《计算方法》练习题

合集下载

计算方法习题及答案

计算方法习题及答案

计算方法习题及答案在学习计算方法的过程中,习题的练习和答案的掌握是非常重要的。

下面将为大家提供一些计算方法习题及答案,希望能够帮助大家更好地巩固知识。

一、整数运算习题1. 计算以下整数的和:-5 + 8 + (-3) + (-2) + 10。

答案:-5 + 8 + (-3) + (-2) + 10 = 8。

2. 计算以下整数的差:15 - (-6) - 10 + 3。

答案:15 - (-6) - 10 + 3 = 24。

3. 将 -3 × (-4) - 2 × 5 的结果化简。

答案:-3 × (-4) - 2 × 5 = 12 - 10 = 2。

二、分数运算习题1. 计算以下分数的和:1/2 + 2/3 + 3/4 + 4/5。

答案:1/2 + 2/3 + 3/4 + 4/5 = 47/20。

2. 计算以下分数的差:2/3 - 1/4 - 5/6。

答案:2/3 - 1/4 - 5/6 = -1/12。

3. 计算以下分数的积:2/3 × 3/4 × 4/5。

答案:2/3 × 3/4 × 4/5 = 4/15。

4. 将以下分数的除法化简为整数:3/8 ÷ 1/4。

答案:3/8 ÷ 1/4 = (3/8) × (4/1) = 3/2 = 1 1/2。

三、百分数运算习题1. 计算60% × 80%的结果。

答案:60% × 80% = 0.6 × 0.8 = 0.48 = 48%。

2. 计算40%除以20%的结果。

答案:40% ÷ 20% = (40/100) ÷ (20/100) = 2。

3. 计算200中的20%是多少。

答案:200 × 20% = 200 × 0.2 = 40。

四、多项式运算习题1. 计算以下多项式的和:(3x^2 + 4x + 5) + (2x^2 + x + 3)。

计算方法各习题及参考答案

计算方法各习题及参考答案

第二章数值分析已知多项式p(x) X1 X3 X2 X 1通过下列点:p(x)试构造一多项式q(x)通过下列点:表中p2(X)的某一个函数值有错误,试找出并校正它•答案:函数值表中P2( 1)错误,应有P2(1)O •利用差分的性质证明12 22n2 n(n 1)(2n1)/6 ・当用等距节点的分段二次插值多项式在区间[1,1]近似函数e x时,使用多少个节点能够保证误差不超过1 1062答案:需要个插值节点・设被插值函数f(x)C4[a,b] 出(叫x)是f(x)矢于等距节点baa Xo X1 Xn b的分段三次艾尔米特插值多项式,步长h •试估计n22I I f (x) H3(h)(x) I I .答案:| |f(x) H3(h) (x) | | M4 hl384第三章函数逼近求f(x) sin x, x [0, 0. 1]在空间span{l, x, x2} ±最佳平方逼近多项式,并给岀平方误差.答案:f (x) sin x的二次最佳平方逼近多项式为-52 sin x p2(x) 0. 832 440 7 10-5 1.000 999 lx 0. 024 985 lx2,二次最佳平方逼近的平方误差为0. 12 2 -12_ (sin x) p2 (x)) dx 0. 989 310 7 10~12・确定参数a, b和c ,使得积分[ax2 bx c 1 ] dx取最小值.l(a,b,c)求多项式f (x) 2x' x3 5x2 1在[1, 1]上的3 次最佳一致逼近多项式p(x) •8 10 a , b 0, c 33答案:f(X)的最佳一致逼近多项式为P(X) ; 7;4用幕级数缩合方法,求f (x) e s ( 1 x 1)上的3次近似多项式p6,3 ( x),并估计I f (x) P6,3(X)I ・答案:23 pe,3 ( x) 0. 994 574 65 0. 997 39583x 0. 542 968 75x2 0. 177 083 33x3,:f (x) P6,3 (x) | | 0. 006 572 327 7J求f (x) e s ( 1 x 1)上的关于权函数(x)的三次最佳平方逼近多1 X"项式S3 ( X),并估计误差I f(X)S3(X)〔2 和I I f(X)S3 (x) I •咎23、口Ss(x) 0. 994 571 0. 997 308x 0. 542 99lx2 0. 177 347 x3,丨丨 f (x) Ss(x) | 12 0. 006 894 83 , | | f (x) Ss( x) | | 0. 006 442 575 ・第四章数值积分与数值微分用梯形公式、辛浦生公式和柯特斯公式分别计算积分x n dx (n 1, 2, 3, 4),并与精确值比较答案:计算结果如下表所示式具有的代数术青度.版权文档,请勿用做商业用途h(1 ) h f (x) dx Aif ( h) Ao f (0) Ai f (h)X1(2 ) if (x) dx [f ( 1) 2f (xi) 3f (x?)]乜11 h 2(3) o f (x)dx 2h[ f (0) f (h)] h2[ f (0) f (h)]答案:(1)具有三次代数精确度(2)具有二次代数精确度(3)具有三次代数精确度. a h xi xo ,确定求积公式X12 31 (x xo) f (x) dx h2EAf (xo) Bf (xi) ] h3[Cf (xo) Df (xi) ] R[f]X中的待定参数A, B, C, D ,使得该求积公式的代数精确度尽量高,并给出余项表达式.2/103)取7个节点处的函数值.用变步长的复化梯形公式和变步长的复化辛浦生公式计算 】山心砥•要求积分13 1610 3和10 6・版权文档,请勿用做商业用途 22 Ts 0. 946满足精度要求;使用复化辛浦生公式时,2 0J 田上述i 公武推导帶修忑项韵営化梯形求积公式K2 其中余域(x)dx= [占(xd 予 CxoH , &b).为 T N h [f po) 2f (xi) 2f (X2) 2f (XN 1) f (XN )],Xi xo in, (i 0, 1, 2, , N), Nh XN XO •$ x 9、用龙贝格方法计算椭圆 / y 2 1的周长,使结果具有五位有效数字. o 4 答案:1 41 9. 6884 .验证高斯型求积公 e f (x) dx Ao f (xo) Ai f (xi)的系数及节点分别为式f<4)()h 6,其中答案:A 3 , B 7 , C 30 20 1440 P2(x)是以 0, h, 口2h •为插值上的二次插值多项式,用3h0 f ( x)dx 的数值积分公式Ih,并用台劳展开法证明:P2 (x)导岀计算积分h 4 f (0) 0(h 5) • 8Ih 0 P2(X )dx°4给定积分Ih[ f(0) 3f (2h)]'sin x dx(2) (3)答5运用复化梯形公式#算上述积分值,使其截断误差不 聲萝改用复化辛浦生公式计算时,截断误差是多少?亠 10 “ •2取同样的求积节 要求的截断误差不超过106,若用复化辛浦生公式,应取多少个节点处的函数值? (1)只需n 7.5,取 9个节点,I 0. 946 ba 4 ⑷"41 6h 1 f ⑷()2) |Rn[f]| |2880 2880 4 5(V 0. 271 10 6 用事后误差估计法时,截断误不超过答案:使用复化梯形公式时,I S4 0. 946 083满足精度要求. f (1) (x) dx插值公式推导带有导数值的求积公式(b i2a )[f (b) f (a)] R[f],其中 确定高斯型求积公式0 xf (x) dx Aof (xo) Aif (xi)闻 xo , xi 及系数Ao,Ai.答案:xo 0. 289 949xi 0. 821 162 , Ao 0. 277 556, Ai 0. 389 111. 利用埃尔米特 b%ba[f(R f 山)]Ao 2: 2S Ao 2: 21x 0 2 2, Xi 2 2 . 第五章解线性方程组的直接法1 11用按列选主元的高斯若当消去法求矩 A 的逆矩阵’其中A21 01 1 0答案:用追赶法求解三对角方程组21 X11 131X22111X3221x4欣X4 2, X3L X2 1, XI 0 .第六章解线性代数方程组的迭代法X! 8X2 7X! 9X2 8作简单调整,使得用高斯一赛得尔迭代法求解时对任9x1 X2 X3 7 意初始向量都收敛,并取初始向量X (O ) [0 0 0]T使(k 1)k ()3||x (k bx k ()|| 10.3版权文档,请勿用做商业用途答案:近似解为X” [1.0000 1. 0000 1. 0000] T . 6 . 2讨论松弛因子1. 25时,用方法求解方程组1020X150101x231243x3170103x4答案: xi 2、X3 2X 21,Xi 1.411XI6 1 4. 25 2. 75X20. 512. 753. 5 X31. 25 答 xi 2X2X3用平方根法(分解法)求解方程组3用矩阵的直接三角分解法解方程组4x1 3x2 16 3xi 4x2 X3 20X2 4x312〔121,证明用雅可比迭代法解此方程组发散,而高斯-赛得尔迭代法收敛・12 1 123 0 2 X1bi6・4 设有方程组0 21X2b 2讨论用雅可比方法和咼斯一赛得尔方21 2 X3b3法解此方程组的收敛性•如果收敛,比较哪种方法收敛较 版权文档,请勿用做商业用途为6 . 3给定线性方程组Ax b,其中答案:雅可比方法收敛,高斯一赛得尔方法收敛,且较快.6. 5设矩阵A 非奇异.求证:方程组Ax b 的解总能通过高斯一赛得尔方法得到. …Aaij n n 为对称正定矩阵,对角阵D diag (an, a22 , , ann)・求证:高斯u 一赛得尔方法求解方程组D 2 AD 2x b 时对任意初始向量都收 敛.第七章非线性方程求根例7. 4对方程3x 2 e s 0确定迭代函数(x)及区间[a, b ],使对xo [a, b ],迭代过程 XR i (x), k 0, 1, 2,均收敛,并求解.要求 xk 1 xk | 10x X? 0.458960903 •在[3, 4]上,将原方程改写为e x 3 x 2 ,取对数得性条件,则迭代序列xki In(3 xk 2 ), k 0, 1,2,在[3, 4]中有惟一解.取x 0 3.5 , x xie 3.733067511 •例7 . 6对于迭代函数(x) x c(x 2 3),试讨论:的收敛性・若收敛,则取 x (0)[0 0 0]T迭代求解,使 ||x (I )x (k)1104-X1 1.50001,X2 答案:方程组的近似解3.33333,X32.16667 •答案:若取(X )e 2 ,则在[1,0]中满足收敛性条件,因此迭代法e 2k , k 0,1,2,在(1,0)中有惟一解•取 X0 0. 5, 3取(X )9 e"i,在[0 ,上1满足收敛性条件, 迭代序列1Xk 1 k 1 03k 0, 1, 2,在[0,1]中有惟一解.取 xo 0. 5,X X140.910001967x 2 ) (x)・满足收敛x In (3(1)当c为何值时,x kl (x k)产生的序列{x k}收敛于3;(2)c取何值时收敛最快?顿法收敛,证明牛顿迭代序列{Xk }有下列极限矢系:l k im xk i 2xk xk i第八章矩阵特征值用乘幕法求矩阵A 的按模最大的特征值与对应的特征向量,已矢口 5 5 0 A 0 5. 5 1,要求 x (k)| 10 6,这里 严表示|的第k 次近似值.3 1答案:1 5 ,对应的特征向量为[5,0,0] T :2 5 ,对应的特征向量为[5, 10, T 5 ・]1 1 0>彳 2的按模最小的特征12例7设不动点迭代xki (x)的迭代函数(x)具有二阶连续导数,/是(x)的不动1 1 5取C,力別If 鼻(X 丿旳个动点3 '妥吞| XkiXkl 1U- •3) 223(1 ) c (,0)时矗代收敛•答案: 31c 时收敛最快• O 、 233)分别取c 1,123,并取xo1.5,计算结果如下表7• 7所示yk点,且(X*) 1,证明迭代式(xk ) , Zk (xk )(yk x k )2 , k 0, 1, 2,二阶收敛于x"・版Xk 1 Xk Zk 2yk Xk权文档,请勿用做商业用途 例设(x) x p(x) f (x) q(x)f 2),试确定函数p(x)和q(x),使求解f (x) 0且以(x)为迭代函数的迭代法至少三阶收 敛.案:p(x) f X (x )・ q(x) ;[f f (W]3例7设f (x)在[a, b]上有高阶导数,x* (a, b)是 f(x) 0的m(m 2)重根,且牛知A 的按模较大的特征 值用反幕法求矩阵A的近似值为15,用p 5的原点平移法计算1及其对应的特征向量.版权文档,请勿用做商业用途 答案:0 A 的按模最小的特征值为3 0. 238442812212第九章 微分方程初值问题的数值解法用反复迭代(反复校正)的欧拉预估一校正法求解初值问题y © 0] 0<x 0.2 5 ,要求取步长h 0. 1,每步迭代误差不超过10 5 .答案:Y y(0. 1) yi y 】⑷ 0. 904 762 , y(0. 2) y 2 y?⑷ 0.818 594267 一x y , 0<x 0. 4用二阶中点格式和二阶休恩格式求初值问题"“ “嗜厲汀⑹1长h 0.2,运算过程中保留五位小数). 计算得用平面旋转变换和反射变换将向量X [23 0 5] T 变为与 ei [1 0 0 0]T 平行的向量.2/ 38 3/ 385/ 38答案: T3/ 13 2/ 13 0 00 1 010/ 49415/ 4940 13/4940. 324 442 840 0. 486 664 262 0 0. 811107 1040. 486 664 2620.812 176 0480 0.298 039 922H10.811 107 104 0. 298 039 922 00.530 266 798然后用QR 方法求A 的全部特征值.4 4 5答案:取5 2. 234375即有2位有效数字. 532若A 6 4 4 ,试把A 化为相似的上阵, 值, 21n 0 时,Ki 1.000 00, K2 1. 200 00, y(0. 2) yi=l. 240 00n 1 时,Ki 1. 737 60, 用二阶休恩格式, K 2 2. 298 72, 取初值yo 1计算得y(0. 4) y 2 =1. 699 740 1 5. 1248854 ,对应的特征向量为(8) _设方阵A 的特征值都是实数,且满足 n)时, [0.242 4310, 1 , 0. 320 011 7],为求1而作原1 2 n,点平移'试证:当平移量P 2,(2幕法收敛最快•用二分法求三对角对〈方 A的最小特征 使它至少具有2位有212 答案:用二阶中点格式,取初值yo 1n 0 时,Ki 1.000 00, Ka 1.266 67, y(0.2) yi=1.240 00n 1时,Ki 1.737 60, Ka 2.499 18, y(0.4) y 2 =1.701 76用如下四步四阶阿达姆斯显格式 y n 1 y n h(55f n 59 fn 137fn2 9fn 3)/24求初值问题y x y, y(0) 1在[0,0.5]上的数值解•取步长h 0.1 小数点后保留8位•答 y(0.4) y 40.583 640 216 ‘ y(0.5) y 51.797 421 984 ・ 为使二阶中点公式ym yn hf(Xn h 2h,yn h f(Xn, yn)),求解初值问题2 n nh 的大小应受到的限制条件・hf (Xn,yn)用如下反复迭代的欧拉预估T&榴式 yn (k 11) yn h[f(Xn,y n ) f(Xn1,y n (k)1)]'k 0,1,2,; n 0,1,2,求解初值问题心讪•小时,如何选择步长h ,使上述格式矢于k 的迭y(0) 1代收敛•2答案:h 时上述格式尖于K 的迭代是收敛的・e求系数a,b,c,d ,使求解初值问题y f (x, y), y(xo) a 的如下隐式二步法 yn2aynh(bfn2Cfmdfn)的误差阶尽可能高,并指出其阶数•高'为五阶。

计算方法复习题

计算方法复习题

《计算方法》复习题一 选 择(每题3分,合计42分)1. x* = 1.732050808,取x =1。

7320,则x 具有 位有效数字。

A 、3 B 、4 C 、5 D 、62. 取73.13≈(三位有效数字),则≤-73.13 。

A 、30.510-⨯B 、20.510-⨯C 、10.510-⨯D 、0。

5 3. 下面 不是数值计算应注意的问题。

A 、注意简化计算步骤,减少运算次数B 、要避免相近两数相减C 、要防止大数吃掉小数D 、要尽量消灭误差 4. 对任意初始向量)0(x 及常向量g ,迭代过程g x B xk k+=+)()1(收敛的充分必要条件是 。

A 、11<B B 、1<∞BC 、1)(<B ρD 、21B <5. 用列主元消去法解线性方程组,消元的第k 步,选列主元)1(-k rka ,使得)1(-k rk a = 。

A 、 )1(1max -≤≤k ikni a B 、 )1(max -≤≤k ikni k a C 、 )1(max -≤≤k kjnj k a D 、 )1(1max -≤≤k kjnj a6. 设ƒ(x)= 5x 3-3x 2+x +6,取x 1=0,x 2=0。

3,x 3=0。

6,x 4=0.8,在这些点上关于ƒ(x )的插值多项式为3()P x ,则ƒ(0.9)—3(0.9)P =__________。

A 、0 B 、0.001 C 、0。

002 D 、0.0037. 用简单迭代法求方程f (x )=0的实根,把方程f (x )=0转化为x =ϕ(x ),则f (x )=0的根是: .A 、y =x 与y =ϕ(x )的交点B 、 y =x 与y =ϕ(x )交点的横坐标C 、y =x 与x 轴的交点的横坐标D 、 y =ϕ(x )与x 轴交点的横坐标8. 已知x 0=2,f (x 0)=46,x 1=4,f (x 1)=88,则一阶差商f [x 0, x 1]为 。

计算方法练习题与答案

计算方法练习题与答案

练习题与答案练习题一练习题二练习题三练习题四练习题五练习题六练习题七练习题八练习题答案练习题一一、是非题1.–作为x的近似值一定具有6位有效数字,且其误差限。

()2.对两个不同数的近似数,误差越小,有效数位越多。

()3.一个近似数的有效数位愈多,其相对误差限愈小。

()4.用近似表示cos x产生舍入误差。

( )5.和作为的近似值有效数字位数相同。

( )二、填空题1.为了使计算的乘除法次数尽量少,应将该表达式改写为;2.–是x舍入得到的近似值,它有位有效数字,误差限为,相对误差限为;3.误差的来源是;4.截断误差为;5.设计算法应遵循的原则是。

三、选择题1.–作为x的近似值,它的有效数字位数为( ) 。

(A) 7; (B) 3;(C) 不能确定 (D) 5.2.舍入误差是( )产生的误差。

(A) 只取有限位数 (B) 模型准确值与用数值方法求得的准确值(C) 观察与测量 (D) 数学模型准确值与实际值3.用 1+x近似表示e x所产生的误差是( )误差。

(A). 模型 (B). 观测 (C). 截断 (D). 舍入4.用s*=g t2表示自由落体运动距离与时间的关系式 (g为重力加速度),s t是在时间t内的实际距离,则s t s*是()误差。

(A). 舍入 (B). 观测 (C). 模型 (D). 截断5.作为的近似值,有( )位有效数字。

(A) 3; (B) 4; (C) 5; (D) 6。

四、计算题1.,,分别作为的近似值,各有几位有效数字?2.设计算球体积允许的相对误差限为1%,问测量球直径的相对误差限最大为多少?3.利用等价变换使下列表达式的计算结果比较精确:(1), (2)(3) , (4)4.真空中自由落体运动距离s与时间t的关系式是s=g t2,g为重力加速度。

现设g是精确的,而对t有秒的测量误差,证明:当t增加时,距离的绝对误差增加,而相对误差却减少。

5*. 采用迭代法计算,取k=0,1,…,若是的具有n位有效数字的近似值,求证是的具有2n位有效数字的近似值。

计算方法复习题

计算方法复习题

计算方法复习题一、判断题1.四舍五入得到的最后一位数字是有效数字。

( )2.运算量是衡量一个算法好坏的唯一指标。

( )3.从计算方法近似解角度考虑,方程组都有解。

( )4.最小二乘拟合本质是解矛盾方程组。

( )5.高斯—塞德尔迭代法一定比雅可比迭代法收敛速度快。

( )6.数值积分中求积系数与被积函数f (x )有关。

( )7.同一组数据采用拉格朗日插值与牛顿插值的结果不同。

( )8.迭代法求非线性方程f (x )=0收敛的条件是|f ’(x)|<1。

( )9.常微分方程数值解中龙格库塔法的系数可由Taylor 公式展开求取。

( )10.线性方程组的迭代法不适合用于求解大型稀疏矩阵。

( )11.加减计算量是衡量一个算法好坏的最重要的指标。

( )12.计算方法应考虑各种误差的影响。

( )13.插值法是函数逼近的唯一方法。

( )14.求解同一个问题时,结果的有效数字位数越多说明的近似解精度越高。

( )15.高斯—塞德尔迭代法不一定比雅可比迭代法求解精度高。

( )16.所有插值法都是只要求构造的φ(x )与f (x )在给定点的函数值相等。

( )17.f(x)没有解析表达式,只有数表形式时,可以对f (x )进行积分。

( )18.线性方程组的直接解法适合用于求解小型稠密矩阵。

( )19.可以用代数精确度度量数值积分的精度。

( )20.计算方法中各种算法只考虑舍入误差。

( )21.计算方法考虑数学问题的近似解,信息量越少近似解越准确。

( )22.所有插值法只要求构造的φ(x )与f (x )在给定点的函数值相等。

( )23.线性方程组迭代收敛与矩阵A 的特征值有关。

( )24.可以用代数精确度度量数值积分的精度。

( )二、填空题1.微分方程离散化的方法有:数值积分、差商和_________________。

2.你学习或知道的线性方程组求解方法,除了简单迭代法(雅克比)外,还有____________等。

计算方法习题集及答案(总结版)

计算方法习题集及答案(总结版)

雅克比法:
3 10 12 5
3 (k ) 2 (k ) x1( k +1) = − 5 x2 − 5 x3 −
,x
( k +1) 2
(k ) 1 (k ) =1 4 x1 − 2 x 3 + 5
18 i
,x
( k +1) 3 −4
(k ) 3 =−1 + 10 x (2 k ) + 5 x1
取初始向量 x
(2) x (3) x
3
= 1+ x2 =
,对应迭代公式 x 对应迭代公式 x
0
k +1
= 3 1 + x k2 ;
2
1 , x −1
k
+1 =
1 xk − 1

0
判断以上三种迭代公式在 x 解: (1) ϕ ( x) = 1 + x1
2
= 1 .5
的收敛性,选一种收敛公式求出 x
2 x3

2 3
= 1 .5
5
习题 3
1.
设有方程组
5 x1 + 2 x 2 + x3 = −12 − x1 + 4 x 2 + 2 x3 = 20 2 x − 3x + 10 x = 3 2 3 1
( k +1) (k )

(1)
考察用 Jacobi 法,Gauss-Seidal 法解此方程组的收敛性; −x (2) 用 Jacobi 法及 Gauss-Seidal 法解方程组,要求当 x
1.
x
k +1 k k
'
<1
公式收敛

计算方法练习题与答案

计算方法练习题与答案

练习题与答案练习题一练习题二练习题三练习题四练习题五练习题六练习题七练习题八练习题答案练习题一一、是非题1.*x=–12.0326作为x的近似值一定具有6位有效数字,且其误差限≤41021-⨯。

()2.对两个不同数的近似数,误差越小,有效数位越多。

( )3.一个近似数的有效数位愈多,其相对误差限愈小。

( )4.用212x-近似表示cos x产生舍入误差。

( )5. 3.14和 3.142作为π的近似值有效数字位数相同。

( )二、填空题1. 为了使计算()()2334912111y x x x =+-+---的乘除法次数尽量少,应将该表达式改写为 ;2. *x =–0.003457是x 舍入得到的近似值,它有 位有效数字,误差限为 ,相对误差限为 ;3. 误差的来源是 ;4. 截断误差为 ;5. 设计算法应遵循的原则是 。

三、选择题1.*x =–0.026900作为x 的近似值,它的有效数字位数为( ) 。

(A) 7; (B) 3;(C) 不能确定 (D) 5.2.舍入误差是( )产生的误差。

(A) 只取有限位数 (B) 模型准确值与用数值方法求得的准确值(C) 观察与测量 (D) 数学模型准确值与实际值3.用 1+x 近似表示e x 所产生的误差是( )误差。

(A). 模型 (B). 观测 (C). 截断 (D). 舍入4.用s *=21g t 2表示自由落体运动距离与时间的关系式 (g 为重力加速度),s t 是在时间t 内的实际距离,则s t - s *是( )误差。

(A). 舍入 (B). 观测 (C). 模型 (D). 截断5.1.41300作为2的近似值,有( )位有效数字。

(A) 3; (B) 4; (C) 5; (D) 6。

四、计算题1. 3.142,3.141,227分别作为π的近似值,各有几位有效数字?2. 设计算球体积允许的相对误差限为1%,问测量球直径的相对误差限最大为多少?3. 利用等价变换使下列表达式的计算结果比较精确: (1)1||,11211<<+-++x x x x , (2) 1||1112<<+⎰+x dt t x x(3) 1||,1<<-x e x , (4) 1)1ln(2>>-+x x x4.真空中自由落体运动距离s 与时间t 的关系式是s =21g t 2,g 为重力加速度。

计算方法课后习题集规范标准答案

计算方法课后习题集规范标准答案

习 题 一3.已知函数y =4, 6.25,9x x x ===处的函数值,试通过一个二次插值函解:0120124, 6.25,9;2, 2.5,3y x x x y y y =======由题意 (1) 采用Lagrange插值多项式220()()j j j y L x l x y ==≈=∑27020112012010*********()|()()()()()()()()()()()()(7 6.25)(79)(74)(79)(74)(7 6.25)2 2.532.255 2.25 2.75 2.7552.6484848x y L x x x x x x x x x x x x x y y y x x x x x x x x x x x x ==≈------=++------------=⨯+⨯+⨯⨯-⨯⨯= 其误差为(3)25(3)25(3)2[4,9]2()(7)(74)(7 6.25)(79)3!3()83max |()|40.0117281|(7)|(4.5)(0.01172)0.008796f R f x x f x R ξ--=---==<∴<=又则(2)采用Newton插值多项式2()y N x =≈ 根据题意作差商表:224(7)2(74)()(74)(7 6.25) 2.64848489495N =+⨯-+-⨯-⨯-≈4. 设()()0,1,...,k f x x k n ==,试列出()f x 关于互异节点()0,1,...,i x i n =的Lagrange 插值多项式。

注意到:若1n +个节点()0,1,...,i x i n =互异,则对任意次数n ≤的多项式()f x ,它关于节点()0,1,...,i x i n =满足条件(),0,1,...,i i P x y i n ==的插值多项式()P x 就是它本身。

可见,当k n ≤时幂函数()(0,1,...,)kf x x k n ==关于1n +个节点()0,1,...,i x i n =的插值多项式就是它本身,故依Lagrange 公式有()00(),0,1,...,nn n k kk i j j j j j i j ii jx x x l x x x k n x x ===≠-=≡=-∑∑∏特别地,当0k =时,有()0001nn n ij j j i j ii jx x l x x x ===≠-=≡-∑∑∏而当1k =时有()000nnn ij j j j j i j ii jx x x l x x x x x ===≠⎛⎫- ⎪=≡ ⎪- ⎪⎝⎭∑∑∏ 5.依据下列函数表分别建立次数不超过3的Lagrange 插值多项式和Newton 插值多项式,并验证插值多项式的唯一性。

计算方法第六章习题答案

计算方法第六章习题答案

第六章习题答案1.用二分法求方程在区间[1内的根,要求其绝对误差不超 32()330f x x x x =+−−=,2]过210.−解: 由于(1)113340,f =+−−=−<32(2)2232330,f =+−×−=>且当时,[1,2]x ∈22110()3233()033f x x x x ′=+−=+−> 所以方程在区间[1内仅有一个实根。

,2] 由2111(21)10,22k −+−≤×解得2ln10 6.64385.ln 2k ≥≥所以需要二分7次,才能得到满足精度要求的根。

取[1区间的中点将区间二等分,求得,2]1 1.5,x =(1.5) 1.8750,f =−<与(1)f 同号,因此得到下一区间[1如此继续下去,即得计算结果。

.5,2];计算结果如下表:k(())f k k a a 的符号(())x f x k k 的符号(())b f b k k 的符号0 1(-) 1.5(-) 2(+) 1 1.5(-) 1.75(+) 2(+) 2 1.5(-) 1.625(-) 1.75(+) 3 1.625(-) 1.6875(-) 1.75(+) 4 1.6875(-) 1.71875(-) 1.75(+) 5 1.71875(-) 1.734375(+) 1.75(+) 6 1.71875(-) 1.7265625(-) 1.734375(+) 7 1.7265625(-) 1.73046875(-) 1.734375(+)7()1.73046875 1.73a b x +==≈77取即满足精度要求2。

2.证明1s 在[0内有一个根,使用二分法求误差不大于in 0x x −−=,1]41102−×的根要迭代多少次?证明: 设()1sin ,f x x =−−x由于(0)10sin 010,f =−−=>(1)11sin1sin10,f =−−=−<且当时,[0,1]x ∈()1cos 0.f x x ′=−−< 因此方程在区间[0内有一个根。

计算方法_习题第一、二章答案

计算方法_习题第一、二章答案

第一章 误差1 问3.142,3.141,722分别作为π的近似值各具有几位有效数字?分析 利用有效数字的概念可直接得出。

解 π=3.141 592 65…记x 1=3.142,x 2=3.141,x 3=722.由π- x 1=3.141 59…-3.142=-0.000 40…知3411110||1022x π--⨯<-≤⨯ 因而x 1具有4位有效数字。

由π- x 2=3.141 59…-3.141=-0.000 59…知2231021||1021--⨯≤-<⨯x π因而x 2具有3位有效数字。

由π-722=3.141 59 …-3.142 85…=-0.001 26…知231021|722|1021--⨯≤-<⨯π因而x 3具有3位有效数字。

2 已知近似数x*有两位有效数字,试求其相对误差限。

分析 本题显然应利用有效数字与相对误差的关系。

解 利用有效数字与相对误差的关系。

这里n=2,a 1是1到9之间的数字。

%5101101|*||)(|1211*=⨯≤⨯≤-=+-+-n rx x x ε3 已知近似数的相对误差限为0.3%,问x*至少有几位有效数字?分析 本题利用有效数字与相对误差的关系。

解 a 1是1到9间的数字。

1112*10110113%3.0)(--⨯≤⨯=<=x r ε 设x*具有n 位有效数字,令-n+1=-1,则n=2,从而x*至少具有2位有效数字。

4 计算sin1.2,问要取几位有效数字才能保证相对误差限不大于0.01%。

分析 本题应利用有效数字与相对误差的关系。

解 设取n 位有效数字,由sin1.2=0.93…,故a 1=9。

411*10%01.01021|*||*||)(-+-=≤⨯≤-=n r a x x x x ε解不等式411101021-+-≤⨯n a 知取n=4即可满足要求。

5 计算76017591-,视已知数为精确值,用4位浮点数计算。

《计算方法》练习题及答案

《计算方法》练习题及答案

《计算方法》练习题及答案1. 单选题1. 数值3.1416的有效位数为()A. 3B. 4C. 5D. 6正确答案:C2. 常用的阶梯函数是简单的()次样条函数。

A. 零B. 一C. 二D. 三正确答案:A3. 设求方程f(x)=0的根的牛顿法收敛,则它具有()敛速。

A. 超线性B. 平方C. 线性D. 三次正确答案:C4. 构造拟合曲线不可以采用下列哪种准则()A. 使残差的最大绝对值为最小B. 使残差的绝对值之和为最小C. 使残差的平方和为最小D. 是残差的绝对值之差为最小正确答案:D5. 欧拉法的局部截断误差阶为()。

A. AB. BC.CD. D正确答案:B6. 依据3个样点(0,1),(1,2)(2,3),其插值多项式p(x)为()A. xB. x+1C. x-1D. x+2正确答案:B7. 题面如下,正确的是()A. 2B. 3C. -2D. 1正确答案:B8. 题面如下图所示,正确的是()A. AB. BC. CD. D正确答案:D9. 用列主元消去法解线性方程组,A. 3B. 4C. -4D. 9正确答案:C10. 利用克莱姆法则求解行列式时,求解一个n阶方程组,需要()个n阶行列式。

A. nB. n+1C. n-1D. n*n正确答案:C11. 线性方程组的解法大致可以分为()A. 直接法和间接法B. 直接法和替代法C. 直接法和迭代法D. 间接法和迭代法正确答案:C12. ()的优点是收敛的速度快,缺点是需要提供导数值。

A. 牛顿法B. 下山法C. 弦截法D. 迭代法正确答案:A13. 设x* = 1.234是真值x = 1.23445的近似值,则x*有()位有效数字。

A. 1B. 2C. 3D. 4正确答案:D14. 若a=2.42315是2.42247的近似值,则a有( )位有效数字.A. 1B. 2C. 3D. 4正确答案:C15. 所谓松弛法,实质上是()的一种加速方法。

计算方法习题库

计算方法习题库

第一章例1、已知近似数*x 有两位有效数字,试求其相对误差限。

有两位有效数字,试求其相对误差限。

解:1a 是1到9之间的数字,%510211021)(1)12(1=´£´£---a x r e 例2、 以下误差公式不正确的是(以下误差公式不正确的是( )A .)()(2121x d x d x x d -»-)( B .)()(2121x d x d x x d +»+)(C .)()()(211221x d x x d x x x d +»× D .)()(2121x d x d x x d -»)(答案:D 例3 ln2=0.69314718ln2=0.69314718……,精确到10-3的近似值是多少?的近似值是多少?解:精确到103=0.001,即绝对误差限是e =0.0005, 故至少要保留小数点后三位才可以。

ln2»0.693 例4 8030.0,001.2-==y x 设是由真值**y x 和经四舍五入得到的近似值,试估计y x +的误差限________.解:由四舍五入易知3105.0)(-´£x d ,4105.0)(-´£x d ,由误差传播估计式从而有,由误差传播估计式从而有 31055.0)()()()()(-´£+£+»+y d x d y d x d y x d第二章例1:通过点),(0y x , ),(11y x , ),(22y x 所作的插值多项式是所作的插值多项式是( ) ( )(A) (A) 二次的二次的二次的 (B) (B) (B) 一次的一次的一次的 (C) (C) (C) 不超过二次的不超过二次的不超过二次的 (D) (D) (D) 大于二次的大于二次的大于二次的答案:(C) 例2:函数)(x f 在节点543,,x x x 处的二阶差商)(],,[543¹x x x f(A)],,[435x x x f (B) 3535)()(x x x f x f --(C)535443],[],[x x x x f x x f -- (D)534534],[],[x x x x f x x f --答案:(B)w x )(x 12)3(252132-- ,k x k f (x k ) 一阶差商一阶差商 二阶差商二阶差商 三阶差商三阶差商 四阶差商四阶差商 0 0.40 0.410 75 1 0.55 0.578 15 1.116 00 2 0.65 0.696 75 1.168 00 0.280 00 3 0.80 0.888 11 1.275 73 0.358 93 0.197 33 4 0.90 1.201 52 1.384 10 0.433 48 0.213 00 0.031 34 计算公式为:计算公式为:一阶差商一阶差商 )3,2,1,0()()(],[111=--=+++k x x x f x f x x f k k k k k k二阶差商二阶差商 )2,1,0(],[],[],,[221121=--=++++++k x x x x f x x f x x x f k k k k k k k k k +--+-+=)55.0)(40.0(28000.0)40.0(11600.141075.0)(3x x x x N)65.0)(55.0)(40.0(19733.0---x x x由于)(x f y =形式未知,显然不能通过余项定理来估计误差,可采用牛顿插值的余项形式来估计:)80.0)(65.0)(55.0)(40.0](,80.0,65.0,55.0,40.0[)(3----=x x x x x f x R 插值点85.0=x ,03134.0]90.0,80.0,65.0,55.0,40.0[],80.0,65.0,55.0,40.0[=»f x f (假设四阶差商变化不大)从而有误差估计:)80.085.0)(65.085.0)(55.085.0)(40.085.0(03134.0)(3----»x R例8:已知函数y =f (x )的观察数据为的观察数据为x k-2 0 4 5 y k5 1 -3 1 试构造f (x )的拉格朗日多项式P n (x ),并计算f (-1)。

《计算方法》复习题参考答案

《计算方法》复习题参考答案

《计算方法》练习题一练习题第1套参考答案一、填空题1. 14159.3=π的近似值3.1428,准确数位是( )。

2.满足d b f c a f ==)(,)(的插值余项=)(x R ( )。

3.设)}({x P k 为勒让德多项式,则=))(),((22x P x P ( )。

4.乘幂法是求实方阵( )特征值与特征向量的迭代法。

5.欧拉法的绝对稳定实区间是( )。

二、单选题1.已知近似数,,b a 的误差限)(),(b a εε,则=)(ab ε( )。

A .)()(b a εε B.)()(b a εε+ C.)()(b b a a εε+ D.)()(a b b a εε+ 2.设x x x f +=2)(,则=]3,2,1[f ( )。

A.1 B.2 C.3 D.43.设A=⎥⎦⎤⎢⎣⎡3113,则化A为对角阵的平面旋转=θ( ). A.2πB.3πC.4π D.6π4.若双点弦法收敛,则双点弦法具有( )敛速.A.线性 B.超线性 C.平方 D.三次5.改进欧拉法的局部截断误差阶是( ).A .)(h o B.)(2h o C.)(3h o D.)(4h o三、计算题1.求矛盾方程组:⎪⎩⎪⎨⎧=-=+=+2423212121x x x x x x 的最小二乘解。

2.用4=n 的复化梯形公式计算积分⎰211dx x ,并估计误差。

3.用列主元消元法解方程组:⎪⎩⎪⎨⎧=++=++=++426453426352321321321x x x x x x x x x 。

4.用雅可比迭代法解方程组:(求出)1(x )。

计算方法练习题与答案

计算方法练习题与答案

计算方法练习题与答案一、加减乘除练习1. 计算下列数的和并简化:a) 2 + 3 + 4 + 5b) 10 + 20 + 30 + 402.计算下列数的差:a) 100 - 50b) 75 - 253.计算下列数的积:a) 6 × 8b) 12 × 54.计算下列数的商:a) 100 ÷ 10b) 36 ÷ 6二、百分数计算练习1.计算以下百分数的值:a) 50% × 200b) 25% × 802.将以下分数转换为百分数:a) 1/4b) 3/53.将以下小数转换为百分数:a) 0.6b) 0.75三、比例计算练习1.解决以下比例问题:a) 如果一个长方形的长度为8cm,宽度为4cm,求其长宽比。

b) 假设一辆汽车每小时行驶50千米,行驶3小时,求行驶的总距离。

2.解决以下反比例问题:a) 如果一个鸟笼里有24只鸟,如果再加入6只鸟,那么所有鸟将平均得到多少空间?b) 一个机器能够在10小时内完成一项工作,那么如果再增加一倍的机器,需要多少小时才能完成同样的工作?四、平均值计算练习1.计算以下一组数的平均值:a) 5, 7, 9, 11, 13b) 16, 20, 24, 28, 322.已知某商品的销售数据如下,计算其平均销售量:月份销售量一月 120二月 150三月 170四月 140答案:一、加减乘除练习1.a) 2 + 3 + 4 + 5 = 14b) 10 + 20 + 30 + 40 = 1002.a) 100 - 50 = 50b) 75 - 25 = 503.a) 6 × 8 = 48b) 12 × 5 = 604.a) 100 ÷ 10 = 10b) 36 ÷ 6 = 6二、百分数计算练习1.a) 50% × 200 = 100b) 25% × 80 = 202.a) 1/4 = 25%b) 3/5 = 60%3.a) 0.6 = 60%b) 0.75 = 75%三、比例计算练习1.a) 长宽比为 8:4,简化为 2:1b) 汽车行驶总距离为 50km/h × 3h = 150km2.a) 初始鸟笼中每只鸟占据空间为 1/24,加入鸟后每只鸟占据空间为 1/30,所以平均空间为 30 / (24 + 6) = 1/2b) 原机器完成工作速率为 1/10,加入一倍机器后速率变为 1/20,完成工作所需时间为 10 × 2 = 20小时四、平均值计算练习1.a) 平均值 = (5 + 7 + 9 + 11 + 13) / 5 = 9b) 平均值 = (16 + 20 + 24 + 28 + 32) / 5 = 242. 平均销售量 = (120 + 150 + 170 + 140) / 4 = 145以上是本篇计算方法练习题与答案的内容。

计算方法练习题与答案

计算方法练习题与答案

练习题与答案练习题一练习题二练习题三练习题四练习题五练习题六练习题七练习题八练习题答案练习题一一、是非题1.x*–12.0326作为x的近似值一定具有6位有效数字,且其误差限1 104( )2 。

2.对两个不同数的近似数,误差越小,有效数位越多。

( )3.一个近似数的有效数位愈多,其相对误差限愈小。

( )x24.1( ) 用2近似表示cosx产生舍入误差。

5.3.14和3.142作为的近似值有效数字位数相同。

()二、填空题34 9y12231.为了使计算x1x1 x1的乘除法次数尽量少,应将该表达式改写为;2. x *–0.003457是x 舍入得到的近似值,它有位有效数字,误差限为,相对误差限为;3. 误差的来源是 ;4. 截断误差为;5.设计算法应遵循的原则是。

三、选择题1.x *–0.026900作为x 的近似值,它的有效数字位数为()。

(A)7; (B)3; (C)不能确定(D)5.2.舍入误差是()产生的误差。

(A) 只取有限位数(B)模型准确值与用数值方法求得的准确值 (C) 观察与测量(D)数学模型准确值与实际值3.用1+x 近似表示e x所产生的误差是()误差。

(A).模型 (B).观测(C).截断(D).舍入* 1 2.用 2 表示自由落体运动距离与时间的关系式(g 为重力加速度),s t 是在 4s= gt时间t 内的实际距离,则s t s *是( )误差。

(A).舍入(B).观测 (C).模型(D).截断5.1.41300作为2的近似值,有()位有效数字。

(A)3; (B)4;(C)5;(D)6。

四、计算题221.3.142,3.141,7分别作为的近似值,各有几位有效数字?2.设计算球体积允许的相对误差限为1%,问测量球直径的相对误差限最大为多少?3.利用等价变换使下列表达式的计算结果比较精确:1 1 x,|x| 111 dt|x| 1x(1)12x 1 x ,(2)x1t2(3)ex1, |x|1,(4)ln(x21x)x 114.真空中自由落体运动距离s与时间t的关系式是s=2gt2,g为重力加速度。

计算方法习题及答案

计算方法习题及答案

第一章 绪论一.填空题1.*x 为精确值x 的近似值;()**x f y=为一元函数()x f y =1的近似值;()**,*y x f y =为二元函数()y x f y ,2=的近似值,请写出下面的公式:**e x x =-:***rx x e x -=()()()*'1**y f x x εε≈⋅ ()()()()'***1**r r x f x y x f x εε≈⋅ ()()()()()**,**,*2**f x y f x y y x y x yεεε∂∂≈⋅+⋅∂∂()()()()()****,***,**222r f x y e x f x y e y y x y y y ε∂∂≈⋅+⋅∂∂2、 计算方法实际计算时,对数据只能取有限位表示,这时所产生的误差叫 舍入误差 。

3、 分别用2.718281,2.718282作数e的近似值,则其有效数字分别有 6 位和 7 位;又取1.73≈(三位有效数字),则-211.73 10 2≤⨯。

4、设121.216, 3.654x x ==均具有3位有效数字,则12x x 的相对误差限为 0.0055 。

5、设121.216, 3.654x x ==均具有3位有效数字,则12x x +的误差限为 0.01 。

6、已知近似值 2.4560A x =是由真值T x 经四舍五入得到,则相对误差限为 0.000021 .7、递推公式,⎧⎪⎨⎪⎩0n n-1y =y =10y -1,n =1,2,如果取0 1.41y ≈作计算,则计算到10y 时,误差为8110 2⨯;这个计算公式数值稳定不稳定 不稳定 .8、精确值 14159265.3*=π,则近似值141.3*1=π和1415.3*2=π分别有 3 位和 4 位有效数字。

9、 若*2.71828x e x =≈=,则x 有 6 位有效数字,其绝对误差限为1/2*10-5。

10、 设x*的相对误差为2%,求(x*)n 的相对误差0.02n 二、计算题1. 有一个长方形水池,由测量知长为(50±0.01)米,宽为(25±0.01)米,深为(20±0.01)米,试按所给数据求出该水池的容积,并分析所得近似值的绝对误差和相对误差公式,并求出绝对误差限和相对误差限. 解:设长方形水池的长为L ,宽为W,深为H ,则该水池的面积为V=LWH当L=50,W=25,H=20时,有 V=50*25*20=25000(米3) 此时,该近似值的绝对误差可估计为()()()()()()()=V V VV L W H L W HWH L HL W LW H ∂∂∂∆≈∆+∆+∆∂∂∂∆+∆+∆ 相对误差可估计为:()()r V V V∆∆=而已知该水池的长、宽和高的数据的绝对误差满足()()()0.01,0.01,0.01L W H ∆≤∆≤∆≤故求得该水池容积的绝对误差限和相对误差限分别为()()()()()()325*20*0.0150*20*0.0150*25*0.0127.5027.501.1*1025000r V WH L HL W LW H V V V -∆≤∆+∆+∆≤++=∆∆=≤=2.已知测量某长方形场地的长a=110米,宽b=80米.若()()**0.1 0.1a a b b -≤-≤米,米试求其面积的绝对误差限和相对误差限. 解:设长方形的面积为s=ab当a=110,b=80时,有 s==110*80=8800(米2) 此时,该近似值的绝对误差可估计为()()()()()=b s ss a b a ba ab ∂∂∆≈∆+∆∂∂∆+∆ 相对误差可估计为:()()r s s s∆∆=而已知长方形长、宽的数据的绝对误差满足()()0.1,0.1a b ∆≤∆≤故求得该长方形的绝对误差限和相对误差限分别为()()()()() 80*0.1110*0.119.019.00.0021598800r s b a a b s s s ∆≤∆+∆≤+=∆∆=≤= 绝对误差限为19.0;相对误差限为0.002159。

计算方法课后习题答案

计算方法课后习题答案

计算方法课后习题答案在计算方法课程中,学生通常会接触到各种数学问题的求解方法,包括但不限于数值分析、线性代数、微分方程等。

以下是一些课后习题的解答示例:习题一:求解线性方程组设线性方程组为:\[ \begin{align*}a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1, \\a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_2, \\\vdots \quad \quad & \ \vdots \\a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_m,\end{align*} \]解答:使用高斯消元法或矩阵分解法求解上述方程组。

首先将系数矩阵转换为行简化阶梯形式,然后回代求解未知数 \( x_1, x_2,\ldots, x_n \)。

习题二:数值积分给定函数 \( f(x) \),需要在区间 \( [a, b] \) 上进行数值积分。

解答:可以使用梯形法、辛普森法等数值积分方法。

例如,使用梯形法的公式为:\[ \int_a^b f(x)dx \approx \frac{h}{2} \left( f(a) + 2f(a+h) + 2f(a+2h) + \cdots + 2f(b-h) + f(b) \right), \]其中 \( h = \frac{b-a}{n} \) 是区间的等分宽度,\( n \) 是等分数。

习题三:常微分方程的数值解给定一个常微分方程 \( y' = f(x, y) \),初始条件为 \( y(x_0) = y_0 \)。

解答:使用欧拉法或龙格-库塔法求解。

以欧拉法为例,其迭代公式为:\[ y_{n+1} = y_n + h f(x_n, y_n), \]其中 \( h \) 是步长,\( x_{n+1} = x_n + h \)。

《计算方法》练习题

《计算方法》练习题

《计算方法》练习题一一、填空题1. 14159.3=π的近似值,准确数位是( )。

2.满足d b f c a f ==)(,)(的插值余项=)(x R ( )。

3.设)}({x P k 为勒让德多项式,则=))(),((22x P x P ( )。

4.乘幂法是求实方阵( )特征值与特征向量的迭代法。

5.欧拉法的绝对稳定实区间是( )。

6. 71828.2=e 具有3位有效数字的近似值是( )。

7.用辛卜生公式计算积分⎰≈+101x dx( )。

8.设)()1()1(--=k ij k a A第k 列主元为)1(-k pk a ,则=-)1(k pka ( )。

?9.已知⎥⎦⎤⎢⎣⎡=2415A ,则=1A ( )。

10.已知迭代法:),1,0(),(1 ==+n x x n n ϕ 收敛,则)(x ϕ'满足条件( )。

二、单选题1.已知近似数,,b a 的误差限)(),(b a εε,则=)(ab ε( )。

A .)()(b a εε B.)()(b a εε+ C.)()(b b a a εε+ D.)()(a b b a εε+ 2.设x x x f +=2)(,则=]3,2,1[f ( )。

A.1 B.2 C.3 D.4 3.设A=⎥⎦⎤⎢⎣⎡3113,则化A为对角阵的平面旋转=θ( ). A.2π B.3π C.4π D.6π 4.若双点弦法收敛,则双点弦法具有( )敛速. ^A.线性 B.超线性 C.平方 D.三次5.改进欧拉法的局部截断误差阶是( ).A .)(h o B.)(2h o C.)(3h o D.)(4h o 6.近似数21047820.0⨯=a 的误差限是( )。

A.51021-⨯ B.41021-⨯ C.31021-⨯ D.21021-⨯7.矩阵A满足( ),则存在三角分解A=LR 。

A .0det ≠A B. )1(0det n k A k <≤≠ C.0det >A D.0det <A 8.已知Tx )5,3,1(--=,则=1x( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《计算方法》练习题一一、填空题1. 14159.3=π的近似值,准确数位是( )。

2.满足d b f c a f ==)(,)(的插值余项=)(x R ( )。

3.设)}({x P k 为勒让德多项式,则=))(),((22x P x P ( )。

4.乘幂法是求实方阵( )特征值与特征向量的迭代法。

5.欧拉法的绝对稳定实区间是( )。

6. 71828.2=e 具有3位有效数字的近似值是( )。

%7.用辛卜生公式计算积分⎰≈+101x dx( )。

8.设)()1()1(--=k ij k a A第k 列主元为)1(-k pk a ,则=-)1(k pka ( )。

9.已知⎥⎦⎤⎢⎣⎡=2415A ,则=1A ( )。

10.已知迭代法:),1,0(),(1 ==+n x x n n ϕ 收敛,则)(x ϕ'满足条件( )。

二、单选题1.已知近似数,,b a 的误差限)(),(b a εε,则=)(ab ε( )。

A .)()(b a εε B.)()(b a εε+ C.)()(b b a a εε+ D.)()(a b b a εε+ 2.设x x x f +=2)(,则=]3,2,1[f ( )。

A.1 B.2 C.3 D.43.设A=⎥⎦⎤⎢⎣⎡3113,则化A为对角阵的平面旋转=θ( ). A.2π B.3π C.4π D.6π 4.若双点弦法收敛,则双点弦法具有( )敛速.A.线性 B.超线性 C.平方 D.三次 5.改进欧拉法的局部截断误差阶是( ).A .)(h o B.)(2h o C.)(3h o D.)(4h o 6.近似数21047820.0⨯=a 的误差限是( )。

(A.51021-⨯ B.41021-⨯ C.31021-⨯ D.21021-⨯ 7.矩阵A满足( ),则存在三角分解A=LR 。

A .0det ≠A B. )1(0det n k A k <≤≠ C.0det >A D.0det <A8.已知Tx )5,3,1(--=,则=1x( )。

A.9 B.5 C.-3 D.-5 9.已知切线法收敛,则它法具有( )敛速.A.线性 B.超线性 C.平方 D.三次 10.设)}({x P k 为勒让德多项式,则=))(),((53x P x P ( )。

…A.52 B.72 C.92 D.112三、计算题1.求矛盾方程组:⎪⎩⎪⎨⎧=-=+=+2423212121x x x x x x 的最小二乘解。

2.用4=n 的复化梯形公式计算积分⎰211dx x,并估计误差。

3.用列主元消元法解方程组:⎪⎩⎪⎨⎧=++=++=++426453426352321321321x x x x x x x x x 。

4.用雅可比迭代法解方程组:(求出)1(x)。

⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----131410*********x x x !5.用切线法求0143=+-x x 最小正根(求出1x )。

6.已知)(x f 数表:求抛物插值多项式,并求)5.0(f 近似值。

\7.已知数表:求最小二乘一次式。

~8.已知求积公式:)21()0()21()(21110f A f A f A dx x f ++-≈⎰-。

求210,,A A A ,使其具有尽可能高代数精度,并指出代数精度。

9.用乘幂法求⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=410131014A 的按模最大特征值与特征向量。

10.用予估-校正法求初值问题:⎩⎨⎧=-='1)0(2y yx y 在4.0)2.0(0=x 处的解。

四、证明题 1.证明:若)(x f ''存在,则线性插值余项为:1010),)((!2)()(x x x x x x f x R <<--''=ξξ。

2. 对初值问题:⎩⎨⎧=-='1)0(10y yy ,当2.00≤<h 时,欧拉法绝对稳定。

3.设)(A ρ是实方阵A的谱半径,证明:A A ≤)(ρ。

?4.证明:计算)0(>a a 的单点弦法迭代公式为:nn n x c acx x ++=+1, ,1,0=n 。

《计算方法》练习题二一、填空题1.近似数30.6350010a =⨯的误差限是( )。

2.设|x|>>1,=( ),计算更准确。

3.用列主元消元法解:121223224x x x x +=⎧⎨+=⎩,经消元后的第二个方程是( )。

—4.用高斯—赛德尔迭代法解4阶方程组,则(1)3m x += ( )。

5.已知在有根区间[a,b]上,'(),''()f x f x 连续且大于零,则取0x 满足( ),则切线法收敛。

6.已知误差限(),(),a b εε则()ab ε=( )。

7.用辛卜生公式计算积分102dxx ≈+⎰( )。

8.若T A A =。

用改进平方根法解Ax b =,则jk l =( )。

9.当系数阵A 是( )矩阵时,则雅可比法与高斯—赛德尔法都收敛。

10.若12λλ=-,且)3(1≥>i i λλ,则用乘幂法计算1λ≈( )。

二、选择题~1.已知近似数a 的()10/0r a ε=,则3()r a ε=( )。

A. 10/0B. 20/0C. 30/0D. 40/0 2.设{()}K T X 为切比雪夫多项式,则22(().())T X T X =( )。

B4π. C.2πD. π 3.对6436A ⎡⎤=⎢⎥⎣⎦直接作三角分解,则22r =( )。

A. 5 B. 4 D. 2 4.已知A=D-L-U ,则雅可比迭代矩阵B=( )。

A. 1()D L U -+B. 1()D L U --C. 1()D L U --D. 1()D U L --.5.设双点弦法收敛,则它具有( )敛速。

A. 线性B.超线性C.平方D. 三次 6. 41424.12=,则近似值107的精确数位是( )。

A. 110- B. 210- C. 310- D. 410-7.若111221221042,1024r r l r ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦则有22r =( )。

A. 2 B. 3 D. 0 8.若4114A ⎡⎤=⎢⎥⎣⎦,则化A 为对角阵的平面旋转角θ=( )。

A.2π B.3π C.4π D. 6π ¥9.若切线法收敛,则它具有( )敛速。

A. 三次B. 平方C. 超线性D. 线性 10.改进欧拉法的绝对稳定实区间是( )。

A.[-3,0]B. [,0]C. [,0]D. [-2,0]三、计算题 1. 已知()f x 数表<用插值法求()0f x =在[0,2]的根。

2.已知数表求最小二乘一次式。

、3.用n=4的复化辛卜生公式计算积分102dxx +⎰,并估计误差。

4.用雅可比法求310130003A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦的全部特征值与特征向量。

5.用欧拉法求初值问题'2(0)1y x yy =+⎧⎨=⎩在x=0处的解。

6 已知函数表:)(x H 及其余项。

求埃尔米特差值多项式7.求3()f x x =在[-1,1]上的最佳平方逼近一次式。

8.求积公式:110()(0)(),f x dx Af Bf x ≈+⎰试求1x ,A ,B ,使其具有尽可能高代数精度,并指出代数精度。

9.用双点弦法求3520x x -+=的最小正根(求出2x )。

10.用欧拉法求初值问题:'(0)1y x y y =-⎧⎨=⎩在x=0处的解。

四、证明题1. 证明:A B A B -≤-。

2.141(4),0,1,...5n n nax x n x +=+= 3.设0(),...,()n l x l x 为插值基函数,证明:()1nk k l x ==∑。

4.若1B <。

证明迭代法:(1)()()21,0,1, (33)m m m x x Bx b m +=++= 收敛。

相关文档
最新文档