最新人教版七年级数学下册第9章教案9.1.2 第1课时 不等式的性质 2

合集下载

2022-2023学年七年级数学人教版下册:9.1.2不等式的性质(2)说课稿

2022-2023学年七年级数学人教版下册:9.1.2不等式的性质(2)说课稿

2022-2023学年七年级数学人教版下册:9.1.2不等式的性质(2)说课稿一、教材分析本节课是七年级数学人教版下册的第9章第1节中的第2个课时,主要讲解不等式的性质。

本节课是上节课“不等式的性质(1)”的延续,通过引入和解决实际问题来探究不等式的性质,进一步加深学生对不等式的理解。

本节课的教学目标是:1.理解不等式的基本含义和性质;2.掌握不等式间的大小关系;3.能够运用不等式解决实际问题。

二、教学重点1.不等式的性质:相等和不等的关系;2.不等式间的大小关系。

三、教学难点1.理解不等式间大小关系的判断;2.能够合理运用不等式解决实际问题。

四、教学准备1.教师准备:教案、教材、黑板、彩色粉笔等;2.学生准备:学习纸、铅笔、尺子。

五、教学过程与内容第一步:导入新课1.老师向学生复习上节课的知识,激发学生对不等式的兴趣;2.老师介绍本节课的学习目标和重点。

第二步:讲授新知1.老师通过示例,引导学生思考不等式的基本含义和性质;2.老师讲解相等和不等的关系,引导学生理解不等式的特点和意义。

第三步:学生练习1.学生个别或小组进行练习,巩固不等式的基本性质;2.学生通过实际问题解决不等式,提高应用能力。

第四步:板书总结1.教师总结本节课的重点内容并进行板书;2.教师引导学生进行思考和讨论,总结不等式的性质和运用方法。

六、教学反思本节课的教学以激发学生兴趣和主动思考为核心,通过引入实际问题、讲解不等式的性质和运用方法,培养学生解决问题的能力和应用能力。

课上教师的角色是引导和促进,而非灌输。

教师要善于运用启发式教学方法,鼓励学生积极参与课堂活动,提升课堂的互动性和学生的自主性。

在教学过程中,要注意与学生的互动,及时纠正他们的错误,引导他们思考和讨论。

同时,教师要耐心倾听学生的问题和建议,及时进行调整和反思,不断提高教学质量。

总之,通过本节课的教学,学生将进一步巩固和扩展对不等式的理解和应用能力,为进一步学习数学打下坚实的基础。

人教版七年级数学下册教案:9.1.2不等式的性质

人教版七年级数学下册教案:9.1.2不等式的性质
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解不等式的基本概念。不等式是表示两个数之间大小关系的式子。它是数学中非常重要的一部分,可以帮助我们解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了不等式在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调不等式的性质及其应用这两个重点。对于难点部分,如不等式的传递性和乘法性质,我会通过举例和比较来帮助大家理解。
人教版七年级数学下册教案:9.1.2不等式的性质
一、教学内容
人教版七年级数学下册教案:9.1.2不等式的性质
1.不等式的定义与符号;
2.不等式的性质:
(1)传递性:若a>b,b>c,则a>c;
(2)对称性:若a>b,则b<a;
(3)加法性质:若a>b,c为任意实数,则a+c>b+c;
(4)乘法性质:若a>b,c为正实数,则ac>bc;若a>b,c为负实数,则ac<bc;
-解决实际问题,如已知一组数的大小关系,求另一组数的大小关系,训练学生将现实问题转化为数学问题。
2.教学难点
本节课的难点内容包括:
(1)不等式的传递性理解与应用;
(2)不等式乘法性质的灵活运用,特别是负数情况;
(3)将现实问题抽象为不等式问题。
举例解释:
-不等式的传递性,如a>b,b>c,推导出a>c的过程,让学生理解这一性质的应用;
3.培养学生的数学建模能力:引导学生将现实生活中的问题转化为数学不等式问题,培养数学建模能力,增强数学在实际生活中的应用意识。
4.培养学生的数学运算能力:通过不等式的性质进行推导和运算,提高学生的数学运算速度和准确性,增强数学运算能力。

人教版七年级下册数学教案:9.1.2不等式的性质

人教版七年级下册数学教案:9.1.2不等式的性质

《不等式的性质》不等式是刻画现实世界中不等关系的一种数学形式,而本节课所要学的《不等式的基本性质》,是在学生学习了有理数大小比较、等式及其性质、不等式概念以及用不等式表简单问题的基础上开始学习的,也是学生后续学习不等式及不等组的解集,用不等式及及不等式组解应用题的理论依据和基础;因此不本课的内容起到了承上启下的作用。

1、经历不等式基本性质的探索过程,初步体会不等式与等式的异同。

2、掌握不等式的基本性质,运用不等式的基本性质将不等式变形。

【过程与方法目标】通过对基本不等式的基本性质的证明,使学生在不等式证明中逐渐掌握基本性质,并有运用基本性质的意识。

能够用类比的方法从等式的基本性质来推出不等式的基本性质。

【情感态度价值观目标】通过创设情境,观察、猜想使学生得出不等式的基本性质,促使学生积极的参与到数学活动当中,并感受到成功的喜悦。

【教学重点】掌握不等式的基本性质并能正确运用将不等式变形。

【教学难点】不等式基本性质3的运用。

观察下面两个推理,说出等式的基本性质(1)b a =(2)b a =提出问题:那么不等式有没有类似的性质呢?引入课题.2、创设问题情景,探索规律问题1:在天平两侧的托盘中放有不同质量的砝码.如图:右低左高说明右边的质量大于左边的质量.往两盘中加入相同质量的砝码,天平哪边高,哪边低?减去相同质量的砝码呢?问题2:在不等式的两边加上或减去相同的数,不等号的方向改变吗?如不等式7>4,-1<3 不等式的两边都加5,都减5.不等号的方向改变吗?能得出什么结论?得到:不等式的两边都加上(或减去)同一个数,不等号的方向不变. 提出问题:把“数”的范围扩大到整式可以吗?可以,因为整式的值就是实数.归纳总结:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.(不等式的基本性质1)符号语言:如果b a <,那么c b c a +<+,c b c a -<-如果b a >,那么c b c a +>+,c b c a ->-问题3:若不等式两边同乘以或除以同一个数,不等号的方向改变吗?如不等式2<3,两边同乘以5,同除以5(即乘以51),同乘以0,同乘以-5,同除以-5.能得出什么结论?归纳总结:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;等式的两边都乘以(或除以)同一个负数,不等号的方向改变.(不等式的基本性质2,不等式的基本性质3)符号语言:如果a >b ,c >0 ,那么ac >bc如果a <b ,c >0 ,那么ac <bc如果a >b ,c <0 ,那么ac <bc如果a <b ,c <0 ,那么ac >bc3、尝试练习,应用新知1)如果x +5>4,那么两边都 可得x >-1 .2)在-7<8的两边都加上9可得 .3)在5>-2的两边都减去6可得 .4)在-3>-4的两边都乘以7可得 .5)在-8<0的两边都除以8 可得 .如果a >b ,那么1)a -3 b -3(不等式性质 )2)2a 2b (不等式性质 )3)-3a -3b (不等式性质 )4)a -b 0(不等式性质)例题:例根据不等式的基本性质,把下列不等式化成x<a或x>a的形式:(1)x-5 >-1 (2)- 2 x>3解(1)根据不等式的性质1,两边都加上5得:x-5+5>-1+5即x>4(2)根据不等式的性质3,两边都除以-2 得:3即x<-2练习:根据不等式的基本性质,把下列不等式化成x<a或x>a的形式:(1)3x>5 (4)-4 x< 3 -x4、总结反思,获得升华让学生从知识方面、能力方面、思想方面进行总结,鼓励学生畅所欲言总结对本节课的收获与体会。

人教版数学七年级下册9.1.2不等式的性质教学设计

人教版数学七年级下册9.1.2不等式的性质教学设计
4.各小组汇报讨论成果,分享解题思路和方法,教师给予评价和鼓励。
(四)课堂练习
1.教师布置一些具有代表性的练习题,涵盖本节课所学的不等式性质和应用。
2.学生独立完成练习题,教师巡回指导,关注学生的解题过程,并及时给予反馈。
3.教师选取部分学生的作业进行展示和讲解,分析解题思路和易错点。
4.学生互相讨论、交流,共同提高解题能力。
4.教师通过板书和多媒体展示,讲解如何运用不等式的性质解决实际问题,如:求解不等式、比较大小等。
(三)学生小组讨论
1.教师将学生分成若干小组,每组分配一个实际问题,要求学生运用不等式的性质解决问题。
2.学生在小组内展开讨论,共同探究不等式的性质和解决方法。
3.教师巡回指导,关注学生的讨论过程,及时解答他们的疑问。
-通过生活实例引入不等式的概念,让学生感受到数学与生活的紧密联系,激发他们的学习兴趣。
-设计富有趣味性的问题,引导学生积极思考,主动探生,通过简单易懂的例子和详细的讲解,帮助他们理解和掌握不等式的定义和性质。
-对于基础较好的学生,提供更具挑战性的问题和拓展练习,提高他们的思维能力和解题技巧。
3.学生回答后,教师总结:这些场景中都存在一种大小关系,我们称之为不等式。今天我们将学习不等式的性质,并运用它们解决实际问题。
(二)讲授新知
1.教师讲解不等式的定义,并通过例子解释不等式的符号表示。
2.讲解不等式的性质,如:可加性、可减性、可乘性、可除性,并举例说明。
3.分析生活中的实际问题,引导学生学会将实际问题抽象为不等式问题。
人教版数学七年级下册9.1.2不等式的性质教学设计
一、教学目标
(一)知识与技能
1.理解不等式的定义,了解不等式的符号表示,并能用文字和符号两种方式表达不等关系。

人教版数学七年级下册9.1.2不等式的性质教学设计

人教版数学七年级下册9.1.2不等式的性质教学设计
4.让学生掌握不等式的求解方法,包括线性不等式的求解、一元一次不等式的求解等,并能够运用这些方法解决具体问题。
(二)过程与方法
1.通过导入实际问题,引导学生发现不等式,激发学生的学习兴趣,培养学生的问题意识。
2.采用启发式教学方法,引导学生探究不等式的性质,培养学生的逻辑思维能力和团队合作精神。
3.通过典型例题的分析和讲解,让学生掌握不等式的求解方法,提高学生的解题技巧。
4.教师布置课后作业,巩固课堂所学知识,并为下一节课的学习做好准备。
5.通过总结归纳,使学生形成完整的知识体系,提高学生的数学素养。
五、作业布置
为了巩固本节课所学的不等式性质及求解方法,培养学生的数学思维能力,特布置以下作业:
1.请同学们完成课本第98页的练习题1、2、3,注意运用不等式的性质进行推理,并求解相关不等式。
4.教师讲解不等式的求解方法,如线性不等式、一元一次不等式的求解,并通过典型例题进行讲解。
5.学生跟随教师一起练习解题,掌握解题步骤和方法。
(三)学生小组讨论,500字
1.教师将学生分成若干小组,每个小组讨论一个实际问题,如:某商店的优惠活动,购买金额达到一定数额才能享受优惠,如何用不等式表示这个条件?
6.关注学生情感,营造良好氛围:尊重学生的主体地位,鼓励学生提问、发表观点,营造轻松、愉快的学习氛围,提高学生的学习积极性。
7.课后辅导与评价:课后关注学生的作业完成情况,及时给予反馈和指导,提高学生的学习效果;同时,采用多元化的评价方式,全面评估学生的学习成果。
8.跨学科整合,提高综合素养:将数学知识与其他学科知识相结合,如与物理、化学等学科的联系,提高学生解决实际问题的能力,培养学生的综合素养。
2.注重知识衔接:结合学生已有的知识基础,引导他们发现和探究不等式的性质,使新旧知识得以有效衔接。

(人教版)七年级下册数学配套教案:9.1.2 第1课时 《不等式的性质》

(人教版)七年级下册数学配套教案:9.1.2 第1课时 《不等式的性质》

(人教版)七年级下册数学配套教案:9.1.2 第1课时《不等式的性质》一. 教材分析《不等式的性质》是人教版七年级下册数学的重要内容,主要让学生了解不等式的性质,掌握不等式两边同时加减同一个数、乘除同一个正数、乘除同一个负数时,不等号的方向变化规律。

通过学习,培养学生分析问题、解决问题的能力。

二. 学情分析学生在之前已经学习了等式的性质,对基本的运算有一定的掌握。

但他们对不等式的性质认识不足,需要通过实例来感受不等式的性质,从而掌握不等式两边同时加减、乘除同一个数时不等号方向的变化规律。

三. 教学目标1.让学生了解不等式的性质,掌握不等式两边同时加减、乘除同一个数时不等号的方向变化规律。

2.培养学生运用不等式的性质解决问题的能力。

3.培养学生的逻辑思维能力和合作交流能力。

四. 教学重难点1.教学重点:不等式的性质,不等式两边同时加减、乘除同一个数时不等号的方向变化规律。

2.教学难点:不等式性质的应用,解决实际问题。

五. 教学方法采用问题驱动法、案例教学法、合作交流法等多种教学方法,引导学生主动探究、发现、总结不等式的性质,提高学生的学习兴趣和参与度。

六. 教学准备1.准备相关的不等式性质的案例和实例。

2.准备投影仪、教学课件等教学设备。

七. 教学过程1.导入(5分钟)通过一个实际问题引入不等式的性质,例如:“小明比小红高,如果小明再长高5厘米,那么他比小红高多少厘米?”引导学生思考,引发学生对不等式性质的兴趣。

2.呈现(10分钟)呈现几个不等式性质的案例,让学生观察、分析,引导学生发现不等式两边同时加减、乘除同一个数时不等号的方向变化规律。

3.操练(10分钟)让学生分组进行练习,运用不等式的性质解决实际问题,教师巡回指导,解答学生的疑问。

4.巩固(5分钟)选取一些典型题目,让学生独立完成,检验学生对不等式性质的掌握程度。

5.拓展(5分钟)引导学生思考不等式性质在实际生活中的应用,例如:购物时如何比较商品的性价比,如何优化资源配置等。

人教版七年级数学下册9.1.2不等式的性质第一课时教学设计

人教版七年级数学下册9.1.2不等式的性质第一课时教学设计
2.演示例题
通过具体的例题,演示如何运用不等式的性质进行变形和求解。
3.分析解题思路
在讲解过程中,强调解题的关键步骤和注意事项,引导学生理解不等式性质的应用。
4.互动提问
在讲解过程中,适时提问,检查学生对不等式性质的理解程度。
(三)学生小组讨论
1.分组讨论
将学生分成小组,每组选取一个实际问题,共同探讨如何将问题抽象为不等式,并运用不等式的性质进行求解。
2.学生在运用不等式性质进行变形和求解时的掌握情况,是否存在误区。
3.学生在解决实际问题时,能否将问题抽象为不等式,并运用所学知识进行求解。
4.学生在团队合作中的表现,是否能积极参与、倾听他人意见、表达自己的观点。
针对以上学情,教师应采取有针对性的教学策略,如:通过生动的实例引入不等式的性质,激发学生的兴趣;设置不同难度的练习题,帮助学生巩固所学知识;注重培养学生的团队合作意识,提高学生之间的交流与互动。从而让每个学生都能在轻松愉快的氛围中学习数学,提高数学素养。
(二)过程与方法
1.提高观察、分析、能力和推理能力,运用不等式的性质进行推理和求解。
3.学会与他人合作交流,倾听他人意见,表达自己的观点。
4.能够将所学知识应用于解决实际问题,提高解决问题的能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和爱好,增强学习数学的自信心。
2.小组分享
各小组分享自己的讨论成果,其他小组给予评价和反馈。
3.教师点评
教师针对每个小组的讨论情况进行点评,总结优点,指出不足。
4.拓展思考
引导学生思考:除了教材中的性质,还有没有其他不等式的性质?如何证明这些性质?
(四)课堂练习
1.练习题设计
设计不同难度的练习题,涵盖本节课所学的不等式性质。

人教版数学七年级下册9.1.2不等式的性质第一课时教学设计

人教版数学七年级下册9.1.2不等式的性质第一课时教学设计
4.分层教学,梯度练习:针对不同水平的学生,设计不同难度的练习题,使所有学生都能在适合自己的层面上得到锻炼和提高,同时鼓励学有余力的学生挑战更高难度的题目。
5.反馈评价,及时调整:在教学过程中,教师应关注学生的学习反馈,通过课堂提问、小组讨论、作业批改等方式了解学生的学习情况,及时调整教学策略,确保教学目标的达成。
4.学生的情感态度:部分学生对数学学习可能存在恐惧心理,教师应关注学生的情感需求,营造轻松愉快的学习氛围,激发学生的学习兴趣。
三、教学重难点和教学设想
(一)教学重点
1.不等式的性质及其应用,这是本节课的核心内容,学生需要掌握不等式的传递性、加法性和乘法性,并能将这些性质应用于实际问题中。
2.不等式解集的表示方法,学生应学会使用数轴来直观表示不等式的解集,并能够根据不等式的性质来求解一元一次不等式。
4.设计不同难度的练习题,让学生在解题过程中逐步掌握不等式的性质,形成解决问题的策略。
(三)情感态度与价值观
1.培养学生对数学的兴趣,让学生在探索不等式性质的过程中,感受到数学的趣味性和挑战性。
2.培养学生的自信心和自主学习能力,鼓励学生在课堂上积极思考、勇于表达,形成良好的学习习惯。
3.引导学生认识到数学在生活中的广泛应用,体会数学与现实生活的紧密联系,培养学生的应用意识。
2.自主探究,合作交流:在探索不等式性质的过程中,教师应鼓励学生独立思考,小组内交流讨论,共同发现和总结不等式的性质。教师在此过程中起到引导和辅助的作用,帮助学生构建知识框架。
3.数形结合,直观教学:运用数轴来表示不等式的解集,让学生通过图形直观地理解不等式的性质和解集的含义,增强学生的直观想象能力。
4.通过对不等式的学习,培养学生公平、公正的价值观,让学生明白在现实生活中,合理分配和比较的重要性。

人教版七年级数学下册9.1.2.1《不等式的性质(1)》教案

人教版七年级数学下册9.1.2.1《不等式的性质(1)》教案

人教版七年级数学下册9.1.2.1《不等式的性质(1)》教案一. 教材分析《不等式的性质(1)》是人教版七年级数学下册第9章第1节的一部分,主要介绍不等式的一些基本性质。

这部分内容是初中学段数学学习的重要基础,对于培养学生的逻辑思维能力和解决问题的能力具有重要意义。

本节课的内容主要包括不等式的定义、不等式的性质以及如何利用这些性质解决实际问题。

二. 学情分析七年级的学生已经掌握了实数的基本概念,具备了一定的逻辑思维能力,但对于不等式的理解和运用还比较陌生。

因此,在教学过程中,教师需要从学生的实际出发,逐步引导学生理解和掌握不等式的性质,并能够运用不等式的性质解决实际问题。

三. 教学目标1.知识与技能目标:使学生理解和掌握不等式的定义,了解不等式的性质,并能够运用不等式的性质解决实际问题。

2.过程与方法目标:通过观察、分析、归纳等方法,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和勇于探究的精神。

四. 教学重难点1.重点:不等式的定义,不等式的性质。

2.难点:如何理解和运用不等式的性质解决实际问题。

五. 教学方法1.情境教学法:通过设置实际问题情境,引导学生理解和运用不等式的性质。

2.小组合作学习:引导学生分组讨论,培养学生的团队合作意识和交流表达能力。

3.案例教学法:通过分析典型案例,使学生深入理解和掌握不等式的性质。

六. 教学准备1.教学课件:制作多媒体课件,以便于直观展示教学内容。

2.教学案例:准备一些典型案例,用于分析和讲解不等式的性质。

3.练习题:准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用多媒体课件展示一些实际问题,引导学生思考如何用数学方法表示这些问题。

通过分析这些问题,引出不等式的定义和性质。

2.呈现(10分钟)介绍不等式的定义,讲解不等式的性质。

通过举例和分析,使学生理解和掌握不等式的性质。

人教版数学七年级下册9.1.2《不等式的性质》教学设计1

人教版数学七年级下册9.1.2《不等式的性质》教学设计1

人教版数学七年级下册9.1.2《不等式的性质》教学设计1一. 教材分析《不等式的性质》是人教版数学七年级下册9.1.2的内容,本节内容是在学生已经掌握了不等式的概念和基本运算的基础上进行教学的。

本节课的主要内容是让学生了解和掌握不等式的性质,包括不等式的两边同时加减同一个数或式子,不等式的两边同时乘除同一个正数,不等式的两边同时乘除同一个负数,以及不等式的传递性质。

这些性质在解决实际问题和进行不等式运算中具有重要作用。

二. 学情分析学生在七年级上册已经学习了不等式的基本概念和基本运算,对于不等式的符号和基本运算规则有一定的了解。

但是,对于不等式的性质还没有接触过,需要通过本节课的学习来掌握。

学生的思维方式主要以直观形象思维为主,因此,在教学过程中需要通过具体的例子和实际问题来帮助学生理解和掌握不等式的性质。

三. 教学目标1.了解和掌握不等式的性质,包括不等式的两边同时加减同一个数或式子,不等式的两边同时乘除同一个正数,不等式的两边同时乘除同一个负数,以及不等式的传递性质。

2.能够运用不等式的性质解决实际问题和进行不等式运算。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.教学重点:不等式的性质及其应用。

2.教学难点:不等式的传递性质的理解和应用。

五. 教学方法1.情境教学法:通过具体的例子和实际问题,引导学生理解和掌握不等式的性质。

2.互动教学法:通过教师提问和学生回答,引导学生主动参与课堂,巩固所学知识。

3.练习法:通过大量的练习题,让学生巩固不等式的性质,提高解题能力。

六. 教学准备1.教学PPT:制作教学PPT,包括不等式的性质的讲解和练习题。

2.练习题:准备一些关于不等式的性质的练习题,用于课堂练习和巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的内容,例如:“小明比小红高,小红比小华高,请问小明比小华高吗?”让学生思考并回答,引导学生了解不等式的性质。

人教版七年级数学(下册)教案 9.1.2 第1课时 不等式的性质 2

人教版七年级数学(下册)教案 9.1.2 第1课时 不等式的性质 2

第1课时不等式的性质【教学目标】1、经历通过类比、猜测、验证发现不等式性质的探索过程,掌握不等式的性质;2、初步体会不等式与等式的异同;3、通过创设问题情境和实验探究活动,积极引导学生参与数学活动,提高学习数学的兴趣,增进学习数学的信心,体会在解决问题的过程中与他人交流合作的重要性.【教学重点与难点】1.难点:正确运用不等式的性质。

2.重点:理解并掌握不等式的性质。

【教学过程】一、提出问题教师出示天平,并请学生仔细观察老师的操作过程,回答下列问题:1、天平被调整到什么状态?2、给不平衡的天平两边同时加人相同质量的砝码,天平会有什么变化?3、不平衡的天平两边同时拿掉相同质量的砝码,天平会有什么变化?4、如果对不平衡的天平两边砝码的质量同时扩大相同的倍数,天平会平衡吗?缩小相同的倍数呢?二、探究新知1、用“>”或“<”填空.(1)-1 < 3 -1+2 3+2 -1-3 3-3(2) 5 >3 5+a 3+a 5-a 3-a(3) 6 > 2 6×5 2×5 6×(-5)2×(-5)(4) -2 < 3(-2)×6 3×6(-2)×(-6) 3×(一6)(5)-4 >-6 (-4)÷2(-6)÷2(-4)十(-2)(-6)十(-2)2、从以上练习中,你发现了什么?请你再用几个例子试一试,还有类似的结论吗?请把你的发现告诉同学们并与他们交流.3、让学生充分发表“发现”,师生共同归纳得出:不等式性质1:不等式两边都加上(或减去)同一个数(或式子),不等号的方向不变.不等式性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.不等式性质3:不等式两边都乘(或除以)同一个负数,不等号的方向改变.4、你能说出不等式性质与等式性质的相同之处与不同之处吗?5、下列哪些是不等式x+3 > 6的解?哪些不是?-4,-2. 5,0,1,2.5,3,3.2,4.8,8,126、直接想出不等式的解集,并在数轴上表示出来:(1)x+3 > 6(2)2x < 8(3)x-2 > 0三、巩固新知1、 判断(1)∵a < b ∴ a -b < b -b(2)∵a < b ∴ 33b a < (3)∵a < b ∴ -2a < -2b(4)∵-2a > 0 ∴ a > 0(5)∵-a < 0 ∴ a < 32、 填空(1)∵ 2a > 3a ∴ a 是 数(2)∵ 23a a < ∴ a 是 数 (3)∵ax < a 且 x > 1 ∴ a 是 数 3、 根据下列已知条件,说出a 与b 的不等关系,并说明是根据不等式哪一条性质。

人教版七年级数学下册9.1.2.1《不等式的性质(1)》教学设计

人教版七年级数学下册9.1.2.1《不等式的性质(1)》教学设计

人教版七年级数学下册9.1.2.1《不等式的性质(1)》教学设计一. 教材分析《不等式的性质(1)》是人教版七年级数学下册第9.1.2.1节的内容,主要介绍不等式的基本性质。

本节内容是在学生已经掌握了不等式的概念和基本运算的基础上进行的,通过本节的学习,使学生能理解不等式的性质,并会运用不等式的性质解决一些实际问题。

教材通过例题和练习题的形式,让学生在实践中掌握不等式的性质,培养学生的数学思维能力和解决问题的能力。

二. 学情分析学生在进入七年级之前,已经初步掌握了不等式的基本概念和运算,但对于不等式的性质还没有系统的认识。

此外,学生的数学思维能力和解决问题的能力参差不齐,对于一些抽象的概念和性质的理解程度也不同。

因此,在教学过程中,需要关注学生的个体差异,引导学生通过实践和思考,逐步理解和掌握不等式的性质。

三. 教学目标1.知识与技能:使学生理解和掌握不等式的性质,能够运用不等式的性质解决一些实际问题。

2.过程与方法:通过学生的自主学习和合作交流,培养学生的数学思维能力和解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心和克服困难的勇气。

四. 教学重难点1.教学重点:不等式的性质及其应用。

2.教学难点:不等式的性质的理解和运用。

五. 教学方法1.情境教学法:通过创设情境,引导学生主动参与学习,激发学生的学习兴趣。

2.案例教学法:通过分析例题和练习题,使学生理解和掌握不等式的性质。

3.小组合作学习法:通过小组讨论和合作交流,培养学生的数学思维能力和解决问题的能力。

六. 教学准备1.教学课件:制作教学课件,包括例题、练习题和相关教学素材。

2.教学用具:准备黑板、粉笔等教学用具。

3.教学资源:收集相关的教学资源和练习题,以便进行课堂拓展。

七. 教学过程1.导入(5分钟)利用情境教学法,通过一个实际问题引入不等式的性质的学习。

例如,创设一个购物的情境,让学生思考如何比较商品的价格,从而引出不等式的性质。

七年级数学下册9.1.2不等式的性质2教案新版新人教版

七年级数学下册9.1.2不等式的性质2教案新版新人教版
最后由教师完整地板书解题过程.
强调:“≤”与“<”在意义上和数轴表示上的区别。
3、课堂检测
1、解下列不等式,并在数轴上表示解集:
(1)x+5>-1(2)4x < 3x-5(3)8x-2 < 7x+3
2、用不等式表示下列语句并写出解集:
(1)x与3的和不小于6;
(2)y与1的差不大于0.
三、课堂检测
1、某容器呈长方体形状,长5 cm,宽3 cm,高10 cm.容器内原有水的高度为3 cm。现准备继续向它注水.用V cm,示新注入水的体积,写出V的取值范围。
教学重点
根据“不等式性质1”正确地解一元一次不等式。
教学难点
根据“不等式性质1”正确地解一元一次不等式。
教学方法
自主类比学习,小组交流
教学准备
课件。
教学过程
1、自主学习
解下列不等式,并在数轴上表示解集:
(1)x+3>-1(2)4x < 2x-6
2、深入学习
小希就读的学校上午第一节课上课时间是8点开始.小希家距学校有2千米,而他的步行速度为每小时10千米.那么,小希上午几点从家里出发才能保证不迟到?
板书设计
§9.1.2不等式的性质(2)
1、Байду номын сангаас用一元一次不等式的性质解不等式。
2、解不等式就是求不等式的解集,把不等式化成x<a或x>a的形式。
教学反思
(1)若设小希上午x点从家里出发才能不迟到,则x应满足怎样的关系式?
(2)你会解这个不等式吗?请说说解的过程.
你能把这个不等式的解集在数轴上表示出来吗?
1、分组探讨:对上述三个问题,你是如何考虑的?先独立思考然后组内交流,作出记录,最后各组派代表发主。

七年级数学下册9.1.2不等式的性质教学设计

七年级数学下册9.1.2不等式的性质教学设计
(1)小华的年龄比小明大3岁,小明的年龄比小刚大2岁。请问:小华的年龄是否比小刚大5岁?请用数学语言表示并证明。
(2)某商店举行打折活动,满100元减20元。如果小王购买了一件原价200元的衣服,实际支付了160元。请问:小王购买的衣服是否享受了打折优惠?请用数学语言表示并证明。
4.探究题:引导学生思考以下问题,培养学生的探究精神:
(1)如果不等式两边同时乘以(或除以)同一个正数,不等式是否仍然成立?请给出证明。
(2)如果不等式两边同时乘以(或除以)同一个负数,不等式会发生什么变化?请给出证明。
5.复习题:为了帮助学生巩固所学知识,布置以下复习题:
(1)回顾已学的方程和不等式的区别与联系,总结在解题过程中的注意事项。
(2)整理本节课所学的不等式性质,以及在实际问题中的应用。
(二)过程与方法
1.通过观察、猜想、验证、总结等教学活动,培养学生自主探究和合作学习的能力。
2.引导学生运用数形结合的思想,通过图像直观地理解不等式的性质,提高解决问题的直观思维能力。
3.设计丰富的例题和练习,让学生在解决问题的过程中,掌握不等式的性质,提高解题技巧。
4.教学中注重启发式教学,引导学生从实际问题中发现不等式,培养发现问题和解决问题的能力。
2.不等式的证明:教师以具体的例子,引导学生运用数形结合的方法,证明不等式的性质。
(三)学生小组讨论
1.分组讨论:学生分成小组,针对教师提出的问题,进行讨论和交流。
2.讨论内容:
(1)不等式的性质在实际问题中的应用;
(2)如何运用不等式的性质解决实际问题;
(3)分享自己在解决问题时的思考和困惑。
3.教师巡回指导:教师参与学生讨论,解答学生的疑问,引导他们深入理解不等式的性质。

人教版七年级数学下册9.1.2.2《不等式的性质(2)》教案

人教版七年级数学下册9.1.2.2《不等式的性质(2)》教案

人教版七年级数学下册9.1.2.2《不等式的性质(2)》教案一. 教材分析《不等式的性质(2)》是人教版七年级数学下册第9.1.2节的内容,主要介绍不等式的性质。

本节课的内容是继第9.1.1节《不等式的概念》之后的进一步延伸,通过对不等式的性质的学习,使学生能够更好地理解和运用不等式,为后续的不等式应用题解决打下基础。

二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,通过前面的学习,他们对不等式的概念有了初步的了解。

但在不等式的性质的理解和运用上,还需要通过实例和操作来进行进一步的巩固。

此外,学生对于实际问题中的不等式还需要进一步的引导和培养。

三. 教学目标1.了解和掌握不等式的性质,能够熟练运用不等式的性质进行简单的运算和问题解决。

2.培养学生的逻辑思维能力和抽象思维能力,提高学生的数学素养。

3.通过实例和操作,培养学生的实际问题解决能力,提高学生的应用数学的意识。

四. 教学重难点1.教学重点:不等式的性质及其运用。

2.教学难点:不等式的性质在实际问题中的应用。

五. 教学方法1.采用问题驱动法,通过问题的提出和解决,引导学生学习和探索不等式的性质。

2.采用实例分析法,通过具体的实例,使学生理解和掌握不等式的性质。

3.采用小组合作学习法,培养学生的团队协作能力和交流能力。

六. 教学准备1.准备相关的教学材料,如教材、PPT、实例等。

2.准备教学工具,如黑板、粉笔、投影仪等。

3.准备相关的问题和练习题,用于巩固和拓展学生的知识。

七. 教学过程1.导入(5分钟)通过一个实际问题,引出不等式的性质的概念。

例如,小明有2个苹果,小红有3个苹果,请问小明和小红谁苹果多?引导学生思考如何用数学的方法来解决这个问题。

2.呈现(10分钟)通过PPT或黑板,呈现不等式的性质的定义和表达式。

引导学生理解和记忆不等式的性质。

3.操练(15分钟)通过实例和练习题,使学生掌握不等式的性质。

引导学生运用不等式的性质进行运算和问题解决。

人教版数学七年级下册9.1.2.2不等式的性质2教案

人教版数学七年级下册9.1.2.2不等式的性质2教案

(3)2503x>;(4)43x ->2、那你能根据例1中的四个小题的解集用数轴表示出来吗?巩固新知3、2011年9月1日北京最低气温是o19C,最高气温是o28C,请用不等式表示出来.符号“≥”读作“大于或等于”,也可以说是“不小于”;符号“≤”读作“小于或等于”,也可以说是“不大于”.4、某长方形状的容器长5 cm,宽3 cm,高10 cm.容器内原有水的高度为3cm,现准备向它继续注水.用V(单位:cm)表示新注入水的体积,写出V 的取值范围. 题并动手尝试,写到练习本上,小组内互相查看结果是否相同,并讨论合理的结果,小组代表发言解释。

阅读出示的实际问题,运用不等式尝试解决,小组谈论,小组代表板书。

巡回指导,发现学生步骤中的问题,规范学生的做题步骤。

通过让学生自己动手来探究,增强小组之间的合作协调能力,使学生能有效的运用不等式的性质,同时培养学生的类比思想。

让学生感受数学知识与实际生活有密切的联系,增强学生对数学的学习兴趣。

五、当堂检测P119练习1、2 学生阅读课本的题目,独立思考问题,写到练习本上,个别学生板演。

巡回指导规范格式巩固本节课新知识,检测学生的掌握情况,六、课堂小结(1)如何利用不等式的性质解简单不等式?(2)依据不等式性质3解不等式时应注意什么?(3)请说明符号“≥”和“≤”的含义?小组内一名学生总结本节课内容,其他成员补充。

1、引导学生小结;2、评价各小组表现;3、布置作业(教科书习题9.1 第5、7、8题.练习册P75、76)培养学生的归纳和语言表达能力,建立知识体系。

教学反思。

人教版七年级数学下册9.1.2.2《不等式的性质(2)》教学设计

人教版七年级数学下册9.1.2.2《不等式的性质(2)》教学设计

人教版七年级数学下册9.1.2.2《不等式的性质(2)》教学设计一. 教材分析《不等式的性质(2)》是人教版七年级数学下册第9.1.2节的一部分,主要介绍不等式的性质。

本节课主要让学生了解不等式的性质,掌握不等式的基本性质,并能够运用不等式的性质解决实际问题。

教材通过具体的例子和练习题,帮助学生理解和掌握不等式的性质。

二. 学情分析学生在七年级上册已经学习了不等式的基本概念和性质,对不等式有一定的了解。

但是,对于不等式的性质的深入理解和灵活运用还存在一定的困难。

因此,在教学过程中,需要结合学生的实际情况,通过具体的例子和练习题,引导学生深入理解和掌握不等式的性质。

三. 教学目标1.让学生了解不等式的性质,掌握不等式的基本性质。

2.培养学生运用不等式的性质解决实际问题的能力。

3.培养学生逻辑思维和解决问题的能力。

四. 教学重难点1.不等式的性质的理解和运用。

2.解决实际问题时的不等式应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过探索和解决问题,深入理解和掌握不等式的性质。

2.使用多媒体教学手段,通过动画和图形,生动形象地展示不等式的性质,帮助学生理解和记忆。

3.采用小组合作学习的方式,让学生在讨论和合作中,共同解决问题,提高学生的合作能力和解决问题的能力。

六. 教学准备1.多媒体教学设备。

2.教学课件和教学素材。

3.练习题和答案。

七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生回顾不等式的基本概念和性质,为新课的学习做好铺垫。

2.呈现(15分钟)呈现不等式的性质(2),通过动画和图形,生动形象地展示不等式的性质,帮助学生理解和记忆。

3.操练(15分钟)让学生通过解决实际问题,运用不等式的性质,巩固所学知识。

在此过程中,引导学生运用不等式的性质,解决实际问题,培养学生的应用能力。

4.巩固(10分钟)让学生完成一些练习题,检查学生对不等式的性质的掌握程度,并对学生的错误进行指导和纠正。

人教版七年级数学第二学期第9章学案9.1.2 第1课时 不等式的性质

人教版七年级数学第二学期第9章学案9.1.2 第1课时 不等式的性质

第1课时 不等式的性质【学习目标】1、掌握不等式的三个基本性质。

2、经历探究不等式基本性质的过程,体会不等式与等式的异同点。

【重点难点】重点:理解不等式的三个基本性质。

难点:对不等式的基本性质3的认识。

【学习过程】一、复习:1、等式的基本性质:性质1:______________________________________________性质2:___________________________________________________________二、新课学习:(课本P123-124不等式的三个基本性质)1、用“﹥”或“﹤”填空,并总结其中的规律:(1) 5>3, 5+2 3+2 , 5-2 3-2 ;(2)-1<3 , -1+2 3+2 , -1-3 3-3 ;不等式的性质1: 不等式的两边加(或减)同一个数(或式子),不等号的方向 .字母表示为: 如果a >b ,那么a ±c b ±c2. 用“﹥”或“﹤”填空,并总结其中的规律:(1) 6>2, 6×5 2×5 , 6×(-5) 2×(-5) ;(2) -2<3, (-2)×4 3×4 , (-2)×(-6) 3×(-6)不等式的性质2: 不等式的两边乘(或除以)同一个 ,不等号的方向 .字母表示为:如果a>b,c>0,那么ac bc,不等式的性质 3 :不等式的两边乘(或除以)同一个 ,不等号的方向 。

字母表示为:如果a >b ,c <0, 那么ac bc,三.巩固应用1、判断下列各题的推导是否正确?为什么(1)因为7.5>5.7,所以-7.5<-5.7;(2)因为a+8>4,所以a >-4;(3)因为4a >4b ,所以a >b ; ).___(c b c a 或).___(cb c a 或(4)因为-1>-2,所以-a-1>-a-2;(5)因为3>2,所以3a >2a .2、设a >b ,用“<”或“>”填空并口答是根据哪一条不等式基本性质。

人教版《数学》七年级下册第九章第一节《不等式的性质2》教学设计

人教版《数学》七年级下册第九章第一节《不等式的性质2》教学设计

《不等式的性质(2)》教学设计第1课时一、教材分析本节课是人教版《数学》第九章第一节9.1.2不等式的性质的第一课时的内容。

它承接了等式的性质,让学生第一次经历不等式的等价变形,也经历了从“数”的大小关系到“式”的大小关系的转折,不等式的性质是解不等式的重要依据,因此它是不等式解法的核心内容之一,是本章的基础,有着相当重要的地位。

生活中的数量关系不外乎两种:相等关系与不等关系,通过这堂课的学习,让学生对数量关系的变形有一个完整的认识,形成一个知识体系。

二、学情分析学生的认知基础有:第一,会比较数的大小;第二,理解等式性质并知道等式性质是解方程的依据;第三、具备“通过观察、操作并抽象概括等活动获得数学结论”的体会,有一定的抽象概括能力和数学建模能力和合情推理归纳能力。

不等式性质3缺少生活经验的依据,已有知识经验对性质3造成负迁移,导致学生不理解运用性质3时“为什么要改变不等号的方向”;在不等式的等价变形时不知道“什么时候要改变不等号的方向”。

本设计运用分组讨论合作交流的方式,使学生对不等式性质2、3经历猜测、验证、纠错、归纳、完善的充分的思考过程,自发生成。

三、教学目标1.知识与技能(1)进一步熟练掌握不等式的性质(2)会运用不等式的性质解简单的不等式(3)能用数轴正确表示不等式的解集,体会数形结合思想。

2.过程与方法通过类比、分组探究活动,让学生体会在解决问题过程中与他人合作的重要性,积累数学活动经验,学会解简单的不等式的方法,掌握在数轴上表示不等式的解集的方法。

3.情感态度与价值观通过用数轴正确表示不等式的解集,体会数形结合思想。

通过合作学习、讨论,培养与他人交流的意识和能力.四、教学重点及难点1.教学重点:利用不等式的性质解不等式2.教学难点:不等式性质3运用五、教学方法采用启发式教学法及情感教学,引导学生主动思考,大胆探索,得出规律六、课时安排1课时七、教学过程1、复习导入请你用两分钟时间回顾不等式有哪些性质?请你用语言描述下列不等式的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1课时不等式的性质
【教学目标】
1、经历通过类比、猜测、验证发现不等式性质的探索过程,掌握不等式的性质;
2、初步体会不等式与等式的异同;
3、通过创设问题情境和实验探究活动,积极引导学生参与数学活动,提高学习数学的兴
趣,增进学习数学的信心,体会在解决问题的过程中与他人交流合作的重要性.【教学重点与难点】
1.难点:正确运用不等式的性质。

2.重点:理解并掌握不等式的性质。

【教学过程】
一、提出问题
教师出示天平,并请学生仔细观察老师的操作过程,回答下列问题:
1、天平被调整到什么状态?
2、给不平衡的天平两边同时加人相同质量的砝码,天平会有什么变化?
3、不平衡的天平两边同时拿掉相同质量的砝码,天平会有什么变化?
4、如果对不平衡的天平两边砝码的质量同时扩大相同的倍数,天平会平衡吗?缩小相
同的倍数呢?
二、探究新知
1、用“>”或“<”填空.
(1)-1 < 3 -1+2 3+2 -1-3 3-3
(2) 5 >3 5+a 3+a 5-a 3-a
(3) 6 > 2 6×5 2×5 6×(-5)2×(-5)
(4) -2 < 3(-2)×6 3×6
(-2)×(-6) 3×(一6)
(5)-4 >-6 (-4)÷2(-6)÷2
(-4)十(-2)(-6)十(-2)
2、从以上练习中,你发现了什么?请你再用几个例子试一试,还有类似的结论吗?请把你
的发现告诉同学们并与他们交流.
3、让学生充分发表“发现”,师生共同归纳得出:
不等式性质1:不等式两边都加上(或减去)同一个数(或式子),不等号的方向不变.不等式性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.
不等式性质3:不等式两边都乘(或除以)同一个负数,不等号的方向改变.
4、你能说出不等式性质与等式性质的相同之处与不同之处吗?
5、下列哪些是不等式x+3 > 6的解?哪些不是?
-4,-2. 5,0,1,2.5,3,3.2,4.8,8,12
6、直接想出不等式的解集,并在数轴上表示出来:
(1)x+3 > 6(2)2x < 8(3)x-2 > 0
三、巩固新知
1、 判断
(1)∵a < b ∴ a -b < b -b
(2)∵a < b ∴ 3
3b a < (3)∵a < b ∴ -2a < -2b
(4)∵-2a > 0 ∴ a > 0
(5)∵-a < 0 ∴ a < 3
2、 填空
(1)∵ 2a > 3a ∴ a 是 数
(2)∵ 2
3a a < ∴ a 是 数 (3)∵ax < a 且 x > 1 ∴ a 是 数 3、 根据下列已知条件,说出a 与b 的不等关系,并说明是根据不等式哪一条性质。

(1)a -3 > b -3 (2)
33b a < (3)-4a > -4b
四、总结归纳
1、等式性质与不等式性质的不同之处;
2、在运用“不等式性质3"时应注意的问题.
五、布置作业。

相关文档
最新文档