间,最后垂直打在M 上,则下列结论正确的是(已知重力加速度为g )( )A .两极板间电压为mgd 2qB .板间电场强度大小为2mg qC .整个过程中质点的重力势能增加mg 2L 2v 02 D .若仅增大两极板间距,则该质点不可能垂直打在M 上【参考答案】 BC【名师解析】 据题分析可知,质点在平行板间轨迹应向上偏转,做类平抛运动,飞出电场后,质点的轨迹向下偏转,才能最后垂直打在屏M 上,前后过程质点的运动轨迹有对称性,如图所示:可见两次偏转的加速度大小相等,根据牛顿第二定律得:qE -mg =ma ,mg =ma ,解得E =2mg q,由U =Ed 得板间电势差U =2mg q ×d =2mgd q ,故A 错误,B 正确;质点在电场中向上偏转的距离y =12at 2,a =qE -mg m =g ,t =L v 0,解得:y =gL 22v 02,故质点打在屏上的位置与P 点的距离为:s =2y =gL 2v 02,重力势能的增加量E p =mgs =mg 2L 2v 02,故C 正确;仅增大两极板间的距离,因两极板上电荷量不变,根据E =U d =Q Cd=Q εr S 4πkd d =4πkQ εr S 可知,板间场强不变,质点在电场中受力情况不变,则运动情况不变,故仍垂直打在屏M 上,故D 错误.3.(福建省厦门市2016届高三第二次质量检查理科综合试题)在匀强电场中有一个半径为R =1m 的圆,电场方向与圆的平面平行,O 、P 两点电势差为10V ,一个电子在该匀强电场中仅受电场力作用下运动,且在P 、Q 两点上速度方向与圆的切线一致,速度大小均为1m/s ,则 ( )A .电子从P 到Q 的运动过程中,动能先增大后减小B .电子可能做圆周运动C .该匀强电场的电场强度E =10V/mD .O 点与圆周上电势最低的点的电势差为【参考答案】D【名师解析】带电粒子仅在电场力作用下,由于粒子在P 、Q 两点动能相等,则电势能也相等.因为匀强电场,所以两点的连线PQ 即为等势面,根据等势面与电场线垂直特性,从而画出电场线CO .由曲线运动条件可知,正电粒子所受的电场力沿着CO 方向,因此粒子从P 到Q 做抛体运动,速度方向与电场力方向夹角先大于90°后小于90°,电场力对于运动来说先是阻力后是动力,所以动能先减小后增大,故AB 错误;匀强电场的电场强度U Ed =式中的d 是沿着电场强度方向的距离,因而由几何关系可知,PO U E =,所以/E m ==,圆周上电势最高的点与O 点的电势差为U ER ===,故D 正确,C 错误。
高中物理重难点易错专题 带电粒子(带电体)在电场中的运动问题(解析版)
带电粒子(带电体)在电场中的运动问题目录一、考向分析二、题型及要领归纳热点题型一 优化场区分布创新考察电偏转热点题型二 利用交变电场考带电粒子在运动的多过程问题热点题型三 借助电子仪器考带电粒子运动的应用问题热点题型四 带电粒子(带电体)在电场和重力场作用下的抛体运动热点题型五 带电粒子(带电体)在电场和重力场作用下的圆周运动三、压轴题速练考向分析1.本专题主要讲解带电粒子(带电体)在电场中运动时动力学和能量观点的综合运用,高考常以计算题出现。
2.学好本专题,可以加深对动力学和能量知识的理解,能灵活应用受力分析、运动分析(特别是平抛运动、圆周运动等曲线运动)的方法与技巧,熟练应用能量观点解题。
3.用到的知识:受力分析、运动分析、能量观点。
4.带电粒子在电场中的运动(1)分析方法:先分析受力情况,再分析运动状态和运动过程(平衡、加速或减速,轨迹是直线还是曲线),然后选用恰当的规律如牛顿运动定律、运动学公式、动能定理、能量守恒定律解题。
(2)受力特点:在讨论带电粒子或其他带电体的静止与运动问题时,重力是否要考虑,关键看重力与其他力相比较是否能忽略。
一般来说,除明显暗示外,带电小球、液滴的重力不能忽略,电子、质子等带电粒子的重力可以忽略,一般可根据微粒的运动状态判断是否考虑重力作用。
5.用能量观点处理带电体的运动对于受变力作用的带电体的运动,必须借助能量观点来处理。
即使都是恒力作用的问题,用能量观点处理也常常更简捷。
具体方法有:(1)用动能定理处理思维顺序一般为:①弄清研究对象,明确所研究的物理过程。
②分析物体在所研究过程中的受力情况,弄清哪些力做功,做正功还是负功。
③弄清所研究过程的始、末状态(主要指动能)。
④根据W=ΔE k列出方程求解。
(2)用包括电势能和内能在内的能量守恒定律处理列式的方法常有两种:①利用初、末状态的能量相等(即E1=E2)列方程。
②利用某些能量的减少等于另一些能量的增加列方程。
带电粒子在电场中的运动经典例题
带电粒子在电场中的运动经典例题
带电粒子在电场中的运动是中学物理中的重要知识点,以下是一些经典例题:
1. 一个质量为 m、带电量为 q 的粒子在匀强电场中由 A 点运动到 B 点,电场强度为 E,时间为 t,则粒子在 AB 之间的平均速度为多大?
答案:v 平均 = (E*t)/m
2. 一个带电粒子在电场中从静止开始运动,到达电场极板后速度变为 v,则粒子在电场中的加速度为多大?
答案:a = (F - E*v/m)/qE
3. 一个带电粒子在电场中沿着一条直线运动,电场方向与粒子运动方向垂直,粒子在电场中的加速度为 a,电场强度为 E,则粒子的最大速度为多大?
答案:vmax = sqrt(2*a*E)
4. 一个带电粒子在匀强电场中的运动轨迹为一条抛物线,粒子的质量为 m,带电量为 q,则粒子在电场中的电场力做的功为多大?
答案:W = q*E*t
5. 一个带电粒子在磁场中做圆周运动,磁场强度为 B,粒子的质量为 m,带电量为 q,则粒子在磁场中的半径为多大?
答案:r = m*sqrt(B^2/4*q^2)
6. 一个带电粒子在磁场中沿着一条直线运动,磁场方向与粒子运动方向垂直,粒子在磁场中的加速度为 a,磁场强度为 B,则粒子
的最大速度为多大?
答案:vmax = sqrt(2*a*B)
这些例题都是带电粒子在电场中的运动的典型例子,涉及到运动的描述、加速度的计算、能量守恒、电磁感应等问题,是中学物理中非常重要的知识点。
【物理】物理带电粒子在电场中的运动专题练习(及答案)及解析
【物理】物理带电粒⼦在电场中的运动专题练习(及答案)及解析【物理】物理带电粒⼦在电场中的运动专题练习(及答案)及解析⼀、⾼考物理精讲专题带电粒⼦在电场中的运动1.如图甲所⽰,极板A 、B 间电压为U 0,极板C 、D 间距为d ,荧光屏到C 、D 板右端的距离等于C 、D 板的板长.A 板O 处的放射源连续⽆初速地释放质量为m 、电荷量为+q 的粒⼦,经电场加速后,沿极板C 、D 的中⼼线射向荧光屏(荧光屏⾜够⼤且与中⼼线垂直),当C 、D 板间未加电压时,粒⼦通过两板间的时间为t 0;当C 、D 板间加上图⼄所⽰电压(图中电压U 1已知)时,粒⼦均能从C 、D 两板间飞出,不计粒⼦的重⼒及相互间的作⽤.求:(1)C 、D 板的长度L ;(2)粒⼦从C 、D 板间飞出时垂直于极板⽅向偏移的最⼤距离;(3)粒⼦打在荧光屏上区域的长度.【答案】(1)02qU L t m =2)2102qU t y md =(3)21032qU t s s md== 【解析】试题分析:(1)粒⼦在A 、B 板间有20012qU mv = 在C 、D 板间有00L v t = 解得:02qU L t m=(2)粒⼦从nt 0(n=0、2、4……)时刻进⼊C 、D 间,偏移距离最⼤粒⼦做类平抛运动偏移距离2012y at = 加速度1qU a md=得:2102qU t y md=(3)粒⼦在C 、D 间偏转距离最⼤时打在荧光屏上距中⼼线最远ZXXK] 出C 、D 板偏转⾓0tan y v v θ=0y v at =打在荧光屏上距中⼼线最远距离tan s y L θ=+荧光屏上区域长度21032qU t s s md==考点:带电粒⼦在匀强电场中的运动【名师点睛】此题是带电粒⼦在匀强电场中的运动问题;关键是知道粒⼦在⽔平及竖直⽅向的运动规律和特点,结合平抛运动的规律解答.2.如图1所⽰,光滑绝缘斜⾯的倾⾓θ=30°,整个空间处在电场中,取沿斜⾯向上的⽅向为电场的正⽅向,电场随时间的变化规律如图2所⽰.⼀个质量m=0.2kg ,电量q=1×10-5C 的带正电的滑块被挡板P 挡住,在t=0时刻,撤去挡板P .重⼒加速度g=10m/s 2,求:(1)0~4s 内滑块的最⼤速度为多少? (2)0~4s 内电场⼒做了多少功? 【答案】(1)20m/s (2)40J 【解析】【分析】对滑块受⼒分析,由⽜顿运动定律计算加速度计算各速度.【详解】【解】(l)在0~2 s 内,滑块的受⼒分析如图甲所⽰,电场⼒F=qE11sin F mg ma θ-=解得2110/a m s =在2 ---4 s 内,滑块受⼒分析如图⼄所⽰22sin F mg ma θ+=解得2210/a m s =因此物体在0~2 s 内,以2110/a m s =的加速度加速,在2~4 s 内,2210/a m s =的加速度减速,即在2s 时,速度最⼤由1v a t =得,max 20/v m s =(2)物体在0~2s 内与在2~4s 内通过的位移相等.通过的位移max202v x t m == 在0~2 s 内,电场⼒做正功1160W F x J == - 在2~4 s 内,电场⼒做负功2220W F x J ==- 电场⼒做功W=40 J 3.在⽔平桌⾯上有⼀个边长为L 的正⽅形框架,内嵌⼀个表⾯光滑的绝缘圆盘,圆盘所在区域存在垂直圆盘向上的匀强磁场.⼀带电⼩球从圆盘上的P 点(P 为正⽅形框架对⾓线AC 与圆盘的交点)以初速度v 0⽔平射⼊磁场区,⼩球刚好以平⾏于BC 边的速度从圆盘上的Q 点离开该磁场区(图中Q 点未画出),如图甲所⽰.现撤去磁场,⼩球仍从P 点以相同的初速度v 0⽔平⼊射,为使其仍从Q 点离开,可将整个装置以CD 边为轴向上抬起⼀定⾼度,如图⼄所⽰,忽略⼩球运动过程中的空⽓阻⼒,已知重⼒加速度为g .求:(1)⼩球两次在圆盘上运动的时间之⽐;(2)框架以CD 为轴抬起后,AB 边距桌⾯的⾼度.【答案】(1)⼩球两次在圆盘上运动的时间之⽐为:π:2;(2)框架以CD 为轴抬起后,AB边距桌⾯的⾼度为222vg.【解析】【分析】【详解】(1)⼩球在磁场中做匀速圆周运动,由⼏何知识得:r2+r2=L2,解得:r=22L,⼩球在磁场中做圆周运的周期:T=2rvπ,⼩球在磁场中的运动时间:t1=14T=2Lπ,⼩球在斜⾯上做类平抛运动,⽔平⽅向:x=r=v0t2,运动时间:t2=22Lv,则:t1:t2=π:2;(2)⼩球在斜⾯上做类平抛运动,沿斜⾯⽅向做初速度为零的匀加速直线运动,位移:r=2212at,解得,加速度:a=222vL,对⼩球,由⽜顿第⼆定律得:a=mgsinmθ=g sinθ,AB 边距离桌⾯的⾼度:h =L sinθ=222v g;4.⼀电路如图所⽰,电源电动势E=28v ,内阻r=2Ω,电阻R1=4Ω,R2=8Ω,R3=4Ω,C 为平⾏板电容器,其电容C=3.0pF ,虚线到两极板距离相等,极板长L=0.20m ,两极板的间距d=1.0×10-2m .(1)闭合开关S 稳定后,求电容器所带的电荷量为多少?(2)当开关S 闭合后,有⼀未知的、待研究的带电粒⼦沿虚线⽅向以v0=2.0m/s 的初速度射⼊MN 的电场中,已知该带电粒⼦刚好从极板的右侧下边缘穿出电场,求该带电粒⼦的⽐荷q/m (不计粒⼦的重⼒,M 、N 板之间的电场看作匀强电场,g=10m/s 2)【答案】(1)114.810C -? (2)46.2510/C kg -?【解析】【分析】【详解】(1)闭合开关S 稳定后,电路的电流:12282482E I A A R R r ===++++;电容器两端电压:222816R U U IR V V ===?=;电容器带电量: 12112 3.01016 4.810R Q CU C C --==??=?(2)粒⼦在电场中做类平抛运动,则:0L v t =21122Uq d t dm= 联⽴解得46.2510/qC kg m-=?5.如图所⽰,在不考虑万有引⼒的空间⾥,有两条相互垂直的分界线MN 、PQ ,其交点为O .MN ⼀侧有电场强度为E 的匀强电场(垂直于MN ),另⼀侧有匀强磁场(垂直纸⾯向⾥).宇航员(视为质点)固定在PQ 线上距O 点为h 的A 点处,⾝边有多个质量均为m 、电量不等的带负电⼩球.他先后以相同速度v0、沿平⾏于MN ⽅向抛出各⼩球.其中第1个⼩球恰能通过MN 上的C 点第⼀次进⼊磁场,通过O 点第⼀次离开磁场,OC=2h .求:(1)第1个⼩球的带电量⼤⼩;(2)磁场的磁感强度的⼤⼩B ;(3)磁场的磁感强度是否有某值,使后⾯抛出的每个⼩球从不同位置进⼊磁场后都能回到宇航员的⼿中?如有,则磁感强度应调为多⼤.【答案】(1)20 12mvqEh=;(2)2EBv=;(3)存在,EBv'=【解析】【详解】(1)设第1球的电量为1q,研究A到C的运动:2112q E=2h v t=解得:212mvqEh=;(2)研究第1球从A到C的运动:12yq Ev hm=解得:0yv v=tan1yvvθ==,45oθ=,2v v=;研究第1球从C作圆周运动到达O的运动,设磁感应强度为B 由2q vB mR=得1mvRq B=由⼏何关系得:22sinR hθ=解得:2EBv=;(3)后⾯抛出的⼩球电量为q ,磁感应强度B '①⼩球作平抛运动过程002hmx v tv qE== 2y qE v h m= ②⼩球穿过磁场⼀次能够⾃⾏回到A ,满⾜要求:sin R x θ=,变形得:sin mvx qB θ'= 解得:0E B v '=.6.竖直平⾯内存在着如图甲所⽰管道,虚线左侧管道⽔平,虚线右侧管道是半径R=1m 的半圆形,管道截⾯是不闭合的圆,管道半圆形部分处在竖直向上的匀强电场中,电场强度E=4×103V/m .⼩球a 、b 、c 的半径略⼩于管道内径,b 、c 球⽤长2m L =的绝缘细轻杆连接,开始时c 静⽌于管道⽔平部分右端P 点处,在M 点处的a 球在⽔平推⼒F 的作⽤下由静⽌向右运动,当F 减到零时恰好与b 发⽣了弹性碰撞,F-t 的变化图像如图⼄所⽰,且满⾜224F t π+=.已知三个⼩球均可看做质点且m a =0.25kg ,m b =0.2kg ,m c =0.05kg ,⼩球c 带q=5×10-4C 的正电荷,其他⼩球不带电,不计⼀切摩擦,g =10m/s 2,求(1)⼩球a 与b 发⽣碰撞时的速度v 0; (2)⼩球c 运动到Q 点时的速度v ;(3)从⼩球c 开始运动到速度减为零的过程中,⼩球c 电势能的增加量.【答案】(1)04m/s v = (2)v =2m/s (3) 3.2J P E ?=【分析】对⼩球a ,由动量定理可得⼩球a 与b 发⽣碰撞时的速度;⼩球a 与⼩球b 、c 组成的系统发⽣弹性碰撞由动量守恒和机械能守恒可列式,⼩球c 运动到Q 点时,⼩球b 恰好运动到P 点,由动能定理可得⼩球c 运动到Q 点时的速度;由于b 、c 两球转动的⾓速度和半径都相同,故两球的线速度⼤⼩始终相等,从c 球运动到Q 点到减速到零的过程列能量守恒可得;解:(1)对⼩球a ,由动量定理可得00a I m v =-由题意可知,F-图像所围的图形为四分之⼀圆弧,⾯积为拉⼒F 的冲量,由圆⽅程可知21S m = 代⼊数据可得:04/v m s =(2)⼩球a 与⼩球b 、c 组成的系统发⽣弹性碰撞,由动量守恒可得012()a a b c m v m v m m v =++ 由机械能守恒可得222012111()222a abc m v m v m m v =++ 解得120,4/v v m s ==⼩球c 运动到Q 点时,⼩球b 恰好运动到P 点,由动能定理22211()()22c b c b c m gR qER m m v m m v -=+-+ 代⼊数据可得2/v m s =(3)由于b 、c 两球转动的⾓速度和半径都相同,故两球的线速度⼤⼩始终相等,假设当两球速度减到零时,设b 球与O 点连线与竖直⽅向的夹⾓为θ从c 球运动到Q 点到减速到零的过程列能量守恒可得:21(1cos )sin ()sin 2b c b c m gR m gR m m v qER θθθ-+++=解得sin 0.6,37θθ==?因此⼩球c 电势能的增加量:(1sin ) 3.2P E qER J θ?=+=7.如图所⽰,在竖直⾯内有两平⾏⾦属导轨AB 、CD .导轨间距为L ,电阻不计.⼀根电阻不计的⾦属棒ab 可在导轨上⽆摩擦地滑动.棒与导轨垂直,并接触良好.导轨之间有垂直纸⾯向外的匀强磁场,磁感强度为B .导轨右边与电路连接.电路中的三个定值电阻阻值分别为2R 、R 和R .在BD 间接有⼀⽔平放置的电容为C 的平⾏板电容器,板间距离为d ,电容器中质量为m 的带电微粒电量为q 。
带电粒子在电场中的运动专题
带电粒子在电场中的运动综合专题知识要点梳理1、带电粒子在电场中的加速运动要点诠释:(1)带电粒子在任何静电场中的加速问题.都可以运用动能定理解决.即带电粒子在电场中通过电势差为U AB的两点时动能的变化是.则(2)带电粒子在静电场和重力场的复合场中的加速.同样可以运用动能定理解决.即(W为重力和电场力以外的其它力的功)(3)带电粒子在恒定场中运动的计算方法带电粒子在恒力场中受到恒力的作用.除了可以用动能定理解决外还可以由牛顿第二定律以及匀变速直线运动的公式进行计算。
2、带电粒子在偏转电场中的运动问题(定量计算通常是在匀强电场中.并且大多数情况是初速度方向与电场线方向垂直)要点诠释:(1)运动性质:受到恒力的作用.初速度与电场力垂直.做类平抛运动。
(2)常用的关系:(U为偏转电压.d为两平行金属板间的距离或沿着电场线方向运动的距离.L为偏转电场的宽度(或者是平行板的长度).v0为经加速电场后粒子进入偏转电场时的初速度。
)带电粒子离开电场时:沿电场线方向的速度是;垂直电场线方向的速度合速度大小是:方向是:离开电场时沿电场线方向发生的位移3、带电微粒或者带电物体在静电场和重力场的复合场中运动时的能量守恒要点诠释:(1)带电物体只受重力和静电场力作用时.电势能、重力势能以及动能相互转化.总能量守恒.即(2)带电物体除受重力和静电场力作用外.如果还受到其它力的作用时.电势能、重力势能以及动能之和发生变化.此变化量等于其它力的功.这类问题通常用动能定理来解决。
规律方法指导1、理解物体做直线运动的条件和曲线运动的条件(1)物体做直线运动的条件:物体受到合外力为零或者合外力与速度共线;(2)物体做曲线运动的条件:物体受到的合外力与速度不共线。
当合外力方向与速度方向成锐角时.物体做加速曲线运动;成钝角时做减速曲线运动。
2、带电粒子或者带电物体在恒定的场中时.除了匀变速直线运动外.就是做类抛体运动.灵活地将运动分解是顺利解题的关键所在。
带电粒子在电场中的运动专题
一、不计重力的带电粒子在电场中的运动1.带电粒子在电场中加速当电荷量为q、质量为m、初速度为v0的带电粒子经电压U加速后,速度变为v t,由动能定理得:qU=m v t2-m v02.若v0=0,则有v t=,这个关系式对任意静电场都是适用的.对于带电粒子在电场中的加速问题,应突出动能定理的应用.2.带电粒子在匀强电场中的偏转电荷量为q、质量为m的带电粒子由静止开始经电压U1加速后,以速度v1垂直进入由两带电平行金属板产生的匀强电场中,则带电粒子在匀强电场中做类平抛运动,其轨迹是一条抛物线(如图4-1所示).图4-1qU1=m v12设两平行金属板间的电压为U2,板间距离为d,板长为L.(1)带电粒子进入两板间后粒子在垂直于电场的方向上做匀速直线运动,有:v x=v1,L=v1t粒子在平行于电场的方向上做初速度为零的匀加速直线运动,有:v y=at,y=at2,a==.(2)带电粒子离开极板时侧移距离y=at2==轨迹方程为:y=(与m、q无关)偏转角度φ的正切值tan φ===若在偏转极板右侧D距离处有一竖立的屏,在求电子射到屏上的侧移距离时有一个很有用的推论,即:所有离开偏转电场的运动电荷好像都是从极板的中心沿中心与射出点的连线射出的.这样很容易得到电荷在屏上的侧移距离y′=.2.图示为一“滤速器”装置的示意图.a、b为水平放置的平行金属板,一束具有各种不同速率的电子沿水平方向经小孔O进入a、b两板之间.为了选取具有某种特定速率的电子,可在a、b间加上电压,并沿垂直于纸面的方向加一匀强磁场,使所选电子仍能够沿水平直线OO′运动,由O′射出.不计重力作用.可能达到上述目的的办法是[2006年高考·全国理综卷Ⅰ]( )A.使a板的电势高于b板,磁场方向垂直纸面向里B.使a板的电势低于b板,磁场方向垂直纸面向里C.使a板的电势高于b板,磁场方向垂直纸面向外D.使a板的电势低于b板,磁场方向垂直纸面向外3.如图所示,带正电的粒子以一定的初速度v0沿中线进入水平放置的平行金属板内,恰好沿下板的边缘飞出,已知板长为L,板间的电压为U,带电粒子所带电荷量为q,粒子通过平行金属板的时间为t,不计粒子的重力,则 ( )A.粒子在前时间内,电场力对粒子做的功为B.粒子在后时间内,电场力对粒子做的功为C.粒子在竖直方向的前和后位移内,电场力做的功之比为1∶2D.粒子在竖直方向的前和后位移内,电场力的冲量之比为1∶1二、带电粒子在电场中的加速与偏转图4-9●例2 喷墨打印机的结构简图如图4-9所示,其中墨盒可以发出墨汁微滴,其半径约为1×10-5m,此微滴经过带电室时被带上负电,带电荷量的多少由计算机按字体笔画的高低位置输入信号加以控制.带电后的微滴以一定的初速度进入偏转电场,带电微滴经过偏转电场发生偏转后打到纸上,显示出字体.无信号输入时,墨汁微滴不带电,径直通过偏转板而注入回流槽流回墨盒.偏转板长1.6 cm,两板间的距离为0.50 cm,偏转板的右端距纸3.2 cm.若墨汁微滴的质量为1.6×10-10 kg,以20 m/s的初速度垂直于电场方向进入偏转电场,两偏转板间的电压是8.0×103V,其打到纸上的点距原射入方向的距离是2.0 mm.求这个墨汁微滴通过带电室所带的电荷量的多少.(不计空气阻力和重力,可以认为偏转电场只局限于平行板电容器的内部,忽略边缘电场的不均匀性)为了使纸上的字放大10%,请你分析并提出一个可行的方法.【解析】设墨汁微滴所带的电荷量为q,它进入偏转电场后做类平抛运动,离开电场后做直线运动打到纸上,则距原入射方向的距离为:y=at2+L tan φ又a=,t=,tan φ=解得:y=(+L)代入数据得:q=1.25×10-13 C要将字体放大10%,只要使y增大为原来的1.1倍,可采用的措施为将两偏转板间的电压增大到8.8×103 V,或将偏转板右端与纸的间距增大到3.6 cm.[答案] 1.25×10-13C 将两偏转板间的电压增大到8.8×103V,或将偏转板右端与纸的间距增大到3.6 cm【点评】①本题也可直接根据推论公式y=(+L)tan φ=(+L)进行计算.②和平抛运动问题一样,这类题型中偏转角度的正切表达式在解题中往往较为关键,且有tan θ=2tan α(α为射出点的位移方向与入射方向的夹角)的特点.★同类拓展1 如图4-10甲所示,在真空中,有一半径为R的圆形区域内存在匀强磁场,磁场方向垂直纸面向外.在磁场右侧有一对平行金属板M和N,两板间距为R,板长为2R,板间的中心线O1O2与磁场的圆心O在同一直线上.有一电荷量为q、质量为m的带正电的粒子以速度v0从圆周上的a点沿垂直于半径OO1并指向圆心O的方向进入磁场,当从圆周上的O1点水平飞出磁场时,给M、N两板加上如图4-10乙所示的电压,最后粒子刚好以平行于N板的速度从N板的边缘飞出.(不计粒子所受到的重力、两板正对面之间为匀强电场,边缘电场不计)图4-10(1)求磁场的磁感应强度B.(2)求交变电压的周期T和电压U0的值.(3)当t=时,该粒子从M、N板右侧沿板的中心线仍以速度v0射入M、N之间,求粒子从磁场中射出的点到a点的距离.【解析】(1)粒子自a点进入磁场,从O1点水平飞出磁场,则其运动的轨道半径为R.由q v0B=m,解得:B=.(2)粒子自O1点进入电场后恰好从N板的边缘平行极板飞出,设运动时间为t,根据类平抛运动规律有:2R=v0t=2n·()2又t=nT (n=1,2,3…)解得:T= (n=1,2,3…)U0= (n=1,2,3…).图4-10丙(3)当t=时,粒子以速度v0沿O2O1射入电场,该粒子恰好从M板边缘以平行于极板的速度射入磁场,进入磁场的速度仍为v0,运动的轨迹半径为R.设进入磁场时的点为b,离开磁场时的点为c,圆心为O3,如图4-10丙所示,四边形ObO3c是菱形,所以Oc∥O3b,故c、O、a三点共线,ca即为圆的直径,则c、a间的距离d=2R.[答案] (1)(2) (n=1,2,3…) (n=1,2,3…) (3)2R【点评】带电粒子在匀强电场中偏转的运动是类平抛运动,解此类题目的关键是将运动分解成两个简单的直线运动,题中沿电场方向的分运动就是“受力周期性变化的加速运动”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带电粒子在匀强电场中的运动专题一、带电粒子在匀强电场中的加速运动【例1】如图所示,在真空中有一对平行金属板,两板间加以电压U 。
在板间靠近正极板附近有一带正电荷q 的带电粒子,它在电场力作用下由静止开始从正极板向负极板运动,【例2】如图所示,两个极板的正中央各有一小孔,两板间加以电压U ,一带正电荷q 的带电粒子以初速度v 0从左边的小孔射入,并从右边的小孔射出,则射出时速度为多少? 分析:带电粒子在运动中受到电场力的作用,电场力对它做功,使它的动能增加,由动能定理可知:2201122qU mv mv =- ⇒ v =练习:两平行金属板相距为d ,电势差为U ,以电子质量为m ,电荷量为e ,从O 点沿垂直于极板的方向射出,最远到达A 点,然后返回,如图所示,OB h =,此电子具有的初动能是( )A 、edh UB 、edUhC 、eU dh C 、eUhd小结:带电粒子在匀强电场中加速运动,它的运动特点是:力F 的作用下,以恒定加速度F qUa m md==做匀加速直线运动,处理方法有:(1)牛顿运动定律和运动学公式;(2)能量观点。
二、带电粒子在匀强电场中的偏转【例3】质量为m 、电荷量为q 的带电粒子以初速0v 沿垂直于电场的方向,进入长为l 、间距为d 、电压为U 的平行金属板间的匀强电场中,粒子将做匀变速曲线运动,如图所示,若不计粒子重力,则可求出如下相关量:(1)粒子穿越电场的时间t :粒子在垂直于电场方向以0v v x =做匀速直线运动, t v l 0=,0v lt =;M N q(2)粒子离开电场时的速度v :粒子沿电场方向做匀加速直线运动,加速度mdqUm qE a ==,粒子离开电场时平行电场方向的分速度0mdv qUl at v y ==,所以20222)(mdv qUl v v v v y x +=+=。
(3)粒子离开电场时的侧移距离y :222221mdv qUl at y ==(4)粒子离开电场时的偏角ϕ: 因为2tan mdv qUlv v xy ==ϕ,所以20arctan mdv qUl =ϕ。
(5)速度方向的反向延长线必过偏转电场的中点由20tan mdv qUl =ϕ和2022mdv qUl y =,可推得ϕtan 2l y =。
粒子可看作是从两板间的中点沿直线射出的。
注意:带电粒子是否考虑重力要依据情况而定(1)基本粒子:如电子、质子、α粒子、离子等,除有说明或明确的暗示外,一般都不考虑重力(但不能忽略质量)。
(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或明确的暗示外,一般都不能忽略重力。
三、带电粒子经加速电场后进入偏转电场【例4】如图所示,由静止开始被电场(加速电压为1U )加速的带电粒子平行于两正对的平行金属板且从两板正中间射入,从右侧射出,设在此过程中带电粒子没有碰到两极板。
若金属板长为L ,板间距离为d 、两板间电压为2U ,试分析带电粒子的运动情况。
(1)粒子穿越加速电场获得的速度1v设带电粒子的质量为m ,电量为q , 经电压1U 加速后速度为1v 。
由动能定理有 21121mv qU =,m qU v 112=(2)粒子穿越偏转电场的时间t :带电粒子以初速度1v 平行于两正对的平行金属板从两板正中间射入后,在偏转电场中运动时间为t ,则112qU m L v L t ==v 2(3)粒子穿越偏转电场时沿电场方向的加速度a :带电粒子在偏转电场中运动时沿电场方向的加速度dmqU m F a 2='=(4)粒子离开偏转电场时的侧移距离y :带电粒子在偏转电场中运动时沿电场方向作初速度为0的做匀加速直线运动dU L U L qU m dm qU at y 1222122422121=⨯⨯==(5)粒子离开偏转电场时沿电场方向的速度为y v :带电粒子离开电场时沿电场方向的速度为y v ,则122mU qd L U at v y ==(6)粒子离开偏转电场时的偏角ϕ:设飞出两板间时的速度方向与水平方向夹角为θ。
则dU LU v v x y122tan ==θ【例5】如图所示,由静止开始被电场(加速电压为1U )加速的带电粒子平行于两正对的平行金属板且从两板正中间射入。
若金属板长为L ,板间距离为d 、两板间电压为2U ,试讨论带电粒子能飞出两板间的条件和飞出两板间时的速度方向。
分析:设带电粒子的质量为m ,电量为q ,经电压1U 加速后速度为1v 。
由动能定理有 21121mv qU =,m qU v 112=。
带电粒子以初速度1v 平行于两正对的平行金属板从两板正中间射入后,若能飞出偏转电场,在电场中运动时间为t ,则112qU mL v L t ==。
带电粒子在偏转电场中运动时的加速度dmqU a 2=。
带电粒子飞出偏转电场时的侧移y 的最大值为2d ,则d U L U d 12242=,所以22122L d U U =。
由上式可知,当两极板间电压22122L d U U >时,带电粒子不可能飞出两金属板之间;当2U ≤2212L d U 时,带电粒子可飞出两金属板之间。
U 2在满足2U ≤2212Ld U 的条件下,设带电粒子飞出两金属板之间的侧移为y ,由上面的讨论可知dU L U at y 1222421==。
带电粒子离开电场时沿电场方向的速度为y v ,则122mU qd L U at v y ==。
设飞出两板间时的速度方向与水平方向夹角为θ。
则dU LU v v xy 122tan ==θ。
四、带电粒子在电场中运动的应用——示波器【例6】如图所示,k 级发射出电子,经过KS 之间的加速电场加速后,进入AB 的偏转电场,AB 两板间的电压为U 2,射出电场后将射到电子屏幕上。
试分析电子的整个运动过程。
(1)电子穿越加速电场获得的速度1v设电子的质量为m ,电量为q , 经电压1U 加速后速度为1v 。
由动能定理有 21121mv qU =,m qU v 112=(2)电子穿越偏转电场的时间t :电子以初速度1v 平行于两正对的平行金属板从两板正中间射入后,在偏转电场中运动时间为t ,则112qU mL v L t ==(3)电子穿越偏转电场时沿电场方向的加速度a :电子在偏转电场中运动时沿电场方向的加速度dmqU m F a 2='=(4)电子离开偏转电场时的侧移距离y :电子在偏转电场中运动时沿电场方向作初速度为0的做匀加速直线运动dU L U L qU m dm qU at y 1222122422121=⨯⨯==(5)电子离开偏转电场时沿电场方向的速度为y v :电子离开电场时沿电场方向的速度为y v ,则122mU qd L U at v y ==(6)电子离开偏转电场时的偏角ϕ:设飞出两板间时的速度方向与水平方向夹角为θ。
则dU LU v v xy 122tan ==θ (7)电子在屏幕上的偏移位移Y :电子飞出电场以后将沿电子出场时速度方向做匀速直线运动,最后射到屏幕上。
所以:21=t a n 2y x v U L y L v U dθ'==' 则212U LL y U d ''= 所以2222111()4222U L U LL U L LY y y L U d U d U d '''=+=+=+【例7】如图所示是示波器的原理图。
分析下列情况中,示波器荧光屏上观察到的现象。
(1)偏转电极YY′上加稳定的电压,荧光屏上出现什么现象?(2)只在YY′电极上加如图所示的正弦规律变化的电压U y ,荧光屏上出现什么现象?U =U max sin ωt ,偏移量也将按正弦规律变化Y =Y max sin ωt ,即亮斑在竖直方向上作简谐运动,当电压变化很快时,亮斑的移动也很快,由于视觉暂留和荧光物质的残光特性,亮斑看起来就成为一条竖直的亮线。
U T(3)在YY′电极上不加电压,在XX′电极上加如图所示U x 从-U 均匀变化到U 的电压,荧光屏上出现什么现象?加上特定的周期性变化的电压,亮斑从一侧匀速运动到另一侧,然后迅速返回原处,再匀速移向另一侧,如此反复继续。
这个过程叫扫描,所加电压叫扫描电压。
如果电压变化很快,亮斑看起来就成为一条水平亮线。
(4)在YY′电极上加上左图所示的正弦规律变化的电压,在XX′电极上加如右图所示从-U 到U 均匀变化的电压,两电压同时开始,周期相同,在荧光屏上出现什么现象?例4:如图(a )所示,A 、B 为水平放置的平行金属板,板间距离为d (d 远小于板的长和宽)。
在两板之间有一带负电的质点P 。
已知若在A 、B 间加电压0U ,则质点P 可以静止平衡。
现在A 、B 间加上如图(b )所示的随时间t 变化的电压U ,在t =0时质点P 位于A 、B 间的中点处且初速度为0。
已知质点P 能在A 、B 之间以最大的幅度上下运动而又不与两板相碰,求图(b )中U 改变的各时刻t 1,t 2,t 3及t n 的表达式。
(质点开始从中点上升到最高点,及以后每次从最高点到最低点或从最低点到最高点的过程中,电压只改变一次。
0U -UU -U T。