高一数学必修三概率的基本性质

合集下载

高一数学必修三《概率的基本性质》ppt课件

高一数学必修三《概率的基本性质》ppt课件
C1={出现1点}; C2={出现2点}; C3={出现3点}; C4={出现4点}; C5={出现5点}; C6={出现6点}; D1={出现的点数不大于1}; D2={出现的点数大于3}; D3={出现的点数小于5}; E={出现的点数小于7}; F={出现的点数大于6};
G={出现的点数为偶数}; H={出现的点数为奇数}; …… 类比集合与集合的关系、运算,你能发现事 件之间的关系与运算吗?
既不是对立事件也不是互斥事件
10
练习
一个射手进行一次射击,试判定下列事件 哪些是互斥事件?哪些是对立事件?
事件A:命中环数大于7; 事件B:命中环数为10环; 事件C:命中环数小于6; 事件D:命中环数为6、7、8、9、10。
11
(二)、概率的几个基本性质
1.概率P(A)的取值范围 (1)0≤P(A)≤1. (2)必然事件的概率是1. (3)不可能事件的概率是0. (4)若A B, 则 p(A) ≤P(B)
不可能事件。如: C1
4
例: C1={出现1点}; D1={出现的点数不大于1};
2.相等事件
一般地,若BA,且AB ,那么称事件A与事
件B相等。记作:A=B.
如: C1=D1
注:(1)图形表示:
B(A)
(2)两个相等的事件总是同时发生或同时不 发生。
5
例: C1={出现1点}; C5={出现5点}; J={出现1点或5点}.
概率的基本性质
1
判断下列事件是必然事件,随机事 件,还是不可能事件?
1、明天天晴.
随机事件
2、实数的绝对值不小于0. 必然事件 3、在常温下,铁熔化. 不可能事件
4、从标有1、2、3、4的4张号签中任取一

必修3第三章-概率-知识点总结和强化练习:

必修3第三章-概率-知识点总结和强化练习:

高中数学必修3 第三章 概率 知识点总结及强化训练一、 知识点总结3.1.1 —3.1.2随机事件的概率及概率的意义 1、基本概念:(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件;(5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A出现的次数nA 为事件A 出现的频数;称事件A 出现的比例fn(A)=n n A为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率fn(A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。

(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA 与试验总次数n 的比值n n A,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。

我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。

频率在大量重复试验的前提下可以近似地作为这个事件的概率3.1.3 概率的基本性质 1、基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若A ∩B 为不可能事件,即A ∩B=ф,那么称事件A 与事件B 互斥;(3)若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件;(4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)2、概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; 2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);4)互斥事件与对立事件的区别与联系,互斥事件是指事件A 与事件B 在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A 发生且事件B 不发生;(2)事件A 不发生且事件B 发生;(3)事件A 与事件B 同时不发生,而对立事件是指事件A 与事件B 有且仅有一个发生,其包括两种情形;(1)事件A 发生B 不发生;(2)事件B 发生事件A 不发生,对立事件互斥事件的特殊情形。

高一数学必修三条件概率知识点总结

高一数学必修三条件概率知识点总结

高一数学必修三条件概率知识点总结条件概率的定义:1条件概率的定义:对于任何两个事件A和B,在已知事件A发生的条件下,事件B 发生的概率叫做条件概率,用符号PB|A来表示.2条件概率公式:称为事件A与B的交或积.3条件概率的求法:①利用条件概率公式,分别求出PA和PA∩B,得PB|A=②借助古典概型概率公式,先求出事件A包含的基本事件数nA,再在事件A发生的条件下求出事件B包含的基本事件数,即nA∩B,得PB|A=PB|A的性质:1非负性:对任意的A∈Ω,; 2规范性:PΩ|B=1;3可列可加性:如果是两个互斥事件,则PB|A概率和PAB的区别与联系:1联系:事件A和B都发生了;2区别:a、PB|A中,事件A和B发生有时间差异,A先B后;在PAB中,事件A、B同时发生。

b、样本空间不同,在PB|A中,样本空间为A,事件PAB中,样本空间仍为Ω。

互斥事件:事件A和事件B不可能同时发生,这种不可能同时发生的两个事件叫做互斥事件。

如果A1,A2,…,An中任何两个都不可能同时发生,那么就说事件A1,A2,…An彼此互斥。

对立事件:两个事件中必有一个发生的互斥事件叫做对立事件,事件A的对立事件记做注:两个对立事件必是互斥事件,但两个互斥事件不一定是对立事件。

事件A+B的意义及其计算公式:1事件A+B:如果事件A,B中有一个发生发生。

2如果事件A,B互斥时,PA+B=PA+PB,如果事件A1,A2,…An彼此互斥时,那么PA1+A2+…+An=PA1+PA2+…+PAn。

3对立事件:PA+=PA+P=1。

概率的几个基本性质:1概率的取值范围:[0,1].2必然事件的概率为1.3不可能事件的概率为0.4互斥事件的概率的加法公式:如果事件A,B互斥时,PA+B=PA+PB,如果事件A1,A2,…An彼此互斥时,那么PA1+A2+…+An=PA1+PA2+…+PAn。

如果事件A,B对立事件,则PA+B=PA+PB=1。

说课稿 人教版 高中数学必修三 第三章第一节《概率的基本性质》

说课稿 人教版 高中数学必修三 第三章第一节《概率的基本性质》

概率的基本性质一、说教材1.教材分析《概率的基本性质》是人教版高中数学必修第三册第三章第一节的内容。

本节内容是在学生学习了频率和概率的基础上,与集合类比研究事件的关系、运算和概率的性质。

它不仅使学生加深对频率和概率的理解,还能进一步认识集合,同时为后面“古典概型”和“几何概型”的学习打下基础。

因此,本节内容在学习概率知识的过程中起到承上启下的重要过渡作用。

2. 教学目标通过以上对教材的分析,并依据新课标的要求,我确定了以下教学目标:首先,知识与技能目标是:了解随机事件间的基本关系与运算;掌握概率的几个基本性质,并会用其解决简单的概率问题。

其次,过程与方法目标是:在借助掷骰子试验探究事件的关系和运算的过程中,体会类比的数学思想方法;通过研究概率的基本性质,发展分析和推理能力。

最后,情感态度和价值观目标是:通过数学活动,了解数学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习数学的兴趣。

3.教学重点和难点根据上述对教材的分析以及制定的教学目标,我确定本节课的教学重点为:事件的关系与运算;概率的加法公式及其应用。

考虑到学生已有的知识基础与认知能力,我确定本节课的教学难点是:互斥事件与对立事件的区别与联系。

二、说学情奥苏伯尔认为:“影响学习的最重要的因素,就是学习者已经知道了什么,要探明这一点,并应据此进行教学”,因而在教学之始,必须关注学生的基本情况。

学生在学习本节课以前,已经掌握了集合关系、运算,频率与概率的内在联系,对用频率估计概率研究问题的方法也有所掌握,特别是学生进入高二以后,数学学习能力有了很大提高,他们的观察探究能力也有了长足的进步。

学生在学习本节课内容时,一般会出现的问题或困难是:概率加法公式的发现以及将其公式化的过程。

三、说教法教学方法是课堂教学的基本要素之一。

它在学生获取知识、培养科学的思维方法和能力,特别是创造能力的过程中,具有重要的作用。

对于本课我主要采用的教法是以启发式教学法为主,讨论交流法为辅的教学方法。

广东省汕头市东厦中学人教版高中数学必修三:3.1.3 概率的基本性质 教案

广东省汕头市东厦中学人教版高中数学必修三:3.1.3 概率的基本性质 教案

3.1.3 概率的基本性质汕头市东厦中学任课教师:林煜山教学内容:1、事件间的关系及运算2、概率的基本性质教学目标:一、知识与技能1.掌握事件的关系和运算,区分互斥和对立事件2.掌握概率的基本性质,学会应用概率的加法公式二、过程与方法1.采用实验探究法,按照思考、交流、实验、观察、分析、得出结论的方法进行启发式教学2.发挥学生的主体作用,做好探究性实验3.理论联系实际,激发学生的学习积极性4.事件和集合对应起来,使学生又一次体会类比方法三、情感态度与价值观1.通过日常生活中的大量实例,鼓励学生动手试验、理论联系实际,激发学生对科学的探究精神和严肃认真的科学态度,培养学生的辩证唯物主义观点2.通过动手试验体会数学的奥秘与数学美,激发学生的学习兴趣教学重点:事件间的关系和运算,概率的加法公式。

教学难点:互斥事件与对立事件的区别与联系,理解概率的基本性质。

教学过程:利用课本探究以及掷骰子实际试验,使学生熟悉本节中所应用的各个事件,并引入集合论类比概率论的探究方法,利用熟悉的知识引入不熟悉的知识。

(事件的关系和运算)B A ⊆集合B 包含集合A 事件B 包含事件AB A =集合A 与集合B 相等事件A 与事件B 相等φ空集不可能事件—Ω全集 必然事件 —B A B A +⋃或集合A 与集合B 的并事件A 与事件B 的并(和)B A ⋂集合A 与集合B 的交事件A 与事件B 的交(积)特别的,“空集是任何集合的子集”这个性质如果翻译成概率论的说法,就应该是“任何事件都包含不可能事件”。

事件A 与事件B 的并和交称为事件的运算。

事件A 与事件B 的并掷骰子试验中: 51C C ⋃,G D ⋃2,31D D ⋃可以看到:上边几个例子中,虽然一样是并,构成的前提却各有不同,不过有一点是相同的,并事件总是由①属于事件A ,但不属于事件B 的一个部分,②属于事件B ,但不属于事件A 的一个部分,③同时属于事件A 和事件B 的部分,合并构成的,虽然有些题目中会缺失其中的若干部分,但是合并的规则却是绝对不变的。

人教版高中数学必修三概率的基本性质(经典)ppt课件

人教版高中数学必修三概率的基本性质(经典)ppt课件

[解析]
因为掷硬币时,出现正面朝上和反面朝上的概率
1 都是 2 ,被调查者中大约有300人回答了问题(1),有300人回答 1 了问题(2);又因为学号为奇数或偶数的概率也是 2 ,故在回答 问题(1)的300人中,大约有150人回答“是”,在回答问题(2) 30 的300人中,大约有180-150=30(人)回答了“是”,即有 300 的被调查者闯红灯,则被调查者中的600人中大约有60人闯过 红灯.故选B.
• (5)遗传机理中的统计规律. • 奥地利遗传学家孟德尔通过收集豌豆试验数据,寻找到了其中的统计规律,并用 概率理论解释这种统计规律.利用遗传定律,帮助理解概率统计中的随机性与 __________的关系,以及频率与________的关系. 规律性
概率
• ●温故知新 • 旧知再现 • 1.为了了解学生遵守《中华人民共和国交通安全法》的情况,调查部门在某学 校进行了如下的随机调查,向被调查者提出两个问题:(1)你的学号是奇数吗? (2)在过路口的时候你是否闯过红灯?要求被调查者背对调查人员抛掷一枚硬币, 如果出现正面朝上,就回答问题(1);否则就回答问题(2).
• 某班有50名同学,其中男女各25名,今有这个班的一个学生在街上碰到一个同 班同学,则下列结论正确的是( ) • A.碰到异性同学比碰到同性同学的概率大 • B.碰到同性同学比碰到异性同学的概率大 • C.碰到同性同学和异性同学的概率相等 • D.碰到同性同学和异性同学的概率随机变化
• [答案] A
(2)国家乒乓球比赛的用球有严格标准,下面是有关部门 对某乒乓球生产企业某批次产品的抽样检测,结果如表所示: 抽取球数目 优等品数目 优等品频率 ①计算表中优等品的各个频率. ②从这批产品中任取一个乒乓球,质量检测为优等品的概 率约是多少? 50 45 100 92 200 194 500 470 1 000 954 2 000 1 902

必修三3.1.2&3概率的意义与基本性质

必修三3.1.2&3概率的意义与基本性质

3.1.2《概率的意义》导学案【学习目标】1、正确理解概率的意义,利用概率知识正确理解现实生活中的实际问题;2、通过对现实生活中问题的探究,感知应用数学知识解决数学问题的方法;3、进一步理解概率统计中随机性与规律性的关系。

【知识清单】1、随机事件在一次试验中能够发生与否是随机的,但随机性中含有,认识了这种随机性中的,就能使我们比较准确地预测随机事件发生的。

2、如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么“使得样本出现的可能性”可以作为决策的准则,这种判断问题的方法称为。

3、在一次试验中的事件称为小概率事件,的事件称为大概率事件.4、概率的意义就是用概率的大小反映事件A发生的,但在一次试验中仍有两种可能,即事件A可能也可能。

【教材分析】认真阅读课本P113——P118,说明概率的意义在课本的六个实际例子中的体现。

【合作探究】题型一例1.(1)某校共有学生12000人,学校为使学生增强交通安全观念,准备随机抽查12名学生进行交通安全知识测试,其中某学生认为抽查的几率为11000,不可能抽查到他,所以不再准备交通安全知识以便应试,你认为他的做法对吗?并说明理由。

(2)若某次数学测验,全班50人的及格率为90%,若从该班任意抽取10人,其中有5人及格是可能的吗?为什么?题型二例 2. 元旦就要到了,某校将举行联欢活动,每班派一人主持节目,高二(1)班的小明、小华和小丽实力相当,都争着要去,班主任决定用抽签的方法来决定,机灵的小强给小华出主意,要小华先抽,说先抽的机会大,你是怎么认为的?说说看.题型三例3.设有外形完全相同的两个箱子,甲箱有99个白球1个黑球,乙箱有1个白球99个黑球,随机地抽取一箱,再从取出的一箱中抽取一球,结果取得白球,问这个球是从哪个箱子中取出的?题型四例4.某人进行打靶练习,共射击10次,其中有2次中10环,有3次环中9环,有4次中8环,有1次未中靶,试计算此人中靶的概率,假设此人射击1次,试问中靶的概率约为多少?中9环的概率约为多少?【巩固练习】1.某医院治疗一种病的治愈率是90%,这个90%指的是()A.100个病人中能治愈90个B.100个病人中能治愈10个C. 100个病人中可能治愈90个D.以上说法都正确2.气象台预报“本市明天降雨概率是70%”,以下理解正确的是( )A.本市明天将有70%的地区降雨B.本市明天将有70%的时间降雨C.明天出行不带雨具肯定淋雨D.明天出行不带雨具淋雨的可能性很大.3.甲乙两人做游戏,下列游戏中不公平的是()A.抛一枚骰子,向上的点数为奇数则甲胜,向上的点数为偶数则乙胜B.同时抛两枚相同的骰子,向上的点数之和大于7则甲胜,否则乙胜.C.从一副不含大、小王的扑克中抽一张,扑克牌是红色则甲胜,是黑色乙胜.D.甲乙两人各写一个字,若是同奇或同偶则甲胜,否则乙胜.4.设某厂产品的次品率为2%,估计该厂8000件产品中合格品的件数可能为()A.160B.7840C.7998D.78005.某位同学在做四选一的12道选择题时,他全不会做,只好在各题中随机选一个答案,若每道题选对得5分,选错得0分,你认为他大约得多少分()A.30分 B.0分 C.15分 D.20分6.抛掷一枚质地均匀的硬币,如果连续抛掷1000次,那么第999次出现正面朝上的概率是。

概率的基本性质说课稿

概率的基本性质说课稿

概率的基本性质说课稿尊敬的各位评委老师:大家好!今天我说课的内容是“概率的基本性质”。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。

一、教材分析“概率的基本性质”是高中数学必修 3 第三章概率的重要内容。

在此之前,学生已经学习了随机事件的概率,为本节课的学习奠定了基础。

本节课主要介绍了概率的基本性质,包括概率的取值范围、互斥事件和对立事件的概率加法公式等,这些性质不仅是进一步学习概率的计算和应用的基础,也为后续学习统计学等相关知识提供了重要的理论支持。

二、学情分析在知识方面,学生已经初步了解了概率的概念,但对于概率的基本性质的理解和应用还存在一定的困难。

在能力方面,学生具备了一定的逻辑思维能力和抽象概括能力,但在运用数学知识解决实际问题时,还需要进一步的引导和训练。

在心理方面,高中生思维活跃,好奇心强,具有较强的求知欲,但在学习过程中容易出现注意力不集中、缺乏耐心等问题。

三、教学目标基于以上的教材分析和学情分析,我制定了以下的教学目标:1、知识与技能目标(1)理解概率的基本性质,包括概率的取值范围、概率的加法公式等。

(2)能够运用概率的基本性质解决简单的概率问题。

2、过程与方法目标(1)通过观察、分析、归纳等活动,培养学生的逻辑思维能力和抽象概括能力。

(2)通过实际问题的解决,培养学生运用数学知识解决实际问题的能力。

3、情感态度与价值观目标(1)让学生在学习过程中体验数学的严谨性和科学性,培养学生的数学素养。

(2)激发学生学习数学的兴趣,培养学生勇于探索、敢于创新的精神。

四、教学重难点1、教学重点(1)概率的基本性质,特别是互斥事件和对立事件的概率加法公式。

(2)运用概率的基本性质解决实际问题。

2、教学难点(1)对互斥事件和对立事件概念的理解。

(2)灵活运用概率的基本性质解决复杂的概率问题。

五、教法与学法1、教法为了实现教学目标,突破教学重难点,我将采用以下的教学方法:(1)讲授法:通过讲解概率的基本性质,让学生系统地掌握知识。

高中数学_概率的基本性质教学设计学情分析教材分析课后反思

高中数学_概率的基本性质教学设计学情分析教材分析课后反思

《3.1.3概率的基本性质》教学设计一、创设情境,导入新课教师多媒体出示研究背景题目:在掷骰子的试验中,可以定义许多事件.例如,事件C1={出现1点},事件C2={出现2点},事件C3={出现3点},事件C4={出现4点},事件C5={出现5点},事件C6={出现6点},事件D1={出现的点数不大于1},事件D2={出现的点数大于3},事件D3={出现的点数小于5},事件D4={出现的点数不小于4},事件E={出现的点数小于7},事件F={出现的点数为偶数},事件G={出现的点数为奇数}并提出问题:(1)事件D1本质是哪个事件?(2)事件D2本质是哪些事件?它与事件C4 、事件C5 、事件C6 之间什么关系呢?(3)事件D3 与事件D4若同时发生呢?它与哪个事件是同一事件?引导学生回忆交流,教师归类,从而自然引入本节内容:事件之间的基本关系。

二、自主探究,合作学习(学生自主学习,教师予以辅助解释说明,并根据学生的理解情况适时予以发问,帮助学生深入了解概念关系。

)知识点一事件的关系与运算1.事件的包含关系发生,则事件B 一定发生,这时称事件B包含事件A(或称事件A包含于事件B) 符号B⊇A(或A⊆B)图示注意事项①不可能事件记作∅,显然C⊇∅(C为任一事件);②事件A也包含于事件A,即A⊆A;③事件B包含事件A,其含义就是事件A 发生,事件B一定发生,而事件B发生,事件A不一定发生关系我们定义为事件的相等关系。

学生予以加深理解。

2.事件的相等关系定义一般地,若B⊇A,且A⊇B,那么称事件A与事件B相等符号A=B 图示注意事项①两个相等事件总是同时发生或同时不发生;②所谓A=B,就是A,B是同一事件;③在验证两个事件是否相等时,常用到事件相等的定义3.定义若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与事件B的并事件(或和事件)符号A∪B(或A+B)图示注意事项①A∪B=B∪A;②例如,在掷骰子试验中,事件C2,C4分别表示出现2点,4点这两个事件,则C2∪C4={出现2点或4点}这一块类比集合的关系,我们又该如何定义呢?学生踊跃发言,生生之间互相补充完善,最后多媒体展示准确定义事件的交。

【专题】必修3 专题3.1.3 概率的基本性质-高一数学人教版(必修3)(解析版)

【专题】必修3  专题3.1.3 概率的基本性质-高一数学人教版(必修3)(解析版)

第三章概率3.1.3 概率的基本性质一、选择题1.下列说法合理的是A.抛掷一枚质地均匀的骰子,点数为6的概率是16,意即每掷6次就有一次掷得点数6.B.抛掷一枚硬币,试验200次出现正面的频率不一定比100次得到的频率更接近概率.C.某地气象局预报说,明天本地下雨的概率为80%,是指明天本地有80%的区域下雨.D.随机事件A,B中至少有一个发生的概率一定比A,B中恰有一个发生的概率大.【答案】B2.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A.0.3 B.0.4 C.0.6 D.0.7【答案】B【解析】某群体中的成员只用现金支付,既用现金支付也用非现金支付,不用现金支付,是互斥事件,所以不用现金支付的概率为:1–0.45–0.15=0.4.故选B.3.口袋中装有一些大小相同的红球、白球和黑球,从中摸出一个球,摸出红球的概率是0.43,摸出白球的概率是0.27,那么摸出黑球的概率是A.0.43 B.0.27 C.0.3 D.0.7【答案】C【解析】由题意,摸出黑球的概率是P=1–0.43–0.27=0.3.故选C.4.有一个人在打靶中,连续射击2次,事件“至少有1次中靶”的对立事件是A.至多有1次中靶B.2次都中靶C.2次都不中靶D.只有1次中靶【答案】C【解析】由于两个事件互为对立事件时,这两件事不能同时发生,且这两件事的和事件是一个必然事件,再由于一个人在打靶中,连续射击2次,事件“至少有1次中靶”的反面为“2次都不中靶”,故事件“至少有1次中靶”的对立事件是“2次都不中靶”,故选C.5.“弘雅苑”某班科技小组有3名男生和2名女生,从中任选2名学生参加学校科技艺术节“水火箭”比赛,那么互斥而不对立的两个事件是A.恰有1名男生和恰有2名男生B.至多有1名男生和都是女生C.至少有1名男生和都是女生D.至少有1名男生和至少有1名女生【答案】A【解析】“弘雅苑”某班科技小组有3名男生和2名女生,从中任选2名学生参加学校科技艺术节“水火箭”比赛,在A中,恰有1名男生和恰有2名男生是互斥而不对立的两个事件,故A正确;在B中,至多有1名男生和都是女生能同时发生,不是互斥事件,故B错误;在C中,至少有1名男生和都是女生是对立事件,故C错误;在D中,至少有1名男生和至少有1名女生能同时发生,不是互斥事件,故D错误.故选A.6.某小组有2名男生和2名女生,从中任选2名同学去参加演讲比赛.在下列选项中,互斥而不对立的两个事件是A.“至少有1名女生”与“都是女生”B.“至少有1名女生”与“至多1名女生”C.“恰有1名女生”与“恰有2名女生”D.“至少有1名男生”与“都是女生”【答案】C【解析】A中的两个事件是包含关系,故不符合要求;B中的两个事件之间有都包含一名女的可能性,故不互斥;C中的两个事件符合要求,它们是互斥且不对立的两个事件;D中的两个事件是对立事件,故不符合要求.故选C.7.袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是A.至少有一个白球;都是白球B.至少有一个白球;至少有一个红球C.恰有一个白球;一个白球一个黑球D.至少有一个白球;红、黑球各一个【答案】D【解析】选项A,“至少有一个白球“说明有白球,白球的个数可能是1或2,而“都是白球“说明两个全为白球,这两个事件可以同时发生,故A不互斥;选项B,当两球一个白球一个红球时,“至少有一个白球“与“至少有一个红球“均发生,故不互斥;选项C,“恰有一个白球“,表明黑球个数为0或1,这与“一个白球一个黑球“不互斥;选项D,“至少一个白球“发生时,“红,黑球各一个“不会发生,故D互斥,不对立.故选D.8.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是3 10,那么概率是710的事件是A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡【答案】A9.根据某医疗研究所的调查,某地区居民血型的分布为:O型50%,A型15%,B型30%,AB型5%.现有一血液为A型病人需要输血,若在该地区任选一人,那么能为病人输血的概率为A.15% B.20% C.45% D.65%【答案】D【解析】∵某地区居民血型的分布为:O型50%,A型15%,B型30%,AB型5%.现在能为A型病人输血的有O型和A型,故为病人输血的概率50%+15%=65%,故选D.10.某班学生考试成绩中,数学不及格的占15%,语文不及格的占5%,两门都不及格的占3%.已知一学生数学不及格,则他语文也不及格的概率是A.15B.310C.12D.35【答案】A【解析】由题意设这个班有100a 人,则数学不及格有15a 人,语文不及格有5a 人,都不及格的有3a 人,则数学不及格的人里含有3a 人语文不及格,所以已知一学生数学不及格,则他语文也不及格的概率为:P =31155=.故选A . 二、填空题11.假设向三个相邻的军火库投掷一个炸弹,炸中第一个军火库的概率为0.025,其余两个各为0.1,只要炸中一个,另两个也发生爆炸,则军火库发生爆炸的概率____________. 【答案】0.225【解析】∵向三个相邻的军火库投掷一个炸弹,炸中第一个军火库的概率为0.025,其余两个各为0.1,只要炸中一个,另两个也发生爆炸,∴军火库发生爆炸的概率p =0.025+0.1+0.1=0.225.故答案为:0.225. 12.口袋内装有一些大小相同的红球、黄球、白球,从中摸出一个球,摸出红球或白球的概率为0.65,摸出黄球或白球的概率是0.6,那么摸出白球的概率是____________. 【答案】0.25【解析】口袋内装有一些大小相同的红球、黄球、白球,设红、黄、白球各有a ,b ,c 个,∵从中摸出一个球,摸出红球或白球的概率为0.65,摸出黄球或白球的概率是0.6,∴0.650.6a ca b cb c a b c +⎧=⎪⎪++⎨+⎪=⎪++⎩,∴10.60.4a a b c =-=++,10.650.35ba b c=-=++,∴摸出白球的概率是P =1–0.4–0.35=0.25.故答案为:0.25.13.甲乙两人下棋,若甲获胜的概率为16,甲乙下成和棋的概率为13.则乙不输棋的概率为____________. 【答案】56【解析】∵甲乙两人下棋,甲获胜的概率为16,甲乙下成和棋的概率为13.∴乙不输棋的概率p =1–1566=.故答案为:56. 14.甲、乙同时炮击一架敌机,已知甲击中敌机的概率为0.3,乙击中敌机的概率为0.5,敌机被击中的概率为____________. 【答案】0.65【解析】敌机被击中的对立事件是甲、乙同时没有击中,设A 表示“甲击中”,B 表示“乙击中”,由已知得P (A )=0.3,P (B )=0.5,∴敌机被击中的概率为:p =1–P (A )P (B )=1–(1–0.3)(1–0.5)=0.65.故答案为:0.65.15.经统计,在银行一个营业窗口每天上午9点钟排队等候的人数及相应概率如下:排队人数0 1 2 3 4 ≥5概率0.1 0.16 0.3 0.3 0.1 0.04 则该营业窗口上午9点钟时,至少有2人排队的概率是____________.【答案】0.74【解析】由表格可得至少有2人排队的概率P=0.3+0.3+0.1+0.04=0.74,故答案为:0.74.16.口袋内有一些大小相同的红球,白球和黑球,从中任摸一球摸出红球的概率是0.3,摸出黑球的概率是0.5,那么摸出白球的概率是____________.【答案】0.2【解析】从中任摸一球摸出红球、从中任摸一球摸出黑球、从中任摸一球摸出白球,这三个事件是彼此互斥事件,它们的概率之和等于1,故从中任摸一球摸出白球的概率为1–0.3–0.5=0.2,故答案为:0.2.三、解答题17.甲、乙、丙三位同学完成六道数学自测题,他们及格的概率依次为45、35、710,求:(1)三人中有且只有两人及格的概率;(2)三人中至少有一人不及格的概率.【解析】(1)设事件A表示“甲及格”,事件B表示“乙及格”,事件C表示“丙及格”,则P(A)=45,P(B)=35,P(C)=710,三人中有且只有2人及格的概率为:P1=P(AB C)+P(A B C)+P(ABC)=P(A)P(B)P(C)+P(A)P(B)P(C)+P(A)P(B)P(C)=43715510⎛⎫⨯⨯-⎪⎝⎭+43715510⎛⎫⨯-⨯⎪⎝⎭+(1–45)×37510⨯=113 250.(2)“三人中至少有一人不及格”的对立的事件为“三人都及格”,三人中至少有一人不及格的概率为:P2=1–P(ABC)=1–P(A)P(B)P(C)=1–43783 5510125⨯⨯=.18.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一个球,得到红球的概率为13,得到黑球或黄球的概率为512,得到黄球或绿球的概率也为512,试求得黑球、黄球、绿球的概率分别为多少?【解析】袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一个球,设事件A表示“取到红球”,事件B表示“取到黑球”,事件C表示“取到黄球”,事件D表示“取到绿球”,∵得到红球的概率为13,得到黑球或黄球的概率为512,得到黄球或绿球的概率也为512,∴()()()()()()()()()()()135125121P AP B C P B P CP C D P D P CP A P B P C P D⎧=⎪⎪⎪+=+=⎪⎨⎪+=+=⎪⎪⎪+++=⎩,解得()()()()13116144P AP BP CP D⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩∴取得黑球、黄球、绿球的概率分别为111 464,,.19.某射击运动员在一次射击比赛中,每次射击成绩均计整数环且不超过10环,其中射击一次命中7~10环的概率如下表所示命中环数7 8 9 10概率0.12 0.18 0.28 0.32求该射击运动员射击一次,(1)命中9环或10环的概率;(2)命中不足7环的概率.。

高中数学必修三3.1.3概率的基本性质

高中数学必修三3.1.3概率的基本性质

宁夏育才中学课时教学设计模板现的点数大于3},D3={出现的点数小于5},E={出现的点数小于7},F={出现的点数大于6},G={出现的点数为偶数},H={出现的点数为奇数},……类比集合与集合的关系、运算说明这些事件的关系和运算,并定义一些新的事件. (1)如果事件C1发生,则一定发生的事件有哪些?反之,成立吗?(2)如果事件C2发生或C4发生或C6发生,就意味着哪个事件发生?(3)如果事件D2与事件H同时发生,就意味着哪个事件发生?(4)事件D3与事件F能同时发生吗?(5)事件G与事件H能同时发生吗?它们两个事件有什么关系?活动:学生思考或交流,教师提示点拨,事件与事件的关系要判断准确,教师及时评价学生的答案.讨论结果:(1)如果事件C1发生,则一定发生的事件有D1,E,D3,H,反之,如果事件D1,E,D3,H分别成立,能推出事件C1发生的只有D1.(2)如果事件C2发生或C4发生或C6发生,就意味着事件G发生.(3)如果事件D2与事件H同时发生,就意味着C5事件发生.(4)事件D3与事件F不能同时发生.(5)事件G与事件H不能同时发生,但必有一个发生.由此我们得到事件A,B的关系和运算如下: ①如果事件A发生,则事件B一定发生,这时我们说事件B包含事件A(或事件A包含于事件B),记为B⊇A(或A⊆B),不可能事件记为∅,任何事件都包含不可能事件.②如果事件A发生,则事件B一定发生,反之也成立,(若B⊇A同时A⊆B),我们说这两个事件相等,即A=B.如C1=D1.③如果某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与B的并事件(或和事件),记为A∪B或A+B.④如果某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与B的交事件(或积事件),记为A∩B或AB.⑤如果A∩B为不可能事件(A∩B=∅),那么称事件A与事件B互斥,即事件A与事件B在任何一次试验中不会同时发生.⑥如果A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件,即事件A与事件B在一次试验中有且仅有一个发生.继续依次提出以下问题:(1)概率的取值范围是多少?(2)必然事件的概率是多少?(3)不可能事件的概率是多少?(4)互斥事件的概率应怎样计算?(5)对立事件的概率应怎样计算?活动:学生根据试验的结果,结合自己对各种事件的理解,教师引导学生,根据概率的意义:(1)由于事件的频数总是小于或等于试验的次数,所以,频率在0—1之间,因而概率的取值范围也在0—1之间.(2)必然事件是在试验中一定要发生的事件,所以频率为1,因而概率是1.(3)不可能事件是在试验中一定不发生的事件,所以频率为0,因而概率是0.(4)当事件A与事件B互斥时,A∪B发生的频数等于事件A发生的频数与事件B发生的频数之和,互斥事件的概率等于互斥事件分别发生的概率之和.(5)事件A与事件B互为对立事件,A∩B 为不可能事件,A∪B为必然事件,则A∪B的频率为1,因而概率是1,由(4)可知事件B 的概率是1与事件A发生的概率的差.讨论结果:(1)概率的取值范围是0—1之间,即0≤P(A)≤1.(2)必然事件的概率是 1.如在掷骰子试验中,E={出现的点数小于7},因此P(E)=1. (3)不可能事件的概率是0,如在掷骰子试验中,F={出现的点数大于6},因此P(F)=0. (4)当事件A与事件B互斥时,A∪B发生的频数等于事件A发生的频数与事件B发生的频数之和,互斥事件的概率等于互斥事件分别发生的概率之和,即P(A∪B)=P(A)+P(B),这就是概率的加法公式.也称互斥事件的概率的加法公式.(5)事件A与事件B互为对立事件,A∩B 为不可能事件,A∪B为必然事件,P(A∪B)=1.所以1=P(A)+P(B),P(B)=1-P(A),P(A)=1-P(B).如在掷骰子试验中,事件G={出现的点数为偶数}与H={出现的点数为奇数}互为对立事件,因此P(G)=1-P(H).上述这些都是概率的性质,利用这些性质可以简化概率的计算,下面我们看它的应用.应用示例思路1例 1 一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?事件A:命中环数大于7环;事件B:命中环数为10环;事件C:命中环数小于6环;事件D:命中环数为6、7、8、9、10环. 活动:教师指导学生,要判断所给事件是对立还是互斥,首先将两个概念的联系与区别弄清楚,互斥事件是指不可能同时发生的两事件,而对立事件是建立在互斥事件的基础上,两个事件中一个不发生,另一个必发生.解:A与C互斥(不可能同时发生),B与C 互斥,C与D互斥,C与D是对立事件(至少一个发生).点评:判断互斥事件和对立事件,要紧扣定义,搞清互斥事件和对立事件的关系,互斥事件是对立事件的前提.变式训练从一堆产品(其中正品与次品都多于2件)中任取2件,观察正品件数与次品件数,判断下列每件事件是不是互斥事件,如果是,再判断它们是不是对立事件.(1)恰好有1件次品恰好有2件次品;(2)至少有1件次品和全是次品;(3)至少有1件正品和至少有1件次品;(4)至少有1件次品和全是正品.解:依据互斥事件的定义,即事件A与事件B 在一定试验中不会同时发生知:(1)恰好有1件次品和恰好有2件次品不可能同时发生,因此它们是互斥事件,又因为它们并不是必然事件,所以它们不是对立事件.同理可以判断:(2)中的2个事件不是互斥事件,也不是对立事件.(3)中的2个事件既不是互斥事件也不是对立事件.(4)中的2个事件既互。

人教版高一数学必修三第三章 概率的基本性质

人教版高一数学必修三第三章 概率的基本性质
第三章 概率
3.1.3 概率的基本性质
第三章 概率
考点
学习目标
事件间的相互关系 了解事件间的相互关系
理解互斥事件、对立事 互斥事件、对立事件
件的概念
会用概率的加法公式求 概率的加法公式
某些事件的概率
核心素养 数学抽象 数学抽象、 逻辑推理
数学运算
第三章 概率
问题导学 (1)两个集合之间存在着包含与相等的关系,集合可以进行交、 并、补运算,你还记得子集、交集、并集和补集等的含义及其 符号表示吗? (2)如何理解事件 A 包含事件 B?事件 A 与事件 B 相等? (3)什么叫做并事件?什么叫做交事件? (4)什么叫做互斥事件?什么叫做对立事件?互斥事件与对立 事件的联系与区别是什么? (5)概率的基本性质有哪些?
件 B 的并事件(或和事件)

图示
栏目 导引
第三章 概率
定义
表示法

若某事件发生当且仅当

_事__件__A__发__生__且__事__件__B__发__生__, _A
则称此事件为事件 A 与事件 ___A_B___)
B 的交事件(或积事件)

图示
栏目 导引
2.概率的几个性质 (1)范围
栏目 导引
第三章 概率
判断正误(正确的打“√”,错误的打“×”) (1)互斥事件一定对立.( ) (2)对立事件一定互斥.( ) (3)事件 A 与 B 的和事件的概率一定大于事件 A 的概率.( ) (4)事件 A 与 B 互斥,则有 P(A)=1-P(B).( )
栏目 导引
第三章 概率
解析:对立必互斥,互斥不一定对立. 所以(2)正确,(1)错; 又当 A∪B=A 时,P(A∪B)=P(A),所以(3)错; 只有 A 与 B 为对立事件,才有 P(A)=1-P(B), 所以(4)错. 答案:(1)× (2)√ (3)× (4)×

高中数学第三章概率3.1.3概率的基本性质课件新人教A版必修3

高中数学第三章概率3.1.3概率的基本性质课件新人教A版必修3
球,故D=A∪B.
(2)对于事件C,可能的结果为1个红球2个白球,2个红球1个白球,3
个均为红球,故C∩A=A.
探究一
探究二
探究三
思维辨析
当堂检测
互动探究 在本例中A与D是什么关系?事件A与B的交事件是什么?
解:由本例的解答,可知A⊆D.
因为A,B是互斥事件,所以A∩B=⌀.
故事件A与B的交事件是不可能事件.
集合的观点看,事件C1是事件D3,E,H的子集,集合C1与集合D1相等.
3.请指出如果事件C2发生或C4发生或C6发生,就意味着哪个事件
发生?
提示如果事件C2发生或C4发生或C6发生,就意味着事件G发生.
4.如果事件D2与事件H同时发生,就意味着哪个事件发生?
提示如果事件D2与事件H同时发生,就意味着事件C5发生.
然是A1,A2,…,An彼此互斥.在将事件拆分成若干个互斥事件时,注意
不能重复和遗漏.
2.当所要拆分的事件非常烦琐,而其对立事件较为简单时,可先求
其对立事件的概率,再运用公式求解.但是一定要找准其对立事件,
避免错误.
探究一
探究二
探究三
思维辨析
当堂检测
变式训练2据统计,某储蓄所一个窗口排队等候的人数及相应概
点},C5={出现5点},C6={出现6点},D1={出现的点数不大于
1},D2={出现的点数大于4},D3={出现的点数小于6},E={出现的点
数小于7},F={出现的点数大于6},G={出现的点数为偶数},H={出
现的点数为奇数},等等.
1.上述事件中哪些是必然事件?哪些是不可能事件?哪些是随机
5.事件D3与事件F能同时发生吗?
提示事件D3与事件F不能同时发生.

(人教a版)必修三同步课件:3.1.3概率的基本性质

(人教a版)必修三同步课件:3.1.3概率的基本性质

不可能 若A∩B为_______ 事件 事件 ,则称事件A _____ 互斥 与事件B互斥 事件的 关系
若_________ A∩B=∅ , 则A与B互斥
不可能 若A∩B为_______ 事件 ,A∪B为___ _____ 必 若A∩B=∅, 事件 然事件 ,那么称事 且A∪B=U, _______ 对立 件A与事件B互为对 则A与B对立 立事件
(3)不是互斥事件,当然不可能是对立事件.
理由是:从40张扑克牌中任意抽取1张,“抽出的牌点数为5 的倍数”与“抽出的牌点数大于9”这两个事件可能同时发 生,如抽得牌点数为10,因此,二者不是互斥事件,当然不 可能是对立事件.
规律方法
1.要判断两个事件是不是互斥事件,只需要分别
找出各个事件包含的所有结果,看它们之间能不能同时发 生.在互斥的前提下,看两个事件的并事件是否为必然事
要点二 事件的运算
例2 在投掷骰子试验中,根据向上的点数可以定义许多事件,如:A={出现1点},B={出 现3点或4点},C={出现的点数是奇数},D={出现的点数是偶数}. (1)说明以上4个事件的关系; (2)求两两运算的结果.

在投掷骰子的试验中,根据向上出现的点数有6种基
本事件,记作Ai={出现的点数为i}(其中i=1,2,…,
{x|x∈A,且 ___________ x∈B} ______
{x|x∈U,且x∉A} __系与运算
定义
表示法
图示
一般地,对于事件 A与事件B,如果 事件A发生,则事 事件的 包含 一定发生 , B⊇A(或A⊆B) 件B_________ 关系 关系 这时称事件B包含 事件A(或称事件A 包含于事件B)
6).则A=A1,B=A3∪A4,C=A1∪A3∪A5,D=

高中数学人教A版必修三习题第三章-概率的基本性质含答案

高中数学人教A版必修三习题第三章-概率的基本性质含答案

第三章 概率3.1 随机事件的概率3.1.3 概率的基本性质A 级 基础巩固一、选择题1.下列各组事件中,不是互斥事件的是( )A .一个射手进行一次射击,命中环数大于8与命中环数小于6B .统计一个班级数学期中考试成绩,平均分数低于90分与平均分数高于90分C .播种菜籽100粒,发芽90粒与至少发芽80粒D .检查某种产品,合格率高于70%与合格率为70%答案:C2.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,已知事件“2张全是移动卡”的概率是,那么概率是的事件是( ) 310710A .至多有一张移动卡B .恰有一张移动卡C .都不是移动卡D .至少有一张移动卡解析:结合对立事件可知所求事件是“2张全是移动卡”的对立事件,即至多有一张移动卡.答案:A3.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙两人下成和棋的概率为( )A .60%B .30%C .10%D .50%解析:甲不输棋包含甲获胜或甲、乙两人下成和棋,则甲、乙两人下成和棋的概率为90%-40%=50%.答案:D4.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A ={两次都击中飞机},B ={两次都没击中飞机},C ={恰有一弹击中飞机},D ={至少有一弹击中飞机},下列关系不正确的是( )A .A ⊆DB .B ∩D =∅C .A ∪C =D D .A ∪C =B ∪D解析:“恰有一弹击中飞机”指第一枚击中第二枚没中或第一枚没中第二枚击中,A ∪C =D =(至少有一弹击中飞机),不是必然事件;“至少有一弹击中”包含两种情况:一种是恰有一弹击中,一种是两弹都击中,B ∪D 为必然事件,所以A ∪C ≠B ∪D .答案:D5.现有语文、数学、英语、物理和化学共5本书,从中任取1本,取出的是理科书的概率为( )A. B. C. D. 15253545解析:记“取到语文、数学、英语、物理、化学书”分别为事件A 、B 、C 、D 、E ,则A 、B 、C 、D 、E 彼此互斥,取到理科书的概率为事件B 、D 、E 概率的和.所以P (B ∪D ∪E )=P (B )+P (D )+P (E )=++=. 15151535答案:C二、填空题6.在掷骰子的游戏中,向上的点数为5或6的概率为______.解析:记事件A 为“向上的点数为5”,事件B 为“向上的点数为6”,则A 与B 互斥.所以P (A ∪B )=P (A )+P (B )=×2=. 1613答案: 137.从4名男生和2名女生中任选3人去参加演讲比赛,所选3人中至少有1名女生的概率为,那么所选3人中都是男生的概率为________. 45解析:设A ={3人中至少有1名女生},B ={3人都为男生},则A ,B 为对立事件,所以P (B )=1-P (A )=. 15答案: 158.如图所示,靶子由一个中心圆面Ⅰ和两个同心圆环Ⅱ、Ⅲ构成,射手命中Ⅰ、Ⅱ、Ⅲ的概率分别为0.35、0.30、0.25,则不命中靶的概率是________.解析:“射手命中圆面Ⅰ”为事件A ,“命中圆环Ⅱ”为事件B ,“命中圆环Ⅲ”为事件C ,“不中靶”为事件D ,则A 、B 、C 彼此互斥,故射手中靶的概率为P (A ∪B ∪C )=P (A )+P (B )+P (C )=0.35+0.30+0.25=0.90.因为中靶和不中靶是对立事件,故不命中靶的概率为P (D )=1-P (A ∪B ∪C )=1-0.90=0.10.答案:0.10三、解答题9.某医院一天派出医生下乡医疗,派出医生人数及其概率如下表所示. 医生人数0 1 2 3 4 ≥5 概率 0.1 0.16 x y 0.2 z(1)若派出医生不超过2人的概率为0.56,求x 的值;(2)若派出医生最多4人的概率为0.96,至少3人的概率为0.44,求y ,z 的值. 解:(1)由派出医生不超过2人的概率为0.56,得0.1+0.16+x =0.56,所以x =0.3.(2)由派出医生最多4人的概率为0.96,得0.96+z =1,所以z =0.04.由派出医生至少3人的概率为0.44, 得y +0.2+z =0.44,所以y =0.44-0.2-0.04=0.2.10.如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A )的概率是,取到方块(事件B )的概率是,问: 1414(1)取到红色牌(事件C )的概率是多少?(2)取到黑色牌(事件D )的概率是多少?解:(1)因为C =A ∪B ,且A 与B 不会同时发生,所以事件A 与事件B 互斥,根据概率的加法公式得P (C )=P (A )+P (B )=.12(2)事件C 与事件D 互斥,且C ∪D 为必然事件,因此事件C 与事件D 是对立事件,P (D )=1-P (C )=. 12B 级 能力提升1.从1,2,…,9中任取两数:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个数都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一个偶数.在上述事件中,是对立事件的是( )A .①B .②④C .③D .①③ 解析:从1,2,…,9中任取两数,有以下三种情况:(1)两个奇数;(2)两个偶数;(3)一个奇数和一个偶数.至少有一个奇数是(1)和(3),其对立事件显然是(2).答案:C2.事件A ,B 互斥,它们都不发生的概率为,且P (A )=2P (B ),则P ()=________. 25A -解析:P (A )+P (B )=1-=, 2535又P (A )=2P (B ),所以P (A )=,P (B )=. 2515所以P ()=1-P (A )=. A -35答案: 353.三个臭皮匠顶上一个诸葛亮,能顶得上吗?在一次有关“三国演义”的知识竞赛中,三个臭皮匠A 、B 、C 能答对题目的概率分别为P (A )=,P (B )=,P (C )=,诸葛亮D 能答131415对题目的概率为P (D )=,如果将三个臭皮匠A 、B 、C 组成一组与诸葛亮D 比赛,答对题目23多者为胜方,问哪方胜?解:如果三个臭皮匠A 、B 、C 能答对的题目彼此互斥(他们能答对的题目不重复),则P (A +B +C )=P (A )+P (B )+P (C )=>P (D )=,故三个臭皮匠方为胜方,即三个臭皮匠能顶上476023一个诸葛亮;如果三个臭皮匠A 、B 、C 能答对的题目不互斥,则三个臭皮匠未必能顶上一个诸葛亮.。

人教A版高中数学必修三课件3.1.3概率的基本性质

人教A版高中数学必修三课件3.1.3概率的基本性质

想一想?这些事件之间有什么关系?
一:事件的关系与运算
(1)对于事件A与事件B,如果事件A发生, 那么事件B一定发生,则称事件B包含事
记;B A 件A,(或称事件A包含于事件B )
B A
注: 1)不可能事件记作
2)任何事件都包含不可能事件
(2)若事件A发生,则事件B一定发生,反之也成立, 则称这两个事件相等。
记:A=B
若B A,且A B,则称事件A与事件B相等。
例如: G={出现的点数不大于1}A={出现1点}
所以有G=A
注:两个事件相等也就是说这两个事件是 同一个事件。
(3)若某事件发生当且仅当事件发生A或事件B发生, 则称此事件为事件A与事件B的 并事件(或和事件)。记A B(或A+B)
对立事件是互斥事件,是互斥中的特殊情况 但互斥事件不一定是对立事件 区别:互斥事件是不可能同时发生的两个事件
对立事件除了要求这两个事件不同时发生之外要 求二者之一必须有一个发生
1、例题分析:
例1一个射手进行一次射击,试判断下列事件哪些是 互斥事件?哪些是对立事件?
事件A:命中环数大于7环 事件B:命中环数为10环; 事件C:命中环数小于6环; 事件D:命中环数为6、7、8、9、10环. 分析:要判断所给事件是对立还是互斥,首先将两个概念 的联系与区别弄清楚,互斥事件是指不可能同时发生的两 事件,而对立事件是建立在互斥事件的基础上,两个事件 中一个不发生,另一个必发生。 解:A与C互斥(不可能同时发生),B与C互斥,C与D互 斥,C与D是对立事件(至少一个发生).
即C1,C2是互斥事件
对立事件:
其中必有一个发生的互斥事件叫做对立事件
如:G 出现的点数为偶数;H=出现的点数为奇数

高中数学必修三《概率的基本性质》ppt

高中数学必修三《概率的基本性质》ppt
A.(1) B.(2) (4) C.(3) D.(1) (3)
练习:判断下列给出的每对事件,是否为互斥 事件,是否为对立事件,并说明理由。
从40张扑克牌(红桃,黑桃,方块,梅花点数 从1-10各10张)中,任取一张。 (1)“抽出红桃”与“抽出黑桃”;
是互斥事件,不是对立事件
(2)“抽出红色牌”与“抽出黑色牌”;
一、事件的关系和运算:
(1)包含关系
一般地,对于事件A与事件B,如果事件A发生,则 事件B一定发生,这时称事件B包含事件A(或称事
件A包含于事件B),记作 B A(或A B)
如图:
BA
例.事件C1 ={出现1点 }发生,则事件 H ={出现的
点数为奇数}任何事件都包括不可能事件。
四、课堂小结
1.概率的基本性质:
1)必然事件概率为1,不可能事件概率为0, 因此0≤P(A)≤1;
2)当事件A与B互斥时,满足加法公式: P(A∪B)= P(A)+ P(B);
3)若事件A与B为对立事件,则A∪B为必然事 件,所以P(A∪B)= P(A)+ P(B)=1,于是有
P(A)=1-P(B);
对立事件是互斥事件的特殊情形。
例题分析:
例1 一个射手进行一次射击,试判断下列事件哪些是 互斥事件?哪些是对立事件? 事件A:命中环数大于7环; 事件B:命中环数为10环; 事件C:命中环数小于6环; 事件D:命中环数为6、7、8、9、10环.
分析:要判断所给事件是对立还是互斥,首先 将两个概念的联系与区别弄清楚,互斥事件是指不可 能同时发生的两事件,而对立事件是建立在互斥事件 的基础上,两个事件中一个不发生,另一个必发生。
练习:某地区的年降水量在下列范围内的概率如下表 所示:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C1={出现1点}; C2={出现2点}; C3={出现3点};
C4={出现4点}; C5={出现5点}; C6={出现6点};
D1={出现的点数不大于1};
D2={出现的点数大于3}; D3={出现的点数小于5}; E={出现的点数小于7}; F={出现的点数大于6};
G={出现的点数为偶数}; H={出现的点数为奇数}; ……
7环的概率分别是0.24 、0.28 、0.19 、0.16 ,
计算这名射手射击一次
1)射中10环或9环的概率;
2)至少射中7环的概率.
2.甲、乙两人下棋,和棋的概率为 1,乙胜
2
的概率为 1,求:
3
(1)甲胜的概率;(2)甲不输的概率。
大家好
16
本课小结
1、事件的关系与运算,区分互斥事件与对立事件
5.互斥事件 若A? ห้องสมุดไป่ตู้为不可能事件( A? B =?)那么称事件A
与事件B互斥.
如:C1 ? C3 = ?
注:事件A与事件B互斥时
(1)事件A与事件B在任何一次试验中不 会同时发生。
(2)两事件同时发生的概率为0。
图形表示:
A 大家好
B
8
例: G={出现的点数为偶数}; H={出现的点数为奇数};
从40张扑克牌(红桃、黑桃、方块、梅花点数 从1-10各10张)中,任取一张。
(1)“抽出红桃”与“抽出黑桃”;互斥事件
(2)“抽出红色牌”与“抽出黑色牌对”立;事件
(3)“抽出的牌点数为5的倍数”与“抽出的 牌点数大于9”;
既不是对立事件也不是互斥事件
大家好
10
练习
一个射手进行一次射击,试判定下列事件 哪些是互斥事件?哪些是对立事件?
概率的基本性质
大家好
1
判断下列事件是必然事件,随机事 件,还是不可能事件?
1、明天天晴.
随机事件
2、实数的绝对值不小于0. 必然事件 3、在常温下,铁熔化. 不可能事件
4、从标有1、2、3、4的4张号签中任取一
张,得到4号签.
随机事件
5、锐角三角形中两个内角的和是900.
不可能事件
大家好
2
思考:在掷骰子试验中,可以定义许多事件,例如:
P(A ? B)= P(A) + P(B)
3.对立事件的概率公式 若事件A,B为对立事件,则
P(B)=1-P(A)
大家好
14
例 如果从不包括大小王的52张扑克牌中随
机抽取一张,那么取到红心(事件A)的概率
是 1 ,取到方片(事件B)的概率是 1 。问:
4
4
(1)取到红色牌(事件C)的概率是多少?
(2)取到黑色牌(事件D)的概率是多少?
类比集合与集合的关系、运算,你能发现事
件之间的关系与运算吗?
大家好
3
(一)、事件的关系与运算
例: C1={出现1点}; D3={出现的点数小于5};
1.包含关系
对于事件 A与事件B,如果事件 A发生,则事件 B一 定发生,这时称事件 B包含事件 A(或称事件 A包含
于事件B). 记作:B? A(或A? B)
大家好
12
思考:掷一枚骰子,事件C1={出现1点},事件
C3={出现3点}则事件C1 ? C3 发生的频率
与事件C1和事件C3发生的频率之间有什 么关系?
结论:当事件A与事件B互斥时
f (A ? B) ? f (A) ? f (B)
n
n
n
大家好
13
2.概率的加法公式: 如果事件A与事件B互斥,则
6.对立事件 若A? B为不可能事件, A? B为必然事件,那么事
件A与事件B互为对立事件。
如:事件G与事件H互为对立事件
注:(1)事件A与事件B在任何一次试验中有且 仅有一个发生。
(2)事件A的对立事件记为 A
(3)对立事件一定是互斥事件,但互斥
事件不一定是对立事件。
大家好
9
例. 判断下列给出的每对事件,是否为互斥 事件,是否为对立事件,并说明理由。
如:D3 ? C1 或 C1 ? D3
注:(1)图形表示:
AB
(2)不可能事件记作?,任何事件都包含
不可能事件。如: C1 ? ?
大家好
4
例: C1={出现1点}; D1={出现的点数不大于1};
2.相等事件 一般地,若B? A,且A? B ,那么称事件A与事
件B相等。记作:A=B.
如: C1=D1
解:(1) 因为C=A? B,且A与B不会同时发生,
所以A与B是互斥事件。根据概率的加法公式,
得 P(C)= P(A)+P(B)? 1
2
(2)C与D是互斥事件,又因为C? D为必然事件,
所以C与D为对立事件。所以
P(D)= 1-P(C) ? 1
2大家好
15
练习
1. 某射手射击一次射中,10 环、9环、8环、
图形表示:
A
B
大家好
6
例:C3={出现的点数大于3};D3={出现的点数小于5}; C4={出现4点};
4.交(积)事件
若某事件发生当且仅当事件A发生且事件B发 生,则称此事件为事件A与事件B的交事件
(或积事件).记作:A? B(或AB)
如: C3 ? D3= C4
图形表示:
A
B
大家好
7
例: C1={出现1点}; C3={出现3点};
注:(1)图形表示:
B(A)
(2)两个相等的事件总是同时发生或同时不 发生。
大家好
5
例: C1={出现1点}; C5={出现5点}; J={出现1点或5点}.
3.并(和)事件
若某事件发生当且仅当事件A或事件B发生,则称 此事件为事件A与事件B的并事件(或和事件).
记作:A? B(或A+B)
如:C1 ? C5=J
2、概率的基本性质
(1)对于任一事件 A,有0≤P(A)≤1
(2)概率的加法公式 P(A∪B)= P(A)+ P(B)
(3)对立事件的概率公式 P(B)=1 -P(A)
大家好
17
大家好
18
翡翠娱乐
mho795zyg
结束
大家好
19
事件A:命中环数大于7; 事件B:命中环数为10环; 事件C:命中环数小于6; 事件D:命中环数为6、7、8、9、10。
大家好
11
(二)、概率的几个基本性质
1.概率P(A)的取值范围 (1)0≤P(A)≤1. (2)必然事件的概率是1.
(3)不可能事件的概率是0. (4)若A ? B, 则 p(A) ≤P(B)
相关文档
最新文档