第四章 正弦波振荡电路
高频电子线路-第4章--习题答案
第4章 正弦波振荡器4.1 分析图P4.1所示电路,标明次级数圈的同名端,使之满足相位平衡条件,并求出振荡频率。
[解] (a) 同名端标于二次侧线圈的下端601260.87710Hz 0.877MHz 2π2π3301010010f LC--===⨯=⨯⨯⨯(b) 同名端标于二次侧线的圈下端606120.77710Hz 0.777MHz 2π1401030010f --==⨯=⨯⨯⨯(c) 同名端标于二次侧线圈的下端606120.47610Hz 0.476MHz 2π5601020010f --==⨯=⨯⨯⨯4.2 变压器耦合LC 振荡电路如图P4.2所示,已知360pF C =,280μH L =、50Q =、20μH M =,晶体管的fe 0ϕ=、5oe 210S G -=⨯,略去放大电路输入导纳的影响,试画出振荡器起振时开环小信号等效电路,计算振荡频率,并验证振荡器是否满足振幅起振条件。
[解] 作出振荡器起振时开环Y 参数等效电路如图P4.2(s)所示。
略去晶体管的寄生电容,振荡频率等于0612Hz =0.5MHz 2π2π2801036010f LC--==⨯⨯⨯略去放大电路输入导纳的影响,谐振回路的等效电导为5661121042.7μS 502π0.51028010e oe oe o G G G G S S Q Lρω--=+=+=⨯+=⨯⨯⨯⨯⨯由于三极管的静态工作点电流EQ I 为12100.712330.6mA 3.3k EQV I ⨯⎛⎫-⎪+⎝⎭==Ω所以,三极管的正向传输导纳等于/0.6/260.023S fe m EQ T Y g I U mA mV ≈===因此,放大器的谐振电压增益为o muo eiU g A G U -==而反馈系数为f oU j M M F j L LU ωω-=≈=-这样可求得振荡电路环路增益值为60.023203842.710280meg M T A F G L -====⨯ 由于T >1,故该振荡电路满足振幅起振条件。
正弦波振荡器
要维持一定振幅的振荡,反馈系数F应设计得大 一些。一般取 1/ 2 ~ 1/8,这样就可以使得在 AoF 1 时 的情况下起振。
由上分析知,反馈型正弦波振荡器的起振条件是:
AoF 1
即
AAo
F1 F
2n
(n 1, 1, )
分别称为振幅起振条件和相位起振条件。
应用:无线电通讯、广播电视,工业上的高频感 应炉、超声波发生器、正弦波信号发生器、半导体 接近开关等。
正弦波振荡电路的组成
(1) 放大电路: 放大信号
(2) 反馈网络: 必须是正反馈,反馈信号即是 放大电路的输入信号
(3) 选频网络: 保证输出为单一频率的正弦波 即使电路只在某一特定频率下满足 自激振荡条件
17.3.2 正弦波振荡电路
正弦波振荡电路用来产生一定频率和幅值的正弦 交流信号。它的频率范围很广,可以从一赫以下到 几百兆以上;输出功率可以从几毫瓦到几十千瓦; 输出的交流电能是从电源的直流电能转换而来的。 常用的正弦波振荡器
LC振荡电路:输出功率大、频率高。 RC振荡电路:输出功率小、频率低。 石英晶体振荡电路:频率稳定度高。
在平衡条件下,反馈到放大管的输入信号正好等于放 大管维持及所需要的输入电压,从而保持反馈环路各点电 压的平衡,使振荡器得以维持。
4.1.2平衡条件
振荡器的平衡条件即为
T ( j) K( j)F( j) 1 也可以表示为 T ( j) KF 1
(4 ─ 9a)
T K F 2n
2) 相位平衡的稳定条件
相位稳定条件指相位平衡条件遭到破坏时,线路本 身能重新建立起相位平衡点的条件;若能建立则仍能保 持其稳定的振荡。
强调指出:相位稳定条件和频率稳定条件实质上是 一回事。因为振荡的角频率就是相位的变化率 d 。
场效应管正弦波振荡电路
场效应管正弦波振荡电路
场效应管(Field Effect Transistor,FET)正弦波振荡电路是一种利用场效应管来产生正弦波信号的电路。
场效应管是一种三端口器件,它的输入电阻很高,输出电阻很低,因此非常适合用于放大和调节信号。
正弦波振荡电路利用了场效应管的放大特性和反馈原理来产生稳定的正弦波信号。
在正弦波振荡电路中,场效应管通常被配置为共源放大器或共漏放大器,这取决于电路的具体设计。
通常情况下,电路会包括一个反馈网络,以产生所需的振荡频率和幅度。
反馈网络会将一部分输出信号反馈到输入端,以维持振荡的稳定性。
正弦波振荡电路的设计需要考虑到场效应管的工作点稳定性、放大倍数、频率稳定性和失真等因素。
在设计中需要合理选择场效应管的工作点,以确保其在合适的工作状态下产生稳定的正弦波输出。
此外,反馈网络的设计也需要精心考虑,以确保振荡电路能够产生所需频率和幅度的正弦波信号。
正弦波振荡电路在通信、音频处理和仪器测量等领域有着广泛的应用。
通过合理设计场效应管的工作状态和反馈网络的参数,可
以实现稳定、精确的正弦波信号输出,满足不同应用的需求。
总的来说,正弦波振荡电路利用场效应管的特性和反馈原理来
产生稳定的正弦波信号,其设计需要充分考虑场效应管的工作状态、反馈网络的参数以及振荡电路的稳定性和失真等因素。
这种电路在
各种领域都有着重要的应用,是电子工程中的重要组成部分。
电子课件电子技术基础第六版第四章正弦波振荡电路
§4-2 LC正弦波振荡电路
学习目标
1. 了解 LC 并联谐振电路的选频特性,会计算谐振频 率。 2. 认识变压器反馈式与 LC 三点式正弦波振荡电路, 判断其是否满足幅度条件和相位条件。 3. 能分析三种 LC 正弦波振荡电路的工作原理。 4. 了解三种 LC 正弦波振荡电路的特点及适用场合。
LC 正弦波振荡电路采用 LC 并联谐振电路作选频网络, 主要用来产生 1 MHz 以上的高频正弦波信号。LC 正弦波振 荡电路按反馈电路的形式不同,分为变压器反馈式、电感三 点式和电容三点式三种。
1. 相位条件 用瞬时极性法,设基极加一瞬时为正的信号,集电极输出 为负,LC 回路谐振时另一端瞬时为正,反馈回基极的瞬时极 性为正,与原假设信号相位相同,电路满足相位平衡条件, 所以电路能够起振。 2. 振荡频率 电路的振荡频率等于 LC 并联谐振电路的谐振频率,即
式中,
3. 电路特点 电容三点式振荡电路的特点如下: (1)由于反馈电压取自电容 C2 两端,电容对高次谐波 阻抗很小,反馈电压中的高次谐波分量很小,所以输出波形 较好,频率稳定度较高。 (2)因为电容 C1、C2 的容量可以选择较小,若将放大 管的极间电容也计算进去,则振荡频率较高,一般可以达到 100 MHz 以上。 (3)调节电容可以改变振荡频率,但同时会影响起振条 件,故频率调节范围较小,因此这种电路适用于产生固定频 率的振荡电路。
当给石英晶片两侧加上交变电压时,石英晶片会产生与所 加交变电压相同频率的机械振动,但是这种振动的幅度一般 很小;但当外加交变电压的频率为某一特定值时,石英晶片 的振动幅度将会突然增大,这种现象称为石英晶片的压电谐 振。这一特定频率就是石英晶片的固有频率,也称谐振频率 。
2. 石英晶体谐振器 在石英晶片的两侧喷涂金属层,然后将石英晶片夹在两金 属板之间,再分别从两金属板上引出电极,并按一定形式封 装就构成了一个石英晶体谐振器,简称晶振。
电子技术基础与技能-机工教案第四章教案振荡电路的组成
图 4-10 石英晶体的外形结构图
a)石英晶体等效电路 图 4-11
b)石英晶体电路符号
石英晶体等效电路、电抗-频率特性及电路符号图
如图 4-11 b)所示为石英晶体的符号,如图 4-11a)所示为等效电路。 目前石英晶体振荡器已广泛应用于石英钟、频率计、彩色电视机、手 持移动电话、计算机等各类电子设备中
振荡电路接通电源后,由于电路里会有频率范围很宽的噪声,比 如晶体管和电阻内的热噪声, 这一信号在选频电路的作用下选出频率 为 f o 的信号被振荡电路放大,又经反馈电路送回到放大电路的输入 端,形成一个循环往复循环下去,振荡就形成了。但是这种循环放大 过程不可能使信号的振幅无限制地放大下去, 因为受到晶体管非线性 特征的限制,放大倍数逐渐减小,振幅达到某一数值后就不再增大, 达到平衡状态,振荡电路进入稳幅振荡。
教学重、难点
图 4-4
RC 桥式振荡电路原理图
3
电子技术基础与技能
主编 胡峥
第四章 教案
授课班级 教学内容 课堂类型 学时 教学目的 学时 1、变压器耦合式振荡电路 2、电感三点式振荡电路 3、电容三点式振荡电路 教学重、难点: 教学内容及步骤 4.2.2 LC 振荡器 LC 正弦波振荡器电路采用 LC 并联回路作为选频网络, 它主要用来产 生高频正弦波信号, 振荡频率通常在 1MHZ 以上。 通常在高频信号发生器、 各种高频设备中的本振中应用。 LC 振荡电路可分为变压器耦合式振荡电路和三点式振荡电路。 【变压器耦合式振荡电路】 (1)电路组成 如图 4-6 所示电路是采用变压器耦合的正弦波振荡电路。 电路中的 VT 为振荡管,RB1、RB2 构成分压式偏置电路,RE 是发射极直流负反馈电 阻,它们提供了放大电路的静态偏置。T 为振荡变压器,L1 和 C 构成 LC 选频电路,振荡信号从 VT 管集电极输出。 备注 授课时间 课程名称 LC 振荡器 电子技术基础与技能
电工学-第四章 正弦波振荡电路
R
1 jL jC j(L 1
C
)
( R L)
.
I
L/C
R j(L 1 )
C
+ L
•
U
C
_
R
2020/4/18
24
LC并联谐振回路的选频特性
•
Z
U
•
I
L/C
R j(L
1)
C
.
I
+ L
•
U
C
_
R
•
当LC并联回路发生谐振时,端电压 U 与总电
流
•
I
同相,即阻抗Z表现为纯电阻性。
谐振频率
o
Uf
•
F
Uo
•
•
由以上知,放大电路产生自激振荡的条件是 U f U i
••
•
则
AuF
Uo
•
U
•
f
U
•
f
1
Ui Uo Ui
2020/4/18
7
自激振荡
总结出自激振荡的条件:
(1)相位平衡条件
反馈电压
•
U
f
与输入电压
•
U
i
同相位,形成正反馈
(2)幅值平衡条件
反馈电压与输入电压大小相等: U f U i
C2
uf
首先判断相位平衡条件,见瞬时极性
2020/4/18
35
RB1
RC
+
RB2
uf
+
ube
RE
UCC
+
C1
L
+
C2
CE
正弦波振荡电路知识点总结
正弦波振荡电路知识点总结1. 振荡电路的基本概念振荡电路是一种能够在没有外部输入的情况下产生连续变化的信号的电路。
它通过自身的反馈环路来产生振荡。
振荡电路的基本组成包括振荡器、反馈网络、放大器和输出网络。
振荡器是产生基频信号的核心元件,反馈网络用于将一部分输出信号反馈到输入端,放大器则用于提供振荡器所需要的放大增益,输出网络用于将振荡器的输出信号提取到外部装置上。
2. 正弦波振荡电路的工作原理正弦波振荡电路是一种能够产生连续变化正弦波信号的振荡电路,它利用正反馈和负反馈的结合来实现振荡。
首先,放大器将输入信号放大,然后经过反馈网络将一部分输出信号反馈到放大器的输入端。
这样就形成了一个正反馈环路,当反馈信号到达一定幅值时,输出信号将开始增大,最后达到稳定状态,形成正弦波振荡。
3. 常见的正弦波振荡电路类型常见的正弦波振荡电路包括RC正弦波振荡电路、LC正弦波振荡电路、晶振电路、信号发生器和运放正弦波振荡电路等。
RC正弦波振荡电路利用电容和电阻元件来构成反馈网络,LC正弦波振荡电路利用电感和电容元件构成反馈网络,并且晶振电路利用晶体谐振器的内部谐振回路产生正弦波信号,信号发生器则是通过内部振荡电路产生正弦波信号,运放正弦波振荡电路则是利用运放放大器的高增益和稳定性实现正弦波振荡。
4. 正弦波振荡电路的频率和幅值控制正弦波振荡电路可以通过改变反馈元件的数值、改变振荡器的工作参数、改变放大器的增益等方法来控制输出信号的频率和幅值。
例如,RC正弦波振荡电路的谐振频率与RC元件相关,改变电阻或电容的数值可以改变输出信号的频率;LC正弦波振荡电路的谐振频率与LC元件相关,改变电感或电容的数值可以改变输出信号的频率;晶振电路的谐振频率与晶体的谐振频率相关,调整晶振的谐振频率可以改变输出信号的频率;信号发生器和运放正弦波振荡电路通过内部电路来控制输出信号的频率和幅值。
5. 正弦波振荡电路的应用正弦波振荡电路广泛应用于各种电子设备中,如信号发生器、音频设备、通信系统、测量仪器等。
正弦波振荡电路的起振条件和平衡条件
正弦波振荡电路的起振条件和平衡条件
正弦波振荡电路的起振条件和平衡条件如下:
起振条件:AF>1 φa+φf=2nπ(2) 平衡后满足平衡条件:AF=1 φa+φf=2nπ160、RC正弦波振荡器的结构特点是什么?
根据以上参考文章,可以得出结论:
正弦波振荡电路的起振条件是指当输入电压等于放大器输出电压时,电路必须满足平衡条件。
此时,振荡器进入稳态振荡状态。
要使振荡器开始工作并达到平衡状态,需要满足以下条件:
1. 起振时满足起震条件:AF>1 φa+φf=2nπ(2) 平衡后满足平衡条件:AF=1 φa+φf=2nπ。
其中,A是放大倍数,F是反馈系数,φa是放大器相移,φf是反馈回路相移,n是正整数。
关于“RC正弦波振荡器的结构特点”,可以参考文中所述“结构特点是指与通用运算放大器类似的几个组成部分”,并结合文中附图做进一步的说明和解释。
如有需要可以查询资料进一步获取详细信息。
高频电子线路作业及答案(胡宴如 狄苏燕版)四章
第4章 正弦波振荡器4.1 分析下图P4.1所示电路,标明次级数圈的同名端,使之满足相位平衡条件,并求出振荡频率。
[解] (a) 同名端标于二次侧线圈的下端600.87710Hz 0.877MHzf ===⨯=(b) 同名端标于二次侧线的圈下端600.77710Hz 0.777MHzf ==⨯=(c) 同名端标于二次侧线圈的下端600.47610Hz 0.476MHzf ==⨯=4.2 变压器耦合振荡电路如图P4.2所示,已知,、、LC 360pF C =280μH L =50Q =,晶体管的、,略去放大电路输入导纳的影响,试画出振荡20μH M =fe 0ϕ=5oe 210S G -=⨯器起振时开环小信号等效电路,计算振荡频率,并验证振荡器是否满足振幅起振条件。
[解] 作出振荡器起振时开环参数等效电路如图P4.2(s)所示。
Yhe b e12略去晶体管的寄生电容,振荡频率等于0Hz =0.5MHzf ==略去放大电路输入导纳的影响,谐振回路的等效电导为5661121042.7μS502π0.51028010e oe oe o G G G G S S Q L ρω--=+=+=⨯+=⨯⨯⨯⨯⨯由于三极管的静态工作点电流为EQ I 12100.712330.6mA 3.3k EQV I ⨯⎛⎫-⎪+⎝⎭==Ω所以,三极管的正向传输导纳等于/0.6/260.023Sfe m EQ T Y g I U mA mV ≈===因此,放大器的谐振电压增益为omuo eiU g A G U -==而反馈系数为f oU j M MF j L LU ωω-=≈=-这样可求得振荡电路环路增益值为60.023203842.710280m e g M T A F G L -====⨯???由于>1,故该振荡电路满足振幅起振条件。
T 4.3 试检查图P4.3所示振荡电路,指出图中错误,并加以改正。
[解] (a) 图中有如下错误:发射极直流被短路,变压器同各端标的不正确,构成负反f L 馈。
正弦波振荡电路
*第五章正弦波振荡电路教学重点1.掌握正弦波振荡条件、电路组成。
2.掌握LC振荡电路振荡频率计算、起振条件。
3.掌握RC桥式振荡电路组成和振荡条件。
4.搭建、调试RC桥式正弦波振荡器功能电路。
教学难点1.正弦波振荡可能性的判断。
2.理解各种振荡电路组成。
学时分配5.1自激振荡振荡器产生的信号是“自激”的,通常称为自激振荡器。
5.1.1自激振荡的形成1.自激振荡的现象通过扩音系统中的自激现象,感受放大器自激的效果。
2.正弦波振荡电路的组成正弦波振荡电路由放大器、反馈电路、选频网络和稳幅电路等部分组成。
(1)放大电路(2)反馈网络u i=0(3)选频网络(4)稳幅电路由于电路通电的瞬间,电路将产生微小的噪声或扰动信号一电路对频率为f0的正弦波产生正反馈过程,则输出信号u o f-u. (U/T)T u o ff。
于是u o越来越大,由于管子的非线性特性,倍数将减小当u o的幅值增大到一定程度时,放大(稳幅)一电路达到动态平衡。
5.1.2自激振荡产生的条件1.相位平衡条件要维持振荡,电路必须是正反馈,其条件是:①=0或①=嶙+ Q=2n n (n=0, 1, 2, 3…)。
其中^A为放大器的相移,Q为反馈电路的相移,中为相位差。
即,反馈电压的相位与净输入电压的相位必须相同,即反馈回路必须是正反馈。
2.振幅平衡条件自激振荡的振幅平衡条件是:AF三1。
即,要维持等幅振荡,反馈电压的大小必须等于净输入电压的大小,即u f= u「。
5.2 常用振荡电路正弦波振荡电路按反馈网络性质分类可分为两大类:RC振荡电路由电阻、电容元件和放大电路组成的振荡电路LC振荡电路(含石英晶体振荡电路)是由电感、电容元件和放大电路组成的振荡电路5.2.1RC桥式振荡电路做一做:用示波器观察RC振荡电路产生的正弦波形1.RC网络的选频特性将电阻R1与电容C1串联、电阻R2与电容C2并联所组成的网络称为RC串并联选频网络,如图所示。
通常选角1= R2=R, C1=C2=C。
正弦波振荡器
或者写成:
A F 1
A0F 1
A F 2n
课后思考题:在LC振荡器中,谐振回路是否等效成一个 电阻?振荡频率是否严格等于谐振回路的谐振频率?
三. 稳定条件
振荡器在工作过程中, 不可避免地要受到各种外界因素变化
的定影因响素,将如引电起源放电大压器波和动回、路温的度参变数化发、生变噪化声,干结扰果等使A。F这些变不化稳,
Uf
是反馈电压、 Ui 是输入电压、
A
是开环电压增益,
F 是反馈系数,
反馈型振荡器 正常工作的 三个条件:
一:起振条件
在接通电源瞬间, 电路中存在各种电扰动, 这些扰动均具
有很宽的频谱。 如果选频网络是由LC并联谐振回路组成,
则其中只有角频率为 谐振角频率ω0的分量才能通 过反馈产生
较大的 反馈电压 U f 。 如果在谐振频率处, U f 与原输入电
U f
j(
X
jX be be X
bc
)
U
c
X be X ce
U c
由电于路必中须U i满与足U正 c反反馈相:,所所以以UUi与f
U f
与
同相,而在共射 U c 反相
即:
X be 0 X ce
V
X1
X2
C2
C1
X3 L
(a)
V
L2
L1
X1
X2
X3 C
(b)
(a) 电容反馈振荡器; (b) 电感反馈振荡器
A 0
U c UC UCQ
Z
0
0
1)振幅平衡的稳定条件
2)相位平衡的稳定条件
第三节 反馈型LC振荡器
一 ,互感耦合振荡电路 二,电容反馈振荡电路 三,电感反馈振荡电路 电感三点式和电容三点式振荡电路的比较
正弦波振荡电路
噪声和干扰问题
可能是由于电路布局不合理或外部 干扰所致。解决方案包括优化电路 布局、增加滤波器或采取电磁屏蔽 措施。
感谢观看
THANKS
在设计时考虑到未来可能的调试需求,预 留适当的调整空间,以便在必要时调整电 路参数。
调试方法与技巧
观察与测试
通过示波器等测试设备观察振荡波形, 检查频率、幅度等参数是否符合预期。
逐步调试
从电路的输入端开始,逐步测试并调 整每个元件的参数,以确保整个电路 的稳定性和性能。
分块测试
将电路分成若干个模块进行测试,以 确定问题所在并进行针对性的调整。
记录与总结
在调试过程中,记录每次调整的参数 和结果,以便于问题分析和总结经验。
常见问题与解决方案
振荡波形失真
可能是由于元件参数不匹配或电路 布局不合理所致。解决方案包括重 新选择元件或优化电路布局。
频率不准确
可能是由于元件精度不够或计 算误差。解决方案包括使用高 精度元件或重新计算频率。
无法起振或振荡不稳定
并联型晶体振荡电路的优点是频率稳 定性高、输出波形好,但电路设计较 为复杂,调试难度较大。
串联型晶体振荡电路
串联型晶体振荡电路的特点是石英晶体与电容、电感等元件串联,通过反馈电路 和输出滤波器实现正弦波输出。
串联型晶体振荡电路的优点是电路设计相对简单,调试方便,但频率稳定性略低 于并联型晶体振荡电路。
正弦波振荡电路的应用
01
02
03
信号源
正弦波振荡电路可作为信 号源,为电子设备和系统 提供稳定的正弦波信号。
通信
在无线通信中,正弦波振 荡电路用于生成载波信号, 实现信号的传输。
正弦波振荡电路的构成部分
正弦波振荡电路的构成部分正弦波振荡电路是一种常用的电子电路,用于产生稳定的正弦波信号。
它由几个重要的构成部分组成,包括振荡器、放大器、反馈网络和电源。
1. 振荡器:振荡器是正弦波振荡电路的核心部分,用于产生稳定的正弦波信号。
常见的振荡器包括LC振荡器、RC振荡器和晶体振荡器等。
LC振荡器由电感和电容组成,RC振荡器则由电阻和电容组成。
晶体振荡器则利用晶体的压电效应产生振荡信号。
振荡器的稳定性和频率精度对正弦波振荡电路的性能起着关键作用。
2. 放大器:放大器用于放大振荡器产生的微弱信号,以增加信号的幅度。
放大器通常由晶体管或运放构成。
晶体管放大器具有高增益和较低的噪声水平,适用于高频振荡电路。
运放放大器具有高输入阻抗和低输出阻抗,能够提供稳定的放大倍数。
3. 反馈网络:反馈网络用于将放大器的输出信号反馈到振荡器的输入端,以实现正反馈,从而维持振荡器的振荡。
反馈网络通常由电阻、电容和电感组成,通过调整反馈网络的参数,可以调节振荡器的频率和稳定性。
4. 电源:电源为正弦波振荡电路提供所需的电能。
电源通常由电池或交流电源提供,而稳定的直流电源则需要使用整流和滤波电路进行处理,以确保振荡电路工作时电源的稳定性和纯净性。
正弦波振荡电路的构成部分相互配合,实现了信号的产生、放大和稳定。
振荡器产生稳定的正弦波信号,放大器将其放大到所需的幅度,反馈网络维持振荡器的振荡,而电源为整个电路提供能量。
这些构成部分的选择和调整,对于正弦波振荡电路的性能和稳定性起着至关重要的作用。
除了以上的构成部分,正弦波振荡电路还可以根据具体的应用需求添加其他元件和电路。
例如,可以添加滤波电路以去除杂散干扰信号,可以添加调频电路以实现频率调节,还可以添加调幅电路以实现幅度调节。
这些附加的元件和电路可以根据需要进行选择和调整,以满足不同的应用要求。
正弦波振荡电路的构成部分包括振荡器、放大器、反馈网络和电源。
这些部分相互配合,实现了信号的产生、放大和稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章正弦波振荡电路本章的主要任务是学习正弦波振荡电路,包括振荡电路的类型、电路的组成和电路的工作原理,以及振荡电路的起振条件和平衡条件等。
本章基本要求1.了解正弦波振荡电路的类型、电路的组成和工作原理。
2.正确理解正弦波振荡电路的起振条件和平衡条件。
3.正确理解LC振荡电路的选频特性。
4.掌握RC桥式振荡器的特点、电路形式和工作原理。
5.正确理解LC回路的选频特性及Q值大小对回路和影响。
6.掌握RC振荡器的幅频特性和相频特性及振荡频率的计算方法。
本章习题解析4-1变压器反馈式LC振荡电路如图4-1所示,其回路参数L = 90MH,C=240pF,试求:(1)振荡频率f0;(2)标出振荡线圈L和反馈线圈L1在正确接法下的一对同名端;(3)画出图4-1所示电路的交流通路。
图4-1f=可知,振荡频率为解(1)由f===34.24kHz(2) 同名端如图4-1(a)所示。
(3) 4-2 ,振荡解 所以max C4-3 ,C 解:由02f RCπ=可知 0361 1.3262120100.00110f kHz π-==⨯⨯⨯⨯4-4 在调节变压器反馈式振荡电路中,试解释下列现象:(1)对调反馈线圈的两个接头即可起振;(2)调整R B 1、R B 2或R E 的阻值后即可起振;(3)改用β较大的晶体管后就能起振;(4)适当增加反馈线圈的匝数即能起振;(5)适当增大L 值或减小C 值后就能起振;(6)调整R B 1、R B 2、R E 的阻值后可使波形变好;(7)负载太大,不仅影响输出波形,有时甚至不能起振。
解:(1)反馈线圈的同名端接反了(2)调整R B 1、R B 2或R E ,即可调整电路的放大倍数β,使AF>1时,即可起振。
(3)β较大时,A增大,当AF>1时,即可起振。
(4)增加反馈线圈的匝数即可增加反馈电压,即F增加,当AF>1时即可起振。
(5)增大L或减小C均可增加阻抗,从而增大副边电压即反馈电压,故F增加,当AF>1时即可起振。
(6)调整R B1、R B2、R E的阻值,可以调整放大倍数A,当AF=1时波形最好。
(7)负载太大,即A较小,故影响输出波形,若AF<1,则不能起振。
4-5 试用自激振荡的相位条件判断图4-9所示电路能否产生自激振荡,哪一段上产生反馈电压?图4-9 题4-5解:图(a)不能产生自激振荡因为φa =180˚,φf =0,故φa+φf =180˚≠2nπ图(b)可以产生自激振荡因为φa =0,φf =0,故φa+φf = 0图(c)不能产生自激振荡因为φa =180˚,φf =0,故φa+φf =180˚≠2nπ图(d)可以产生自激振荡因为φa =0,φf =0,故φa+φf = 04-6 在图4-10所示电路中,试算出在可变电容C2的变化范围内,其振荡频率的可调范围为多少?其中电感线圈抽头1、3间的电感量为100μH,C2=32~270pF。
图4-10 题4-6图解:由0f =可知0min f kHz =0max f kHz =所以振荡频率的可调范围为968.6~2813.5kHz 。
第五章 直流稳压电源本章的主要任务是学习单相半波、全波整流电路,包括电路的结构、工作原理和分析计算方法,以及不同滤波电路的原理及计算。
本章基本要求1.了解单相半波、全波整流电路的结构和工作原理。
2.掌握整流电路的分析计算方法。
3.了解不同滤波电路的工作原理及有关计算。
4.了解各种线性稳压电路的工作原理及计算。
5. 5-1110V ,试求:(1V 1的读数;(4图5-1解 (2)1100.45 4.3280m m L L U I A R ==== (3)交流电压表U 1的读数为110244.40.45=V 。
(4)变压器副边电压有效值为244.4V 。
5-2 试分析图5-2所示的变压器副边绕组有中心抽头的单相整流电路,设副绕组两端的电压有效值各为U :(1)标出负载电阻R L 上的电压u o 和滤波极性电容器C 的极性;(2)分别画出无滤波电容器和有滤波电容器两种情况下负载电阻上电压U o的波形,是全波整流还是半波整流?(3)如无滤波电容器,负载整流电压的平均值U O 和变压器副绕组每段的有效值U 之间的数值关系如何?如有滤波电容,则又如何?(4)分别说明在有滤波电容器和无滤波电容器两种情况下,截止二极管上所承受的最高反向电压U DRM 是否都等于U 22。
(5)如果整流二极管D 2虚焊,U O 是否是正常情况下的一半?如果变压器副边中心抽头虚焊,这时有输出电压吗?(6)如果把D 2的极性接反,是否能正常工作?会出现什么问题?(7)如果D 2因过载损坏造成短路,还会出现什么其它问题?(8)如果输出端短路,又将出现什么问题?(9)如果把图中的D 1和D 2都反接,是否仍有整流作用?有什么不同?图5-2解 (1) 负载电阻R L 上的电压u o 和滤波极性电容器C 的极性均为上“+”下“-”(2)无滤波电容时,负载电阻上电压U o 的波形如图5-2(a)所示,有滤波电容时,负载电阻上电压U o 的波形如图5-2(b)所示,均为全波整流。
图5-2(a) 图5-2 (b)(3)如无滤波电容器U U 9.00=,如有滤波电容器,则U U 2.10=(4) 在有滤波电容器和无滤波电容器两种情况下,截止二极管上所承受的最高反向电压U DRM 都等于U 22。
(5) 如果整流二极管D 2虚焊,U O 则为正常情况下的一半;如果变压器副边中心抽头虚焊,这时将没有输出电压。
(6)不能,烧坏二极管,甚至烧坏变压器。
(7)正向电压时,烧坏二极管,甚至烧坏变压器;反向电压时U 0=U 。
(8)烧坏二极管,甚至烧坏变压器。
(9)仍有整流作用,且U 0与原来方向相反。
5-3有一直流电压为110V ,电阻为55Ω的负载,采用单相桥式整流电路(不带滤波器)供电,试求变压器副绕组电压和电流的有效值,并选用二极管。
解:0110122.20.90.9U U V === 122.2 2.2255U I A R === 01111012255D I I A ==⨯=173DRM U V == 压为5-4同?由U 由L R 5000220L C R U =故选用C=250μF ,耐压为50V 的极性电容器。
对于单相半波整流和电容滤波器组成的电路,二极管所承受的最高反相电压为70DRM U V ==5-5在图5-15所示的具有π形RC 滤波器的整流电路中,已知交流电压U =6V ,今要求负载电压U O =6V ,负载电流I O =100mA ,试计算滤波电阻R 。
解:整流电压平均值01.2 1.267.2U U V '==⨯= 滤波电阻R 的压降007.26 1.2R U U U V '=-=-=而0100R I I mA == 所以 1.2120.1R R U R I ===Ω5-6证明:单相半波整流时变压器副边电流的有效值为负载电流平均值的1.57倍,即I =1.57I O 。
证明:12m I I == 011sin I I td t I πωω==I D1、I D2、I图5-27 题5-7图解:(1)010.45(9010)45U V =⨯+= 极性:上“-”下“+”020.9109U V =⨯= 极性:上“+”下“-”(2) 01101145 4.510D L U I I mA R ====0223022111945222100D D L U I I I mA R ===⨯=⨯=1100141.4DRM U V ==231014.14DRM DRM U U V ====5-8图5-28所示是二倍压整流电路,U O =U 22,试分析之,并标出U O 的极性。
解:当U 1上电压极性),当U (请思5-9O 20V ,负载电流I O =200A 。
(1)试求变压器容量S ;(2)选用整流元件。
考虑到变压器副绕组及管子上的压降,变压器的副边电压要加大10%。
解:(1)由0 2.34U U =得变压器副边电压有效值为0208.552.34 2.34U U V === 考虑到变压器副边绕组及管子上的压降,取副边电压为8.55 1.19.4U V =⨯=变压器副边电流的有效值020085.472.34 2.34I I mA === 故变压器的容量为803.4S UI mV A ==⋅(2)流过每个二极管的平均电流为0166.73D I I mA == 二极管所承受的最高反向电压为2.459.423DRM m U V ==⨯=故选用2CP10晶体二极管,其最大整流电流为100mA ,反向工作峰值电压为25V 。
5-10某稳压电源如图5-29所示,试问:(1)输出电压U O 的极性和大小如何?(2)电容器C 1和C 2的极性如何?它们的耐压值应选多大?(2)负载电阻R L 的最小值约为多少?(4)如将稳压管D Z 接反,后果如何?解:(2)故C C 1,C (3)所以故L R (4)Z L5-11在图5-30中,试求输出电压U O 的可调范围是多大?解:U5-12图5-31 题5-12图解:120min 1 3.3 5.1 3.355 6.963.3 5.1P P R R R U V R R ++++=⨯=⨯=++ 120max 1 3.3 5.1 3.35517.733.3P R R R U V R ++++=⨯=⨯= 所以输出电压U 0的可调范围是6.96~17.73V各位老师:辛苦了!我把你们编写的习题解析进行了一些修改,包括格式、字体等。
但是仍然存在不少问题,需要你们进一步修改。
因为我们编写的习题解析是给学生看的,是学生学习的辅导材料,所以必须认真对待,不能马马虎虎。
请各位老师参照教材中例题叙述问题的过程进行修改。
谢谢合作!康润生2008-7-29。