中考复习:《一次函数3》真题练习
九年级中考复习数学考点专题训练——专题三:一次函数
中考数学考点专题训练——专题三:一次函数1.在学习一元一次不等式与一次函数中,小明在同一个坐标系中分别作出了一次函数y=k1x+b1和y=kx+b 的图象,分别与x轴交于点A、B,两直线交于点C.已知点A(﹣1,0),B(2,0),观察图象并回答下列问题:(1)关于x的方程k1x+b1=0的解是;关于x的不等式kx+b<0的解集是;(2)直接写出关于x的不等式组的解集;(3)若点C(1,3),求关于x的不等式k1x+b1>kx+b的解集和△ABC的面积.2.为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变.同时打开甲、乙两个进水口注水,游泳池的蓄水量y(m3)与注水时间t(h)之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量y(m3)与注水时间t(h)之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.求单独打开甲进水口注满游泳池需多少小时?3.规定:若直线l与图形M有公共点,则称直线l是图形M的关联直线.已知:矩形ABCD的其中三个顶点的坐标为A(t,0),B(t+2,0),C(t+2,3)(1)当t=1时,如图以下三个一次函数y1=x+4,y2=﹣x+2,y3=x+2中,是矩形ABCD的关联直线;(2)已知直线l:y=x+2,若直线l是矩形ABCD的关联直线,求t的取值范围;(3)如果直线m:y=tx+2(t>0)是矩形ABCD的关联直线,请直接写出t的取值范围.4.如图,直线y=﹣与x轴相交于点A,与直线y=x相交于点B.(1)求点A,点B的坐标;(2)动点C从原点O出发,以每秒1个单位的速度在线段OA上向点A做匀速运动,连接BC,设运动时间为t秒,△BCA的面积为S,求出S关于t的函数关系式;(3)若点P是坐标平面内任意一点,以O,A,B,P为顶点的四边形是平行四边形,请直接写出点P的坐标.5.已知:在平面直角坐标系中,点O为坐标原点,直线AB与x轴的正半轴交于点A,与y轴的负半轴交于点B,OA=OB,过点A作x轴的垂线与过点O的直线相交于点C,直线OC的解析式为y=x,过点C作CM⊥y轴,垂足为M,OM=9.(1)如图1,求直线AB的解析式;(2)如图2,点N在线段MC上,连接ON,点P在线段ON上,过点P作PD⊥x轴,垂足为D,交OC于点E,若NC=OM,求的值;(3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F作x轴的平行线交BQ于点G,连接PF交x轴于点H,连接EH,若∠DHE=∠DPH,GQ﹣FG =AF,求点P的坐标.6.如图:在平面直角坐标系xOy中,过点A(﹣2,0)的直线l1和直线l2:y=2x相交于点B(2,m).(1)求直线l1的表达式;(2)过动点P(n,0)(n<0)且垂直于x轴的直线与l1、l2的交点分别为C,D.横、纵坐标都是整数的点叫做整点.①当n=﹣1时,直接写出△BCD内部(不含边上)的整点个数;②若△BCD的内部(不含边上)恰有3个整点,直接写出n的取值范围.7.如图,在平面直角坐标系中,点O为坐标原点,直线l分别交x轴、y轴于A.B两点,OA<OB,且OA、OB的长分别是一元二次方程x2﹣14x+48=0的两根.(1)求直线AB的解析式;(2)点C从点A出发沿射线AB方向运动,运动的速度为每秒2个单位,设△OBC的面积为S,点C运动的时间为t,写出S与t的函数关系式,并直接写出自变量的取值范围;(3)点P是y轴上的点,点Q是第一象限内的点,若以A、B、P、Q为顶点的四边形是菱形请求出点Q的坐标.8.团结奋战,众志成城,齐齐哈尔市组织援助医疗队,分别乘甲、乙两车同时出发,沿同一路线赶往绥芬河.齐齐哈尔距绥芬河的路程为800km,在行驶过程中乙车速度始终保持80km/h,甲车先以一定速度行驶了500km,用时5h,然后再以乙车的速度行驶,直至到达绥芬河(加油、休息时间忽略不计).甲、乙两车离齐齐哈尔的路程y(km)与所用时间x(h)的关系如图所示,请结合图象解答下列问题:(1)甲车改变速度前的速度是km/h,乙车行驶h到达绥芬河;(2)求甲车改变速度后离齐齐哈尔的路程y(km)与所用时间x(h)之间的函数解析式,不用写出自变量x的取值范围;(3)甲车到达绥芬河时,乙车距绥芬河的路程还有km;出发h时,甲、乙两车第一次相距40km.9.如图,已知直线y=kx+b与直线y=﹣x﹣9平行,且y=kx+b还过点(2,3),与y轴交于A点.(1)求A点坐标;(2)若点P是该直线上的一个动点,过点P分别作PM垂直x轴于点M,PN垂直y轴于点N,在四边形PMON 上分别截取:PC=MP,MB=OM,OE=ON,ND=NP,试证:四边形BCDE是平行四边形;(3)在(2)的条件下,在直线y=kx+b上是否存在这样的点P,使四边形BCDE为正方形?若存在,直接写出所有符合的点P的坐标;若不存在,请说明理由.10.小碚向某校食堂王经理建议食堂就餐情况,经调查发现就餐时,有520人排队吃饭就餐,就餐开始后仍有学生继续前来排队进食堂.设学生按固定的速度增加,食堂打饭窗口打饭菜的速度也是固定的.若每分钟该食堂新增排队学生数12人,每个打饭窗口1每分钟打饭菜10人.已知食堂的前a分钟只开放了两个打饭窗口;某一天食堂排队等候的学生数y(人)与打饭菜时间x(分钟)的关系如图所示.(1)求a的值;(2)求排队到第16分钟时,食堂排队等候打饭菜的学生人数;(3)若要在开始打饭菜后8分钟内让所有排队的学生都能进食堂后来到食堂窗口的学生随到随吃,那么小碚应该建议食堂王经理一开始就需要至少同时开放几个打饭窗口?11.如图,在平面直角坐标系中,直线y1=kx+b与x轴交于点A(4,0),与y轴交于点B(0,3),点C是直线y2=﹣x+5上的一个动点,连接BC,过点C作CD⊥AB于点D.(1)求直线y1=kx+b的函数表达式;(2)当BC∥x轴时,求BD的长;(3)点E在线段OA上,OE=OA,当点D在第一象限,且△BCD中有一个角等于∠OEB时,请直接写出点C的横坐标.12.在平面直角坐标系xOy中,点A(t﹣1,1)与点B关于过点(t,0)且垂直于x轴的直线对称.(1)以AB为底边作等腰三角形ABC,①当t=2时,点B的坐标为;②当t=0.5且直线AC经过原点O时,点C与x轴的距离为;③若△ABC上所有点到y轴的距离都不小于1,则t的取值范围是.(2)以AB为斜边作等腰直角三角形ABD,直线m过点(0,b)且与x轴平行,若直线m上存在点P,△ABD 上存在点K,满足PK=1,直接写出b的取值范围.13.笛卡尔是法国数学家、科学家和哲学家,他的哲学与数学思想对历史的影响是深远的.1637年,笛卡尔发表了《几何学》,创立了直角坐标系.其中笛卡尔的思想核心是:把几何学的问题归结成代数形式的问题,用代数的方法进行计算、证明,从而达到最终解决几何问题的目的.某学习小组利用平面直角坐标系在研究直线上点的坐标规律时,发现直线y=kx+b(k≠0)上的任意三点A (x1,y1),B(x2,y2),C(x3,y3)(x1≠x1≠x3),满足===k,经学习小组查阅资料得知,以上发现是成立的,即直线y=kx+b(k≠0)上任意两点的坐标M(x1,y1)N(x2,y2)(x1≠x2),都有的值为k,其中k叫直线y=kx+b的斜率.如,P(1,3),Q(2,4)为直线y=x+2上两点,则k PQ==1,即直线y=x+2的斜率为1.(1)请你直接写出过E(2,3)、F(4,﹣2)两点的直线的斜率k EF=.(2)学习小组继续深入研究直线的“斜率”问题,得到如下正确结论:不与坐标轴平行的任意两条直线互相垂直时,这两条直线的斜率之积是定值.如图1,直线GH⊥GI于点G,G(1,3),H(﹣2,1),I(﹣1,6).请求出直线GH与直线GI的斜率之积.(3)如图2,已知正方形OKRS的顶点S的坐标为(6,8),点K,R在第二象限,OR为正方形的对角线.过顶点R作RT⊥OR于点R.求直线RT的解析式.14.定义:在平面直角坐标系中,O为坐标原点,对于任意两点P(m,y)、Q(x,y0),m为任意实数,若,则称点Q是点P的变换点,例如:若点P(m,y)在直线y=x上,则点P的变换点Q在函数的图象上,设点P(m,y)在函数y=x2﹣2x的图象上,点P的变换点Q所在的图象记为G.(1)直接写出图象G对应的函数关系式.(2)当m=3,且﹣2≤x≤3时,求图象G的最高点与最低点的坐标.(3)设点A、B的坐标分别为(m﹣1,﹣2)、(2m+2,﹣2),连结AB,若图象G与线段AB有交点,直接写出m的取值范围.(4)若图象G上的点Q的纵坐标y0的取值范围是y0≥k或y0≤n,其中k>n,令s=k﹣n,求s与m之间的函数关系式,并写出m的取值范围.15.如图,把矩形OABC放入平面直角坐标系xOy中,使OA、OC分别落在x、y轴的正半轴上,对角线AC所在直线解析式为y=﹣x+15,将矩形OABC沿着BE折叠,使点A落在边OC上的点D处.(1)求点E的坐标;(2)在y轴上是否存在点P,使△PBE为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.16.如图,直线与x、y轴交于点A、B,过点B作x轴的平行线交直线y=x+b于点D,直线y=x+b交x、y轴于点E、K,且DK=.(1)如图1,求直线DE的解析式;(2)如图2,点P为AB延长线上一点,把线段BP绕着点B顺时针旋转90°得到线段BF,若点F刚好落在直线DE上,求点P的坐标;(3)如图3,在(2)的条件下,点M为ED延长线上一点,连接PM和AM,AM交线段BD于点N,若PM+MN =AN,求线段PM的长.17.在平面上,对于给定的线段AB和点C,若平面上的点P(可以与点C重合)满足,∠APB=∠ACB.则称点P为点C关于直线AB的联络点.在平面直角坐标系xOy中,已知点A(2,0),B(0,2),C(﹣2,0).(1)在P1(2,2),P(1,0),R(1+,1)三个点中,是点O关于线段AB的联络点的是.(2)若点P既是点O关于线段AB的联络点,同时又是点B关于线段OA的联络点,求点P的横坐标m的取值范围;(3)直线y=x+b(b>0)与x轴,y轴分交于点M,N,若在线段BC上存在点N关于线段OM的联络点,直接写出b的取值范围.18.已知直线y=x+b与x轴交于点A,与y轴交于点B,(1)如图1,求∠BAO的度数;(2)如图2,点D在第三象限,连接BD,将线段BD以B为旋转中心逆时针旋转90°得到BE且点E在第四象限,连接DE、OE,若DE=2OE,求证:S△ADE=2S△AOE;(3)如图3,点C为点A关于y轴的对称点,点D在第二象限,连接BD,将线段BD以B为旋转中心逆时针旋转90°得到BE,点E在第四象限,连接OE且OE∥BC,过点A作AP⊥BE交BC于点P,点Q在AB上,BQ=BP,过点Q作QG⊥AP交x轴于点G.若OF=,CG=7,求S△AOE.19.如图,在平面直角坐标系xOy中,直线y=x+4与y=kx+4分别交x轴于点A、B,两直线交于y轴上同一点C,点D的坐标为(﹣,0),点E是AC的中点,连接OE交CD于点F.(1)求点F的坐标;(2)若∠OCB=∠ACD,求k的值;(3)在(2)的条件下,过点F作x轴的垂线1,点M是直线BC上的动点,点N是x轴上的动点,点P是直线l上的动点,使得以B,P,M、N为顶点的四边形是菱形,求点P的坐标.20.在平面直角坐标系中,O为坐标原点,直线y=x+4分别交y轴和x轴于点A、B两点,点C在x轴的正半轴上,AO=2OC,连接AC.(1)如图1,求直线AC的解析式;(2)如图2,点P在线段AB上,点Q在BC的延长线上,满足:AP=CQ,连接PQ交AC于点D,过点P作PE⊥AC于点E,设点P的横坐标为t,△PQE的面积为S,求S与t的函数关系式(不要求写出自变量t的取值范围);(3)如图3,在(2)的条件下,PQ交y轴于点M,过点A作AN⊥AC交QP的延长线于点N,过点Q作QF ∥AC交PE的延长线于点F,若MN=DQ,求点F的坐标.备战2021中考数学考点专题训练——专题三:一次函数参考答案1.在学习一元一次不等式与一次函数中,小明在同一个坐标系中分别作出了一次函数y=k1x+b1和y=kx+b 的图象,分别与x轴交于点A、B,两直线交于点C.已知点A(﹣1,0),B(2,0),观察图象并回答下列问题:(1)关于x的方程k1x+b1=0的解是;关于x的不等式kx+b<0的解集是;(2)直接写出关于x的不等式组的解集;(3)若点C(1,3),求关于x的不等式k1x+b1>kx+b的解集和△ABC的面积.【答案】解:(1)∵一次函数y=k1x+b1和y=kx+b的图象,分别与x轴交于点A(﹣1,0)、B(2,0),∴关于x的方程k1x+b1=0的解是x=﹣1,关于x的不等式kx+b<0的解集,为x>2,故答案为x=﹣1,x>2;(2)根据图象可以得到关于x的不等式组的解集﹣1<x<2;(3)∵AB=3,∴S△ABC=•y C==.2.为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变.同时打开甲、乙两个进水口注水,游泳池的蓄水量y(m3)与注水时间t(h)之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量y(m3)与注水时间t(h)之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.求单独打开甲进水口注满游泳池需多少小时?【答案】解:(1)设y与t的函数解析式为y=kt+b,,解得,,即y与t的函数关系式是y=140t+100,同时打开甲、乙两个进水口的注水速度是:(380﹣100)÷2=140(m3/h);(2)∵单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.∴甲进水口进水的速度是乙进水口进水速度的,∵同时打开甲、乙两个进水口的注水速度是140m3/h,∴甲进水口的进水速度为:140÷(+1)×=60(m3/h),480÷60=8(h),即单独打开甲进水口注满游泳池需8h.3.规定:若直线l与图形M有公共点,则称直线l是图形M的关联直线.已知:矩形ABCD的其中三个顶点的坐标为A(t,0),B(t+2,0),C(t+2,3)(1)当t=1时,如图以下三个一次函数y1=x+4,y2=﹣x+2,y3=x+2中,是矩形ABCD的关联直线;(2)已知直线l:y=x+2,若直线l是矩形ABCD的关联直线,求t的取值范围;(3)如果直线m:y=tx+2(t>0)是矩形ABCD的关联直线,请直接写出t的取值范围.【答案】解:(1)当t=1时,A(1,0),B(3,0),C(3,3),D(1,3),则三个一次函数y1=x+4,y2=﹣x+2,y3=x+2中,y2=﹣x+2,y3=x+2是矩形ABCD的关联直线;故答案为:y2=﹣x+2,y3=x+2;(2)由矩形的性质得D(t,3),当y=3时,t+2=3,解得t=1;当y=0时t+2+2=0,解得t=﹣4.故t的取值范围为﹣4≤t≤1;(3)由矩形的性质得D(t,3),当y=3时,t2+2=3,解得t=±1(负值舍去).故t的取值范围为0<t≤1.4.如图,直线y=﹣与x轴相交于点A,与直线y=x相交于点B.(1)求点A,点B的坐标;(2)动点C从原点O出发,以每秒1个单位的速度在线段OA上向点A做匀速运动,连接BC,设运动时间为t秒,△BCA的面积为S,求出S关于t的函数关系式;(3)若点P是坐标平面内任意一点,以O,A,B,P为顶点的四边形是平行四边形,请直接写出点P的坐标.【答案】解:(1)当y=0时,0=﹣,解得x=4;则A(4,0);联立两直线的解析式得,解得.则B(2,2);(2)∵A(4,0),∴OA=4,∴S=(OA﹣t)×2=(4﹣t)×2=4﹣t(0≤t<4);(3)如图,当OA为平行四边形的边时,∵OA=4,∴P1(6,2),P2(﹣2,);当OA为对角线时,P3(2,﹣2).综上所示,点P的坐标为:P1(6,2),P2(﹣2,2),P3(﹣2,2).5.已知:在平面直角坐标系中,点O为坐标原点,直线AB与x轴的正半轴交于点A,与y轴的负半轴交于点B,OA=OB,过点A作x轴的垂线与过点O的直线相交于点C,直线OC的解析式为y=x,过点C作CM⊥y轴,垂足为M,OM=9.(1)如图1,求直线AB的解析式;(2)如图2,点N在线段MC上,连接ON,点P在线段ON上,过点P作PD⊥x轴,垂足为D,交OC于点E,若NC=OM,求的值;(3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F作x轴的平行线交BQ于点G,连接PF交x轴于点H,连接EH,若∠DHE=∠DPH,GQ﹣FG =AF,求点P的坐标.【答案】解:(1)∵CM⊥y轴,OM=9,∴y=9时,9=x,解得x=12,∴C(12,9),∵AC⊥x轴,∴A(12,0),∵OA=OB,∴B(0,﹣12),设直线AB的解析式为y=kx+b,则有,解得,∴直线AB的解析式为y=x﹣12.(2)如图2中,∵∠CMO=∠MOA=∠OAC=90°,∴四边形OACM是矩形,∴AO=CM=12,∵NC=OM=9,∴MN=CM﹣NC=12﹣9=3,∴N(3,9),∴直线ON的解析式为y=3x,设点E的横坐标为4a,则D(4a,0),∴OD=4a,把x=4a,代入y=x中,得到y=3a,∴E(4a,3a),∴DE=3a,把x=4a代入,y=3x中,得到y=12a,∴P(4a,12a),∴PD=12a,∴PE=PD﹣DE=12a﹣3a=9a,∴=.(3)如图3中,设直线FG交CA的延长线于R,交y轴于S,过点F作FT⊥OA于T.∵GF∥x轴,∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR,∴∠OFR=∠R=∠AOS=∠BSG=90°,∴四边形OSRA是矩形,∴OS=AR,AR=OA=12,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠FAR=90°﹣45°=45°,∴∠FAR=∠AFR,∴FR=AR=OS,∵OF⊥FQ,∴∠OSR=∠R=∠OFQ=90°,∴∠OFS+∠QFR=90°,∵∠QFR+∠FQR=90°,∴∠OFS=∠FQR,∴△OFS≌△FQR(AAS),∴SF=QR,∵∠SFB=∠AFR=45°,∴∠SBF=∠SFB=45°,∴SF=SB=QR,∵∠SGB=∠QGR,∠BSG=∠R,∴△BSG≌△QRG(AAS),∴SG=GR=6,设FR=m,则AR=m,AF=m,QR=SF=12﹣m,∵GQ﹣FG=AF,∴GQ=×m+6﹣m=m+6,∵GQ2=GR2+QR2,∴(m+6)2=62+(12﹣m)2,解得m=4,∴FS=8,AR=4,∵∠OAB=∠FAR,FT⊥OA,FR⊥AR,∴FT=FR=AR=4,∠OTF=90°,∴四边形OSFT是矩形,∴OT=SF=8,∵∠DHE=∠DPH,∴tan∠DHE=tan∠DPH,∴=,由(2)可知DE=3a,PD=12a,∴=,∴DH=6a,∴tan∠PHD===2,∵∠PHD=∠FHT,∴tan∠FHT==2,∴HT=2,∵OT=OD+DH+HT,∴4a+6a+2=8,∴a=,∴OD=,PD=12×=,∴P(,).6.如图:在平面直角坐标系xOy中,过点A(﹣2,0)的直线l1和直线l2:y=2x相交于点B(2,m).(1)求直线l1的表达式;(2)过动点P(n,0)(n<0)且垂直于x轴的直线与l1、l2的交点分别为C,D.横、纵坐标都是整数的点叫做整点.①当n=﹣1时,直接写出△BCD内部(不含边上)的整点个数;②若△BCD的内部(不含边上)恰有3个整点,直接写出n的取值范围.【答案】解:(1)将点B的坐标代入y=2x得,m=2×2=4,故点B(2,4),设直线l1的表达式为y=kx+b,将点A、B的坐标代入上式并解得:,解得,故直线l1的表达式为:y=x+2;(2)①当n=﹣1时,如下图,从图中可以看出,整点个数为1,即点(0,1);②如上图,当n=﹣2时,△BCD的内部(不含边上)恰有3个整点,故﹣2≤n<﹣1.7.如图,在平面直角坐标系中,点O为坐标原点,直线l分别交x轴、y轴于A.B两点,OA<OB,且OA、OB的长分别是一元二次方程x2﹣14x+48=0的两根.(1)求直线AB的解析式;(2)点C从点A出发沿射线AB方向运动,运动的速度为每秒2个单位,设△OBC的面积为S,点C运动的时间为t,写出S与t的函数关系式,并直接写出自变量的取值范围;(3)点P是y轴上的点,点Q是第一象限内的点,若以A、B、P、Q为顶点的四边形是菱形请求出点Q的坐标.【答案】解:(1)x2﹣14x+48=0,则x=6或8,故点A、B的坐标分别为(6,0)、(0,8),则AB=10;设直线AB的表达式为:y=kx+b,则,解得,故直线AB的表达式为:y=﹣x+8;(2)过点C作CM⊥y轴于点M,则,即,解得:CM=|10﹣2t|,S=×BO×CM=×8×|10﹣2t|=|10﹣2t|,故S=;(3)点A、B的坐标分别为(6,0)、(0,8),设点P、Q的坐标分别为(0,s)、(m,n),①当AB是菱形的边时,点A向上平移8个单位向左平移6个单位得到点B,同样点Q向上平移8个单位向左平移6个单位得到点P,即0﹣8=m,s+6=n且BP=BA=10,解得:m=﹣8,n=24,故点Q的坐标为(﹣8,24);②当AB是菱形的对角线时,由中点公式得:6+0=m+0,8+0=s+n且BP=BQ,即(s﹣8)2=m2+(n﹣8)2,解得:m=6,m=,故点Q的坐标为(6,);综上,点Q的坐标为(﹣8,24)或(6,).8.团结奋战,众志成城,齐齐哈尔市组织援助医疗队,分别乘甲、乙两车同时出发,沿同一路线赶往绥芬河.齐齐哈尔距绥芬河的路程为800km,在行驶过程中乙车速度始终保持80km/h,甲车先以一定速度行驶了500km,用时5h,然后再以乙车的速度行驶,直至到达绥芬河(加油、休息时间忽略不计).甲、乙两车离齐齐哈尔的路程y(km)与所用时间x(h)的关系如图所示,请结合图象解答下列问题:(1)甲车改变速度前的速度是km/h,乙车行驶h到达绥芬河;(2)求甲车改变速度后离齐齐哈尔的路程y(km)与所用时间x(h)之间的函数解析式,不用写出自变量x的取值范围;(3)甲车到达绥芬河时,乙车距绥芬河的路程还有km;出发h时,甲、乙两车第一次相距40km.【答案】解:(1)甲车改变速度前的速度为:500出5=100(km/h),乙车达绥芬河是时间为:800÷80=10(h),故答案为:100;10;(2)∵乙车速度为80km/h,∴甲车到达绥芬河的时间为:,甲车改变速度后,到达绥芬河前,设所求函数解析式为:y=kx+b(k≠0),将(5,500)和(,800)代入得:,解得,∴y=80x+100,答:甲车改变速度后离齐齐哈尔的路程y(km)与所用时间x(h)之间的函数解析式为y=80x+100();(3)甲车到达绥芬河时,乙车距绥芬河的路程为:800﹣80×=100(km),40÷(100﹣80)=2(h),即出发2h时,甲、乙两车第一次相距40km.故答案为:100;2.9.如图,已知直线y=kx+b与直线y=﹣x﹣9平行,且y=kx+b还过点(2,3),与y轴交于A点.(1)求A点坐标;(2)若点P是该直线上的一个动点,过点P分别作PM垂直x轴于点M,PN垂直y轴于点N,在四边形PMON 上分别截取:PC=MP,MB=OM,OE=ON,ND=NP,试证:四边形BCDE是平行四边形;(3)在(2)的条件下,在直线y=kx+b上是否存在这样的点P,使四边形BCDE为正方形?若存在,直接写出所有符合的点P的坐标;若不存在,请说明理由.【答案】解:(1)∵直线y=kx+b与y=﹣x﹣9平行,且过点A(2,3),则,解得,∴一次函数解析式为y=﹣x+4,当x=0时,y=4,∴A点坐标是(0,4);(2)证明:∵PM⊥x轴,PN⊥y轴,∴∠M=∠N=∠O=90°,∴四边形PMON是矩形,∴PM=ON,OM=PN,∠M=∠O=∠N=∠P=90°.∵PC=MP,MB=OM,OE=ON,ND=NP,∴PC=OE,CM=NE,ND=BM,PD=OB,在△OBE和△PDC中,OB=PD,∠O=∠CPD,OE=PC,∴△OBE≌△PDC(SAS),∴DC=BE,同理可证△MBC≌△NDE(SAS),∴DE=BC.∴四边形BCDE是平行四边形;(3)存在这样的点P,理由:设点P(m,﹣m+4),则CM=PC=|(4﹣m)|=|﹣m|,PD=m,当四边形BCDE为正方形时,则∠DCB=90°,DC=BC,而∠CBM+∠MCB=90°,∠MCB+∠DCP=90°,∴∠CBM=∠DCP,而∠DPC=∠CMB=90°,∴△DPC≌△CMB(AAS),∴CM=PD,即=|﹣m|=m,解得:m=或﹣8,故P点坐标是(,)或(﹣8,8).10.小碚向某校食堂王经理建议食堂就餐情况,经调查发现就餐时,有520人排队吃饭就餐,就餐开始后仍有学生继续前来排队进食堂.设学生按固定的速度增加,食堂打饭窗口打饭菜的速度也是固定的.若每分钟该食堂新增排队学生数12人,每个打饭窗口1每分钟打饭菜10人.已知食堂的前a分钟只开放了两个打饭窗口;某一天食堂排队等候的学生数y(人)与打饭菜时间x(分钟)的关系如图所示.(1)求a的值;(2)求排队到第16分钟时,食堂排队等候打饭菜的学生人数;(3)若要在开始打饭菜后8分钟内让所有排队的学生都能进食堂后来到食堂窗口的学生随到随吃,那么小碚应该建议食堂王经理一开始就需要至少同时开放几个打饭窗口?【答案】解:(1)由图象知,520+12a﹣2×10a=424,∴a=12;(2)设当12≤x≤20时,y与x之间的函数关系式为y=kx+b,由题意,得,解得:,∴y=﹣53x+1060,当x=16时,y=212,即排队到第16分钟时,食堂排队等候打饭菜的学生有212人.(3)设需同时开放n个打饭窗口,由题意知10n×8≥520+12×8解得:n≥7.7,∵n为整数,∴n最小=8.答:至少需要同时开放8个打饭窗口.11.如图,在平面直角坐标系中,直线y1=kx+b与x轴交于点A(4,0),与y轴交于点B(0,3),点C 是直线y2=﹣x+5上的一个动点,连接BC,过点C作CD⊥AB于点D.(1)求直线y1=kx+b的函数表达式;(2)当BC∥x轴时,求BD的长;(3)点E在线段OA上,OE=OA,当点D在第一象限,且△BCD中有一个角等于∠OEB时,请直接写出点C的横坐标.【答案】解:(1)把A(4,0),B(0,3)代入y1=kx+b,得到,解得:,∴y1=﹣x+3.(2)∵BC∥x轴,∴点C的纵坐标为3,当y=3时,3=﹣x+5,解得x=,∴C(,3),∵CD⊥AB,∴直线CD的解析式为y=x+,由,解得,∴D(,),∴BD==.(3)如图,当∠BCD=∠BEO时,过点A作AM⊥BC交BC的延长线于M,点M作MN⊥x轴于N.∵OB=3,OE=OA=,∴tan∠BEO==2,∵CD⊥AB,AM⊥AB,∴CD∥AM,∴∠AMB=∠BCD=∠BEO,∴tan∠AMB==2,∵AB===5,∴AM=AB=,∵∠AOB=∠ANM=∠BAM=90°,∴∠BAO+∠ABO=90°,∠BAO+∠MAN=90°,∴∠MAN=∠ABO,∴△ABO∽△MAN,∴==,∴==,∴AN=,MN=2,∴M(,2),∴直线BM的解析式为y=﹣x+3,由,解得x=,∴点C的横坐标为当∠CBD=∠BEO时,同法可得点C的横坐标为.12.在平面直角坐标系xOy中,点A(t﹣1,1)与点B关于过点(t,0)且垂直于x轴的直线对称.(1)以AB为底边作等腰三角形ABC,①当t=2时,点B的坐标为;②当t=0.5且直线AC经过原点O时,点C与x轴的距离为;③若△ABC上所有点到y轴的距离都不小于1,则t的取值范围是.(2)以AB为斜边作等腰直角三角形ABD,直线m过点(0,b)且与x轴平行,若直线m上存在点P,△ABD 上存在点K,满足PK=1,直接写出b的取值范围.【答案】解:(1)①如图1中,由题意A(1,1),A,B关于直线x=2对称,∴B(3,1).故答案为(3,1).②如图2中,由题意A(﹣0.5,1),直线l:x=0.5,∵直线AC的解析式为y=﹣2x,∴C(0.5,﹣1),∴点C到x轴的距离为1,故答案为1.③由题意A(t﹣1,0),B(t+1,0),∵△ABC上所有点到y轴的距离都不小于1,∴t﹣1≥1或t+1≤﹣1,解得t≥2或t≤﹣2.故答案为t≥2或t≤﹣2.(2)如图3中,∵A(t﹣1,0),B(t+1,0),∴AB=t+1﹣(t﹣1)=2,∵△ABD是以AB为斜边的等腰直角三角形,∴点D到AB的距离为1,,∴当点D在AB上方时,若直线m上存在点P,△ABD上存在点K,满足PK=1,则0≤b≤3.当点D在AB下方时,若直线m上存在点P,△ABD上存在点K,满足PK=1,则﹣1≤b≤2.13.笛卡尔是法国数学家、科学家和哲学家,他的哲学与数学思想对历史的影响是深远的.1637年,笛卡尔发表了《几何学》,创立了直角坐标系.其中笛卡尔的思想核心是:把几何学的问题归结成代数形式的问题,用代数的方法进行计算、证明,从而达到最终解决几何问题的目的.某学习小组利用平面直角坐标系在研究直线上点的坐标规律时,发现直线y=kx+b(k≠0)上的任意三点A (x1,y1),B(x2,y2),C(x3,y3)(x1≠x1≠x3),满足===k,经学习小组查阅资料得知,以上发现是成立的,即直线y=kx+b(k≠0)上任意两点的坐标M(x1,y1)N(x2,y2)(x1≠x2),都有的值为k,其中k叫直线y=kx+b的斜率.如,P(1,3),Q(2,4)为直线y=x+2上两点,则k PQ==1,即直线y=x+2的斜率为1.(1)请你直接写出过E(2,3)、F(4,﹣2)两点的直线的斜率k EF=.(2)学习小组继续深入研究直线的“斜率”问题,得到如下正确结论:不与坐标轴平行的任意两条直线互相垂直时,这两条直线的斜率之积是定值.如图1,直线GH⊥GI于点G,G(1,3),H(﹣2,1),I(﹣1,6).请求出直线GH与直线GI的斜率之积.(3)如图2,已知正方形OKRS的顶点S的坐标为(6,8),点K,R在第二象限,OR为正方形的对角线.过顶点R作RT⊥OR于点R.求直线RT的解析式.【答案】解:(1)∵E(2,3)、F(4,﹣2),∴k EF==﹣,故答案为﹣.(2)∵G(1,3),H(﹣2,1),I(﹣1,6),∴k GH==,k GI==﹣,∴k GH•k GI=﹣1.(3)如图2中,过点K作KM⊥x轴于M,过点S作SN⊥x轴于N,连接KS交OR于J.∴S(6,8),∴ON=6,SN=8,∵四边形OKRS是正方形,∴OK=OS,∠KPS=∠KMO=∠SNO=90°,KJ=JS,JR=JO,∴∠KOM+∠SON=90°,∠SON+∠OSN=90°,∴∠KOM=∠OSN,∴△OMK≌△SNO(AAS),∴KM=ON=6,OM=SN=8,∴K(﹣8,6),∵KJ=JS,∴J(﹣1,7),∵JR=OJ,∴R(﹣2,14),∵k OR==﹣7,∵RT⊥OR,∴k RT=﹣=,设直线RT的解析式为y=x+b.把(﹣2,14)代入可得14=﹣+b,∴b=,∴直线RT的解析式为y=x+14.定义:在平面直角坐标系中,O为坐标原点,对于任意两点P(m,y)、Q(x,y0),m为任意实数,若,则称点Q是点P的变换点,例如:若点P(m,y)在直线y=x上,则点P的变换点Q在函数的图象上,设点P(m,y)在函数y=x2﹣2x的图象上,点P的变换点Q所在的图象记为G.(1)直接写出图象G对应的函数关系式.(2)当m=3,且﹣2≤x≤3时,求图象G的最高点与最低点的坐标.(3)设点A、B的坐标分别为(m﹣1,﹣2)、(2m+2,﹣2),连结AB,若图象G与线段AB有交点,直接写出m的取值范围.(4)若图象G上的点Q的纵坐标y0的取值范围是y0≥k或y0≤n,其中k>n,令s=k﹣n,求s与m之间的函数关系式,并写出m的取值范围.【答案】解:(1)图象G对应的函数关系式y=;(2)当m=3时,图象G对应的函数关系式y=,当x=3时,y=9﹣6﹣1=2.当﹣2≤x≤3时,y=﹣x2+x+1=﹣(x﹣1)2+,当x=1时,y取得最大值为;当x=﹣2时,y取得最小值为﹣3.故图象G的最高点的坐标为(3,2),最低点的坐标为(﹣2,﹣3).(3)当y=﹣2时,﹣x2+x+1=﹣2,解得x1=1﹣,x2=1+,∵点P的变换点Q在函数的图象上,∴m的取值范围为1﹣<m≤2﹣或﹣≤m≤1或1+≤m≤2+;(4)当m>1时,x=m左侧的最高点的坐标为(1,),x=m右侧的最低点的坐标为(m,m2﹣2m﹣1),∵点Q的纵坐标y0的取值范围是y0≥k或y0≤n,∴y0≥m2﹣2m﹣1或y0≤,∴k=m2﹣2m﹣1,n=,当k=时,m2﹣2m﹣1=,解得m1=1+,m2=1﹣(舍去),∵k>n,∴当m>1+时,s=m2﹣2m﹣1﹣=m2﹣2m﹣;当m≤1时,x=m左侧图象无最高点,x=m右侧的最低点的坐标为(1,﹣2),没有符合点Q的纵坐标y0的取值范围是y0≥k或y0≤n.综上所述,求s与m之间的函数关系式为s=m2﹣2m﹣(m>1+).15.如图,把矩形OABC放入平面直角坐标系xOy中,使OA、OC分别落在x、y轴的正半轴上,对角线AC 所在直线解析式为y=﹣x+15,将矩形OABC沿着BE折叠,使点A落在边OC上的点D处.(1)求点E的坐标;(2)在y轴上是否存在点P,使△PBE为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【答案】解:(1)∵AC所在直线解析式为y=﹣x+15,∴令x=0,y=15,令y=0.则﹣,解得x=9.∴A(9,0),C(0,15),B(9,15),。
中考数学复习《一次函数》专项提升训练题-附带答案
中考数学复习《一次函数》专项提升训练题-附带答案学校:班级:姓名:考号:一、选择题1.下列各点在直线y=−2x+6上的是()A.(−1,4)B.(2,10)C.(3,0)D.(−3,0)2.将一次函数y=2x−1的图象沿y轴向上平移4个单位长度,所得直线的解析式为()A.y=2x−5B.y=2x−3C.y=2x+3D.y=2x+43.关于y是x的一次函数y=kx+b2+1(其中k<0,b为任意实数)的图象可能是()A.B.C.D.4.已知一次函数y=−2x+4,那么下列结论正确的是()A.y的值随x的值增大而增大B.图象经过第一、二、三象限C.图象必经过点(1,2)D.当x<2时5.若点A(x1,−1),B(x2,−2),C(x3,3)在一次函数y=−2x+m(m是常数)的图象上,则x1,x2,x3的大小关系是()A.x1>x2>x3B.x2>x1>x3C.x1>x3>x2D.x3>x2>x16.如图,函数y=mx和y=kx+b的图象相交于点P(1,m),则不等式−b≤kx−b≤mx的解集为()A.0≤x≤1B.−1≤x≤0C.−1≤x≤1D.−m≤x≤m7.已知一次函数y=32x+m和y=−12x+n的图象都经过点A(−2,0),且与y轴分别交于B、C两点,那么△ABC的面积是()A .2B .3C .4D .68.小明从家出发到公园晨练,在公园锻炼一段时间后按原路返回,同时小明爸爸从公园按小明的路线返回家中.如图是两人离家的距离y (米)与小明出发的时间x (分)之间的函数图象.下列结论中不正确的是( )A .公园离小明家1600米B .小明出发253分钟后与爸爸第一次相遇C .小明与爸爸第二次相遇时,离家的距离是960米D .小明在公园停留的时间为5分钟二、填空题9.若函数y =(m −1)x |m|−5是一次函数,则m 的值为 .10.一次函数y=(2m ﹣6)x+4中,y 随x 的增大而减小,则m 的取值范围是 .11.弹簧的自然长度为5cm ,在弹簧的弹性限度内,所挂的物体的质量x 每增加1kg ,弹簧的长度y 增加0.5cm ,则y 与x 之间的函数关系式是 .12.如图所示,直线y =kx +b 经过点(−2,0),则关于x 的不等式kx +b >0的解集为 .13.函数y =ax +b 和y =−x +2的图像如图所示,两图像交于点P(−1,m),则二元一次方程组:{y −ax =b y +x =2的解是 .三、解答题14.已知一次函数y=k(x+2)(k≠0).(1)求证:点(−2,0)在该函数图象上;(2)若该函数图象向上平移2个单位后过点(1,−2),求k的值;(3)若该函数图象与y轴的交点在x轴和直线y=−2之间,求k的取值范围.15.为丰富学生的业余生活,学校准备购进甲、乙两种畅销图书.经调查,甲种图书的总费用y(元)与购进本数x之间的函数关系如图所示,乙种图书每本20元.(1)直接写出当0≤x≤100和x>100时,y与x的函数关系式;(2)现学校准备购买300本图书,且两种图书均不少于80本,该如何购买,才能使总费用最少?最少的总费用为多少元?x+m的图象交于点P(n,−2).16.如图,函数y=−2x+3与y=−12(1)求出m,n的值;x+m≤−2x+3的解集;(2)观察图象,写出−12.(3)设△BOC和△ABP的面积分别为S1、S2,求S1S217.A、B两个码头之间航程为24千米,甲、乙两轮船同时出发,甲轮船从A码头顺流匀速航行到B码头后,立即逆流匀速航行返回到A码头,乙轮船从B码头逆流匀速航行到A码头后停止,两轮船在静水中速度均为10千米/时,水流速度不变,两轮船距A码头的航程y(千米)与各自的航行时间x(时)之间的函数图象如图所示.(顺流速度=静水速度+水流速度:逆流速度=静水速度-水流速度)(1)水流速度为千米/时;a值为;(2)求甲轮船从B码头向A码头返回过程中y与x之间的函数关系式;(3)当乙轮船到达A码头时,求甲轮船距A码头的航程.x−6的图象与坐标轴交于点A,B,BC平分∠OBA交x轴与点C,CD⊥AB垂足为18.如图1,一次函数y=34D.(1)求点A,B的坐标;(2)求CD所在直线的解析式;(3)如图2,点E是线段OB上的一点,点F是线段BC上的一点,求EF+OF的最小值.参考答案1.【答案】C2.【答案】C3.【答案】A4.【答案】C5.【答案】B6.【答案】B7.【答案】C8.【答案】C9.【答案】-110.【答案】m <311.【答案】y=5+0.5x12.【答案】x >−213.【答案】{x =−1y =314.【答案】(1)证明:当x =−2时y =k(x +2)=k(−2+2)=0 ∴点(−2,0)在y =k(x +2)图象上.(2)解:一次函数y =k(x +2)图象向上平移2个单位得y =k(x +2)+2.将(1,−2)代入得:−2=k(1+2)+2解得k =−43.(3)解:由题意得:该函数图象与y 轴的交点为(0,2k)∵该交点在x 轴和直线y =−2之间∴−2<2k <0∴−1<k <0.15.【答案】(1)解:由图可知:y ={25x(0≤x ≤100)19x +600(x >100)(2)解:设总费用为w 元.根据题意,得80≤x ≤220.当80≤x ≤100时w =25x +20(300−x)=5x +6000.∵k =5>0,w 随x 的增大而增大,∴当x =80时,总费用最少w 最小=5×80+6000=6400元.当100<x ≤220时w =19x +600+20(300−x)=−x +6600.∵k =−1<0,w 随x 的增大而减小,∴当x =220时,总费用最少w 最小=−220+6600=6380元<6400元.∴此时乙种图书为300−220=80本.∴应购买甲种图书220本,乙种图书80本,才能使总费用最少,最少总费用为6380元.16.【答案】(1)解:将点P(n ,−2)代入函数y =−2x +3得:−2n +3=−2 解得n =52∴P(52,−2) 将点P(52,−2)代入函数y =−12x +m 得:−12×52+m =−2解得m =−34.(2)解:不等式−12x +m ≤−2x +3表示的是函数y =−12x +m 的图象位于函数y =−2x +3的图象下方(含交点)则由函数图象可知,−12x +m ≤−2x +3的解集为x ≤52. .(3)解:对于函数y =−12x −34当x =0时y =−34,则OB =34当y =0时−12x −34=0,解得x =−32,则OC =32∴S 1=12×34×32=916 对于函数y =−2x +3当x =0时y =3,则OA =3∴AB =OA +OB =154 ∵P(52,−2) ∴S 2=12×154×52=7516 ∴S 1S 2=9167516=325.17.【答案】(1)2;2(2)解:设甲轮船从B 码头向A 码头返回过程中y 与x 之间的函数关系式为y =kx +b 由图象可得,甲轮船从B 码头向A 码头返回需要3小时∴点(2,24),(5,0)在该函数图象上∴{2k +b =245k +b =0,解得{k =−8b =40即甲轮船从B 码头向A 码头返回过程中y 与x 之间的函数关系式为y =−8x +40;(3)解:由(2)知,当x =3时即当乙轮船到达A 码头时,甲轮船距A 码头的航程为16千米.18.【答案】(1)解:由一次函数y=34x−6的图象与坐标轴交于点A,B 另y=0,则x=8,即A(8,0);另x=0,则y=-6,即B(0,-6).(2)解:根据题意,如图,延长DC交y轴于点G,设CD=m∵BC平分∠OBA,OC⊥OB,CD⊥BD∴OC=CD=m∵OA=8,OB=6∴AB=√62+82=10∴12AB•CD=12AC•OB∵AC=8−m∴12×10m=12×(8−m)×6∴m=3∴点C的坐标为(3,0);∵CD⊥AB∴∠BDG=∠AOB=∠90°又∵OB=BD,∠ABO=∠GBD∴△AOB≌△GBD(ASA)∴BG=AB=10,OG=BG-OB=4即G(0,4)∴设直线CD的解析式为y=kx+4把点C(3,0)代入,则k=−43∴直线CD的解析式为y=−43x+4;(3)解:根据题意,作点E关于直线BC的对称点E′,则EF=FE′,如图:∵BC是角平分线∴点E′恰好落在直线AB上∴EF+OF=E′F+OF≥OE′∴EF+OF的最小值就是OE′的最小值当OE′⊥AB时,OE′为最小值;∵12AB•OE′=12OA•OB∴12×10×OE′=12×8×6∴OE′=245∴EF+OF的最小值为245.。
一次函数和反比例函数综合问题(3易错7题型)—2024年中考数学(全国通用)(解析版)
一次函数和反比例函数综合问题目录【中考预测】预测考向,总结常考点及应对的策略 【误区点拨】点拨常见的易错点【抢分通关】精选名校模拟题,讲解通关策略(含新考法、新情境等)一次函数和反比例函数是全国中考的热点内容,更是全国中考的必考内容.每年都有一些考生因为知识残缺、基础不牢、技能不熟、答欠规范等原因导致失分.1.从考点频率看,一次函数和反比例函数的图象和性质是考查的基础,也是高频考点、必考点,所以对一次函数和反比例函数的图象和性质必须熟记.2.从题型角度看,以解答题的第三题或第四题为主,分值8分左右,着实不少!易错点一 一次函数与反比例函数中由面积求点坐标【例1】(2024·广东珠海·模拟预测)如图,在平面直角坐标系xOy 中,一次函数图象5y x =−+与y 轴交于点A ,与反比例函数ky x=的图象的一个交点为(),4B a ,过点B 作AB 的垂线l .(1)求点A 的坐标及反比例函数的表达式;(2)若点C 在直线l 上,且ABC 的面积为5,求点C 的坐标;S=ABCABCS=【例2】(2024·甘肃陇南·一模)如图,在平面直角坐标系xOy 中,一次函数4y x =−与反比例函数ky x=的图象交于A ,B 两点,与x 轴相交于点C ,已知点A ,B 的坐标分别为()5,n n 和(),5m −.(1)求反比例函数的解析式; (2)点P 为反比例函数ky x=图象上任意一点,若2POC AOC S S =△△,求点P 的坐标.【例3】(2024·山东济宁·一模)如图,点()3,6A ,()6,B a 是反比例函数y x=的图象上的两点,连接OA 、OB .(1)求a 的值; (2)求AOB 的面积;(3)若点C 的坐标为()9,0,点P 是反比例函数图象上的点,若POC △的面积等于AOB 面积的3倍,求点P的坐标. )AOB 的面积为AODBOES S=,由BOEAODAOEB S SS S=−四边形,可得AOBS=1273322POCAOBSOC PE S =⨯⨯==⨯,即可求解,【详解】(1)解:∵点()3,6A ,()6,B a 是反比例函数y x=的图象上的两点, ∴63m=,解得:18m =, ∴反比例函数解析式为:18y x=, ∴186a =,解得:3a =, 故答案为:3a =,(2)解:过点A ,B ,作AC x ⊥轴,BD x ⊥轴,垂足分别为D ,E ,由(1)可知,点()3,6A ,()6,3B 是反比例函数18y x=的图象上的两点, ∴6AC =,3OD =,3BD =,6OE =,AODBOES S=,∵BOEAODAOEB AOEB S SS S−=−四边形四边形,∴()()()()()1112763632222AOBADEB SS AD BE DE AD BE OE OD ==+⋅=+⋅−=+−=梯形, 故答案为:AOB 的面积为272, (3)解:设点P 坐标为18,p p ⎛⎫⎪⎝⎭,过点P ,作PE x ⊥轴,垂足为E ,∴18180PE p p=−=,9OC =, ∴1273322POCAOBSOC PE S =⨯⨯==⨯, 即:118279322p ⨯⨯=⨯,解得:2p =或2p =−, ∴()2,9P 或()2,9P −−,故答案为:点P 的坐标为()2,9或()2,9−−.一次函数中平移问题【例1】(2024·河北邯郸·二模)如图,直线1:4l y x =+与y 轴,x 轴交于点A ,点B ,直线2l 与y 轴,x 轴交于点A ,点,2C OC OA =.(1)求点A 的坐标及直线2l 的解析式;(2)点13,22D m m ⎛⎫+ ⎪⎝⎭在直线3l 上.①直接写出直线3l 的解析式;②若点D 在ABC 内部(含边界),求m 的取值范围;③横纵坐标都为整数的点为整点,将直线3l 向上平移n 个单位长度(n 为整数),直线3l 在第二象限恰有4个整点,直接写出n的值.=OC OA2①点在ABC 内部(含边界)【例2】(2024·河北石家庄·一模)如图,平面直角坐标系中,线段AB 的端点为(2,2)A ,(4,1)B .直线:2l y x =+与x 轴,y 轴分别交于C ,D 两点,动点P 从点D 出发,沿y 轴以每秒1个单位长度的速度向下移动,设移动时间为t 秒.某同学设计了一个动画:线段AB 为蓝色光带,当有动点或动直线经过线段AB 时,蓝色光带会变成红色.(1)求直线AB 的解析式;(2)①若直线l 随点P 向下平移,当2t =时,蓝色光带是否变红?②点M 是直线l 上的一点,若点M 向下平移4个单位长度的过程中,能使蓝色光带变红,求点M 的横坐标M x 的取值范围;Q m n三点共线时,直接写出m与t的函数关系式.(3)当点C,点P与蓝色光带上的点(,)直线过直线又直线②点A)()20C −,易错点三 一次函数与反比例函数中求线段和的最小值问题【例1】(2024·甘肃兰州·模拟预测)如图,一次函数8y x =+的图象与反比例函数()0ky x x=<的图象交于(),6A a ,B 两点.(1)求此反比例函数的表达式及点B 的坐标;(2)在y 轴上存在点P ,使得AP BP +的值最小,求AP BP +的最小值.则AP BP +的最小值A =【例2】(2023·辽宁盘锦·二模)如图,一次函数4y x =+的图象与反比例函数ky x=(k 为常数且0k ≠)的图象交于()1,A a −,B 两点.(1)求此反比例函数的表达式及点B 的坐标;(2)当反比例函数值大于一次函数值时,直接写出x 的取值范围;(3)在y 轴上存在点P ,使得APB △的周长最小,求点P 的坐标并直接写出APB △的周长. )解:点点点A题型一 一次函数的图象和性质【例1】(2024·浙江·模拟预测)已知点()11,A m n ,()22,B m n ()12m m <在一次函数y kx b =+的图像上. (1)用含有1m ,1n ,2m ,2n 的代数式表示k 的值.(2)若123m m b +=,124n n kb +=+,2b >.试比较1n 和2n 的大小,并说明理由.【例2】(2024·浙江杭州·一模)设一次函数31y ax a =++(a 是常数,0a ≠). (1)无论a 取何值,该一次函数图象始终过一个定点,直接写出这个定点坐标: (2)若24x ≤≤时,该一次函数的最大值是6,求a 的值. 【详解】(1)解:一次函数1, 当3x =−时,11y =,∴无论a 取何值,该一次函数图象始终过定点(3,1)−;(2)解:当0a >时,当4x =时,一次函数14316y a a =++=,1.(2024·北京·一模)在平面直角坐标系xOy 中,一次函数y kx b =+(0k ≠)的图象经过点()0,1,()2,2−,与x 轴交于点A .(1)求该一次函数的表达式及点A 的坐标;(2)当2x >时,对于x 的每一个值,函数2y x m =+的值大于一次函数y kx b =+(0k ≠)的值,直接写出m 的取值范围.解:一次函数2.(2024·浙江宁波·模拟预测)已知一次函数10y mx n mn =+≠.(1)已知关于x 的一元二次方程20x mx n +−=必有两个不相等的实数根,试说明一次函数1y mx n =+的图象过第一和第二象限.(2)在(1)的条件下,已知另一函数2y nx m =+的图象与y 1图象的交点在第四象限,求不等式12y y >的解. 【答案】(1)见解析解:∵关于x 的一元二次方程20x mx n +−=的解,可看作抛物线2y x =与直线y mx n =−+的交点, 根据题意得,抛物线2y x =与直线y mx n =−+必有两个不同的交点, ∴0n >,∴一次函数1y mx n =+的图象过第一和第二象限; (2)解:∵2y nx m =+,0n >,∴直线2y nx m =+一定经过第一、三象限, ∵直线2y nx m =+与y 1图象的交点在第四象限,∴直线2y nx m =+一定经过第一、三、四象限, ∴0m <, ∴0m n −<, ∵12y y >, ∴mx n nx m +>+, 整理得()m n x m n −>−, ∴1x <,即不等式12y y >的解集为1x <.题型二 反比例函数的图象和性质【例1】(2024·陕西西安·一模)已知反比例函数3my x−=. (1)若该反比例函数图象在每一个象限内,y 都随着x 的增大而减小,求m 的取值范围; (2)若点()2,3A 在此反比例函数图象上,求反比例函数的解析式.1.(2024·福建南平·一模)反比例函数ky x=图象经过点(1,6)A ,(,3)B a . (1)求a 的值;(2)若点(,)C m n 在反比例函数ky x=图象上,其中3n <,求m 的取值范围. 题型三 一次函数和反比例函数与不等式综合问题【例1】(2024·贵州毕节·一模)如图,一次函数()0y ax b a =+≠与反比例函数()0ky k x=≠的图象在第一象限交于()2,3A 和()3,B m 两点,与x 轴交于点C .(1)求反比例函数和一次函数的表达式; (2)直接写出关于x 的不等式(0)kax b x x+>>的解集. )解:点又B【例2】(2024·陕西宝鸡·一模)如图所示,一次函数1y x m =−+图象与反比例函数2ky x=图象相交于点(,3)A n 和点(3,1)B −.(1)求反比例函数解析式; (2)当12y y >时,求x 的取值范围.1.(2024·山西朔州·一模)如图,反比例函数()1110,0k y k x x=>>与一次函数()2220y k x b k =+≠的图象交于()2,3A ,3,2B m ⎛⎫⎪⎝⎭两点.(1)求m 的值及一次函数的表达式. (2)直接写出当12y y >时,x 的取值范围.)解:反比例函数与一次函数的图象交于当24x <<时,12y y <,所以,当12y y >时, x 的取值范围为02x <<或4x >.2.(2024·江西九江·一模)如图一次函数y kx b =+的图象与反比例函数4y x=−的图象相交于点()1,A m −,(),1B n −.(1)求一次函数的解析式;(2)结合图象,直接写出不等式4kx b x+>−的解集.3.(2024·河南安阳·模拟预测)如图,一次函数12y x =−的图象与反比例函数(0)y k x=≠的图象交于()(),12,A a B b −,两点,与x 轴相交于点C .(1)求反比例函数的表达式;(2)观察图象,直接写出不等式112kx x−<的解集;(3)若(),0P m 为x 轴上的一动点,连接AP ,当APC △的面积为52时,求点P 的坐标. )解:函数)函数在112y x =−中, 当y =解得:2x =,()2,0C ∴, ()0,P m ,APC S =△题型四 一次函数和反比例函数中求三角形面积问题【例1】(2024·山西大同·一模)如图,一次函数y ax b =+的图象与反比例函数()0ky k x=>的图象相交于点()6,32A n −−,点(),3B n −,与y 轴交于点C .(1)求一次函数和反比例函数的解析式;(2)点D 是点C 关于x 轴的对称点,连接AD BD 、,求ABD △的面积.S=ABD【例2】(2024·吉林白山·一模)如图,在平面直角坐标系中,一次函数5y x =−+的图象与反比例函数(0)ky k x=>的图象相交于()1,A m 、()4,B n 两点,与x 轴相交于点C ,连接OA 、OB .(1)求反比例函数的解析式; (2)求AOB 的面积. AOBS=1.(2024·湖南长沙·三模)如图,在平面直角坐标系中,一次函数32y x b =−+与反比例函数()0ky k x=≠交于()(),6,4,3A m B −两点,与y 轴交于点C ,连接,OA OB .(1)求反比例函数和一次函数的表达式; (2)求AOB 的面积.解:点解:点AOBAOCBOCS SS=+与反比例函数(0)ky x x=>的图象交于点()1,C a ,D 是反比例函数图象上的一个动点,过点D 向y 轴作垂线与一次函数图象交于点E ,其中点A 的坐标为(3,0)−.(1)求反比例函数的表达式;(2)连接,DB DC ,当DCE △的面积等于DBC △面积的2倍时,求点E 的坐标;(3)若P 是x 轴上的一个动点,连接,EP DP ,当DPE 与AOB 相似时,求点D 的纵坐标. 坐标,根据DPE 与AOB 相似计算即可,注意分情况讨论.()033b =⨯−+∵过点D向y轴作垂线与一次函数图象交于点∴设12D mm⎛⎫⎪⎝⎭,,则点E纵坐标为∴1239y xm=+=,解得x412⎛⎫当AOB PED∽时,当时,AOB PED ∽,此时时,P AOB DE ∽,此时∴12PD m =,DE m ⎛=− ⎝∴1243PD m DE m m m ==⎛⎫−− ⎪⎝⎭时,E AOB PD ∽,此时时,P AOB ED ∽,此时,则N EPM PD ∽∴EM MP PEPN DN PD== 此时12EM DN m==,DE 当D AOB EP ∽时,PE PD 同理当AOB DPE ∽时,PD综上所述,当DPE 与AOB 相似时,求点题型五 一次函数和反比例函数中求证问题【例1】(新考法,拓视野)(2024·河南周口·一模)如图,反比例函数ky x=与正比例函数y ax =交于点()3,2A 和点C ,与正比例函数6y x =交于点B 和点D .(1)求k 与a 的值,并求点B ,C ,D 的坐标; (2)求证:CBD ADB ∠=∠.1.(2024·湖南怀化·一模)在平面直角坐标系中,点O 为坐标原点.如图,一次函数y ax b =+(a 为常数,0a ≠)与反比例函数ky x=(k 为常数,0k ≠)的图象相交于点()25A ,和点()4B m −,.(1)求反比例函数与一次函数的解析式;(2)过点A 作y 轴的垂线,过点B 作x 轴的垂线,相交于点C ;过点A 作x 轴的垂线,过点B 作y 轴的垂线,相交于点D .求证:C ,O ,D 三点在同一条直线上.2.(2024·河南平顶山·一模)如图,一次函数y ax b =+的图象与反比例函数y x=的图象交于第一象限(1,4)C ,D(4,m)两点,与坐标轴交于A 、B 两点,连接OC ,OD (O 是坐标原点).(1)求一次函数与反比例函数的解析式;(2)当kax bx+<时,直接写出x的取值范围;(3)将直线AB向下平移多少个单位长度,直线与反比例函数图象只有一个交点?题型六一次函数和反比例函数中求线段长问题【例1】(2024·广东珠海·一模)如图1.直线21y x =+与y 轴交于点B ,与反比例函数()0ky x x=>的图象交于点()1,A a .图2将线段AB 向右平移m 个单位长度()0m >,得到对应线段CD ,连接AC ,BD .当点D 恰好落在反比例函数图象上时,过点C 作CF x ⊥轴于点F ,交反比函数图象于点E .(1)求反比例函数表达式; (2)求EF 的长度.1.(2024·河南·模拟预测)如图所示,在平面直角坐标系中,一次函数1y ()0kx b k =+≠的图象与反比例函数2y ()0mm x=≠的图象相交于第二、四象限内的()1,3A −,(),1B a −两点,与y 轴交于点C .(1)求该反比例函数和一次函数的解析式;(2)在x 轴上找一点P ,使PA PC −最大,求PA PC −的最大值及点P 的坐标.一次函数的解析式为Rt ADC中,由勾股定理可得题型七利用反比例函数的图象和性质探究平移问题【例1】(新考法,拓视野)(2024·广东深圳·模拟预测)小明在学习了反比例函数的图象与性质后,进一步研究了函数1yx=−的图象与性质.其探究过程如下:(1)绘制函数图象,如图,列表:下表是x与y的几组对应值,其中m=;描点:根据表中各组对应值,x y,在平面直角坐标系中描出各点;连线:用平滑的曲线顺次连接各点,画出了部分图象,请你把图象补充完整;(2)通过观察函数图象,写出该函数的一条性质:.(3)利用函数图象,解不等式1230xx−+<.观察图形得出函数的性质:图象关于y轴对称;故答案为:图象关于y轴对称;(3)【例2】(2024·陕西西安·一模)乐乐同学在学习了反比例函数的基础上,进一步探究函数21y x =-的性质.以下是他的研究过程,请补充完整.(1)如表是y 与x 的几组对应值.(2)在平面直角坐标系xOy 中,描出了以表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(3)观察图象,发现这个函数图象为中心对称图形,则它的对称中心为______;(4)若直线2y x =与函数21y x =-的图象交于第一象限内一点(),P x y ,则下面关于x 的取值范围描述正确的是( )A .1 1.25x <<B .1.25 1.5x <<C .1.5 1.75x <<D .1.752x <<【详解】(1)解:①4x =时,413y ==−, 23m ∴=, 故答案为:23; (2)解:如图:(3)解:观察图象,发现这个函数图象为中心对称图形,则它的对称中心为(1,0);故答案为:(1,0);(4)解:作出直线2y x =如图:把3y =代入2y x =求得 1.5x =,把3y =代入21y x =-,求得53x =, 观察图象,若直线2y x =与函数21y x =-的图象交于第一象限内一点(,)P x y ,则x 的取值范围是51.53x <<, ∴关于x 的取值范围描述正确的是C ,故答案为:C .1.(2024·山西大同·一模)中考新考法:注重过程性学习,某数学小组在研究函数221x y −+=+时,对函数的图象进行了探究,探究过程如下:(1)①x 与y 的几组对应值如下表,请补全表格;②在上图平面直角坐标系中,描出上表中各组对应值为坐标的点,并根据描出的点画出该函数的图象;(2)我们知道,函数()()20,0,0y a x h k a h k =−+≠>>的图象是由二次函数2y ax =的图象向右平移h 个单位,再向上平移k 个单位得到的.类似地,请直接写出将2y x =−的图象经过怎样的平移可以得到221x y −+=+的图象;(3)若一次函数123y x =−+的图象与函数221x y −+=+的图象交于A B 、两点,连接OA OB 、,求AOB 的面积. 【答案】(1)见解析,(2)向左平移1个单位,向上平移2个单位(3)5(2)2y x=−的图象向左平移1(3)一次函数123y x =−+的图象,如图,可知∴AOB 的面积为()12232⨯⨯+=。
中考数学复习《一次函数》专项练习题-附带有答案
中考数学复习《一次函数》专项练习题-附带有答案一、单选题1.在函数y=√9−3x中,自变量x的取值范围是()A.x≤3B.x<3C.x≥3D.x>32.已知一次函数y=kx−3(k≠0),若y随x的增大而减小,则它的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限3.实数k、b满足kb﹥0,不等式kx<b的解集是x>bk那么函数y=kx+b的图象可能是()A.B.C.D.4.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()A.x≥32B.x≤3 C.x≤32D.x≥35.如图,在平面直角坐标系中,直线y=- 32x+3与矩形OABC的边AB、BC分别交于点E、F,若点B的坐标为(m,2),则m的值可能为()A.12B.32C.52D.726.如图,等边△ABC 的顶点A 在y 轴上,顶点B 、C 在x 轴上,直线y =−√3x +√3经过点A 、C ,则等边△ABC 的面积是( )A .4B .2√3C .√5D .√37. 如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过正方形OABC 的顶点A 和C ,已知点A 的坐标为(1,−2),则k 的值为( )A .1B .2C .3D .48.市自来水公司为鼓励居民节约用水,采取月用水量分段收费办法,某户居民应交水费y(元)与用水量x(吨)的函数关系如图,若该用户本月用水21吨,则应交水费( )A .52.5元B .48方C .45元D .42元二、填空题9.函数y= 32 x+m 与y=﹣ 12 x+n 均经过点A (﹣2,0),且与y 轴交于B 、C ,则S △ABC = . 10.已知一次函数y =kx +b (k ≠0)经过(2,-1),(-3,4)两点,则其图象不经过第 象限. 11.现有一小树苗高100cm ,以后平均每年长高50cm .x 年后树苗的总高度y (cm )与年份x (年)的关系式是 .12.如图,函数y =2x +b 与函数y =kx −1的图象交于点P ,关于x 的不等式kx −1<2x +b 的解集是 .13.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与行驶时间x(小时)之间的函数关系如图所示,已知甲对应的函数关系式为y=60x,根据图象提供的信息可知从乙出发后追上甲车需要小时.三、解答题14.已知实数a满足a+b﹣4<0,b=√(−3)2,当2≤x≤4时,一次函数y=ax+1(a≠0)的最大值与最小值之差是6,求a的值.15.已知两直线l1,l2的位置关系如图所示,请求出以点A的坐标为解的二元一次方程组.16.某商店以40元/千克的单价新进一批茶叶,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示。
2021年中考数学专题复习:一次函数与不等式(三)
2021年中考数学专题复习:一次函数与不等式(三)1.已知直线y=kx+b(k≠0)与x轴和y轴的交点分别是(1,0)和(0,﹣2),那么关于x的不等式kx+b<0的解集是.2.如图,在平面直角坐标系中,函数y=mx+n的图象与y=kx+b的图象交于点P(﹣1,2),则不等式mx﹣b≥kx﹣n的解集为.3.若函数y=kx﹣b的图象如图所示,则关于x的不等式k(x﹣3)﹣b>0的解是.4.如图,直线y=x+b和y=kx+2与x轴分别交于点A(﹣2,0),点B(3,0),则的解集为.5.同一直角坐标系中,一次函数y=k1x+b与正比例函数y=k2x的图象如图所示,则满足k1x+b>k2x的x取值范围是.6.如图.函数y=kx+b(k、b为常数,k≠0)的图象如图,则关于x的不等式kx+b>0的解集为.7.当a取时,一次函数y=3x+a+6与y轴的交点在x轴下方.(在横线上填上一个你认为恰当的数即可)8.如图,在平面直角坐标系xOy中,若直线y1=﹣x+a与直线y2=bx﹣4相交于点P(1,﹣3),则关于x的不等式﹣x+a<bx﹣4的解集是.9.若直线y=kx+b的图象如图所示,则不等式kx+b>0的解集是.10.在平面直角坐标系xOy中,直线l1:y=k1x+b过A(0,﹣3),B(5,2),直线l2:y=k2x+2.当x≥4时,不等式k1x+b>k2x+2恒成立,写出一个满足题意的k2的值为.11.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是.12.一次函数y1=ax+3与y2=kx﹣1的图象如图所示,则不等式kx﹣ax<4的解集是.13.如图两条相交直线y1与y2的图象如图所示,当x时,y1<y2.第13题图第14题图14.如图,已知函数y=3x+b和y=ax﹣c的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣c的解集是.15.一次函数y1=mx+n与y2=﹣x+a的图象如图所示,则0<mx+n<﹣x+a 的解集为.16.如图,若一次函数y=﹣2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,3),则不等式﹣2x+b>0的解集为.17.已知一次函数y=kx+b的图象如图所示,则关于x的不等式3kx﹣b>0的解集为.18.如图是两个一次函数y1=mx+n和y2=kx+b在同一平面直角坐标系中的图象,则关于x的不等式kx+b>mx+n的解集是.19.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组的解集为.20.若函数y=ax+b的图象如图所示,则不等式ax+b≥0的解集为.参考答案1.解:把(1,0)和(0,﹣2)代入y=kx+b得,解得,所以一次函数解析式为y=2x﹣2,解不等式2x﹣2<0得x<1.故答案为x<1.2.解:∵函数y=mx+n的图象与y=kx+b的图象交于点P(﹣1,2),∴当x≥﹣1时,mx+n≥kx+b,∴不等式mx﹣b≥kx﹣n的解集为x≥﹣1.故答案为x≥﹣1.3.解:方法1、∵一次函数y=kx﹣b经过点(2,0),∴2k﹣b=0,b=2k.函数值y随x的增大而减小,则k<0;解关于k(x﹣3)﹣b>0,移项得:kx>3k+b,即kx>5k;两边同时除以k,因为k<0,因而解集是x<5.故答案为:x<5方法2、解:将直线y=kx﹣b向右平移3个单位长度即可得到直线y=k(x ﹣3)﹣b,如图所示.观察图形可知:当x<5时,直线y=k(x﹣3)﹣b在x轴上方.故答案为:x<5.4.解:∵当x>﹣2时,y=x+b>0,当x<3时,y=kx+2>0,∴的解集为﹣2<x<3.故答案为﹣2<x<3.5.解:当x≤﹣3时,直线l1:y1=k1x+b都在直线l2:y2=k2x的上方,即k1x+b >k2x.∴满足k1x+b>k2x的x取值范围是x<﹣3,故答案为:x<﹣3.6.解:函数y=kx+b的图象经过点(2,0),并且函数值y随x的增大而减小,所以当x<2时,函数值小于0,即关于x的不等式kx+b>0的解集是x<2.故答案为:x<2.7.解:一次函数y=3x+a+6中令x=0,解得y=a+6,由于交点在x轴下方,得到a+6<0,解得a<﹣6,因而横线上填上一个小于﹣6的数就可以.故本题答案为:﹣7.8.解:当x>1时,函数y=﹣x+a的图象都在y=bx﹣4的图象下方,所以不等式﹣x+a<bx﹣4的解集为x>1;故答案为x>1.9.解:直线y=kx+b的图象经过点(1,0),且函数值y随x的增大而减小,∴不等式kx+b>0的解集是x<1.故本题答案为:x<1.10.解:∵直线l1:y=k1x+b过A(0,﹣3),B(5,2),∴,解得∴直线l1的表达式为y=x﹣3,∵当x≥4时,不等式x﹣3>k2x+2恒成立,∴4﹣3>4k2+2,∴k2<﹣,∴取k2=﹣1满足题意,故答案为﹣1.11.解:联立两函数解析式成方程组,得:,解得:.∴当x<﹣1时,y=max{x+3,﹣x+1}=﹣x+1>2;当x≥﹣1时,y=max{x+3,﹣x+1}=x+3≥2.∴函数y=max{x+3,﹣x+1}最小值为2.故答案为:2.12.解:∵一次函数y1=ax+3与y2=kx﹣1的图象的交点坐标为(1,2),∴当x<1时,y1>y2,∴不等式kx﹣1<ax+3(kx﹣ax<4)的解集为x<1.故答案为x<1.13.解:观察图象得:当x>a时,y1<y2;故答案为>a.14.解:∵函数y=3x+b和y=ax﹣c的图象交于点P(﹣2,﹣5),则根据图象可得不等3x+b>ax﹣c的解集是x>﹣2,故答案为:x>﹣2.15.解:由图可得,当0<mx+n时,x>2;当mx+n<﹣x+a时,x<3;∴不等式组0<mx+n<﹣x+a的解集为2<x<3,故答案为:2<x<3.16.解:∵一次函数y=﹣2x+b的图象与y轴交于点A(0,3),∴b=3,∴一次函数解析式为y=﹣2x+3,解不等式﹣2x+3>0得x<.故答案为x<.17.解:∵一次函数y=kx+b的图象过(﹣6,0),∴0=﹣6k+b,∴b=6k,∴3kx﹣b=3kx﹣3k>0,∵函数图象经过第二、三、四象限,∴k<0,∴x﹣1<0,解得:x<1.故答案为:x<1.18.解:如图所示:不等式kx+b>mx+n的解集为:x<1.故答案为:x<1.19.解:∵一次函数y=﹣x﹣2的图象过点P(n,﹣4),∴﹣4=﹣n﹣2,解得n=2,∴P(2,﹣4),又∵y=﹣x﹣2与x轴的交点是(﹣2,0),∴关于x的不等式组的解集为:﹣2<x<2.故答案为:﹣2<x<2.20.解:函数y=ax+b的图象经过点(2,0),函数值y随x的增大而减小,∴不等式ax+b≥0的解集为x≤2.故本题答案为:x≤2.。
中考数学《一次函数》专项练习题及答案
中考数学《一次函数》专项练习题及答案一、单选题1.已知二次函数y=ax2+bx+c的部分函数图象如图所示,则一次函数y=ax+b2−4ac与反比例函数y=4a+2b+cx在同一平面直角坐标系中的图象大致是()A.B.C.D.2.已知一次函数y=kx−k的图象过点(−3,4),则下列结论正确的是()A.y随x增大而增大B.k=1C.直线过点(1,0)D.直线过原点3.如图,正比例函数y1=−2x与一次函数y2=ax+3的图象相交于点A(−1,m),则关于x 的不等式−2x>ax+3的解集是()A.x>2B.x<2C.x>−1D.x<−14.如图,若一次函数y1=x+a与一次函数y2=kx+b的图象交于点P(1,3),则关于x的不等式x+a≤kx+b的解集为()A.x≤1B.x≥1C.x≤0D.x≥35.已知y1=2x﹣5,y2=﹣2x+3,如果y1<y2,则x的取值范围是()A.x>2B.x<2C.x>﹣2 D.x<﹣26.如图,一次函数y=kx+b的图象与正比例函数y=2x的图象相交于点A,则不等式0<2x<kx+b的解集是()A.x<1 B.x<0或x>1C.0<x<1D.x>17.已知:抛物线y=−x2−4x+5与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.平行于x轴的直线l与该抛物线交于点D(x1,y1),E(x2,y2),与线段AC交于点F(x3,y3),令g=x3x1+x2,则g的取值范围是()A.0≤g≤52B.−52≤g≤0C.0≤g≤54D.−54≤g≤08.如果一元一次方程3x﹣b=0的根x=2,那么一次函数y=3x﹣b的图象一定过点()A.(0,2)B.(2,0)C.(﹣2,0)D.(0,﹣2)9.如图是一次函数y=-32x+3的图象,当-3<y<3时,x的取值范围是( )A.x>4B.0<x<2C.0<x<4D.2<x<410.一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集是()A.x>﹣2B.x<﹣2 C.x>﹣4 D.x<﹣411.下列变量之间关系中,一个变量是另一个变量的正比例函数的是()A.正方形的周长C随着边长x的变化而变化B.正方形的面积S随着边长x的变化而变化C.面积为20的三角形的一边a随着这边上的高h的变化而变化D.水箱以0.5L/min的流量往外放水,水箱中的剩水量VL随着放水时间tmin的变化而变化12.为了响应“绿水青山就是金山银山”的号召,建设生态文明,某工厂自2019年1月开始限产并进行治污改造,其月利润y(万元)与月份x之间的变化如图所示,治污完成前是反比例函数图象的一部分,治污完成后是一次函数图象的部分,下列选项错误的是()A.4月份的利润为50万元B.污改造完成后每月利润比前一个月增加30万元C.治污改造完成前后共有4个月的利润低于100万元D.9月份该厂利润达到200万元二、填空题13.某地市话的收费标准为:(1)通话时间在3分钟以内(包括3分钟)话费0.3元;通话时间超过3分钟时,超过部分的话费按每分钟0.11元计算.在一次通话中,如果通话时间超过3分钟,那么话费y(元)与通话时间x(分)之间的关系式为.14.一次函数y=kx+b的图象如图所示,当x>0时,y的取值范围为.15.一个正方形的边长为3 cm,它的边长减少xcm后,得到新正方形的周长为y,y与x之间的函数表达式为.16.若函数y=kx+b的图象平行于直线y=2x,且过点(2,﹣4),则该函数的表达式是.17.一次函数y=2x-6的图象与坐标轴围成的三角形面积为。
《一次函数》专项练习和中考真题(含答案解析及点睛)
《1.等腰三角形底角与顶角之间的函数关系A .正比例函数 B .一次函数【答案】B【分析】根据一次函数的定义,可得答案【解析】设等腰三角形的底角为y ,顶角为所以,y=﹣12x+90°,即等腰三角形底角与【点睛】本题考查了实际问题与一次函数2.已知y 关于x 成正比例,且当x 时A .3 B .3-【答案】B【分析】先利用待定系数法求出y =【详解】设y kx =,Q 当2x =时,3y x ∴=-,∴当1x =时,3y =-【点睛】本题考查了待定系数法求正比例函点的坐标代入求出k 即可.3. 已知函数y =kx +b 的部分函数值如表所示A .x =2 B .x =3 C 【答案】A【解析】∵当x =0时,y =1,当x =1,y 当y =–3时,–2x +1=–3,解得:x =2,4.如图,直线y=kx+3经过点(2,0,A .x >2B .x <2 《一次函数》专项练习数关系是( ) C .反比例函数D .二次函数答案.顶角为x ,由题意,得x+2y=180, 底角与顶角之间的函数关系是一次函数关系,故选函数,根据题意正确列出函数关系式是解题的关键2=时,6y =-,则当1x =时,y 的值为 C .12D .12-3x -,然后计算1x =对应的函数值. 6y =-,26k ∴=-,解得3k =-,13⨯=-.故选B .比例函数的解析式:设正比例函数解析式为y kx k =表所示,则关于x 的方程kx +b +3=0的解是x … –2 –1 01… y…531 –1….x =–2 D .x =–3 =–1,∴,解得:,∴y =–,故关于x 的方程kx +b +3=0的解是x =2,故选A ),则关于x 的不等式kx+3>0的解集是( )C .x≥2 D .x≤211b k b =+=-⎧⎨⎩21k b =-=⎧⎨⎩故选B . 关键. ()0≠,然后把一个已知2x +1,.【答案】B【分析】直接利用函数图象判断不等式【解析】由一次函数图象可知:关于x的不【点睛】本题考查了一次函数的图象与性质等式之间的内在联系.5.如图,在平面直角坐标系中,直线l与直线l1在第一象限交于点C.若∠BOCAB【答案】B【分析】过C作CD⊥OA于D,利用直线3.依据CD∥BO,可得OD13=AOk的值.【解析】如图,过C作CD⊥OA于D.即A(,0),B(0,1),∴Rt△∵∠BOC=∠BCO,∴CB=BO=1,∵CD∥BO,∴OD13=AO=,得:23=,即k =B式kx+3>0的解集在x轴上方,进而得出结果.的不等式kx+3>0的解集是x<2;故选B.与性质和一元一次不等式及其解法,解题的关键是掌1:y=x+1与x轴,y轴分别交于点A和点BOC=∠BCO,则k的值为( )C D.直线l1:y=+1,即可得到A(,0),B(0=CD23=BO23=,进而得到C23,),.直线l1:y=+1中,令x=0,则y=1,令AOB中,AB==3.AC=2.CD23=BO23=,即C23,),把C23,.键是掌握一次函数与一元一次不B,直线l2:y=kx(k≠0),1),AB==,代入直线l2:y=kx,可得令y=0,则x=,)代入直线l2:y=kx,可【点睛】本题考查了两直线相交或平行问题组成的二元一次方程组的解.6.已知点A (-5,a ),B (4,b )在直线y =-3x 【答案】>【分析】先根据一次函数的解析式判断出函【解析】∵直线y=-3x+2中,k=-3<0,∵-5<4,∴a >b ,故答案为>.【点睛】本题考查了一次函数的性质,根据如果k>0,直线就从左往右上升,y 随7.如图,四边形ABCD 的顶点坐标分别ABCD 分成面积相等的两部分时,直线A .116105y x =+ B .23y =【答案】D【分析】由已知点可求四边形ABCD 分成y=-x+3,设过B 的直线l 为y=kx+b ,并求1125173121k k k k --⎛⎫⎛⎫=⨯-⨯+ ⎪⎪+⎝⎭⎝⎭,即可【解析】解:由()()4,0,2,1,A B ---∴四边形ABCD 分成面积(12AC =⨯设过B 的直线l 为y kx b =+,将点B 代入∴直线CD 与该直线的交点为45,k k -⎛+⎝∴1125173121k k k k --⎛⎫⎛=⨯-⨯+ ⎪ +⎝⎭⎝,∴直线解析式为5342y x =+;故选:【点睛】本题考查一次函数的解析式求法式的方法是解题的关键.行问题,两条直线的交点坐标,就是由这两条直线相+2上,则a ________b .(填“>”“<”或“=”号 断出函数的增减性,再比较出-5与4的大小即可解答,∴此函数是减函数, 根据题意判断出一次函数的增减性是解答此题的关x 的增大而增大,如果k<0,直线就从左往右下降分别()()()()4,0,2,1,3,0,0,3A B C D ---,当过点直线l 所表示的函数表达式为( ) 13x + C .1y x =+ D .54y x =+分成面积()113741422B AC y =⨯⨯+=⨯⨯=;并求出两条直线的交点,直线l 与x 轴的交点坐标即可求k 。
2023年中考数学总复习第三章《函数》综合测试卷及答案
2023年中考数学总复习第三章《函数》综合测试卷一、选择题(每小题3分,共48分)1.已知a+b>0,ab>0,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是()A.(a,b)B.(-a,b)C.(-a,-b)D.(a,-b)(第1题图)(第7题图)2.函数y=的自变量x的取值范围是()A.x≥2且x≠3B.x≥2C.x≠3D.x>2且x≠33.已知一个正比例函数的图象经过A(-2,m)和B (n,4)两点,则m,n间的关系一定是()A.mn=-8B.mn=8C.m=-2n D.m=-n4.一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y与x的函数关系为()A.y=10x+30B.y=40xC.y=10+30x D.y=20x5.已知二次函数y=x2-x+m-1的图象与x轴有交点,则m的取值范围是()A.m≤5B.m≥2C.m<5D.m>2 6.在同一直角坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()7.如图,直线y=-x+m与y=nx+4n(n≠0)的交点横坐标为-2,则关于x的不等式-x+m>nx+4n>0的整数解为()A.-1B.-5C.-4D.-38.二次函数y=x2-(12-k)x+12,当x>1时,y随着x的增大而增大,当x<1时,y随着x的增大而减小,则k的值应取()A.12B.11C.10D.99.定义一个新的运算:a b=则运算x2的最小值为()A.-3B.-2C.2D.310.如图,Rt△ABC的直角边BC在x轴正半轴上,斜边AC上的中线BD反向延长线交y轴负半轴于E,双曲线y=(x>0)的图象经过点A,若△BCE的面积为6,则k等于()A.3B.6C.12D.24(第10题图)(第11题图)11.二次函数y=x2-2x-3的图象如图所示,下列说法中错误的是()A.函数图象与y轴的交点坐标是(0,-3)B.顶点坐标是(1,-3)C.函数图象与x轴的交点坐标是(3,0),(-1,0)D.当x<0时,y随x的增大而减小12.如图中的图①、②、③所示,阴影部分面积的大小关系正确的是()A.①>②>③B.③>②>①C.②>③>①D.①=②=③(第12题图)13.已知点A是直线y=2x与双曲线y=(m为常数)一支的交点,过点A作x轴的垂线垂足为B,且OB=2,则m的值为()A.-7B.-8C.8D.714.如图,在平面直角坐标系中,直线y=-x+2与反比例函数y=的图象有唯一公共点,若直线y=-x+b 与反比例函数y=的图象有2个公共点,则b的取值范围是()A.b>2B.-2<b<2C.b>2或b<-2D.b<-2。
中考数学总复习《一次函数》专项提升练习题(附答案)
中考数学总复习《一次函数》专项提升练习题(附答案)学校:___________班级:___________姓名:___________考号:___________命题点1一次函数的图象与性质 1(2022株洲)在平面直角坐标系中,一次函数y=5x+1的图象与y 轴的交点的坐标为( )A.(0,-1)B.(-15,0) C.(15,0) D.(0,1) 2(2022凉山州)一次函数y=3x+b (b ≥0)的图象一定不经过 ( )A.第一象限B.第二象限C.第三象限 D .第四象限3(2022广安)在平面直角坐标系中,将函数y=3x+2的图象向下平移3个单位长度,所得的函数的解析式是( )A.y=3x+5B.y=3x-5C.y=3x+1D.y=3x-1 4(2022邵阳)在直角坐标系中,已知点A (32,m ),点B (√72,n )是直线y=kx+b (k<0)上的两点,则m ,n 的大小关系是( )A .m<nB .m>nC .m ≥nD .m ≤n5(2022抚顺)如图,在同一平面直角坐标系中,一次函数y=k 1x+b 1与y=k 2x+b 2的图象分别为直线l 1和直线l 2,下列结论正确的是( )A.k 1·k 2<0B.k 1+k 2<0C.b 1-b 2<0D.b 1·b 2<06(2022河南)请写出一个y 随x 的增大而增大的一次函数的表达式: . 7(2022德阳)如图,已知点A (-2,3),B (2,1),直线y=kx+k 经过点P (-1,0).试探究:直线与线段AB 有交点时k 的变化情况,猜想k 的取值范围是 .8(2022北京)在平面直角坐标系xOy 中,函数y=kx+b (k ≠0)的图象过点(4,3),(-2,0),且与y 轴交于点A.(1)求该函数的解析式及点A 的坐标;(2)当x>0时,对于x 的每一个值,函数y=x+n 的值大于函数y=kx+b (k ≠0)的值,直接写出n 的取值范围.命题点2一次函数与方程、不等式结合9(2022陕西)在同一平面直角坐标系中,直线y=-x+4与y=2x+m 相交于点P (3,n ),则关于x ,y 的方程组{x +y -4=0,2x -y +m =0的解为 ( )A.{x =−1,y =5B.{x =1,y =3C.{x =3,y =1D.{x =9,y =−5 10(2022鄂州)数形结合是解决数学问题常用的思想方法.如图,一次函数y=kx+b (k ,b 为常数,且k<0)的图象与直线y=13x 都经过点A (3,1),当kx+b<13x 时,根据图象可知,x 的取值范围是( )A.x>3B.x<3C.x<1D.x>111(2021嘉兴)已知点P (a ,b )在直线y=-3x-4上,且2a-5b ≤0,则下列不等式一定成立的是( )A.a b ≤52B.a b ≥52C.b a ≥25D.b a ≤25命题点3一次函数的实际应用 角度1行程问题12(2021陕西)在一次机器“猫”抓机器“鼠”的展演测试中,“鼠”先从起点出发,1 min 后,“猫”从同一起点出发去追“鼠”,抓住“鼠”并稍作停留后,“猫”抓着“鼠”沿原路返回.“鼠”“猫”距起点的距离y (m)与时间x (min)之间的关系如图所示.(1)在“猫”追“鼠”的过程中,“猫”的平均速度与“鼠”的平均速度的差是m/min;(2)求AB的函数表达式;(3)求“猫”从起点出发到返回至起点所用的时间.13(2022湖州)某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/时,轿车行驶的速度是60千米/时.(1)轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB,AB分别表示大巴、轿车离开学校的路程s(千米)与大巴行驶的时间t(小时)的函数关系的图象.试求点B的坐标和AB所在直线的解析式.(3)假设大巴出发a小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a的值.角度2方案选取问题14(2021宁波)某通讯公司就手机流量套餐推出三种方案,如下表:A方案B方案C方案每月基本费用/元20 56 266每月免费使用流1 024 m无限量/兆超出后每兆收费/n n元A,B,C三种方案每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系如图所示.(1)请直接写出m,n的值.(2)在A方案中,当每月使用的流量不少于1 024兆时,求每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系式.(3)在这三种方案中,当每月使用的流量超过多少兆时,选择C方案最划算?角度3最值问题15(2022云南)某学校要购买甲、乙两种消毒液,用于预防新型冠状病毒.若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元.(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?(2)若该校计划购买甲、乙两种消毒液共30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍,怎样购买,才能使总费用W最少?并求出最少费用.16(2022福建)在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰, 问可购买绿萝和吊兰分别多少盆.(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.17(2022南充)南充市被誉为中国绸都,本地某电商销售真丝衬衣和真丝围巾两种商品,它们的进价和售价如下表.用15 000元可购进真丝衬衣50件和真丝围巾25件.(利润=售价-进价)种类真丝衬衣真丝围巾进价/(元/件) a80售价/(元/件) 300 100(1)求真丝衬衣进价a的值.(2)若该电商计划购进真丝衬衣和真丝围巾两种商品共300件,据市场销售分析,真丝围巾进货件数不低于真丝衬衣件数的2倍.如何进货才能使本次销售获得的利润最大?最大利润是多少元?(3)按(2)中最大利润方案进货与销售,在实际销售过程中,当真丝围巾销量达到一半时,为促销并保证销售利润不低于原来最大利润的90%,衬衣售价不变,余下围巾降价销售,每件最多降价多少元?角度4其他问题18(2022哈尔滨)一辆汽车油箱中剩余的油量y(L)与已行驶的路程x(km)的对应关系如图所示,如果这辆汽车每千米的耗油量相同,当油箱中剩余的油量为35 L时,那么该汽车已行驶的路程为()A.150 kmB.165 kmC.125 kmD.350 km19(2022吉林)李强用甲、乙两种具有恒温功能的热水壶同时加热相同质量的水,甲壶比乙壶加热速度快,在一段时间内,水温y(℃)与加热时间x(s)之间近似满足一次函数关系,根据记录的数据,画函数图象如图所示.(1)加热前水温是℃.(2)求乙壶中水温y关于加热时间x的函数解析式.(3)当甲壶中水温刚达到80 ℃时,乙壶中水温是℃.20(2022绍兴)一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x表示进水用时(单位:时),y表示水位高度(单位:米).x0 0.5 1 1.5 2y 1 1.5 2 2.5 3为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选(k≠0).择:y=kx+b(k≠0),y=ax2+bx+c(a≠0),y=kx(1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象.(2)当水位高度达到5米时,求进水用时x.命题点4一次函数与几何知识的综合21(2022泸州)如图,在平面直角坐标系xOy 中,矩形OABC 的顶点B 的坐标为(10,4),四边形ABEF 是菱形,且tan ∠ABE=43.若直线l 把矩形OABC 和菱形ABEF 组成的图形的面积分成相等的两部分,则直线l 的解析式为( )A.y=3xB.y=-34x+152 C.y=-2x+11 D .y=-2x+1222(2021扬州)如图,一次函数y=x+√2的图象与x 轴、y 轴分别交于点A ,B ,把直线AB 绕点B 顺时针旋转30°交x 轴于点C ,则线段AC 长为( )A .√6+√2B .3√2C .2+√3D .√3+√223(2021成都)如图,在平面直角坐标系xOy 中,直线y=√33x+2√33与☉O 相交于A ,B 两点,且点A 在x 轴上,则弦AB 的长为 .分类训练7 一次函数1.D 【解析】 当x=0时,y=5x+1=1,故该一次函数图象与y 轴的交点坐标为(0,1).2.D3.D4.A 【解析】 对于一次函数y=kx+b ,∵k<0,∴y 随x 的增大而减小.又∵32>√72,∴m<n.5.D 【解析】 由题图可得k 1>k 2>0,b 1>0>b 2,∴k 1·k 2>0,k 1+k 2>0,b 1-b 2>0,b 1·b 2<0,故选D .6.y=2x+3(答案不唯一)7.k ≤-3或k ≥13 【解析】 当直线y=kx+k 经过点A (-2,3)时,-2k+k=3,解得k=-3;当直线y=kx+k 经过点B (2,1)时,2k+k=1,解得k=13.分析可知,当直线与线段AB 有交点时,k ≤-3或k ≥13.8.【参考答案】 (1)把(4,3),(-2,0)分别代入y=kx+b 得{4k +b =3,-2k +b =0,解得{k =12,b =1,∴该函数的解析式为y=12x+1. 对于y=12x+1,当x=0时,y=1∴A (0,1). (2)n ≥1.解法提示:函数y=12x+1的图象如图所示,易知当直线y=x+n 与y 轴的交点与点A 重合或在点A 上方时符合题意,故n ≥1.9.C 【解析】 把(3,n )代入y=-x+4,可知n=1,故关于x ,y 的方程组{x +y -4=0,2x -y +m =0的解为{x =3,y =1.故选C .10.A11.D 【解析】 ∵点P (a ,b )在直线y=-3x-4上,∴-3a-4=b.又∵2a-5b ≤0,∴2a-5(-3a-4)≤0,解得a ≤-2017.易得a=b+4-3,∴b ≥-817.易知当b=0时,ab 无意义,故A,B 错误.∵2a-5b ≤0,∴2a -5b a≥0,即2-5·b a≥0,∴b a ≤25.故选D .12.【参考答案】 (1)1解法提示:由题图可知,“鼠”的平均速度为30÷6=5(m/min) “猫”的平均速度为30÷(6-1)=6(m/min)故“猫”的平均速度与“鼠”的平均速度的差是6-5=1(m/min).(2)设AB 的函数表达式为y=kx+b (k ≠0),则{30=7k +b ,18=10k +b ,解得{k =−4,b =58,∴y=-4x+58.(3)令y=0,则-4x+58=0,∴x=14.5. 14.5-1=13.5(min)∴“猫”从起点出发到返回至起点所用的时间为13.5 min .13.【参考答案】 (1)设轿车行驶的时间为x 小时,则大巴行驶的时间为(x+1)小时. 根据题意,得60x=40(x+1) 解得x=2则60x=60×2=120.答:轿车出发2小时后追上大巴,此时两车与学校相距120千米. (2)∵轿车追上大巴时,大巴行驶了3小时∴点B 的坐标是(3,120).由题意,得点A 的坐标为(1,0).设AB 所在直线的解析式为s=kt+b则{3k +b =120,k +b =0,解得{k =60,b =−60,∴AB 所在直线的解析式为s=60t-60.(3)由题意,得40(a+1.5)=60×1.5解得a=34 ∴a 的值为34.14.【参考答案】 (1)m=3 072,n=0.3.(2)设函数关系式为y=kx+b (k ≠0)把(1 024,20),(1 144,56)代入y=kx+b得{20=1024k +b ,56=1144k +b ,解得{k =0.3,b =−287.2, ∴y 关于x 的函数表达式为y=0.3x-287.2(x ≥1 024).(注:x 的取值范围对考生不作要求)(3)3 072+(266-56)÷0.3=3 772(兆).由题中图象得,当每月使用的流量超过3 772兆时,选择C 方案最划算.15.【参考答案】 (1)设每桶甲消毒液的价格为x 元,每桶乙消毒液的价格为y 元根据题意,得{9x +6y =615,8x +12y =780,解得{x =45,y =35.答:每桶甲消毒液、每桶乙消毒液的价格分别是45元、35元.(2)由题意,得W=45a+35(30-a )=10a+1 050. 根据题意,得{a ≥30−a +5,a ≤2(30−a ),解得17.5≤a ≤20 ∴a 的取值范围是17.5≤a ≤20,且a 是正整数.∵10>0,∴W 随a 的增大而增大∴当a=18时,W 的值最小,最小值为1 230此时30-a=12.答:当购买甲消毒液18桶、乙消毒液12桶时,总费用最少,最少费用是1 230元.16.【参考答案】 (1)设购买绿萝x 盆,吊兰y 盆.根据题意,得{x +y =46,9x +6y =390,解得{x =38,y =8.因为38>2×8,所以答案符合题意.答:可购买绿萝38盆,吊兰8盆.(2)设购买绿萝m盆,吊兰(46-m)盆,购买两种绿植的总费用为W元则W=9m+6(46-m)=3m+276.根据题意,得m≥2(46-m),解得m≥923.因为3>0,所以W随m的增大而增大.又m为整数,所以m取最小值31时,W的值最小.当m=31时,W=3×31+276=369.答:购买两种绿植总费用的最小值为369元.17.【参考答案】(1)根据题意,得50a+25×80=15 000.解得a=260.(2)设购进真丝衬衣x件,销售利润为y元,则购进真丝围巾(300-x)件.根据题意得y=(300-260)x+(100-80)(300-x)化简得y=20x+6 000.∵300-x≥2x,x≥0,∴0≤x≤100.∵20>0,∴y随x的增大而增大∴当x=100时,y有最大值,为20×100+6 000=8 000.故购进真丝衬衣100件,真丝围巾200件时,获得的利润最大,最大利润为8 000元.(3)设余下围巾每件降价m元,根据题意得100×40+100×20+100×(20-m)≥8 000×90%解得m≤8故余下围巾每件最多降价8元.18.A【解析】设y与x的函数关系式为y=kx+b,将(0,50),(500,0)分别代入,得{b=50,500k+b=0,解得{b=50,k=−110,故y=-110x+50.当y=35时,-110x+50=35,解得x=150.故选A.一题多解500÷50=10(km/L),故该汽车每行驶10 km耗油1 L.由题可知汽车已耗油50-35=15(L),故该汽车已行驶的路程为15×10=150(km).19.【参考答案】(1)20(2)由甲壶比乙壶加热速度快,可知乙壶中水温y关于加热时间x的函数图象经过点(0,20),(160,80).设乙壶中水温y关于加热时间x的函数解析式为y=kx+b将(0,20),(160,80)分别代入得{b =20,160k +b =80,解得{k =38,b =20,故乙壶中水温y 关于加热时间x 的函数解析式为y=38x+20.(3)65解法提示:由甲壶中水温y 关于加热时间x 的函数图象经过点(0,20),(80,60) 易求得甲壶中水温y 关于加热时间x 的函数解析式为y=12x+20.令12x+20=80,解得x=120 将x=120代入y=38x+20中,得y=38×120+20=65.故当甲壶中水温刚达到80 ℃时,乙壶中水温是65 ℃.20. 【参考答案】 (1)画图略.选择y=kx+b ,将(0,1),(1,2)代入得{b =1,k +b =2,解得{k =1,b =1, ∴y=x+1(0≤x ≤5).(2)当y=5时,x+1=5∴x=4.答:当水位高度达到5米时,进水用时x 为4小时.21.D 【解析】 连接OB ,AC 交于点M ,连接AE ,BF 交于点N ,则直线MN 为符合条件的直线l ,如图.∵四边形OABC 是矩形,∴OM=BM.∵点B 的坐标为(10,4),∴M (5,2),AB=10,BC=4.∵四边形ABEF 为菱形,∴BE=AB=10.过点E 作EG ⊥AB 于点G.在Rt △BEG 中,∵tan ∠ABE=43,∴EG BG =43.设EG=4k ,则BG=3k ,∴BE=√EG 2+BG 2=5k ,∴5k=10,∴k=2,∴EG=8,BG=6,∴AG=4,∴E (4,12).又∵A (0,4),点N 为AE 的中点,∴N (2,8).设直线l 的解析式为y=ax+b ,则{5a +b =2,2a +b =8,解得{a =−2,b =12,∴直线l 的解析式为y=-2x+12.22.A 【解析】 当x=0时,y=√2;当y=0时,x=-√2.∴A (-√2,0),B (0,√2),∴OA=OB ,∴△OAB 为等腰直角三角形,∴∠ABO=∠BAO=45°,AB=√(√2)2+(√2)2=2.如图(1),过点C 作CD ⊥AB ,垂足为点D ,∵∠CAD=∠OAB=45°,∴△ACD 为等腰直角三角形.设CD=AD=m ,∴AC=√AD 2+CD 2=√2m.由旋转可知∠ABC=30°,∴BC=2CD=2m.在Rt △BCO 中,BC 2=OC 2+OB 2,即(2m )2=(√2+√2m )2+(√2)2,解得m=1+√3(负值不合题意,已舍去),∴AC=√2m=√2(√3+1)=√6+√2.故选A .图(1) 一题多解当x=0时,y=√2.当y=0时,x=-√2.∴A (-√2,0),B (0,√2),∴OA=OB ,∴△OAB 为等腰直角三角形,∴∠ABO=∠BAO=45°.由旋转可知,∠ABC=30°,∴∠BCO=15°.如图(2),作线段BC 的垂直平分线,交OC 于点E ,连接BE ,则BE =CE ,∴∠EBC=∠ECB=15°,∴∠BEO=30°,∴BE=2BO=2√2,OE=√3OB=√6,∴AC=CE+OE-OA=2√2+√6-√2=√6+√2.图(2)23.2√3 【解析】 如图,设☉O 与x 轴的另一个交点为点C ,AB 交y 轴于点D ,连接BC.对于y=√33x+2√33,当x=0时,y=2√33,当y=0时,x=-2,∴A (-2,0),D (0,2√33),∴AC=4,tan ∠OAD=OD OA =2√332=√33,∴∠OAD=30°.∵AC 为☉O 的直径,∴∠ABC=90°,∴AB=AC cos 30°=4×√32=2√3.。
中考数学精选例题解析:一次函数(3)
中考数学精选例题解析:一次函数知识考点:1、掌握一次函数的概念及图像;2、掌握一次函数的性质,并能求解有关实际问题;3、会用待定系数法求一次函数的解析式。
精典例题:【例1】已知直线b kx y +=(k ≠0)与x 轴的交点在x 轴的正半轴上,下列结论:①k >0,b >0;②k >0,b <0;③k <0,b >0;④k <0,b <0,其中正确结论的个数为( )A 、1B 、2C 、3D 、4解:根据题意知,直线b kx y +=(k ≠0)的图像可以如图1,这时k >0,b <0;也可以如图2,这时k <0,b >0。
故选B 。
例1图1xy O例1图 2xyOB '例2图xyB AO评注:本题关键是掌握一次函数b kx y +=中的系数k 、b 与图像性质之间的关系。
【例2】一直线与y 轴相交于点A (0,-2),与x 轴相交于点B ,且tan ∠OAB =31,求这条直线的解析式。
分析:欲求直线的解析式,需要两个独立的条件建立关于k 、b 的方程组,结合题目条件,本题要分两种情况讨论,如上图所示。
答案:23-=x y 或23--=x y【例3】如下图,已知直线b kx y +=与n mx y +=交于点P (1,4),它们分别与x 轴交于A 、B ,PA =PB ,PB =52。
(1)求两个函数的解析式;(2)若BP 交y 轴于点C ,求四边形PCOA 的面积。
解析:(1)作PH ⊥AO ,则PH =4,OH =1,BH =24)52(22=-∴B (-1,0)。
设A (a ,0),则AH =1-a ,AP =AB =1+a ,2224)1()1(+-=+a a ,解得4=a 。
∴A (4,0),故直线PB :22+=x y ;直线AP :31634+-=x y 。
(2)9=-=∆∆OBC ABP PCOA S S S 四边形评注:灵活运用勾股定理等几何知识求线段长,进而求点的坐标,是解函数题的常用方法。
一次函数-三年中考数学真题分项汇编(解析版)
一次函数一、单选题1.(2020年浙江舟山)一次函数21y x =-的图象大致是( )A .B .C .D .【答案】B【解析】【分析】根据一次函数的性质,直接判断即可.【详解】对于一次函数21y x =-,∵20k =>,10b =-<,∵函数的图象经过第一、三、四象限.故选B .【点睛】本题主要考查一次函数的图象和性质,掌握一次函数的系数和图象所经过的象限之间的关系是解题的关键.2.(2022年浙江绍兴)已知112233()()()x y x y x y ,,,,,为直线23y x =-+上的三个点,且123x x x <<,则以下判断正确的是( ).A .若120x x >,则130y y >B .若130x x <,则120y y >C .若230x x >,则130y y >D .若230x x <,则120y y > 【答案】D【解析】【分析】根据一次函数的性质和各个选项中的条件,可以判断是否正确,从而可以解答本题.【详解】解:∵直线y=−2x+3∵y随x增大而减小,当y=0时,x=1.5∵(x1,y1),(x2,y2),(x3,y3)为直线y=−2x+3上的三个点,且x1<x2<x3∵若x1x2>0,则x1,x2同号,但不能确定y1y3的正负,故选项A不符合题意;若x1x3<0,则x1,x3异号,但不能确定y1y2的正负,故选项B不符合题意;若x2x3>0,则x2,x3同号,但不能确定y1y3的正负,故选项C不符合题意;若x2x3<0,则x2,x3异号,则x1,x2同时为负,故y1,y2同时为正,故y1y2>0,故选项D符合题意.故选:D.【点睛】本题考查一次函数图象上点的坐标特征,解题的关键是明确题意,利用一次函数的性质解答.3.(2020年浙江杭州)在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是()A.B.C.D.【答案】A【解析】【分析】求得解析式即可判断.【详解】解:∵函数y=ax+a(a≠0)的图象过点P(1,2),∵2=a+a,解得a=1,∵y=x+1,∵直线交y轴的正半轴,且过点(1,2),故选:A.【点睛】此题考查一次函数表达式及图像的相关知识.4.(2022年浙江温州)小聪某次从家出发去公园游玩的行程如图所示,他离家的路程为s米,所经过的时间为t分钟,下列选项中的图像,能近似刻画s与t之间关系的是()A.B.C.D.【答案】A【解析】【分析】分别对每段时间的路程与时间的变化情况进行分析,画出路程与时间图像,再与选项对比判断即可.【详解】解:对各段时间与路程的关系进行分析如下:从家到凉亭,用时10分种,路程600米,s从0增加到600米,t从0到10分,对应图像为在凉亭休息10分钟,t从10分到20分,s保持600米不变,对应图像为从凉亭到公园,用时间10分钟,路程600米,t从20分到30分,s从600米增加到1200米,对应图像为故选:A.【点睛】本题考查了一次折线图像与实际结合的问题,注意正确理解每段时间与路程的变化情况是解题关键.5.(浙江衢州2021年)已知A,B两地相距60km,甲、乙两人沿同一条公路从A地出发到B地,甲骑自行车匀速行驶3h到达,乙骑摩托车.比甲迟1h出发,行至30km处追上甲,停留半小时后继续以原速行驶.他们离开A地的路程y与甲行驶时间x的函数图象如图所示.当乙再次追上甲时距离B地()A.15km B.16km C.44km D.45km【答案】A【解析】【分析】根据图象信息和已知条件,用待定系数法求出y 20x =甲,6060y x 乙312x ⎛⎫≤≤ ⎪⎝⎭,6090y x 乙(522x ≤≤),再根据追上时路程相等,求出答案.【详解】解:设y kx =甲,将(3,60)代入表达式,得:603k =,解得:20k =,则y 20x =甲,当y =30km 时,求得x =32h , 设11+y k x b 乙312x ⎛⎫≤≤ ⎪⎝⎭,将(1,0),3302⎛⎫ ⎪⎝⎭,,代入表达式,得: 1111 03302k b k b +=⎧⎪⎨+=⎪⎩,得:11 60 60b k =-⎧⎨=⎩, ∴6060y x 乙312x ⎛⎫≤≤ ⎪⎝⎭, ∵60/V km h =乙,1T h =乙,∵乙在途中休息了半小时,到达B 地时用半小时,∵当522x ≤≤时,设22+y k x b 乙,将(2,30),5(,60)2代入表达式,得到: 22222?305602k b k b +=⎧⎪⎨+=⎪⎩,得:22 90 60b k =-⎧⎨=⎩, ∴6090y x 乙(522x ≤≤), 则当y y =甲乙时,206090x x =-,解得:94x =, ∵45y y km ==甲乙,∴当乙再次追上甲时距离A 地45km所以乙再次追上甲时距离B 地15.km故选:A .【点睛】本题主要考查了利用一次函数图像解决实际问题,关键在于理解题意,明白追击问题中追上就是路程相等,再利用待定系数法求出函数表达式,最后进行求解.6.(浙江嘉兴2021年)已知点(),P a b 在直线34y x =--上,且250a b -≤,则下列不等式一定成立的是( ) A .52a b ≤ B .52a b ≥ C .25b a ≥ D .25b a ≤ 【答案】D【解析】【分析】 根据点(),P a b 在直线34y x =--上,且250a b -≤,先算出a 的范围,再对不等式250a b -≤变形整理时,需要注意不等号方向的变化.【详解】解:点(),P a b 在直线34y x =--上,34b a ∴=--,将上式代入250a b -≤中,得:25(34)0a a -⨯--≤,解得:2017a ≤-, 由250ab -≤,得:25a b ≤, 202,175b a a ≤-∴≤(两边同时乘上一个负数,不等号的方向要发生改变), 故选:D .【点睛】本题考查了解一元一次不等式,解题的关键是:要注意在变形的时候,不等号的方向的变化情况. 7.(2022·浙江金华)如图是城某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,2)-,下列各地点中,离原点最近的是( )A .超B .医院C .体育场D .学校【答案】A【解析】【分析】根据学校和体育场的坐标建立直角坐标系,利用勾股定理求出各点到原点的距离,由此得到答案.【详解】解:根据学校和体育场的坐标建立直角坐标系,22215+223110+223110+224225+=故选:A.【点睛】此题考查了根据点坐标确定原点,勾股定理,正确理解点坐标得到原点的位置及正确展望勾股定理的计算是解题的关键.8.(2020年浙江湖州)已知在平面直角坐标系xOy中,直线y=2x+2和直线y=23x+2分别交x轴于点A和点B.则下列直线中,与x轴的交点不在线段AB上的直线是()A.y=x+2B.y2x+2C.y=4x+2D.y23x+2【答案】C【解析】【分析】分别求出点A、B坐标,再根据各选项解析式求出与x轴交点坐标,判断即可.【详解】解:∵直线y=2x+2和直线y=23x+2分别交x轴于点A和点B.∵A(﹣1,0),B(﹣3,0)A.y=x+2与x轴的交点为(﹣2,0);故直线y=x+2与x轴的交点在线段AB上;B.y2+2与x20);故直线y2+2与x轴的交点在线段AB上;C.y=4x+2与x轴的交点为(﹣12,0);故直线y=4x+2与x轴的交点不在线段AB上;D. y 23+2与x 30);故直线y 23+2与x 轴的交点在线段AB 上; 故选:C【点睛】本题考查了求直线与坐标轴的交点,注意求直线与x 轴交点坐标,即把y =0代入函数解析式.9.(2022年浙江舟山)已知点(,)A a b ,(4,)B c 在直线3y kx =+(k 为常数,0k ≠)上,若ab 的最大值为9,则c 的值为( )A .52B .2C .32D .1【答案】B【解析】【分析】把(,)A a b 代入3y kx =+后表示出ab ,再根据ab 最大值求出k ,最后把(4,)B c 代入3y kx =+即可.【详解】把(,)A a b 代入3y kx =+得:3b ka =+∵2239(3)3()24ab a ka ka a k a k k =+=+=+- ∵ab 的最大值为9∵0k <,且当32a k=-时,ab 有最大值,此时994ab k =-= 解得14k =- ∵直线解析式为134=-+y x 把(4,)B c 代入134=-+y x 得14324c =-⨯+= 故选:B .【点睛】本题考查一次函数上点的特点、二次函数最值,解题的关键是根据ab 的最大值为9求出k 的值. 10.(2020年浙江台州)如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v (单位:m/s )与运动时间t (单位:s )的函数图象如图2,则该小球的运动路程y (单位:m )与运动时间t (单位:s )之间的函数图象大致是( )A .B .C .D .【答案】C【解析】【分析】由图2知小球速度先是逐渐增大,后来逐渐减小,则随着时间的增加,小球刚开始路程增加较快,后来增加较慢,由此得出正处答案.【详解】由图2知小球速度不断变化,因此判定小球运动速度v 与运动时间t 之间的函数关系是()()11112222000v k t k v k t b k b ⎧=>⎪⎨=+⎪⎩,(1t 为前半程时间,2t 为后半程时间), ∵前半程路程函数表达式为:2111y k t =,后半程路程为2222222=+=v k t t bt y ,∵2100,><k k ,即前半段图像开口向上,后半段开口向下∵C 项图像满足此关系式,故答案为:C .【点睛】此题考查根据函数式判断函数图像的大致位置.11.(2022·浙江台州)吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m ,600m .他从家出发匀速步行8min 到公园后,停留4min ,然后匀速步行6min 到学校,设吴老师离公园的距离为y (单位:m ),所用时间为x (单位:min ),则下列表示y 与x之间函数关系的图象中,正确的是( )A .B .C .D .【答案】C【解析】【分析】根据吴老师离公园的距离以及所用时间可判断.【详解】解:吴老师家出发匀速步行8min 到公园,表示从(0,400)运动到(8,0);在公园,停留4min ,然后匀速步行6min 到学校,表示从(12,0)运动到(18,600);故选:C .【点睛】本题考查函数的图象,解题的关键是正确理解函数图象表示的意义,明白各个过程对应的函数图象. 12.(2022年浙江杭州)如图,在平面直角坐标系中,已知点P (0,2),点A (4,2).以点P 为旋转中心,把点A 按逆时针方向旋转60°,得点B .在13M ⎛⎫ ⎪ ⎪⎝⎭,()23,1M -,()31,4M ,4112,2M ⎛⎫ ⎪⎝⎭四个点中,直线PB 经过的点是( )A .1MB .2MC .3MD .4M【答案】B【解析】【分析】根据含30°角的直角三角形的性质可得B(2,3,利用待定系数法可得直线PB的解析式,依次将M1,M2,M3,M4四个点的一个坐标代入y3+2中可解答.【详解】解:∵点A(4,2),点P(0,2),∵P A∵y轴,P A=4,由旋转得:∵APB=60°,AP=PB=4,如图,过点B作BC∵y轴于C,∵∵BPC=30°,∵BC=2,PC3∵B(2,3,设直线PB的解析式为:y=kx+b,则22232k bb⎧+=+⎪⎨=⎪⎩∵32 kb⎧=⎪⎨=⎪⎩∵直线PB的解析式为:y3+2,当y=03+2=0,x=23,∵点M1(30)不在直线PB上,当x=3y=-3+2=1,∵M2(3-1)在直线PB上,当x=1时,y3,∵M3(1,4)不在直线PB上,当x=2时,y3,∵M4(2,112)不在直线PB上.故选:B.【点睛】本题考查的是图形旋转变换,待定系数法求一次函数的解析式,确定点B的坐标是解本题的关键.二、填空题13.(2020年浙江金华、丽水)点P(m,2)在第二象限内,则m的值可以是(写出一个即可)______.【答案】-1(答案不唯一,负数即可)【解析】【分析】根据第二象限的点符号是“-,+”,m取负数即可.【详解】∵点P(m,2)在第二象限内,∵0m<,m取负数即可,如m=-1,故答案为:-1(答案不唯一,负数即可).【点睛】本题考查了已知点所在象限求参数,属于基础题,掌握第二象限点坐标的符号是“-,+”是解题的关键.14.(2022年浙江杭州)已知一次函数y=3x-1与y=kx(k是常数,k≠0)的图象的交点坐标是(1,2),则方程组31x ykx y-=⎧⎨-=⎩的解是_________.【答案】12 xy=⎧⎨=⎩【解析】【分析】根据一次函数的交点坐标即可确定以两个一次函数解析式组成的二元一次方程组的解.【详解】解:∵一次函数y =3x -1与y =kx (k 是常数,k ≠0)的图象的交点坐标是(1,2),∵联立y =3x -1与y =kx 的方程组31y x y kx =-⎧⎨=⎩的解为:12x y =⎧⎨=⎩, 即310x y kx y -=⎧⎨-=⎩的解为:12x y =⎧⎨=⎩, 故答案为:12x y =⎧⎨=⎩. 【点睛】本题考查了一次函数与二元一次方程组,熟练掌握一次函数的交点坐标与二元一次方程组的解的关系是解题的关键.15.(2022年浙江丽水)三个能够重合的正六边形的位置如图.已知B 点的坐标是(3,3),则A 点的坐标是___________.【答案】3,3A【解析】【分析】 如图,延长正六边形的边BM 与x 轴交于点E ,过A 作AN x ⊥轴于N ,连接AO ,BO ,证明,BOEAON 可得,,A O B 三点共线,可得,A B 关于O 对称,从而可得答案.【详解】解:如图,延长正六边形的边BM 与x 轴交于点E ,过A 作AN x ⊥轴于N ,连接AO ,BO ,∴三个正六边形,O为原点,,120,BM MO OH AH BMO OHA,BMO OHA≌,OB OA11209030,18012030,2MOE BMO MOB60,90,BOE BEO同理:120303060,906030,AON OAN,BOE AON,,A O B∴三点共线,,A B∴关于O对称,3,3.A故答案为:3,3.A【点睛】本题考查的是坐标与图形的性质,全等三角形的判定与性质,关于原点成中心对称的两个点的坐标特点,正多边形的性质,熟练的应用正多边形的性质解题是解本题的关键.16.(浙江宁波2021年中考数学试卷)在平面直角坐标系中,对于不在坐标轴上的任意一点(),A x y,我们把点11,Bx y⎛⎫⎪⎝⎭称为点A的“倒数点”.如图,矩形OCDE的顶点C为()3,0,顶点E在y轴上,函数()2=>y xx的图象与DE交于点A.若点B是点A的“倒数点”,且点B在矩形OCDE的一边上,则OBC的面积为_________.【答案】14或32 【解析】【分析】根据题意,点B 不可能在坐标轴上,可对点B 进行讨论分析:∵当点B 在边DE 上时;∵当点B 在边CD 上时;分别求出点B 的坐标,然后求出OBC 的面积即可.【详解】 解:根据题意,∵点11,B x y ⎛⎫ ⎪⎝⎭称为点(),A x y 的“倒数点”, ∵0x ≠,0y ≠,∵点B 不可能在坐标轴上; ∵点A 在函数()20=>y x x的图像上, 设点A 为2(,)x x ,则点B 为1(,)2x x , ∵点C 为()3,0,∵3OC =,∵当点B 在边DE 上时;点A 与点B 都在边DE 上,∵点A 与点B 的纵坐标相同,即22x x =,解得:2x =, 经检验,2x =是原分式方程的解; ∵点B 为1(,1)2, ∵OBC 的面积为:133122S =⨯⨯=; ∵当点B 在边CD 上时;点B与点C的横坐标相同,∵13x=,解得:13x=,经检验,13x=是原分式方程的解;∵点B为1 (3,)6,∵OBC的面积为:1113264S=⨯⨯=;故答案为:14或32.【点睛】本题考查了反比例函数的图像和性质,矩形的性质,解分式方程,坐标与图形等知识,解题的关键是熟练掌握反比例函数的性质,运用分类讨论的思想进行分析.三、解答题(共0分)17.(浙江嘉兴2021年)根据数学家凯勒的“百米赛跑数学模型”,前30米称为“加速期”,30米~80米为“中途期”(m/s)与路程()mx之间的观测数据(1)y是关于x的函数吗?为什么?(2)“加速期”结束时,小斌的速度为多少?(3)根据如图提供的信息,给小斌提一条训练建议.【答案】(1)y是x的函数,理由见解析;(2)“加速期”结束时,小斌的速度为10.4m/s;(3)答案不唯一.例如:根据图象信息,小斌在80米左右时速度下降明显,建议增加耐力训练,提高成绩.【分析】(1)根据函数的概念进行解答;(2)通过识图读取相关信息;(3)根据图像信息进行解答.【详解】解:(1)y 是x 的函数.在这个变化过程中,对于x 的每一个确定的值,y 都有唯一确定的值与之对应.(2)“加速期”结束时,小斌的速度为10.4m/s .(3)答案不唯一.例如:根据图象信息,小斌在80米左右时速度下降明显,建议增加耐力训练,提高成绩.【点睛】本题考查通过函数图像读取信息,理解函数的概念,准确识图是解题关键.18.(2022年浙江丽水)因疫情防控需婴,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是330km ,货车行驶时的速度是60km/h .两车离甲地的路程(km)s 与时间(h)t 的函数图象如图.(1)求出a 的值;(2)求轿车离甲地的路程(km)s 与时间(h)t 的函数表达式;(3)问轿车比货车早多少时间到达乙地?【答案】(1)1.5(2)s =100t -150 (3)1.2【解析】(1)根据货车行驶的路程和速度求出a 的值;(2)将(a ,0)和(3,150)代入s =kt +b 中,待定系数法解出k 和b 的值即可;(3)求出汽车和货车到达乙地的时间,作差即可求得答案.(1)由图中可知,货车a 小时走了90km ,∵a =9060 1.5÷=;(2)设轿车离甲地的路程(km)s 与时间(h)t 的函数表达式为s =kt +b ,将(1.5,0)和(3,150)代入得,1.503150k b k b +=⎧⎨+=⎩, 解得,100150k b =⎧⎨=-⎩, ∵轿车离甲地的路程(km)s 与时间(h)t 的函数表达式为s =100t -150;(3)将s =330代入s =100t -150,解得t =4.8,两车相遇后,货车还需继续行驶:()330150603-÷=h ,到达乙地一共:3+3=6h ,6-4.8=1.2h ,∵轿车比货车早1.2h 时间到达乙地.【点睛】本题考查了一次函数的应用,主要利用待定系数法求函数解析式,路程、速度、时间三者之间的关系,从图中准确获取信息是解题的关键.19.(浙江丽水2021年)李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程s (千米)与行驶时间t (小时)的关系如图所示(中途休息、加油的时间不计.当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升/千米,请根据图象解答下列问题:(1)直接写出工厂离目的地的路程;(2)求s 关于t 的函数表达式;(3)当货车显示加油提醒后,问行驶时间t 在怎样的范围内货车应进站加油?【答案】(1)工厂离目的地的路程为880千米;(2)80880(011)s t t =-+≤≤;(3)251542t <<. 【解析】【分析】(1)根据图象直接得出结论即可;(2)根据图象,利用待定系数法求解函数表达式即可;再求出油量为(3)分别求出余油量为10升和0升时行驶的路程,根据函数表达式求出此时的t 值,即可求得t 的范围.【详解】解:(1)由图象,得0=t 时,880s =,答:工厂离目的地的路程为880千米.(2)设(0)s kt b k =+≠,将0880t s ==,和4,560t s ==分别代入表达式, 得880,5604.b k b =⎧⎨=+⎩,解得80880k b =-⎧⎨=⎩, ∵s 关于t 的函数表达式为80880(011)s t t =-+≤≤.(3)当油箱中剩余油量为10升时,880(6010)0.1380s =--÷=(千米),38080880t ∴=-+,解得254t =(小时). 当油箱中剩余油量为0升时,880600.1280s =-÷=(千米),28080880t ∴=-+,解得152t =(小时). 800,k s =-<∴随t 的增大而减小,t ∴的取值范围是251542t <<. 【点睛】 本题考查一次函数的应用,解答的关键是理解题意,能从函数图象上提取有效信息解决问题.20.(2022年浙江湖州)某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/小时,轿车行驶的速度是60千米/小时.(1)求轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB ,AB 分别表示大巴、轿车离开学校的路程s (千米)与大巴行驶的时间t (小时)的函数关系的图象.试求点B 的坐标和AB 所在直线的解析式;(3)假设大巴出发a 小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a 的值.【答案】(1)轿车出发后2小时追上大巴,此时,两车与学校相距120千米(2)点B 的坐标是()3,120,s =60t -60(3)34小时 【解析】【分析】(1)设轿车行驶的时间为x 小时,则大巴行驶的时间为()1x +小时,根据路程两车行驶的路程相等得到()60401x x =+即可求解;(2)由(1)中轿车行驶的时间求出点B 的坐标是()3,120,进而求出直线AB 的解析式;(3)根据大巴车行驶路程与小轿车行驶路程相等即可得到()40 1.560 1.5a +=⨯,进而求出a 的值(1)解:设轿车行驶的时间为x 小时,则大巴行驶的时间为()1x +小时.根据题意,得:()60401x x =+, 解得x =2.则60602120x =⨯=千米,∵轿车出发后2小时追上大巴,此时,两车与学校相距120千米. (2)解:∵轿车追上大巴时,大巴行驶了3小时, ∵点B 的坐标是()3,120. 由题意,得点A 的坐标为()1,0. 设AB 所在直线的解析式为s kt b =+,则:3120,0,k b k b +=⎧⎨+=⎩解得k =60,b =-60.∵AB 所在直线的解析式为s =60t -60. (3)解:由题意,得()40 1.560 1.5a +=⨯, 解得:34a =, 故a 的值为34小时.【点睛】本题考查了一次函数的实际应用、待定系数法求一次函数的解析式,解题的关键是读懂题意,明确图像中横坐标与纵坐标代表的含义.21.(浙江台州2021年)电子体重科读数直观又便于携带,为人们带来了方便.某综合实践活动小组设计了简易电子体重秤:制作一个装有踏板(踏板质量忽略不计)的可变电阻R 1, R 1与踏板上人的质量m 之间的函数关系式为R 1=km +b (其中k ,b 为常数,0≤m ≤120),其图象如图1所示;图2的电路中,电源电压恒为8伏,定值电阻R 0的阻值为30欧,接通开关,人站上踏板,电压表显示的读数为U 0 ,该读数可以换算为人的质量m , 温馨提示:∵导体两端的电压U ,导体的电阻R ,通过导体的电流I ,满足关系式I =UR;∵串联电路中电流处处相等,各电阻两端的电压之和等于总电压.(1)求k ,b 的值;(2)求R 1关于U 0的函数解析式; (3)用含U 0的代数式表示m ;(4)若电压表量程为0~6伏,为保护电压表,请确定该电子体重秤可称的最大质量.【答案】(1)2402b k =⎧⎨=-⎩;(2)1024030R U =-;I (3)0120135m U =-;(4)该电子体重秤可称的最大质量为115千克. 【解析】 【分析】(1)根据待定系数法,即可求解;(2)根据“串联电路中电流处处相等,各电阻两端的电压之和等于总电压”,列出等式,进而即可求解; (3)由R 1=12-m +240,1024030R U =-,即可得到答案; (4)把06U =时,代入0480540m U =-,进而即可得到答案.【详解】解:(1)把(0,240),(120,0)代入R 1=km +b ,得2400120bk b =⎧⎨=+⎩,解得:2402b k =⎧⎨=-⎩;(2)∵001830U U R -=, ∵1024030R U =-; (3)由(1)可知:2402b k =⎧⎨=-⎩,∵R 1=2-m +240, 又∵1024030R U =-, ∵024030U -=2-m +240,即:0120135m U =-; (4)∵电压表量程为0~6伏, ∵当06U =时,1201351156m =-= 答:该电子体重秤可称的最大质量为115千克. 【点睛】本题主要考查一次函数与反比例函数的实际应用,熟练掌握待定系数法,是解题的关键.22.(浙江衢州2020年)2020年5月16日,“钱塘江诗路”航道全线开通,一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20km/h ,游轮行驶的时间记为t (h ),两艘轮船距离杭州的路程s (km )关于t (h )的图象如图2所示(游轮在停靠前后的行驶速度不变).(1)写出图2中C 点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长. (2)若货轮比游轮早36分钟到达衢州.问: ∵货轮出发后几小时追上游轮? ∵游轮与货轮何时相距12km ?【答案】(1)C 点横坐标的实际意义是从杭州出发前往衢州共用了23h ;游轮在“七里扬帆”停靠的时长为2h ; (2)∵货轮出发后8小时追上游轮;∵0.6h 或21.6h 或22.4h 时游轮与货轮何时相距12km 【解析】 【分析】(1)根据图中信息解答即可.(2)∵求出B ,C ,D ,E的坐标,利用待定系数法求解即可;∵分相遇前与相遇后两种情形分别构建方程求解即可.(1)解:由题意知,C 点横坐标的实际意义是游轮从杭州出发前往衢州共用了23h ; ∵游轮在“七里扬帆”停靠的时长23(42020)2=-÷=(h ). (2)解:∵∵2802014÷=h , ∵A (14,280),B (16,280), ∵36600.6÷=(h ), ∵230.622.4-=, ∵E (22.4,420),设BC 的解析式为20s t b =+,把B (16,280)代入20s t b =+,解得40b =-, ∵()20401623s t t =-≤≤,同理,由D (14,0),E (22,4,420)可得DE 的解析式为()507001422.4s t t =-≤≤, 由题意可得:204050700t t -=-, 解得22t =, ∵22148-=(h ),∵货轮出发后8小时追上游轮. ∵分相遇前与相遇后两种情况求解:相遇之前相距12km 时,则2045070012t t ---=(),解得21.6t =; 相遇之后相距12km 时,则50700204012t ---=(),解得22.4t =;当游轮在刚离开杭州12km 时,此时根据图象可知货轮就在杭州,游轮距离杭州12km , 所以此时两船应该也是相距12km ,即在0.6h 的时候,两船也相距12km. ∵当t 为0.6h 或21.6h 或22.4h 时,游轮与货轮何时相距12km . 【点睛】本题考查一次函数的应用.解题的关键在于从图象中获取正确的信息.23.(浙江绍兴2021年)I 号无人机从海拔10m 处出发,以10m/min 的速度匀速上升,II 号无人机从海拔30m 处同时出发,以a (m/min )的速度匀速上升,经过5min 两架无人机位于同一海拔高度b (m ).无人机海拔高度y (m )与时间x (min )的关系如图.两架无人机都上升了15min .(1)求b 的值及II 号无人机海拔高度y (m )与时间x (min )的关系式. (2)问无人机上升了多少时间,I 号无人机比II 号无人机高28米.【答案】(1)630(015)y x x =+;(2)无人机上升12min ,I 号无人机比II 号无人机高28米 【解析】 【分析】(1)直接利用I 号无人机从海拔10m 处出发,以10m /min 的速度匀速上升,求出其5分钟后的高度即可; (2)将I 号无人机的高度表达式减去II 号无人机高度表达式,令其值为28,求解即可. 【详解】解:(1)1010560b =+⨯=. 设y kx b =+,将(0,30),(5,60)代入得:630(015)y x x =+,∵60b =;()630015y x x =+.(2)令(1010)(630)28x x +-+=, 解得1215x =<,满足题意;∴无人机上升12min ,I 号无人机比II 号无人机高28米.【点睛】本题考查了一次函数的实际应用,涉及到了求一次函数的表达式,两个一次函数值之间的比较等内容,解决本题的关键是读懂题意,与图形建立关联,能建立高度的表达式等,本题着重于对函数概念的理解与应用,考查了学生的基本功.24.(2022年浙江绍兴)一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x 表示进水用时(单位:小时),y 表示水位高度(单位:米).x 0 0.5 1 1.5 2 y 11.522.53为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选择:y kx b =+(0k ≠),y =ax 2+bx +c (0a ≠),ky x=(0k ≠). (1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象.(2)当水位高度达到5米时,求进水用时x . 【答案】(1)y =x +1(0≤x ≤5),图见解析 (2)4小时 【解析】 【分析】(1)观察表格数据,y 的增长量是固定的,故符合一次函数模型,建立模型待定系数法求解析式,画出函数图象即可求解;(2)根据5y =,代入解析式求得x 的值即可求解.(1)(1)选择y =kx +b ,将(0,1),(1,2)代入,得12b k b =⎧⎨+=⎩,,解得11.k b =⎧⎨=⎩, ∵y =x +1(0≤x ≤5).(2)当y =5时,x +1=5, ∵x =4.答:当水位高度达到5米时,进水用时x 为4小时. 【点睛】本题考查了一次函数的性质,画一次函数图象,求一次函数的解析式,根据题意建立模型是解题的关键. 25.(浙江杭州2021年)在直角坐标系中,设函数11k y x=(1k 是常数,10k >,0x >)与函数22y k x =(2k 是常数,20k ≠)的图象交于点A ,点A 关于y 轴的对称点为点B .(1)若点B 的坐标为()1,2-, ∵求1k ,2k 的值.∵当12y y <时,直接写出x 的取值范围. (2)若点B 在函数33k y x=(3k 是常数,30k ≠)的图象上,求13k k +的值. 【答案】(1)∵12k =,22k =;∵1x >;(2)0 【解析】 【分析】(1)∵根据点A 关于y 轴的对称点为点B ,可求得点A 的坐标是()1,2,再将点A 的坐标分别代入反比例函数、正比例函数的解析式中,即可求得12k =,22k =;∵观察图象可解题; (2)将点B 代入33k y x=,解得3k 的值即可解题. 【详解】解(1)∵由题意得,点A 的坐标是()1,2, 因为函数11k y x=的图象过点A , 所以12k =, 同理22k =.∵由图象可知,当12y y <时,反比例函数的图象位于正比例函数图象的下方, 即当12y y <时,1x >.(2)设点A 的坐标是()00,x y ,则点B 的坐标是()00,x y -, 所以100k x y =,300k x y =-,所以310k k +=. 【点睛】本题考查关于y 轴对称的点的特征、待定系数法求反比例函数、正比例函数的解析式等知识,是重要考点,难度较易,掌握相关知识是解题关键.26.(浙江宁波2021年)某通讯公司就手机流量套餐推出三种方案,如下表:A 方案B 方案C 方案 每月基本费用(元)2056 266 每月免费使用流量(兆) 1024 m 无限 超出后每兆收费(元) nnA ,B ,C 三种方案每月所需的费用y (元)与每月使用的流量x (兆)之间的函数关系如图所示. (1)请直接写出m ,n 的值.(2)在A 方案中,当每月使用的流量不少于1024兆时,求每月所需的费用y (元)与每月使用的流量x (兆)之间的函数关系式.(3)在这三种方案中,当每月使用的流量超过多少兆时,选择C 方案最划算?【答案】(1)3072,0.3m n ==;(2)()0.3287.21024y x x =-≥;(3)当每月使用的流量超过3772兆时,选择C 方案最划算 【解析】 【分析】(1)m 的值可以从图象上直接读取,n 的值可以根据方案A 和方案B 的费用差和流量差相除求得; (2)直接运用待定系数法求解即可;(3)计算出方案C 的图象与方案B 的图象的交点表示的数值即可求解. 【详解】解:(1)3072,m = 56200.311441024n -==-.(2)设函数表达式为(0)y kx b k =+≠, 把()1024,20,()1144,56代入y kx b =+,得201024561144k bk b=+⎧⎨=+⎩, 解得0.3287.2k b =⎧⎨=-⎩,∵y 关于x 的函数表达式()0.3287.21024y x x =-≥. (注:x 的取值范围对考生不作要求) (3)307226656)0.37(372+-÷=(兆).由图象得,当每月使用的流量超过3772兆时,选择C 方案最划算. 【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.27.(浙江温州2021年)某公司生产的一种营养品信息如下表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.营养品信息表营养成分每千克含铁42毫克配料表原料每千克含铁 甲食材 50毫克 乙食材10毫克 规格 每包食材含量每包单价 A 包装1千克45元。
中考数学《一次函数》专项练习(附答案解析)
中考数学《一次函数》专项练习(附答案解析)一、单选题 1.对于正比例函数y kx =,当自变量x 的值增加2时,对应的函数值y 减少6,则k 的值为( ) A .3B .2-C .3-D .0.5-2.已知1,2A a ⎛⎫⎪⎝⎭,(),B m n 是一次函数2y x b =+图象上的两点,若mn 的最小值为8-,则a 的值为( ) A .7-B .9C .7-或9D .9或113.如图,在平面直角坐标系中,点12P a ⎛⎫⎪⎝⎭,在直线22y x =+与直线24y x =+之间,则a 的取值范围是( )A .24a <<B .13a <<C .12a <<D .02a <<4.已知,一次函数3y kx =+的图象经过点()1,5-,下列说法中不正确的是( ) A .若x 满足4x ≥,则当4x =时,函数y 有最小值5- B .该函数的图象与坐标轴围成的三角形面积为94C .该函数的图象与一次函数23y x =--的图象相互平行D .若函数值y 满足77y -≤≤时,则自变量x 的取值范围是25x -≤≤5.如图,直线43y x =与双曲线()0ky x x =>交于点A ,将直线43y x =向右平移92个单位后,与双曲线()0ky x x =>交于点B ,与x 轴交于点C ,若2AOBC=,则k 的值为( )A .2B .6C .12D .86.已知一次函数()21y m x m =++的图象与x 轴交于点A ,与y 轴交于点()0,4B ,且y 随着x 的增大而增大,则点A 的坐标为( )A .4,03⎛⎫- ⎪⎝⎭B .3,04⎛⎫- ⎪⎝⎭C .()2,0D .4,03⎛⎫ ⎪⎝⎭7.在同一直角坐标系内作一次函数1y ax b 和2y bx a =-+图象,可能是( )A .B .C .D .8.下列是对一次函数21y x =-+的描述:①y 随x 的增大而增大,②图像可由直线2y x =-向上平移1个单位得到,③图像经过第二、三、四象限,④图像与坐标轴围成的三角形的面积为0.25,其中正确的是( ) A .①②B .②③C .②④D .③④9.如图,直线333y x =+x 轴、y 轴分别交于A 、B 两点,()1,0P ,P 与y 轴相切于点O ,将P 向上平移m 个单位长度,当P 与直线AB 第一次相切时,则m 的值是( )A .232B .23C .333D .3310.如图,在平面直角坐标系中,一次函数2y x =x 轴于点A ,交y 轴于点B ,点123,,A A A 在x 轴上,点123,,B B B 在函数图像上,112233,,A B A B A B 均垂直于x 轴,若1211322,,AOB A A B A A B 均为等腰直角三角形,则544A A B 的面积是()A .16B .64C .256D .102411.一次函数11y kx =-(0k ≠)与22y x =-+的图像如图所示,当1x <时,12y y <,则满足条件的k 的取值范围是( )A .1k >-,且0k ≠B .12k -<<,且0k ≠C .2k <,且0k ≠D .1k <-或2k >12.已知直线1:l y kx b =+与直线21:2l y x m =-+都经过68,55C ⎛⎫- ⎪⎝⎭,直线1l 交y 轴于点()0,4B ,交x 轴于点A ,直线2l 交y 轴于点D ,P 为y 轴上任意一点,连接PA ,PC ,有以下说法:①方程组12y kx b y x m =+⎧⎪⎨=-+⎪⎩的解为6585x y ⎧=-⎪⎪⎨⎪=⎪⎩②BCD △为直角三角形; ③6ABDS=;④当PA PC +的值最小时,点P 的坐标为()0,1. 其中正确的说法个数有( )A .1个B .2个C .3个D .4个13.如图,在平面直角坐标系xOy 中,一次函数172y x =+的图象与x 轴、y 轴分别相交于点A 、B ,点P 的坐标为()11m m +-,,且点P 在ABO 的内部,则m 的取值范围是( )A .18m <<B .15m <<C .15m ≤≤D .1m <或3m >14.如图所示,1l 反映了天利公司某种产品的销售收入与销售量的关系,2l 反映了该种产品的销售成本与销售量的关系.根据图象提供信息,下列说法正确的是.( )A .当销售量为2吨时,销售成本是2000元B .销售成本是3000元时,该公司的该产品盈利C .当销售量为5吨时,该公司的该产品盈利1000元D .1l 的函数表达式为1000y x =15.某油库有一储油量为40吨的储油罐,在开始的一段时间内只开进油管,不开出油管;在随后的一段时间内既开进油管,又开出油管直至储油罐装满油.若储油罐中的储油量(吨)与时间(分)的函数关系如图所示,现将装满油的储油罐只开出油管,不开进油管,则放完全部油所需的时间是( )分钟.A .20B .24C .26D .28二、填空题16.已知y 关于x 的一次函数()211y m x =-+,y 值随x 的增大而减小,则m 的值可以是______.(填一个即可)17.一次函数()()()1231y k x k k =--+≠的图像恒过一定点,定点坐标_________.18.已知一次函数y x b =+,它的图象与两坐标轴所围成的图形的面积等于2,则b 的值为______. 19.如图,直线483y x =-+与x 轴、y 轴分别交于点A 、B ,一动点P 从点A 出发,沿A O B --的路线运动到点B 停止,C 是AB 的中点,沿直线PC 截AOB ,若得到的三角形与AOB 相似,则点P 的坐标是 _____.20.如图,点1B 在直线l :13y x =上,点1B 的横坐标为1,过点1B 作11B A x ⊥轴,垂足为1A ,以11A B 为边向右作正方形1112A B C A ,延长21A C 交直线l 于点2B ;以22A B 为边向右作正方形2223A B C A ,延长32A C 交直线l 于点3B ……按照这个规律进行下去,点2023B 的坐标为__________.21.一次函数y kx b =+(k b 、是常数,且0k ≠)的图像如图所示,则方程0kx b +=的解为_______.22.如图,在平面直角坐标系中,OAB 的边OA 在x 轴上,90OAB ∠=︒,2OA =,抛物线2y x 与OB 交于C 点,过点C 作CD OA ∥交AB 于D 点.若CD 过OAB 的重心G ,则点G 的坐标为___________.三、解答题23.某文具店以8元/支的进价购进一批签字笔进行销售,经市场调查后发现,日销量y (支)与零售价x (元)之间的关系图象如下图所示,其中816x ≤≤.(1)求出日销量y (支)与零售价x (元)之间的关系;(2)当零售价定为多少时,该文具店每天销售这种签字笔获得的利润最大?最大利润是多少? 24.在某次大型的活动中,用无人机进行航拍,在操控无人机时根据现场状况调节高度,已知无人机在上升和下降过程中速度相同.设无人机的飞行高度h (米)与操控无人机的时间t (分钟)之间的关系如图中的实线所示,根据图像回答下列问题:(1)图中的自变量是______,因变量是_____; (2)无人机在75米高的上空停留的时间是_____分钟; (3)在上升或下降过程中,无人机的速度为______米/分钟; (4)图中a 表示的数是______;b 表示的数是______; (5)求第14分钟时无人机的飞行高度是多少米?25.阅读理解:七年级一班数学学习兴趣小组在解决下列问题中,发现该类问题可以“建立直角坐标系、应用一次函数”解决问题.请先阅读下列解决问题的方法,然后再应用此方法解决后续问题.问题:如图①,直立在点D 处的标杆CD 长3m ,站立在点F 处的观察者从点E 处看到标杆顶C 、旗杆顶A 在一条直线上.已知15m BD =,2m FD =, 1.6m EF =,求旗杆高AB . 解:建立如图②所示直角坐标系,则线段AE 可看作一个一次函数的图象由题意可得各点坐标为:点()0,1.6E ,()2,3C ,()17,0B ,且所求的高度就为点A 的纵坐标. 设直线AE 的函数关系式为y kx b =+.把()0,1.6E ,()2,3C 代入得 1.623b k b =⎧⎨+=⎩,解得0.71.6k b =⎧⎨=⎩∴0.7 1.6y x =+当17x =时,0.717 1.613.5y =⨯+=,即()13.5m AB =.解决问题:请应用上述方法解决下列问题:如图③,河对岸有一路灯杆AB ,在灯光下,小明在点D 处测得自己的影长3m DF =,沿BD 方向到达点F 处再测得自己的影长4m FG =.如果小明的身高为1.6m ,求路灯杆AB 的高度.(参考:建立直角坐标系如图④)26.如图,在平面直角坐标系xOy 中,一次函数1y kx b =+的图像与反比例函数2my x=的图像交于点()1,2A -和(),1B a .(1)求一次函数1y kx b =+和反比例函数2my x=的表达式; (2)观察图像,直接写出当12y y >时,x 的取值范围;(3)过点B 作直线BC ,交第四象限的反比例函数图像于点C ,当线段BC 被x 轴分成1:2两部分时,直接写出BC 与x 轴所交锐角的正切值.27.某市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过50万件,该产品的生产费用y (万元)与年产量x (万件)之间的函数图像是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z (元/件)与年销售量x (万件)之间的函数图像是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为w 万元.(毛利润=销售额﹣生产费用)(1)直接写出y 与x 以及z 与x 之间的函数关系式 , (不必写出自变量的取值范围);(2)求w 与x 之间的函数关系式;并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?(3)由于受资金的影响,今年投入生产的费用不会超过80万元,今年最多可获得多少万元的毛利润?28.已知在平面直角坐标系中,直线4y x =-+与x 轴交于点B ,与y 轴交于点C ,抛物线2y ax x c =++经过B 、C 两点,交x 轴另一点为A .(1)求抛物线的解析式;(2)点D 为第四象限内直线BC 上一点,作DE x ⊥轴于E ,DP y ⊥轴于P ,连接OD ,设D 点的横坐标为t ,OPD △的面积为S ,请写出S 与t 的函数关系式.(不用写出自变量t 的取值范围) (3)在(2)的条件下,过点C 作CF y ⊥轴交抛物线于点F ,交DE 的延长线于G ,连接FB PB 、,并延长PB 交GE 于Q ,连接PF 交BC 于点M ,连接QM ,当FB PB ⊥时,求直线QM 的解析式.参考答案与解析:1.C解:∵正比例函数y kx =,当自变量x 的值增加2时,对应的函数值y 减少6, ∴()()62y k x -=+, ∴62y kx k -=+, ∴26k =-, 解得:3k =-. 故选:C . 2.C解:∵(),B m n 是一次函数2y x b =+图象上的点, ∴2n m b =+,设mn y =,则()22222248b b y m m b m mb m ⎛⎫=+=+=+- ⎪⎝⎭,∵mn 的最小值为8-,∴288b -=-,解得:8b =±,当8b =时,一次函数为28y x =+,把1,2A a ⎛⎫⎪⎝⎭代入得:12892a =⨯+=;当8b =-时,一次函数为28y x =-,把1,2A a ⎛⎫⎪⎝⎭代入得:12872a =⨯-=-;综上分析可知,a 的值为7-或9,故C 正确. 故选:C . 3.B解:当P 在直线22y x =+上时,1221212a ⎛⎫=⨯-+=-+= ⎪⎝⎭,当P 在直线24y x =+上时,1241432a ⎛⎫=⨯-+=-+= ⎪⎝⎭, 则13a <<,故选:B .4.A解:一次函数3y kx =+的图象经过点()1,5-,∴53k =-+,解得:2k =-,∴23y x =-+,∵2k =-,∴y 随x 的增大而减小,A 、x 满足4x ≥,则当4x =时,函数y 有最大值5-,选项错误,符合题意;B 、当0x =时,3y =,当0y =时,32x =,∴与坐标轴的两个交点分别为()0,3,3,02⎛⎫ ⎪⎝⎭, ∴函数的图象与坐标轴围成的三角形面积为:1393224⨯⨯=,选项正确,不符合题意;C 、23y x =--与23y x =-+,k 都为2-,图象相互平行,选项正确,不符合题意;D 、当7y =时,723x =-+,解得:5x =;当7y =-时,723x -=-+,解得:2x =-;∴函数值y 满足77y -≤≤时,则自变量x 的取值范围是25x -≤≤,选项正确,不符合题意; 故选:A .5.C解:过点A 作AD x ⊥轴于D ,过点B 作BE x ⊥轴于E , ∵将直线34y x =向右平移92个单位后得到直线BC ,∴点C 的坐标为902⎛⎫ ⎪⎝⎭,,OA BC ∥, ∴AOD BCE =∠∠,又∵90ADO BEC ==︒∠∠,∴ADO BEC △∽△,∴12BE CE BC AD OD OA ===,∴22AD BE OD CE ==,,设CE t =,则922OD t OE t ==+,,当2x t =时,4833y x t ==,∴点A 的坐标为823t t ⎛⎫⎪⎝⎭,, ∴43BE t =,∴点B 的坐标为9423t t ⎛⎫+ ⎪⎝⎭,,∵点A 和点B 都在反比例函数图象上,∴8492332t t t t ⎛⎫⋅=+ ⎪⎝⎭, 解得32t =(不符合题意的值舍去),∴点A 的坐标为()34,∴3412k =⨯=,故选C .6.A解:把()0,4B 代入()21y m x m =++中,得24m =,解得2m =±, y 随着x 的增大而增大,10m ∴+>,1m ∴>-,2m ∴=,∴一次函数的解析式为:34y x =+,令0y =,得340+=x , 解得43x =-,4,03A ⎛⎫∴- ⎪⎝⎭, 故选:A7.D解:A 、1y 反映0a >,0b >,2y 反映0a >,0b ->,则0b <,故本选项错误;B 、1y 反映a<0,0b >,2y 反映0a >,0b ->,则0b <,故本选项错误;C 、1y 反映a<0,0b <,2y 反映0a >,0b -<,则0b >,故本选项错误;D 、1y 反映a<0,0b <,2y 反映a<0,0b ->,则0b <,故本选项错误;故选:D .8.C解:∵一次函数21y x =-+,∴y 随x 的增大而减小,图像经过第二、一、四象限,∴①③错误;图像可由直线2y x =-向上平移1个单位得到,∴②正确;∵一次函数21y x =-+与y 轴交点为()0,1,与x 轴的交点为1,02⎛⎫ ⎪⎝⎭, ∴图像与坐标轴围成的三角形的面积为1110.2522⨯⨯=,∴④正确;故选C .9.A解:当0x =时,33y =当0y =时,3x =;∴3OA =,33OB =∴()223336AB =+.设平移后P '与直线AB 相切与点E ,与y 轴相切于点F ,连接,,,PE PF PA PB ,则四边形PP FO '是矩形,∴OF PP m '==, ∴33BF m =.∵()1,0P ,P 与y 轴相切于点O ,∴1OP P E P F ''===,∴312AP '=-=.∵APP ABP BFP ABC PP FO S SS S S ''''+++=矩形, ∴()11112613313332222m m m +⨯⨯+⨯⨯+⨯⨯=⨯⨯ ∴232m =. 故选A .10.C 解:∵对于2y x =0x =时,2y ;当0y =时,2x =- ∴2,2OA OB ∵1AOB △为等腰直角三角形, ∴12OA OB ==∴122AA =∵211A A B 为等腰直角三角形,∴1190AA B ∠=︒,∴1145AB A BAO ∠=∠=︒,∴11AA B 为等腰直角三角形, ∴1112AA B A == 同理可得222B A =则22n n B A = ∴4422162B A = ∵544A A B 为等腰直角三角形, ∴()54424412562A AB S B A =⨯=. 故选C .11.B解:联立11y kx =-与22y x =-+,得12kx x -=-+, 解得31x k =+, 即一次函数11y kx =-(0k ≠)与22y x =-+的图像的交点的横坐标为31k +, 当1x <时,12y y <, ∴311k >+, 当10k +>,即1k >-时,31k >+,解得12k -<<;当10+<k ,即1k <-时,31k <+,解得2k >,与1k <-矛盾,不合题意;又0k ≠,∴满足条件的k 的取值范围是12k -<<且0k ≠,故选B .12.C 解:直线1:l y kx b =+与直线21:2l y x m =-+都经过68,55C ⎛⎫- ⎪⎝⎭,∴方程组12y kx b y x m =+⎧⎪⎨=-+⎪⎩的解为:6585x y ⎧=-⎪⎪⎨⎪=⎪⎩,故①正确; 把68,55C ⎛⎫- ⎪⎝⎭代入直线21:2l y x m =-+,可得1m = 112y x ∴=-+令0x =,则1y =()0,1D ∴413BD ∴=-=把()0,4B ,68,55C ⎛⎫- ⎪⎝⎭代入直线1:l y kx b =+,可得48655bk b =⎧⎪⎨=-+⎪⎩解得:24k b =⎧⎨=⎩∴直线1:24l y x =+令0y =,则2x =-()2,0A ∴-2OA ∴=13232ABD S ∴=⨯⨯=,故③错误;()0,4B ,68,55C ⎛⎫- ⎪⎝⎭,()0,1D222683604555BC ⎛⎫⎛⎫∴=++-= ⎪ ⎪⎝⎭⎝⎭,22268901555CD ⎛⎫⎛⎫=++-= ⎪ ⎪⎝⎭⎝⎭,()2214=9BD =-222BC CD BD ∴+=BCD ∴△为直角三角形,故②正确;点A 关于y 轴对称点为()2,0A '设过点C ,A '的直线为y ax n =+,则0=28655a na n +⎧⎪⎨=-+⎪⎩ 解得:121a n ⎧=-⎪⎨⎪=⎩112y x ∴=-+令0x =,则1y =∴当PA PC +的值最小时,点P 的坐标为()0,1,故④正确故选C .13.B 解:∵函数172y x =+的图象与x 轴、y 轴分别相交于点A 、B ,∴()()14007A B ,,,, ∵点P 在ABO 的内部, ∴()011401711172m m m m ⎧⎪<+<⎪<-<⎨⎪⎪-<-++⎩, ∴15m <<.故选:B .14.D解:A. 当销售量为2吨时,销售成本是3000元,故选项A 说法错误,不符合题意;B. 销售成本是3000元时,销售利润是2000元,该公司的该产品亏损,故选项B 说法错误,不符合题意;C. 当销售量为5吨时,该公司的该产品盈利50004500500-=元,故选项C 说法错误,不符合题意;D. 设1l 的解析式为11y k x =,由图象,得,140004k =解得:11000k =,故1l 的解析式为:11000y x =,所以,选项D 正确,符合题意,故选:D15.A解:由已知函数图象得:每分钟的进油量为:3824=÷(吨),每分钟的出油量为:3(4024)(248)2--÷-=(吨),所以放完全部油所需的时间为:40220÷=(分钟).故选:A .16.0(答案不唯一)解:∵一次函数()211y m x =-+,y 值随x 的增大而减小,∴210m -<,∴12m <,∴当0m =时,即可满足题意;故答案为:0(答案不唯一).17.()2,5-解:根据题意得:()()123y k x k =--+23xk x k =--- ()23k x x =---,当2x =时,y 的值与k 无关,把2x =代入得:235y =--=-,∴定点坐标为:()2,5-,故答案为:()2,5-.18.2±解:∵y x b =+,当0x =时,y b =;当0y =时,x b =-;∴一次函数与坐标轴的交点坐标为:()()0,,,0b b -, ∴211222b b b ⋅-==, ∴2b =±.故答案为:2±.19.(3,0)或(70,4)或(0,4). 解:直线483y x =-+,当0x =时,8y =;当0y =时,则4803x -+=,解得6x =,∴(6,0),(0,8)A B ,∵90,6,8AOB OA OB ∠=︒==, ∴22226810AB OA OB ++=,∵C 是AB 的中点,∴152AC CB AB ===,如图1,点P 在OA 上,且APC AOB ∽,∴APC AOB ∠=∠,∴PC OB ∥, ∴1APACPO CB ==, ∴132PO AP OA ===,∴(3,0)P ;如图2,点P 在OB 上,且PCB AOB ∽,∴PBCBAB OB =, ∴1052584AB CBPB OB ⋅⨯===, ∴257844OB =-=, ∴7(0,)4P ;如图3,点P 在.OB 上,且CPB AOB ∽,∴CPB AOB ∠=∠,∴PC OA ∥, ∴1OP AC PB CB==, ∴142OP PB OB ===,∴(0,4)P ,综上所述,点P 的坐标是(3,0)或(70,4)或(0,4).20.404440442022202322,33⎛⎫ ⎪⎝⎭ 解:∵点1B 在直线l :13y x =上,点1B 的横坐标为1,过点1B 作11B A x ⊥轴,垂足为1A ,∴110A (,),1113B (,), ∵四边形1112A BC A 是正方形, ∴2233444441616)(,0),(,),(,0),(,),16646464339992727278,(,0),1(A B A B A B ,⋯⋯2222221122,(233(,0),)3,n n n n n n n n A B ∴点2023B 的坐标为404440442022202322,33⎛⎫ ⎪⎝⎭, 故答案为:404440442022202322,33⎛⎫ ⎪⎝⎭. 21.2x =-解:∵一次函数y kx b =+(k b 、是常数,且0k ≠)的图像与x 轴交点的坐标的横坐标为2x =-, ∴0kx b +=的解为2x =-.故答案为:2x =-.22.4439(,) 解:连接BG ,延长BG 与OA 交于点E ,则10E (,),设B 点坐标为2b (,),∵G 是OAB 的重心, ∴13GE BE =,∴G 点横坐标()()114211333B E E x x x =-+=-+=, G 点横坐标()()1110333B E y y b b =-=-=, ∴4133G b (,), 设直线OB 的解析式为y kx =,则2k b =, ∴12k b =,∴直线OB 的解析式为12y bx =, 当212bx x =时,0x =或12b , ∴21124C b b (,), ∵∥CG x 轴, ∴21143b b =, 解得0b =(舍)或43b =,∴4439G (,), 故答案为:4439(,). 23.(1)5100y x =-+(2)当零售价定为14元时,每天销售利润最大,最大利润是180元(1)解:设y 与x 之间的关系式为y kx b =+,把()860,和()1620,代入y kx b =+得6082016k b k b =+⎧⎨=+⎩, ∴5100k b =-⎧⎨=⎩, ∴5100y x =-+;(2)解:设每天利润为w 元,由题意得()()85100w x x =--+2540100800x x x =-++-()2514180x =--+,∵50816x -<≤≤,, ∴当14x =时,w 的最大值为180,∴当零售价定为14元时,每天销售利润最大,最大利润是180元.24.(1)时间(或t ),飞行高度(或h )(2)5(3)25(4)2;15(5)第14分钟时无人机的飞行高度是25米(1)解:由题意可得,∵无人机高度随时间变化而变化,∴自变量是时间(或t ),因变量是飞行高度(或h ),故答案为:时间(或t ),飞行高度(或h ),;(2)解:由图像可得,712分钟无人机在75米高的上空停留,∴无人机在75米高的上空停留的时间是:1275-=分钟,故答案为:5;(3)解:由67~分钟图像可得, 无人机的速度为:75502576-=-(米/分钟), 故答案为25;(4)解:由(3)可得,5025a =,752512b =-, 解得:2a =,15b =,故答案为:2,15;(5)解:由(3)可得,25(1412)50⨯-=,∴第14分钟时无人机的飞行高度是:755025-=(米),答:第14分钟时无人机的飞行高度是25米.25.6.4m解:由题意可得各点坐标为:()0,1.6E ,()4,0G ,()3,1.6C -且所求的高度就为点A 的纵坐标. 设直线AE 的函数关系式为y kx b =+.把()0,1.6E ,()4,0G 代入得 1.604b k b =⎧⎨=+⎩,解得 1.625b k =⎧⎪⎨=-⎪⎩. ∴直线AE 的函数关系式为21.65y x =-+①.∵直线AF 过点()3,1.6C -,()0,0F ,同理可得直线AF 的解析式为815y x =-②, 联立①②解得,12x =-, 6.4y =答:路灯杆AB 的高度6.4m .26.(1)13y x =+,22y x =-(2)2<<1x --或0x >(3)1(1)解:根据题意,将点()1,2A -代入2m y x=中,得()122m =-⨯=-, ∴反比例函数的表达式为22y x =-;将(),1B a 代入22y x =-中,得2a =-,则()2,1B -,将()1,2A -、()2,1B -代入1y kx b =+中,得221k b k b -+=⎧⎨-+=⎩,解得13k b =⎧⎨=⎩,∴一次函数的表达式为13y x =+;(2)解:根据图像,当2<<1x --或0x >时,12y y >;(3)解:设直线AB 交x 轴于H ,设2,C m m ⎛⎫- ⎪⎝⎭,(),0H t ,则12BHHC =,0m >,过B 作BE x ⊥轴于E ,过C 作CF x ⊥轴于F ,则1BE =,2EH t =+,2CF m =,HF m t =-,BE CF ∥, ∴12BE EHBH CF HF HC ===,即12122t m t m+==-,解得1m =,1t =-,∴121EH =-+=, ∴tan 1BEBHE EH ∠==.即BC 与x 轴所交锐角的正切值为1.27.(1)211,2055y x z x ==-+ (2)22205W x x =-+,年产量为25万件时毛利润最大,最大毛利润为250万元(3)今年最多可获得毛利润240万元(1)解:图①可得函数经过点()50500,, 设抛物线的解析式为20y ax a =≠(), 将点()50500,代入得:5002500a =,解得:15a =, 故y 与x 之间的关系式为215y x =. 图②可得:函数经过点()()0205010,、,, 设z kx b =+,则205010b x b =⎧⎨+=⎩,解得:2015b k =⎧⎪⎨=-⎪⎩, 故z 与x 之间的关系式为1205z x =-+. 故答案为:211,2055y x z x ==-+. (2)解:22112055W zx y x x x =-=-+-22205x x =-+ 22(50)5x x =-- 22(25)2505x =--+∵205-<,∴当x =25时,W 有最大值250,∴年产量为25万件时毛利润最大,最大毛利润为250万元.(3)解:令80y =,得21805x =,解得:20x =±(负值舍去), 由图像可知,当080y ≤<时,020x ≤<,由()225250y x =--+,的性质可知,当020x ≤<时,W 随x 的增大而增大,故当x =20时,W 有最大值240.答:今年最多可获得毛利润240万元.28.(1)2142y x x =-++(2)S =2122-t t (3)133y x =-+(1)解:当0x =时,4y =,∴()0,4C ,当0y =时,4x =,∴()4,0B ,把()4,0B ,()0,4C 代入抛物线解析式得40164c a c=⎧⎨=++⎩, ∴124a c ⎧=-⎪⎨⎪=⎩, ∴抛物线的解析式为2142y x x =-++; (2)∵OC OB =,∴45OCB OBC ∠=∠=︒,∵DE x ⊥轴于E ,∴90DEB ∠=︒,∴45DBE BDE ∠=∠=︒,∴4DE BE t ==-,∵DP y ⊥轴于P ,∴四边形OPDE 为矩形,∴4OP DE t ==-, ∴()2114222S t t t t =-=-;(3)∵CF y ⊥轴,∴F 的纵坐标为4,把4y =代入抛物线解析式得10x =,22x =, ∴()2,4F ,作FH x ⊥轴于H ,∴90FHB ∠=︒,∴90BFH FBH ∠+∠=︒,∵FB PB ⊥,∴90FBP ∠=︒,∴90PBO FBH ∠+∠=︒,∴BFH PBO ∠=∠,∵FHB BOP ∠=∠,FH BO =,∴FHB BOP ≌,∴2BH OP ==,∴2BE DE OP ===,∵OP QE ∥, ∴12QE BE OP OB ==, ∴1QE =,∴()6,1Q ,作MN y ⊥轴于N ,∴CN MN =,∵MN CF ∥, ∴MN PN CF PC =, ∴626MN MN -=, ∴32MN =,32CN ∴=, 35422ON ∴=-=, ∴35,22M ⎛⎫ ⎪⎝⎭, 设直线QM 的解析式为y kx b =+,把Q 、M 坐标代入得, 165322k b k b =+⎧⎪⎨=+⎪⎩, 解得133k b ⎧=-⎪⎨⎪=⎩, ∴直线QM 的解析式为:133y x =-+.。
中考专题复习《一次函数》真题练习含答案解析
中考专题复习《一次函数》真题练习一、选择题1.(2012•南充)下列函数中,是正比例函数的是()A.y=-8x B.8yx-=C.y=5x2+6 D.y=-0.5x-11.A2.(2012•温州)一次函数y=-2x+4的图象与y轴的交点坐标是()A.(0,4)B.(4,0)C.(2,0)D.(0,2)2.A3.(2012•陕西)在下列四组点中,可以在同一个正比例函数图象上的一组点是()A.(2,-3),(-4,6)B.(-2,3),(4,6)C.(-2,-3),(4,-6)D.(2,3),(-4,6)3.A4.(2012•泉州)若y=kx-4的函数值y随x的增大而增大,则k的值可能是下列的()A.-4 B.12-C.0 D.34.D5.(2012•山西)如图,一次函数y=(m-1)x-3的图象分别与x轴、y轴的负半轴相交于A、B,则m的取值范围是()A.m>1 B.m<1 C.m<0 D.m>05.B6.(2012•娄底)对于一次函数y=-2x+4,下列结论错误的是()A.函数值随自变量的增大而减小B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得y=-2x的图象D.函数的图象与x轴的交点坐标是(0,4)6.D8.(2012•乐山)若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是()A.B.C.D.8.A9.(2012•阜新)如图,一次函数y=kx+b的图象与y轴交于点(0,1),则关于x的不等式kx+b>1的解集是()A.x>0 B.x<0 C.x>1 D.x<19.B9.解:由一次函数的图象可知,此函数是减函数,∵一次函数y=kx+b的图象与y轴交于点(0,1),∴当x<0时,关于x的不等式kx+b>1.故选B.10.(2012•河南)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<32B.x<3 C.x>32D.x>310.A10.解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,m=32,∴点A的坐标是(32,3),∴不等式2x<ax+4的解集为x<32;故选A.11.(2012•陕西)在同一平面直角坐标系中,若一次函数y=-x+3与y=3x-5的图象交于点M,则点M的坐标为()A.(-1,4)B.(-1,2)C.(2,-1)D.(2,1)11.D12.(2012•哈尔滨)李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD,设BC的边长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=-2x+24(0<x<12)B.y=-12x+12(0<x<24)C.y=2x-24(0<x<12)D.y=12x-12(0<x<24)12.B13.(2012•武汉)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()A.①②③B.仅有①②C.仅有①③D.仅有②③13.A解:甲的速度为:8÷2=4米/秒;乙的速度为:500÷100=5米/秒;b=5×100-4×(100+2)=92米;5a-4×(a+2)=0,解得a=8,c=100+92÷4=123,∴正确的有①②③.故选A.15.(2012•黔东南州)如图,是直线y=x﹣3的图象,点P(2,m)在该直线的上方,则m 的取值范围是()A.m>﹣3B.m>﹣1C.m>0D.m<3考点:一次函数图象上点的坐标特征。
【初中数学精品资料】一次函数专题练习3
初二数学通用版一次函数3课后练习(答题时间:60分钟)一、选择题1. 某币种的月利率是0.6%,存入100元本金,则本息和y (元)(本息和=本金+本金×月利率×月数)与所存月数x 之间的函数关系式是( )A .1000.6y x =+B .1006y x =+C .10060y x =+D .1000.06y x =+2. 托运行李P kg (P 为整数)的费用为C 元,已知托运第一个1kg 需付2元,以后每增加1kg (不足1kg 按1kg 计)需增加费用0.5元,则计算托运行李费用C 的公式是( )A .20.5(1)C P =+-B .20.5(1)C P =++ C .25(1)C P =+-D .25(1)C P =++3. 拖拉机开始工作时,油箱中有油24L ,如果每小时耗油4L ,那么油箱中的剩余油量y (L )与工作时间x (h )之间的函数关系式和图象是( )4. 某校举行趣味运动会,甲、乙两名学生同时从A 地到B 地,甲先骑自行车到B 地后跑步回A 地,乙则是先跑步到B 地后骑自行车回A 地(骑自行车的速度快于跑步的速度),最后两人恰好同时回到A 地.已知甲骑自行车比乙骑自行车的速度快,若两名学生离开A 的距离s 与所用时间t 的函数关系用图象表示如下(实线表示甲的图象,虚线表示乙的图象),则正确的是( )5. 某装满水的水池按一定的速度放掉水池的一半水,停止放水后立即按一定的速度注水,水池注满后,停止注水,又立即按一定的速度放完水池的水.若水池的存水量为V (3m ),放水或注水的时间为t (min ),则V 与t 函数关系的大致图象只能是( )二、填空题6. 张老师带领x 名学生到某动物园参观,已知成人票每张10元,学生票每张5元,设门票总费用为y 元,则y =_________________.7.某公司现在年产值是420万元,计划今后每年增加52万元,年产值y(万元)与年数x的函数关系式是_____________,5年后的年产值是______________.8.假定甲、乙两人在一次赛跑中,路程s与时间t的关系如图所示,那么可以知道:(1)这是一次________m赛跑;(2)甲、乙两人中先到终点的是__________;(3)乙在这次赛跑中的速度是___________m/s.9.某机动车出发前油箱内有油42L,行驶若干小时后,途中在加油站加油若干升,油箱中余油量Q(L)与行驶时间t(h)之间的函数关系如图所示,根据右图回答问题:(1)机动车行驶_________h后加油;(2)加油前油箱余油量Q与行驶时间t的函数关系式是____________;(3)中途加油__________L;(4)如果加油站离目的地230km,车速为40km/h,要到达目的地,油箱中的油是否够用?答_________.10.下图中的折线ABC为甲地向乙地打电话所需付的电话费y(元)与通话时间x(min)之间的函数关系的图象,当x过B点后,该图象的解析式为______________,从图象中可知,通话2min应付电话费__________元,通话7min需付电话费________元.三、解答题11.暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.(1)已知油箱内余油量y(升)是行驶路程x(千米)的一次函数,求y与x的函数解析式;(2)当油箱中的余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.12.某企业有员工300人,生产A种产品,平均每人每年可创造利润m万元(m为大于零的常数),为减员增效,企业决定从中调配x人去生产新开发的B种产品,根据评估,调配后,继续生产A种产品的员工平均每人每年创造的利润可增加20%,生产B种产品的员工平均每人每年可创造利润1.54m万元.(1)调配后,企业生产A种产品的年利润为_______________万元,企业生产B种产品的年利润为_______________万元(用含x和m的代数式表示),若调配后企业全年总利润为y万元,则y关于x的函数解析式为___________________;(2)若要求调配后,企业生产A种产品的年利润不小于调配前企业年利润的45,生产B种产品的年利润大于调配前企业年利润的一半,应有哪几种调配方案?请设计出来,并指出其中哪种方案可使全年总利润最大(必要时,运算过程可保留3个有效数字).一、选择题1. A2. A3. D4. A5. A二、填空题6. 510x +7. 52420y x =+,680万元 8.(1)100;(2)甲;(3)89.(1)5;(2)426Q t =-,05t ≤≤;(3)24;(4)够用10. 0.6y x =-,2.4,6.4 三、解答题11. 解:(1) 设油箱内余油量y (升)与行驶路程x (千米)的函数解析式为y kx b =+,当0x =时,45y =;当150x =时,30y =所以,4515030b k b =⎧⎨+=⎩,解得11045k b ⎧=-⎪⎨⎪=⎩所以,14510y x =-+ (2)当400x =时,1400455310y =-⨯+=> 所以,他们能在汽车报警前回到家.12. 解:(1)(300)(120%)x m -+,1.54mx ,(300)(120%) 1.54y x m mx =-++;(2)由题意,得4(300)(120%)300511.543002x m m mx m⎧-+≥⨯⎪⎪⎨⎪>⨯⎪⎩解得,319710077x <≤ 因为,x 是整数所以,x 只能取98、99、100,故有三种调配方案: ①202人继续生产A 种产品,调98人生产B 种产品; ②201人继续生产A 种产品,调99人生产B 种产品; ③200人继续生产A 种产品,调100人生产B 种产品. 又(300)(120%) 1.540.34360y x m mx mx m =-++=+ 由于0.340m >,函数y 随x 的增大而增大故当100x =,即按第三种方案安排生产时,获得的全年总利润最大.一、选择题: 1. A2. A3. D4. A5. A二、填空题: 6. 510x +7. 52420y x =+,680万元8.(1)100;(2)甲;(3)8 9.(1)5;(2)426Q t =-,05t ≤≤;(3)24;(4)够用 10. 0.6y x =-,2.4,6.4三、解答题:11. 解:设油箱内余油量y (升)与行驶路程x (千米)的函数解析式为y kx b =+, 当0x =时,45y =;当150x =时,30y =所以,4515030b k b =⎧⎨+=⎩,解得11045k b ⎧=-⎪⎨⎪=⎩所以,14510y x =-+(2)当400x =时,1400455310y =-⨯+=>所以,他们能在汽车报警前回到家. 12. 解:(1)(300)(120%)x m -+,1.54mx ,(300)(120%) 1.54y x m mx =-++; (2)由题意,得4(300)(120%)300511.543002x m m mx m⎧-+≥⨯⎪⎪⎨⎪>⨯⎪⎩解得,319710077x <≤因为,x 是整数所以,x 只能取98、99、100,故有三种调配方案: ①202人继续生产A 种产品,调98人生产B 种产品; ②201人继续生产A 种产品,调99人生产B 种产品; ③200人继续生产A 种产品,调100人生产B 种产品. 又(300)(120%) 1.540.34360y x m mx mx m =-++=+ 由于0.340m >,函数y 随x 的增大而增大故当100x =,即按第三种方案安排生产时,获得的全年总利润最大.。
专题三 函数综合问题(一次函数+反比例函数)-中考二轮专题复习(原卷版)(全国适用)
专题三函数的综合问题专题三函数综合问题(一次函数+反比例函数)一、以一次函数为背景的综合问题例题(2021·黑龙江·哈尔滨市第十七中学校二模)如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣34x+3分别交x轴,y轴于点A,B.∠OBA的外角平分线交x轴于点D.(1)求点D的坐标;(2)点P是线段BD上的一点(不与B,D重合),过点P作PC⊥BD交x轴于点C.设点P 的横坐标为t,△BCD的面积为S,求S与t之间的函数解析式(不要求写出自变量t的取值范围);(3)在(2)的条件下,PC的延长线交y轴于点E,BC的延长线交DE于点F,连AP,若sin∠BAP 10OF的长.练习题1.(2021·吉林双阳·二模)如图,在平面直角坐标系中,两条直线分别为y=2x,y=kx,且点A在直线y=2x上,点B在直线y=kx上,AB∥x轴,AD⊥x轴,BC⊥x轴垂足分别为D 和C,若四边形ABCD为正方形时,则k=()A .14B .12C .23D .22.(2021·山东槐荫·二模)如图,点B ,C 分别在直线y =2x 和直线y =kx 上,A 、D 是x 轴上两点,若四边形ABCD 是长方形,且AB :AD =1:3,则k 的值是( )A .23B .25C .27D .293.(2021·山东广饶·二模)如图,在平面直角坐标系xOy 中,菱形OABC 满足点O 在原点,点A 坐标为(2,0),∠AOC =60°,直线y =﹣3x +b 与菱形OABC 有交点,则b 的取值范围是___.4.(2021·湖北阳新·模拟预测)如图,直线AB 的解析式为y =﹣x +b 分别与x ,y 轴交于A ,B 两点,点A 的坐标为(3,0),过点B 的直线交x 轴负半轴于点C ,且31OB OC =::,在x 轴上方存在点D ,使以点A ,B ,D 为顶点的三角形与△ABC 全等,则点D 的坐标为_____.5.(2021·广东深圳·三模)定义:如图1,已知锐角∠AOB 内有定点P ,过点P 任意作一条直线MN ,分别交射线OA ,OB 于点M ,N .若P 是线段MN 的中点时,则称直线MN 是∠AOB 的中点直线.如图2,射线OQ 的表达式为y =2x (x >0),射线OQ 与x 轴正半轴的夹角为∠α,P (3,1),若MN 为∠α的中点直线,则直线MN 的表达式为__________________.6.(2021·山东·济宁学院附属中学一模)如图,在平面直角坐标系xOy 中,ABCO Y 的顶点A ,B 的坐标分别是(6,0)A ,(0,4)B .直线l 经过坐标原点,并与AB 相交于点D .(1)直接写出C 点的坐标______.(2)若DOA BOC ∠=∠,试确定点D 的坐标及直线l 的解析式.(3)在(2)的条件下,动点P 在直线l 上运动,以点P 为圆心,PB 的长为半径的P e 随点P 运动,当P e 与ABCO Y 的边相切时,求出P e 的半径.7.(2022·辽宁·东北育才实验学校模拟预测)如图,已知直线l 1:y =2833x +与直线l 2:y =﹣2x +16相交于点C ,l 1、l 2分别交x 轴于A 、B 两点.矩形DEFG 的顶点D 、E 分别在直线l 1、l 2上,顶点F 、G 都在x 轴上,且点G 与点B 重合.(1)求△ABC 的面积;(2)求矩形DEFG 的边DE 与EF 的长;(3)若矩形DEFG 从原地出发,沿x 轴的反方向以每秒1个单位长度的速度平移,设移动时间为t (0≤t ≤12)秒,矩形DEFG 与△ABC 重叠部分的面积为S ,直接写出S 关于t 的函数关系式,并写出相应的t 的取值范围.8.(2021·浙江·诸暨市暨阳初级中学一模)如图,直线483y x =−+分别与x 轴,y 轴相交于点A ,点B ,作矩形ABCD ,其中点C ,点D 在第一象限,且满足AB ∶BC =2∶1.连接BD . (1)求点A ,点B 的坐标.(2)若点E 是线段AB (与端点A 不重合)上的一个动点,过E 作EF ∥AD ,交BD 于点F ,作直线AF .①过点B 作BG ⊥AF ,垂足为G ,当BE =BG 时,求线段AE 的长度.②若点P 是线段AD 上的一个动点,连结PF ,将△DFP 沿PF 所在直线翻折,使得点D 的对应点D ¢落在线段BD 或线段AB 上.直接写出线段AE 长的取值范围.9.(2021·辽宁沈阳·中考真题)如图,平面直角坐标系中,O 是坐标原点,直线15(0)y kx k =+≠经过点()3,6C ,与x 轴交于点A ,与y 轴交于点B .线段CD 平行于x 轴,交直线34y x =于点D ,连接OC ,AD .(1)填空:k = __________.点A 的坐标是(__________,__________); (2)求证:四边形OADC 是平行四边形;(3)动点P 从点O 出发,沿对角线OD 以每秒1个单位长度的速度向点D 运动,直到点D 为止;动点Q 同时从点D 出发,沿对角线OD 以每秒1个单位长度的速度向点O 运动,直到点O 为止.设两个点的运动时间均为t 秒. ①当1t =时,CPQ V 的面积是__________.②当点P ,Q 运动至四边形CPAQ 为矩形时,请直接写出此时t 的值.10.(2021·黑龙江·哈尔滨市虹桥初级中学校模拟预测)直线y kx k =+与x 轴交于A ,与y 轴交于C 点,直线BC 的解析式为1y x k k=−+,与x 轴交于B .(1)如图1,求点A 的横坐标;(2)如图2,D 为BC 延长线上一点,过D 作x 轴垂线于点E ,连接CE ,若CD CA =,设ACE V 的面积为S ,求S 与k 的函数关系式;(3)如图3,在(2)的条件下,连接OD 交AC 于点F ,将CDF V 沿CF 翻折得到△FCG ,直线FG 交CE 于点K ,若345ACE CDO ∠−∠=︒,求点K 的坐标.二、反比例函数的综合问题例题(2021·广东·珠海市紫荆中学三模)如图1,在平面直角坐标系xOy 中,线段AB 在x 轴的正半轴上移动,且AB =1,过点A 、B 作y 轴的平行线分别交函数y 1=1x (x >0)与y 2=3x(x >0)的图象于C 、E 和D 、F ,设点A 的横坐标为m (m >0).(1)D 点坐标 ;F 点坐标 ;连接OD 、OF ,则△ODF 面积为 ;(用含m 的代数式表示)(2)连接CD 、EF ,判断四边形CDFE 能否是平行四边形,并说明理由;(3)如图2,经过点B 和点G (0,6)的直线交直线AC 于点H ,若点H 的纵坐标为正整数,请求出整数m 的值. 练习题1.(2021·河北·高阳县教育局教研室模拟预测)如图是反比例函数3y x =和7y x=−在x 轴上方的图象,x 轴的平行线AB 分别与这两个函数图象相交于点A ,B ,点P 在x 轴上.则点P 从左到右的运动过程中,△APB 的面积是( )A .10B .4C .5D .从小变大再变小2.(2021·山东滨州·一模)如图,O 为坐标原点,四边形OACB 是菱形,OB 在x 轴的正半轴上,sin ∠AOB =45,反比例函数y =48x在第一象限内的图象经过点A ,与BC 交于点F ,则点F 的坐标为( )A .611,6120)B .61+1,6120)C .6146120− D .61﹣946120− 3.(2021·山东济南·二模)如图,在平面直角坐标系中,菱形ABCD 的对称中心恰好是原点O ,已知点B 坐标是32,2⎛⎫− ⎪⎝⎭,双曲线y =6x经过点A ,则菱形ABCD 的面积是( )A .2B .18C 252D .254.(2021·广东深圳·三模)如图,在反比例函数y =4x (x >0)的图象上有动点A ,连接OA ,y =k x (x >0)的图象经过OA 的中点B ,过点B 作BC ∥x 轴交函数y =4x 的图象于点C ,过点C 作CE ∥y 轴交函数y =kx的图象于点D ,交x 轴点E ,连接AC ,OC ,BD ,OC 与BD 交于点F .下列结论:①k =1;②S △BOC =32;③S △CDF =316S △AOC ;④若BD =AO ,则∠AOC =2∠COE .其中正确的是( )A .①③④B .②③④C .①②④D .①②③④5.(2021·江苏扬州·一模)如图,正方形的顶点A ,C 分别在y 轴和x 轴上,边BC 的中点F 在y 轴上,若反比例函数12y x=的图象恰好经过CD 的中点E ,则OA 的长为______.6.(2021·福建·厦门五缘实验学校二模)如图,在平面直角坐标系中,反比例函数y kx=(k >0)的图象与半径为5的⊙O 交于M 、N 两点,△MON 的面积为3.5,若动点P 在x 轴上,则PM +PN 的最小值是______.7.(2021·江苏常州·二模)如图,在平面直角坐标系中,正六边形ABCDEF 的对称中心P 在反比例函数y =kx(k >0,x >0)的图象上,CD 在x 轴上,点B 在y 轴上,已知CD =2.(1)点A 是否在该反比例函数的图象上?请说明理由; (2)若该反比例函数图象与DE 交于点Q ,求点Q 的横坐标. 8.(2021·山东菏泽·三模)如图,反比例函数()0ky k x=≠的图像过等边BOC V 的顶点B ,2OC =,点A 在反比例函数的图象上,连接AC ,AO .(1)求反比例函数()0ky k x=≠的表达式; (2)若四边形ACBO 的面积是33A 的坐标.9.(2021·吉林·三模)如图,在平面直角坐标系中,矩形ABCO 的顶点A 、C 分别在x 轴和y 轴的正半轴上,顶点B 的坐标为(4,2),双曲线ky x=(x >0)的图象交BC 于点D ,若BD =32.求反比例函数的解析式及点F 的坐标.10.(2022·广东江门·一模)反比例函数y 1=1k x(k 1>0)和y 2=22(0)k k x >在第一象限的图象如图所示,过原点的两条射线分别交两个反比例图象于A ,D 和B ,C(1)求证:AB ∥CD ;(2)若k 1=2,S △OAB =2,S 四边形ABCD =3,求反比例函数y 2=2k x(k 2>0)的解析式. 11.(2021·湖北恩施·模拟预测)如图,在平面直角坐标系中,点A ,D 分别是x 轴、y 轴上的一动点,以AD 为边向外作矩形ABCD ,对角线BD ∥x 轴,反比例函数(0)ky k x=>图象经过矩形对角线交点E .(1)如图1,若点A 、D 坐标分别是(6,0),(0,2),求BD 的长;(2)如图2,保持点D 坐标(0,2)不变,点A 向右移移动,当点C 刚好在反比函数图象上时,求点A 坐标及k 的值.12.(2021·广东·汕头市潮南实验学校一模)如图,在平面直角坐标系中,点O 为坐标系原点,矩形OABC 的边OA ,OC 分别在x 轴和y 轴上,其中4cos 5OBC ∠=,3OC =.已知反比例函数(0)ky x x=>的图象经过BC 边上的中点D ,交AB 于点E .(1)求k 的值;(2)猜想OCD ∆的面积与OBE ∆的面积之间的关系,请说明理由.(3)若点(,)P x y 在该反比例函数的图象上运动(不与点D 重合),过点P 作PR y ⊥轴于点R ,作PQ BC ⊥所在直线于点Q ,记四边形CQPR 的面积为S ,求S 关于x 的解析式并写出x 的取值范围.13.(2021·重庆北碚·模拟预测)有这样一个问题:探究函数y =bx ax ++2的图象与性质,小童根据学习函数的经验,对函数的图象与性质进行例研究,已知当x =2时,y =7,0x =时,y =﹣3.下面是小童探究的过程,请补充完整:(1)该函数的解析式为,m=,n=.根据图中描出的点,画出函数图象.x…﹣4﹣3﹣20234…y…m 3413﹣37n113…;①该函数图象是中心对称图形,它的对称中心是原点.②该函数既无最大值也无最小值.③在自变量的取值范围内,y随x的增大而减小.(3)请结合(1)中函数图象,直接写出关于x的不等式2220x axx b+−−≥+的解集.(保留1位小数,误差不超过0.2)14.(2021·广东·二模)如图1,点P是反比例函数y=kx(k>0)在第一象限的点,P A⊥y轴于点A,PB⊥x轴于点B,反比例函数y=6x的图象分别交线段AP、BP于C、D,连接CD,点G是线段CD上一点.(1)若点P (6,3),求△PCD 的面积;(2)在(1)的条件下,当PG 平分∠CPD 时,求点G 的坐标;(3)如图2,若点G 是OP 与CD 的交点,点M 是线段OP 上的点,连接MC 、MD .当∠CMD =90°时,求证:MG =12CD .15.(2021·广东珠海·一模)如图,在平面直角坐标系中,O 为坐标原点,点B 在x 轴正半轴上,四边形OACB 为平行四边形,3cos AOB?(0)k y k x=>的图象在第一象限内过点A ,且经过BC 边的中点F ,连接AF ,OF .(1)当3OA = (2)在(1)的条件下,求点F 的坐标; (3)证明:ΔΔOAF AFC ∽.三、一次函数与反比例函数的综合问题例题(2021·江苏·苏州市吴中区碧波中学一模)如图,过直线12y kx =+上一点P 作PD x ⊥轴于点D ,线段PD 交函数(0)my x x=>的图象于点C ,点C 为线段PD 的中点,点C 关于直线y x =的对称点C '的坐标为()1,3.(1)直接写出点C 的坐标(____,______),求k 、m 的值:(2)求直线12y kx =+函数(0)m y x x =>图象的交点坐标;(3)直接写出不等式1(0)2m kx x x >+>的解集. 练习题1.(2021·四川成都·一模)如图,在同一平面直角坐标系中,反比例函数y =kx 与一次函数y =kx ﹣k (k 为常数,且k ≠0)的图象可能是( )A .B .C .D .2.(2021·湖北荆门·中考真题)在同一直角坐标系中,函数y kx k =−与(0)||ky k x =≠的大致图象是( )A.①②B.②③C.②④D.③④3.(2022·湖北武汉·模拟预测)如图,直线y=x+8分别交x、y轴于A、B两点,交双曲线kyx =,若CD=3(AC+BD),则k的值为()A.﹣6B.﹣7C.﹣8D.﹣94.(2021·广东·深圳市罗湖区翠园初级中学二模)将反比例函数y=4x的图象绕坐标原点O逆时针旋转30°,得到如图的新曲线A(﹣3,3,B 332,32)的直线相交于点C、D,则△OCD的面积为()A .3B .8C .3D 3325.(2018·山东青岛·中考模拟)如图,反比例函数y =kx (x <0)与一次函数y =x +4的图象交于A 、B 两点的横坐标分别为-3,-1.则关于x 的不等式kx <x +4(x <0)的解集为( )A .x <-3B .-3<x <-1C .-1<x <0D .x <-3或-1<x <06.(2021·山东临沂·一模)在平面直角坐标系xOy 中,已知一次函数0y ax b a +≠=()与反比例函数ky x=的图象交于点1A m (,)和()2,1B −−,点A 关于x 轴的对称点为点C .(1)求这两个函数的表达式. (2)直接写出关于x 的不等式kax b x+≤的解.(3)过点B 作y 轴的垂线与直线AC 交于点D ,经过点C 的直线与直线BD 交于点E ,且3045CED ︒≤∠≤︒,直接写出点E 的横坐标t 的取值范围.7.(2021·山东青岛·一模)如图,直线y 1=k 1x +b 与双曲线y 2=2k x在第一象限内交于A 、B 两点,已知A (1,m ),B (2,1).(1)分别求出直线和双曲线的解析式;(2)设点P 是线段AB 上的一个动点,过点P 作PD ⊥x 轴于点D ,E 是y 轴上一点,当△PED 的面积最大时,请直接写出此时P 点的坐标为 . 8.(2021·广东清远·二模)如图,一次函数y 1=k 1x +4与反比例函数22k y x=的图象交于点A (2,m )和B (-6,-2),与y 轴交于点C .(1)求一次函数与反比例函数的表达式;(2)过点A 作AD ⊥x 轴于点D ,点P 是反比例函数在第一象限的图象上一点,设直线OP 与线段AD 交于点E ,当S 四边形ODAC :S △ODE =4:1时,求点P 的坐标;(3)点M 是y 轴上的一个动点,当△MBC 为直角三角形时,直接写出点M 的坐标.9.(2021·湖南·株洲市芦淞区教育教学研究指导中心模拟预测)如图1,点(08)(2)A B a ,、,在直线2y x b =−+上,反比例函数(ky x x=>0)的图象经过点B .(1)求反比例函数解析式;(2)将线段AB 向右平移m 个单位长度(m >0),得到对应线段CD ,连接AC 、BD . ①如图2,当m =3时,过D 作DF ⊥x 轴于点F ,交反比例函数图象于点E ,求E 点坐标; ②在线段AB 运动过程中,连接BC ,若△BCD 是以BC 为腰的等腰三角形,求所有满足条件的m 的值.10.(2021·四川·叙州区双龙镇初级中学校模拟预测)如图1,在平面直角坐标系中,直线l 1:y =kx +b (k ≠0)与双曲线()0my m x=≠交于点A (a ,4a )(a >0)和点B (﹣4,n ),连接OA ,OB ,其中17OA =(1)求双曲线和直线l 1的表达式; (2)求△AOB 的面积;(3)如图2,将直线l 1:y =kx +b 沿着y 轴向下平移得到直线l 2,且直线l 2与双曲线在第三象限内的交点为C ,若△ABC 的面积为20,求直线l 2与y 轴的交点坐标.11.(2021·山东潍坊·二模)如图,在平面直角坐标系xOy 中,函数(0)ky x x=>的图象与直线2y x =−交于点(4,)A m .(1)求k ,m 的值;(2)已知点(P n ,)(0)n n >,过点P 作平行于x 轴的直线,交直线2y x =−于点M ,过点P 作平行于y 轴的直线,交函数ky x=(0)x >的图象于点N . ①当2n =时,判断线段PM 与PN 的数量关系,并说明理由; ②若PN PM …,结合函数的图象,直接写出n 的取值范围. 12.(2021·四川南充·一模)如图,直线y =kx +b 与x 轴交于点A ,与y 轴交于点B ,与双曲线y =ax(x <0)交于C (﹣8,1),D (﹣m ,m 2)两点.(1)求直线和双曲线的解析式;(2)比较AC 和BD 的大小,直接填空:AC BD ;(3)写出直线对应函数值大于双曲线对应函数值自变量x 的取值范围,直接填空: . 13.(2021·山东临沂·一模)如图,反比例函数ky x=(0k ≠,x >0)的图象与直线y =3x 相交于点C ,过直线上点A (1,3)作AB ⊥x 轴于点B ,交反比例函数图象于点D ,且AB =3BD .(1)求k 的值; (2)求点C 的坐标;(3)在y 轴上确定一点M ,使点M 到C ,D 两点距离之和d =MC +MD 最小,求点M 的坐标. 14.(2021·广东·东莞市南开实验学校一模)如图,一次函数y=k 1x +1的图象与反比例函数22(0)k y k x=> 点的图象相交于A 、B 两点,点C 在x 轴正半轴上,点D (1,-2 ),连接OA 、OD 、DC 、AC ,四边形OACD 为菱形.(1)求一次函数与反比例函数的解析式;(2)根据图象,直接写出反比例函数值大于一次函数值时,x 的取值范围; (3)设点P 是直线AB 上一动点,且S △OAP =12S 菱形OACD ,求点P 的坐标.15.(2021·山东济南·三模)已知点A (0,4),将点A 先向右平移1个单位长度,再向上平移2个单位长度,对应点B 恰好落在反比例函数(0)ky k x=>的图象上.过点B 的直线l 的表达式为y =mx +n ,与反比例函数图象的另一个交点为点C ,分别交x 轴、y 轴于点D 、点E .(1)求反比例函数表达式;(2)若线段BC =2CD ,求△BOD 的面积;(3)在(2)的条件下,点P 为反比例函数图象上B 、C 之间的一点(不与B 、C 重合),PM⊥x 轴交直线l 于点M ,PN ⊥y 轴交直线l 于点N ,请分析EM •DN 是否为定值,并说明理由.16.(2021·广东阳江·一模)如图,一次函数y =kx +b (k ≠0)与反比例函数(0,0)m y m x x=≠>交于A (4,12),B (1,2),AC ⊥x 轴于点C ,BD ⊥y 轴于点D .(1)根据图象直接回答:在第一象限内,当x 取何值时,一次函数值大于反比例函数值;(2)求一次函数的解析式及m 的值;(3)P 是线段AB 上的一点,连接PC ,PD ,若△BDP ∽△ACP ,求点P 的坐标.17.(2021·广东佛山·二模)如图,一次函数y =k 1x +b 与反比例函数y =2k x图象交于点B (﹣1,6)、点A ,且点A 的纵坐标为3.(1)填空:k 1= ,b = ;k 2= ;(2)结合图形,直接写出k 1x +b >2k x时x 的取值范围; (3)在梯形ODCA 中,AC ∥OD ,且下底DO 在x 轴上,CD ⊥x 轴于点D ,CD 和反比例函数的图象交于点M ,当梯形ODCA 的面积为12时,求此时点M 坐标.18.(2021·广东梅州·一模)已知一次函数y =kx +b 与反比例函数y =m x的图象交于A (﹣3,2)、B (1,n )两点.(1)求一次函数和反比例函数的表达式;(2)△AOB 的面积为 ;(3)直接写出不等式kx +b >m x的解 ; (4)点P 在x 的负半轴上,当△P AO 为等腰三角形时,直接写出点P 的坐标.19.(2021·江苏南通·中考真题)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点(1,1)是函数1122y x =+的图象的“等值点”. (1)分别判断函数22,y x y x x =+=−的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由;(2)设函数3(0),y x y x b x=>=−+的图象的“等值点”分别为点A ,B ,过点B 作BC x ⊥轴,垂足为C .当ABC V 的面积为3时,求b 的值;(3)若函数22()y x x m =−≥的图象记为1W ,将其沿直线x m =翻折后的图象记为2W .当12,W W 两部分组成的图象上恰有2个“等值点”时,直接写出m 的取值范围.。
中考数学专项复习《一次函数》练习题(附答案)
中考数学专项复习《一次函数》练习题(附答案)一、单选题x+1交x轴于点A,交y轴于点B,点1.如图,在平面直角坐标系中,直线l:y=√33A1、A2、A3,…在x轴上,点B1、B2、B3,…在直线l上。
若△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,则△A5B6A6的周长是A.24√3B.48√3C.96√3D.192√3 2.如图,一长为5m,宽为2m的长方形木板,现要在长边上截去长为xm的一部分,则剩余木板的面积(空白部分)y(m2)与x(m)的函数关系式为(0≤x<5)()A.y=10﹣x B.y=5x C.y=2x D.y=﹣2x+103.小明和小亮在同一条笔直的跑道上进行500米匀速跑步训练,他们从同一地点出发,先到达终点的人原地休息,已知小明先出发2秒,在跑步的过程中,小明和小亮的距离y(米)与小亮出发的时间x(秒)之间的函数关系如图所示,下列说法错误的是()A.小明的速度是4米/秒;B.小亮出发100秒时到达终点;C.小明出发125秒时到达了终点;D.小亮出发20秒时,小亮在小明前方10米.4.若x=﹣1是关于x的方程2x+5a=3的解,则a的值为()A.15B.4C.1D.﹣1 5.如图,在平面直角坐标系中,△OABC的顶点A在x轴上,顶点B的坐标为(6,4).若直线l经过点(1,0),且将△OABC分割成面积相等的两部分,则直线l的函数解析式是()A.y=x+1B.y=13x+1C.y=3x﹣3D.y=x﹣16.函数y=ax﹣a 的大致图象是()A.B.C.D.7.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+ k的图象大致是()A.B.C.D.8.甲、乙两名运动员同时从A地出发前往B地,在笔直的公路上进行骑自行车训练如图所示,反映了甲、乙两名运动员在公路上进行训练时的行驶路程S(千米)与行驶时间t(小时)之间的关系,下列四种说法:①甲的速度为40千米/小时;②乙的速度始终为50千米/小时;③行驶1小时时,乙在甲前10千米处;④甲、乙两名运动员相距5千米时,t=0.5或t=2.其中正确的个数有()A.1个B.2个C.3个D.4个9.对于函数y=ax2+bx+c,以下四种说法中正确的是()A.当a=0时,它是一次函数B.当b=0时,它是二次函数C.当c=0时,它是二次函数D.以上说法都不对10.点P在一次函数y=3x+4的图象上,则点P不可能在()A.第一象限B.第二象限C.第三象限D.第四象限11.如图,直线y=−x+m与y=nx+4n(n≠0)的交点的横坐标为-2,则关于x 的不等式−x+m>nx+4n>0的整数解为().A.−1B.−5C.−4D.−3 12.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为()A.x≥m B.x≥2C.x≥1D.y≥2二、填空题13.如图,直角三角形的斜边在轴的正半轴上,点A与原点重合,点B的坐标是(0,4),且∠BAC=30∘,若将ΔABC绕着点O旋转30°后,点B和点C分别落在点E和点F处,那么直线EF的解析式是.14.小泽和小帅两同学分别从甲地出发,骑自行车沿同一条路到乙地参加社会实践活动.如图折线OAB和线段CD分别表示小泽和小帅离甲地的距离y(单位:千米)与时间x(单位:小时)之间函数关系的图象,则当小帅到达乙地时,小泽距乙地的距离为千米.15.若点(m,n)在函数y=3x−7的图像上,则3m−n的值为. 16.将函数y=3x+1的图象平移,使它经过点(1,1),则平移后的函数表达式是.17.如果一次函数y=x﹣3的图象与y轴交于点A,那么点A的坐标是.18.下列函数:①y=2x-8;②y=-2x+8:③y=2x+8;④y=-2x-8.其中,y随x的增大而减小的函数是(填序号).三、综合题19.已知:一次函数y=mx+(2-m(m#0)与x轴、y轴交于A点,B点。
部编数学九年级下册专题03反比例函数与一次函数综合三类型(解析版)含答案
专题03 反比例函数与一次函数综合三类型类型一反比例函数与一次函数图像综合判断1.如图,直线y1=x+b交x轴于点B,交y轴于点A(0,2),与反比例函数2kyx=的图象交于C(1,m),D(n,-1),连接OC、OD.(1)求k的值;(2)求V COD的面积;(3)根据图象直接写出y1<y2时,x的取值范围.2.如图,直线y=ax+b与x轴交于点A(4,0),与y轴交于点B(0,﹣2),与反比例函数y=k x(x>0)的图象交于点C(6,m).(1)求直线和反比例函数的表达式;(2)连接OC,在x轴上找一点P,使S△POC=2S△AOC,请求出点P的坐标.3.如图,一次函数15y k x =+(1k 为常数,且10k ¹)的图象与反比例函数2k y x=(2k 为常数,且20k ¹)的图象相交于()2,4A -,(),1B n 两点.(1)求n 的值;(2)若一次函数1y k x m =+的图象与反比例函数2k y x=的图象有且只有一个公共点,求m 的值.4.一次函数y=﹣12x+3的图象与反比例函数y=mx的图象交于点A(4,1).(1)画出反比例函数y=mx的图象,并写出﹣12x+3>mx的x取值范围;(2)将y=﹣12x+3沿y轴平移n个单位后得到直线l,当l与反比例函数的图象只有一个交点时,求n的值.5.如图:一次函数的图象与反比例函数kyx=的图象交于()2,6A-和点()4,B n.(1)求点B的坐标;(2)根据图象回答,当x在什么范围时,一次函数的值大于反比例函数的值.2x \<-或04x <<.【点睛】本题考查了反比例函数与一次函数的综合,熟练掌握待定系数法和函数图象法是解题关键.6.如图,已知双曲线y =kx与直线y =mx +5都经过点A (1,4).(1)求双曲线和直线的表达式;(2)将直线y =mx +5沿y 轴向下平移n 个单位长度,使平移后的图象与双曲线y =kx有且只有一个交点,求n 的值.类型二 反比例函数与一次函数的交点问题7.如图所示,平面直角坐标系中,直线1y kx b =+分别与x ,y 轴交于点A ,B ,与曲线2m y x=分别交于点C ,D ,作CE x ^轴于点E ,已知OA =4,OE =OB =2.(1)求反比例函数2y 的表达式;(2)在y 轴上存在一点P ,使ABP CEO S S =V V ,请求出P 的坐标.8.如图,在平面直角坐标系中,直线y= x与双曲线kyx=交于A,B两点,其中A的坐标为(1,a),P是以点C(- 2,2)为圆心,半径长为1的圆上一动点,连接AP,Q为AP的中点.(1)求双曲线的解析式:(2)将直线y = x向上平移m(m > 0)个单位长度,若平移后的直线与⊙C相切,求m的值(3)求线段OQ长度的最大值.(3)9.如图,在平面直角坐标系中,一次函数y=﹣x+b的图象与反比例函数y=kx(x<0)的图象交于点A(﹣1,6),与x轴交于点B.点C是线段AB上一点,且△OCB与△OAB的面积比为1:2.(1)求k和b的值;(2)将△OBC绕点O逆时针旋转90°,得到ΔOB′C′,判断点C′是否落在函数y=kx(k<0)的图象上,并说明理由.k x (x> 0)的图象交于点A(m,4)和B(4,1)10.如图,一次函数y=-x+b与反比例函数y=(1)求b、k、m的值;(2)根据图象直接写出-x+b< kx(x> 0)的解集;(3)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的最大值和最小值.11.在平面直角坐标系xOy 中,已知点(1,2)P ,(2,2)Q -,函数m y x=.(1)当函数m y x=的图象经过点Q 时,求m 的值并画出直线y =-x -m .(2)若P ,Q 两点中恰有一个点的坐标(x ,y )满足不等式组m y x y x mì>ïíï<--î(m <0),求m 的取值范围.12.如图,一次函数y=kx+b的图象与反比例函数y=mx的图象相交于A(1,2),B(﹣2,n)两点.(1)求一次函数和反比例函数的表达式;(2)直线AB交x轴于点C,点P是x轴上的点,若△ACP的面积是4,求点P的坐标.类型三反比例函数与一次函数的实际应用13.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x(h)之间的函数关系,其中线段AB.BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求线段AB和双曲线CD的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?14.病人按规定的剂量服用某种药物,测得服药后2小时,每毫升血液中的含药量达到最大值为4毫克,已知服药后,2小时前每毫升血液中的含药量y (毫克)与时间x (小时)成正比例,2小时后y 与x 成反比例(如图所示).根据以上信息解答下列问题.(1)求当02x ££时,y 与x 的函数关系式;(2)求当2x >时,y 与x 的函数关系式;(3)若每毫升血液中的含药量不低于2毫克时治疗有效,则服药一次,治疗疾病的有效时间是多长?【答案】(1)2y x =15.某医药研究所研制了一种新药,在试验药效时发现:成人按规定剂量服用后,检测到从第5分钟起每分钟每毫升血液中含药量增加0.2微克,第100分钟达到最高,接着开始衰退.血液中含药量y (微克)与时间x (分钟)的函数关系如图.并发现衰退时y 与x 成反比例函数关系.(1)=a ;(2)当5100x ……时,y 与x 之间的函数关系式为 ;当100x >时,y 与x 之间的函数关系式为 ;(3)如果每毫升血液中含药量不低于10微克时是有效的,求出一次服药后的有效时间多久?19055135\-=分钟,\服药后能持续135分钟.【点睛】考查了反比例函数与一次函数的实际应用,解题关键是根据已知点得出函数的解析式.16.当下教育主管部门提倡加强高效课堂建设,要求教师课堂上要精讲,把时间、思考、课堂还给学生.通过实验发现:学生在课堂上听课注意力指标随上课时间的变化而变化,上课开始后,学生的学习兴趣递增,中间一段时间,学生的兴趣保持平稳高效状态,后阶段注意力开始分散.学生注意力指标y 随时间x (分钟)变化的函数图象如图所示,当010x £<和1020x £<时,图象是线段,当2045x ££时,图象是反比例函数的一部分.(1)求点A 对应的指标值.(2)如果学生在课堂上的注意力指标不低于30属于学习高效阶段,请你求出学生在课堂上的学习高效时间段.17.为了预防“流感”,某学校对教室采用药熏法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与药物点燃后的时间x (分)满足函数关系式y =2x ,药物点燃后6分钟燃尽,药物燃尽后,校医每隔6分钟测一次空气中含药量,测得数据如下表:药物点燃后的时间x (分)6121824空气中的含药量y (毫克/立方米)12643(1)在如图所示平面直角坐标系中描出以表格中数据为坐标的各点;(2)观察上述各点的分布规律,判断它们是否在同一个反比例函数图象上,如果在同一个反比例函数图象上,求出这个反比例函数图象所对应的函数表达式,如果不在同一个反比例函数图象上,说明理由;(3)研究表明:空气中每立方米的含药量不低于8毫克,且持续4分钟以上才能有效杀灭空气中的病菌,应用上述发现的规律估算此次消毒能否有效杀灭空气中的病菌?18.小丽家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热,此过程中水温y (℃)与开机时间x (分)满足一次函数关系,当加热到100℃时自动停止加热,随后水温开始下降,此过程中水温y (℃)与开机时间x (分)成反比例关系,当水温降至20℃时,饮水机又自动开始加热……,重复上述程序(如图所示),根据图中提供的信息,解答问题:(1)当010x ££时,求水温y (℃)与开机时间x (分)的函数关系式;(2)求图中t 的值;(3)若小丽在通电开机后即外出散步,请你预测小丽散步70分钟回到家时,饮水机内的温度约为多少℃?【答案】(1)820y x =+(010)x ££(2)50(3)50℃。
中考数学一次函数专项训练三含解析试题
制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日一次函数〔三〕制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日一、选择题1.如图,一次函数y=〔m ﹣2〕x ﹣1的图象经过二、三、四象限,那么m 的取值范围是A .m >0B .m <0C .m >2D .m <22.如图,在平面直角坐标系中,直线l :y =33x +1交x 轴于点A ,交y 轴于点B ,点A 1、A 2、A 3,…在x 轴上,点B 1、B 2、B 3,…在直线l 上。
假设△OB 1A 1,△A 1B 2A 2,△A 2B 3A 3,…均为等边三角形,那么△A 5B 6A 6的周长是A .243B .483C .963D .19233.如图,在矩形ABCD 中,O 是对角线AC 的中点,动点P 从点C 出发,沿DC 方向匀速运动到终点C .P ,Q 两点同时出发,并同时到达终点,连接OP ,OQ .设运动时间是为t ,四边形OPCQ 的面积为S ,那么以下图象能大致刻画S 与t 之间的关系的是A.B.C.D.4.均匀地向一个瓶子注水,最后把瓶子注满.在注水过程中,水面高度h随时间是t的变化规律如下图,那么这个瓶子的形状是以下的A.B.C.D.5.对于函数y=﹣3x+1,以下结论正确的选项是A.它的图象必经过点〔﹣1,3〕 B.它的图象经过第一、二、三象限C.当x>1时,y<0 D.y的值随x值的增大而增大6.假期到了,17名女老师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案A.5种 B.4种 C.3种 D.2种制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日7.如图,是一种古代计时器﹣﹣“漏壶〞的示意图,在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间是假设用x表示时间是,y表示壶底到水面的高度,下面的图象合适表示一小段时间是内y与x的函数关系的是〔不考虑水量变化对压力的影响〕A .B .C .D .8.今年校团委举办了“中国梦,我的梦〞歌咏比赛,张老师为鼓励同学们,带了50元钱取购置甲、乙两种笔记本作为奖品.甲种笔记本每本7元,乙种笔记本每本5元,每种笔记本至少买3本,那么张老师购置笔记本的方案一共有A.3种 B.4种 C.5种 D.6种9.如图,爸爸从家〔点O〕出发,沿着扇形AOB上OA→AB→BO的途径去匀速漫步,设爸爸距家〔点O〕的间隔为S,漫步的时间是为t,那么以下图形中能大致刻画S与t之间函数关系的图象是制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日A.B.C.D.10.函数y=3x﹣4与函数y=2x+3的交点的坐标是〔〕A.〔5,6〕B.〔7,﹣7〕C.〔﹣7,﹣17〕D.〔7,17〕11.一次函数y=kx﹣k,假设y随x的增大而减小,那么该函数的图象经过〔〕A.第一,二,三象限B.第一,二,四象限C.第二,三,四象限D.第一,三,四象限12.函数y=﹣x+5,y=,它们的一共同点是:①函数y随x的增大而减少;②都有局部图象在第一象限;③都经过点〔1,4〕,其中错误的有〔〕A. 0个B. 1个C. 2个D. 3个13.正比例函数y=kx和反比例函数2k1yx+=-〔k是常数且k≠0〕在同一平面直角坐标系中的图象可能是A.B.C.D.14.如图表示某加工厂今年前5个月每月消费某种产品的产量c〔件〕与时间是t〔月〕之制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日间的关系,那么对这种产品来说,该厂〔 〕A.1月至3月每月产量逐月增加,4、5两月产量逐月减小B.1月至3月每月产量逐月增加,4、5两月产量与3月持平C.1月至3月每月产量逐月增加,4、5两月产量均停顿消费D.1月至3月每月产量不变, 4、5两月均停顿消费15.将一次函数y x =图像向下平移b 个单位,与双曲线3y x=交于点A ,与x 轴交于点B ,那么22OA OB -=( ) A .23- B .23 C .3- D .316.如图,直线L 与双曲线交于A 、C 两点,将直线L 绕点O 顺时针旋转a 度角(0°<a ≤45°),与双曲线交于B 、D 两点,那么四边形ABCD 形状一定是( )A .平行四边形B .菱形C .矩形D .任意四边形17.张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油假设干升,加油前、后汽车都以100千米/小时的速度匀速行驶,油箱中剩余油量y 〔升〕与行驶时间是t 〔小时〕之间的关系如下图.以下说法错误的选项是A.加油前油箱中剩余油量y〔升〕与行驶时间是t〔小时〕的函数关系是y=﹣8t+25 B.途中加油21升C.汽车加油后还可行驶4小时D.汽车到达乙地时油箱中还余油6升18.假设反比例函数kyx=的图象过点〔﹣2,1〕,那么一次函数y=kx﹣k的图象过A.第一、二、四象限 B.第一、三、四象限C.第二、三、四象限 D.第一、二、三象限二、填空题19.假设函数1y =x2-有意义,那么自变量x的取值范围是。
2023年中考数学专题练——3一次函数
2023年中考数学专题练——3一次函数一.选择题(共5小题)1.(2022•邳州市一模)动物园内的一段路线如图1所示,园内有免费的班车,从入口处出发,沿该线路开往熊猫馆,途中停靠海洋馆(上下车时间忽略不计),第一班车上午9:00发车,以后每隔10分钟有一班车从入口处发车,且每班车速度均相同.小明周末到动物园游玩,上午8:35到达入口处,因还没到班车发车时间,于是从入口处出发沿该线路步行30分钟后到达海洋馆.离入口处的路程y(米)与时间x(分)的函数关系如图2所示,下列结论正确的是()A.第一班车从入口处到达熊猫馆所需的时间为15分钟B.第一班车离入口处的路程r(米)与时间x(分)的关系式为y=200x﹣4000(25≤x ≤45)C.第一班车到达海洋馆时小明已经在海洋馆停留了10分钟D.小明在海洋馆游玩35分钟后,想坐班车到熊猫馆,则小明最早能够坐上第四班车2.(2021•徐州二模)函数y=√3x﹣3的图象与x轴、y轴分别交于A、B两点,点C在x 轴上.若△ABC为等腰三角形,则满足条件的点C共有()A.4个B.3个C.2个D.1个3.(2021•徐州一模)下列一次函数中,y随x的增大而减小的是()A.y=x﹣3B.y=1﹣x C.y=2x D.y=3x+2 4.(2021•徐州模拟)已知正比例函数y=kx(k≠0)的图象过点(2,3),把正比例函数y =kx(k≠0)的图象平移,使它过点(1,﹣1),则平移后的函数图象大致是()A.B.C.D.5.(2022•贾汪区二模)如图,在平面直角坐标系中,点A、B的坐标分别为(4,0),(﹣2,3),点C(0,m)在y轴上,连接AB、BC.若∠CBA=2∠BAO,则m的值为()A.4B.92C.5D.112二.填空题(共14小题)6.(2022•睢宁县模拟)若A(2,6)与B(﹣3,a)都是正比例函数y=kx图象上的点,则a的值是.7.(2021•徐州模拟)如图,在平面直角坐标系中,动点A,B分别在x轴和函数y=x的图象上,AB=4,CB⊥AB,BC=2,则OC的最大值为.8.(2021•徐州模拟)在平面直角坐标系中,O为坐标原点,若直线y=x+3分别与x轴,直线y=﹣2x交于点A,B,则△AOB的面积为.9.(2022•鼓楼区校级一模)如图,与图中直线y=﹣x+1关于x轴对称的直线的函数表达式是.10.(2021•邳州市模拟)若正比例函数y=kx的图象经过点A(1,2),则k=.11.(2021•邳州市模拟)如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1,的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形A2021B2021C2021D2021的面积是.12.(2021•丰县校级模拟)如图,在平面直角坐标系中,直线l:y=√33x−√3与x轴交于点B1,以OB1为一边在OB1上方作等边△A1OB1,过点A1作A1B2平行于x轴,交直线l 于点B2,以A1B2为一边在A1B2上方作等边△A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为一边在A2B3上方作等边△A3A2B3,…,则A2020的横坐标是.13.(2021•徐州模拟)如图,直线y=52x+4与x轴、y轴分别交于A、B两点,把△AOB绕点B逆时针旋转90°后得到△A1O1B,则点A1的坐标是.14.(2022•贾汪区二模)已知正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,那么y的值随着x的值增大而.(填“增大”或“减小”)15.(2021•徐州模拟)如图,过点A0(0,1)作y轴的垂线交直线L:y=√33x于点A,过点A1,作直线L的垂线,交y轴于点A2,过点A2作y轴的垂线交直线L于点A,这样依次下去,得到△A0A1A2,△A2A3A4,△A4A5A6,…其面积分别记为S1,S2,S3,…,则S100为.16.(2021•鼓楼区校级一模)矩形ABCD中,E为AD边上的一点,动点P沿着B﹣E﹣D 运动,到D停止,动点Q沿着B﹣C运动到C停止,它们的速度都是1cm/s,设它们的运动时间为xs,△BPQ的面积记为ycm2,y与x的关系如图所示,则矩形ABCD的面积为cm2.17.(2022•丰县二模)如图,平面直角坐标系中,有A、B、C、D四点,若直线l经过点(4,﹣3)且与y轴垂直,则直线l会经过上述四点中的点.(填“A”或“B”或“C”或“D”)18.(2021•徐州模拟)如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2021的坐标是.19.(2021•徐州模拟)在平面直角坐标系中,若干个半径为1个单位长度,圆心角为60的扇形组成一条连续的曲线(如图),点P 从原点O 出发,沿这条曲线向右上下起伏运动,点P 在直线上的速度为1个单位长度/秒,在弧线上的速度为π3个单位长度/秒,则2021秒时,点P 的坐标是 .三.解答题(共5小题)20.(2022•睢宁县模拟)某地突发新冠肺炎疫情,医用防护面罩紧缺.某小型医用防护面罩加工厂迅速组织甲组员工加工,甲组在加工过程中因机器故障暂停一会,然后以原来的工作效率继续加工.由于时间紧任务重,负责人立即召集乙组员工也加入工作,直到完成加工任务.设甲组加工时间t (分钟),甲组加工医用防护面罩的数量为y 甲(个),乙组加工用防护面罩的数量为y 乙(个),其函数图象如图所示.(1)求y 乙与t 之间的函数关系式,并写出t 的取值范围;(2)求a 的值,并说明a 的实际意义;(3)甲组加工多长时间时,两组加工医用防护面罩的总数为480个?21.(2021•徐州模拟)某商店计划投入8万元购进A,B两种型号的电动自行车共30辆,其中每辆B型电动自行车的进价比每辆A型电动自行车多500元.用5万元购进的A型电动自行车与用6万元购进的B型电动自行车数量一样.(1)求A,B两种型号电动自行车的进价;(2)若A型电动自行车每辆售价为2800元,B型电动自行车每辆售价为3500元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部售完可获利润y元,写出y与m之间的函数关系式,并写出m的取值范围;(3)该商店如何进货才能获得最大利润?此时最大利润是多少元?22.(2021•徐州模拟)小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离y (km)与小王的行驶时间x(h)之间的函数关系.请你根据图象进行探究:(1)小王的速度是km/h,小李的速度是km/h;(2)求线段BC所表示的y与x之间的函数表达式,并写出自变量x的取值范围.(3)求当两人相距18千米时,小王行驶多少小时?23.(2021•鼓楼区校级一模)A,B两城市之间有一条公路相连,公路中途穿过C市,甲车从A市到B市,乙车从C市到A市,甲车的速度比乙车的速度慢20千米/时,两车距离C市的路程y(单位:千米)与行驶的时间t(单位:小时)的函数图象如图所示,结合图象信息,解答下列问题:(1)甲车的速度是千米/时,在图中括号内填入正确的数;(2)求图象中线段MN所在直线的函数解析式,不需要写出自变量的取值范围;(3)直接写出甲车出发后几小时,两车距C市的路程之和是460千米.24.(2021•徐州模拟)2020年初,新冠肺炎疫情暴发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:型号甲乙价格(元/只)项目成本124售价186(1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.2023年江苏省徐州市中考数学专题练——3一次函数参考答案与试题解析一.选择题(共5小题)1.(2022•邳州市一模)动物园内的一段路线如图1所示,园内有免费的班车,从入口处出发,沿该线路开往熊猫馆,途中停靠海洋馆(上下车时间忽略不计),第一班车上午9:00发车,以后每隔10分钟有一班车从入口处发车,且每班车速度均相同.小明周末到动物园游玩,上午8:35到达入口处,因还没到班车发车时间,于是从入口处出发沿该线路步行30分钟后到达海洋馆.离入口处的路程y (米)与时间x (分)的函数关系如图2所示,下列结论正确的是( )A .第一班车从入口处到达熊猫馆所需的时间为15分钟B .第一班车离入口处的路程r (米)与时间x (分)的关系式为y =200x ﹣4000(25≤x ≤45)C .第一班车到达海洋馆时小明已经在海洋馆停留了10分钟D .小明在海洋馆游玩35分钟后,想坐班车到熊猫馆,则小明最早能够坐上第四班车【解答】解:A 、第一班车从入口处到达熊猫馆所需的时间为45﹣25=20分钟,故A 错误,不符合题意;B 、设第一班车离入口处的路程r (米)与时间x (分)的关系式为y =kx +b ,将(25,0),(45,4000)代入得:{25k +b =045k +b =4000,解得{k =200b =−5000, ∴y =200x ﹣5000;故B 错误,不符合题意;C 、当y =2400时,x =37,而小明到达海洋馆时间为x =30,∴第一班车到达海洋馆时小明已经在海洋馆停留了7分钟,故C错误,不符合题意;D、小明上午8:35到达入口处,步行30分钟后到达海洋馆是9:05,在海洋馆游玩35分钟后是9:40,而第三班车9:20从入口处发车,经过37﹣25=12(分钟),即9:32到达海洋馆,小明不能赶上,第四班车9:30从入口处发车,9:42到达海洋馆,小明刚好能赶上,故D正确,符合题意;故选:D.2.(2021•徐州二模)函数y=√3x﹣3的图象与x轴、y轴分别交于A、B两点,点C在x 轴上.若△ABC为等腰三角形,则满足条件的点C共有()A.4个B.3个C.2个D.1个【解答】解:∵当x=0时,y=﹣3,∴B(0,﹣3).∴OB=3.∵当y=0时,x=√3,∴A(√3,0).∴OA=√3.在Rt△OAB中,∵AB=√OA2+OB2=2√3,∴∠OAB=60°.∵点C在x轴上,△ABC为等腰三角形,∴x轴上在点A的两侧各存在一点,使△ABC为等腰三角形,如下图:故选:C.3.(2021•徐州一模)下列一次函数中,y随x的增大而减小的是()A.y=x﹣3B.y=1﹣x C.y=2x D.y=3x+2【解答】解:在y=kx+b中,当k<0时,y随x的增大而减小,在y=x﹣3、y=2x和y=3x+2中,k的值分别为1、2、3,∴函数y=x﹣3、y=2x和y=3x+2中,y随x的增大而增大,在y=1﹣x中,k=﹣1<0,∴y随x的增大而减小,故选:B.4.(2021•徐州模拟)已知正比例函数y=kx(k≠0)的图象过点(2,3),把正比例函数y =kx(k≠0)的图象平移,使它过点(1,﹣1),则平移后的函数图象大致是()A.B.C.D.【解答】解:把点(2,3)代入y=kx(k≠0)得2k=3,解得k=3 2,∴正比例函数解析式为y=32 x,设正比例函数平移后函数解析式为y=32x+b,把点(1,﹣1)代入y=32x+b得32+b=−1,∴b=−5 2,∴平移后函数解析式为y=32x−52,故函数图象大致为:.故选:D .5.(2022•贾汪区二模)如图,在平面直角坐标系中,点A 、B 的坐标分别为(4,0),(﹣2,3),点C (0,m )在y 轴上,连接AB 、BC .若∠CBA =2∠BAO ,则m 的值为()A .4B .92C .5D .112【解答】解:过点B 作BD ⊥y 轴于点D ,设AB 与y 轴交于点E ,如图,则点D (0.3),设过点A ,B 的直线解析式为:y =kx +b ,{3=−2k +b0=4k +b ,解得{k =−12b =2, ∴直线AB 的解析式为y =−12x +2,令x =0,则y =2,∴E (0,2),∴OE =2,∴DE=3﹣2=1,∵BD⊥OD,AO⊥OD,∴BD∥AO,∠BDE=∠BDC=90°,∴∠DBE=∠BAO.∵∠CBA=2∠BAO,∴∠CBD=∠EBD.∵BD=BD,∠BDE=∠BDC=90°,∴△BDC≌△BDE(ASA),∴CD=DE=1,∴OD=CD+DE+OE=4,∴C(0,4).即m=4.故选:A.二.填空题(共14小题)6.(2022•睢宁县模拟)若A(2,6)与B(﹣3,a)都是正比例函数y=kx图象上的点,则a的值是﹣9.【解答】解:∵正比例函数y=kx的图象经过点A(2,6),∴6=2k,解得k=3,∴y=3x,将B(﹣3,a)代入y=3x得:a=3×(﹣3)=﹣9,故答案为:﹣9.7.(2021•徐州模拟)如图,在平面直角坐标系中,动点A,B分别在x轴和函数y=x的图象上,AB=4,CB⊥AB,BC=2,则OC的最大值为2√2+2.【解答】解:如图,以AB为斜边向上作等腰直角△ABD,连接OD,CD.∵点B 在直线y =x 上,∴∠BOA =45°,∵∠ADB =90°,AD =BD ,AB =4,∴AD =DB =2√2,∠ABD =45°,∵∠BOA =12∠BDA ,∴点O 在以D 为圆心,DA 为半径的⊙D 上,∴DO =DA =DB =2√2,∵CB ⊥AB ,∴∠CBD =45°,∵BD =2√2,BC =12AB =2,∴∠DCB =90°,∴CD =CB =2,∵OC ≤OD +CD ,∴OC ≤2√2+2,∴OC 的最大值为2√2+2.故答案为:2√2+2.8.(2021•徐州模拟)在平面直角坐标系中,O 为坐标原点,若直线y =x +3分别与x 轴,直线y =﹣2x 交于点A ,B ,则△AOB 的面积为 3 .【解答】解:在y =x +3中,令y =0,得x =﹣3,解{y =x +3y =−2x得,{x =−1y =2, ∴A (﹣3,0),B (﹣1,2),∴△AOB的面积=12×3×2=3,故答案为3.9.(2022•鼓楼区校级一模)如图,与图中直线y=﹣x+1关于x轴对称的直线的函数表达式是y=x﹣1.【解答】解:∵关于x轴对称的点横坐标不变纵坐标互为相反数,∴直线y=﹣x+1关于x轴对称的直线的函数表达式是﹣y=﹣x+1,即y=x﹣1.故答案为y=x﹣1.10.(2021•邳州市模拟)若正比例函数y=kx的图象经过点A(1,2),则k=2.【解答】解:∵正比例函数y=kx的图象经过点A(1,2),∴2=k×1,解得:k=2,故答案为:2.11.(2021•邳州市模拟)如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1,的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形A2021B2021C2021D2021的面积是(92)2020.【解答】解:∵直线l 为正比例函数y =x 的图象,∴∠D 1OA 1=45°,∴D 1A 1=OA 1=1,∴正方形A 1B 1C 1D 1的面积=1=(92)1﹣1, 由勾股定理得,OD 1=√2,D 1A 2=√22,∴A 2B 2=A 2O =3√22, ∴正方形A 2B 2C 2D 2的面积=(92)2﹣1, 同理,A 3D 3=OA 3=92,∴正方形A 3B 3C 3D 3的面积=814=(92)3﹣1, …由规律可知,正方形A n B n ∁n D n 的面积=(92)n ﹣1, ∴正方形A 2021B 2021C 2021D 2021的面积=(92)2020, 故答案为:(92)2020. 12.(2021•丰县校级模拟)如图,在平面直角坐标系中,直线l :y =√33x −√3与x 轴交于点B 1,以OB 1为一边在OB 1上方作等边△A 1OB 1,过点A 1作A 1B 2平行于x 轴,交直线l 于点B 2,以A 1B 2为一边在A 1B 2上方作等边△A 2A 1B 2,过点A 2作A 2B 3平行于x 轴,交直线l 于点B 3,以A 2B 3为一边在A 2B 3上方作等边△A 3A 2B 3,…,则A 2020的横坐标是 32(22020﹣1) .【解答】解:∵直线l :y =√33x −√3与x 轴交于点B 1,∴B 1(3,0),OB 1=3,如图所示,过A 1作A 1A ⊥OB 1于A ,则OA =12OB 1=32,A 1A =√3OA =3√32, ∴A 1的坐标为(32,3√32), ∵A 1B 2平行于x 轴,∴B 2的纵坐标为3√32, 将y =3√32代入y =√33x −√3,求得x =152, ∴B 2(152,3√32),∴A 1B 2=6,过A 2作A 2B ⊥A 1B 2于B ,则A 1B =12A 1B 2=3,A 2B =√3A 1B =3√3,∴A 2的横坐标为OA +A 1B =32+3=92,纵坐标为A 1A +A 2B =3√32+3√3=9√32, ∴A 2的坐标为(92,9√32), 将y =9√32代入y =√33x −√3,求得x =332, ∴B 3(332,9√32), ∴A 2B 3=332−92=12,∴A 3的横坐标为12×12+92=212, …, 由此可得,A n 的横坐标为3(2n −1)2, ∴A 2020的横坐标是32(22020﹣1).故答案为32(22020﹣1).13.(2021•徐州模拟)如图,直线y =52x +4与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点B 逆时针旋转90°后得到△A 1O 1B ,则点A 1的坐标是 (4,125) .【解答】解:在y =52x +4中,令x =0得,y =4,令y =0,得0=52x +4,解得x =−85,∴A (−85,0),B (0,4),由旋转可得△AOB ≌△A 1O 1B ,∠ABA 1=90°,∴∠ABO =∠A 1BO 1,∠BO 1A 1=∠AOB =90°,OA =O 1A 1=85,OB =O 1B =4, ∴∠OBO 1=90°,∴O 1B ∥x 轴,∴点A 1的纵坐标为OB ﹣OA 的长,即为4−85=125; 横坐标为O 1B =OB =4,故点A 1的坐标是(4,125), 故答案为:(4,125).14.(2022•贾汪区二模)已知正比例函数y =kx (k 是常数,k ≠0)的图象经过第二、四象限,那么y 的值随着x 的值增大而 减小 .(填“增大”或“减小”)【解答】解:函数y =kx (k ≠0)的图象经过第二、四象限,那么y 的值随x 的值增大而减小,故答案为:减小.15.(2021•徐州模拟)如图,过点A 0(0,1)作y 轴的垂线交直线L :y =√33x 于点A ,过点A 1,作直线L 的垂线,交y 轴于点A 2,过点A 2作y 轴的垂线交直线L 于点A ,这样依次下去,得到△A 0A 1A 2,△A 2A 3A 4,△A 4A 5A 6,…其面积分别记为S 1,S 2,S 3,…,则 S 100为 3√3×2395 .【解答】解:∵点A 0的坐标是(0,1),∴OA 0=1,∵点A 1在直线y =√33x 上,∴OA 1=2,A 0A 1=√3,∴OA 2=4,∴OA 3=8,∴OA 4=16,得出OA n =2n ,∴A n A n +1=2n •√3,∴OA 198=2198,A 198A 199=2198•√3,∵S 1=12(4﹣1)•√3=32√3,∵A 2A 1∥A 200A 199,∴△A 0A 1A 2∽△A 198A 199A 200,∴S 100S 1=(198√3√3)2, ∴S 100=2396•3√32=3√3×2395 故答案为3√3×2395.16.(2021•鼓楼区校级一模)矩形ABCD 中,E 为AD 边上的一点,动点P 沿着B ﹣E ﹣D 运动,到D 停止,动点Q 沿着B ﹣C 运动到C 停止,它们的速度都是1cm /s ,设它们的运动时间为xs ,△BPQ 的面积记为ycm 2,y 与x 的关系如图所示,则矩形ABCD 的面积为 72 cm 2.【解答】解:从函数的图象和运动的过程可以得出:当点P 运动到点E 时,x =10,y =30,过点E 作EH ⊥BC 于H ,由三角形面积公式得:y =12BQ ⋅EH =12×10×EH =30,解得EH =AB =6,∴AE =√BE 2−AB 2=√102−62=8,由图2可知当x =14时,点P 与点D 重合,∴AD=AE+DE=8+4=12,∴矩形的面积为12×6=72(cm2).故答案为:72.17.(2022•丰县二模)如图,平面直角坐标系中,有A、B、C、D四点,若直线l经过点(4,﹣3)且与y轴垂直,则直线l会经过上述四点中的点B.(填“A”或“B”或“C”或“D”)【解答】解:∵直线l经过点(4,﹣3)且与y轴垂直,∴经过直线l的点纵坐标与点(4,﹣3)纵坐标相等,∵点B的坐标(0,﹣3),∴点B符合题意.故答案为:B.18.(2021•徐州模拟)如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2021的坐标是(﹣21010,﹣21010).【解答】解:由已知,点A 每次旋转转动45°,则转动一周需转动8次,每次转动点A 到原点的距离变为转动前的√2倍,∵2021=252×8+5,∴点A 2021的在第三象限的角平分线上,OA 2020=(√2)2020=21010,故答案为:(﹣21010,﹣21010).19.(2021•徐州模拟)在平面直角坐标系中,若干个半径为1个单位长度,圆心角为60的扇形组成一条连续的曲线(如图),点P 从原点O 出发,沿这条曲线向右上下起伏运动,点P 在直线上的速度为1个单位长度/秒,在弧线上的速度为π3个单位长度/秒,则2021秒时,点P 的坐标是 (20212,√32) .【解答】解:设第n 秒运动到P n (n 为自然数)点,观察,发现规律:P 1(12,√32),P 2(1,0),P 3(32,−√32),P 4(2,0),P 5(52,√32),…, ∴P 4n +1(4n+12,√32),P 4n +2(4n+22,0),P 4n +3(4n+32,−√32),P 4n +4(4n+42,0), ∵2021=4×505+1,∴P 2021为(20212,√32),故答案为:(20212,√32). 三.解答题(共5小题)20.(2022•睢宁县模拟)某地突发新冠肺炎疫情,医用防护面罩紧缺.某小型医用防护面罩加工厂迅速组织甲组员工加工,甲组在加工过程中因机器故障暂停一会,然后以原来的工作效率继续加工.由于时间紧任务重,负责人立即召集乙组员工也加入工作,直到完成加工任务.设甲组加工时间t (分钟),甲组加工医用防护面罩的数量为y 甲(个),乙组加工用防护面罩的数量为y 乙(个),其函数图象如图所示.(1)求y 乙与t 之间的函数关系式,并写出t 的取值范围;(2)求a 的值,并说明a 的实际意义;(3)甲组加工多长时间时,两组加工医用防护面罩的总数为480个?【解答】解:(1)设y 乙与t 之间的函数关系式是y 乙=kt +b ,则{50k +b =080k +b =360, 解得{k =12b =−600, 即y 乙与t 之间的函数关系式是y 乙=12t ﹣600(50≤t ≤80);(2)由图象可得,甲组加工医用防护面罩的速度为120÷30=4(个/分钟),∴a =120+4×(80﹣40)=280,即a 的值是280,实际意义是当甲组加工医用防护面罩80分钟时,一共加工医用防护面罩280个;(3)由题意可得,当40≤t ≤80时,由于工作效率没有变,∴y 甲=120+4(t ﹣40)=4t ﹣40,当y 甲+y 乙=480时,4t ﹣40+12t ﹣600=480,得t =70,∴甲组加工70分钟时,甲、乙两组加工医用防护面罩的总数为480个.21.(2021•徐州模拟)某商店计划投入8万元购进A ,B 两种型号的电动自行车共30辆,其中每辆B 型电动自行车的进价比每辆A 型电动自行车多500元.用5万元购进的A 型电动自行车与用6万元购进的B 型电动自行车数量一样.(1)求A ,B 两种型号电动自行车的进价;(2)若A 型电动自行车每辆售价为2800元,B 型电动自行车每辆售价为3500元,设该商店计划购进A 型电动自行车m 辆,两种型号的电动自行车全部售完可获利润y 元,写出y 与m 之间的函数关系式,并写出m 的取值范围;(3)该商店如何进货才能获得最大利润?此时最大利润是多少元?【解答】解:(1)设A 、B 两种型号电动自行车的进货单价分别为x 元,(x +500)元. 由题意:50000x =60000x+500,解得x =2500,经检验:x =2500是分式方程的解.答:A 、B 两种型号电动自行车的进货单价分别为2500元,3000元;(2)由题意得:y =300m +500(30﹣m )=﹣200m +15000;由2500m +3000(30﹣m )≤80000,得m ≥20,∴20≤m ≤30;(3)由(1)可知y =﹣200m +15000,∵﹣200<0,∴y 随x 的最大而减小,∴m =20时,y 有最大值,最大值为11000元,即商店购进A 型号电动自行车20辆,B 型号电动自行车10辆时获得最大利润,最大值为11000元.22.(2021•徐州模拟)小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离y (km )与小王的行驶时间x (h )之间的函数关系.请你根据图象进行探究:(1)小王的速度是 10 km /h ,小李的速度是 20 km /h ;(2)求线段BC 所表示的y 与x 之间的函数表达式,并写出自变量x 的取值范围.(3)求当两人相距18千米时,小王行驶多少小时?【解答】解:(1)由图可得,小王的速度为:30÷3=10(km /h ),小李的速度为:(30﹣10×1)÷1=20(km /h ),答:小王和小李的速度分别是10km /h 、20km /h ,故答案为:10,20;(2)小李从乙地到甲地用的时间为:30÷20=1.5(h ),当小李到达甲地时,两人之间的距离为:10×1.5=15km ,∴点C 的坐标为(1.5,15),设线段BC 所表示的y 与x 之间的函数解析式为y =kx +b ,{k +b =01.5k +b =15,解得{k =30b =−30, 即线段BC 所表示的y 与x 之间的函数解析式是y =30x ﹣30(1≤x ≤1.5);(3)①(30﹣18)÷(20+10)=0.4(小时);②18÷10=1.8(小时).答:当两人相距18千米时,小王行驶0.4小时或1.8小时.23.(2021•鼓楼区校级一模)A ,B 两城市之间有一条公路相连,公路中途穿过C 市,甲车从A 市到B 市,乙车从C 市到A 市,甲车的速度比乙车的速度慢20千米/时,两车距离C 市的路程y (单位:千米)与行驶的时间t (单位:小时)的函数图象如图所示,结合图象信息,解答下列问题:(1)甲车的速度是 60 千米/时,在图中括号内填入正确的数;(2)求图象中线段MN 所在直线的函数解析式,不需要写出自变量的取值范围;(3)直接写出甲车出发后几小时,两车距C 市的路程之和是460千米.【解答】解:(1)由题意,甲的速度为4808=60千米/小时.乙的速度为80千米/小时, 48080=6(小时),4+6=10(小时),∴图中括号内的数为10.故答案为:60.(2)设线段MN 所在直线的解析式为 y =kt +b ( k ≠0 ).把点M (4,0),N (10,480)代入y =kt +b ,得:{4k +b =010k +b =480, 解得:{k =80b =−320. ∴线段MN 所在直线的函数解析式为y =80t ﹣320.(3)(480﹣460)=20,20÷60=13(小时),或60t ﹣480+80(t ﹣4)=460,解得t =9,答:甲车出发13小时或9小时时,两车距C 市的路程之和是460千米. 24.(2021•徐州模拟)2020年初,新冠肺炎疫情暴发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:型号价格(元/只) 甲 乙项目成本12 4 售价 18 6(1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.【解答】解:(1)设生产甲、乙两种型号的防疫口罩分别是x 万只和y 万只,由题意可得:{18x +6y =300x +y =20, 解得:{x =15y =5, 答:生产甲、乙两种型号的防疫口罩分别是15万只和5万只;(2)设四月份生产甲、乙两种型号的防疫口罩分别是a 万只和(20﹣a )万只,利润为w 万元,由题意可得:12a +4(20﹣a )≤216,∴a ≤17,∵w =(18﹣12)a +(6﹣4)(20﹣a )=4a +40是一次函数,w 随a 的增大而增大, ∴a =17时,w 有最大利润=108(万元),答:安排生产甲种型号的防疫口罩17万只,乙种型号的防疫口罩3万只,最大利润为108万元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数3
17.(2012年贵州六盘水)如图3-2-8是邻居张大爷去公园锻炼及原路返回时离家的距离y(单位:千米)与时间t(单位:分钟)之间的函数图象,根据图象信息,下列说法正确的是()
图3-2-8
A.张大爷去时用的时间等于回家的时间B.张大爷在公园锻炼了40分钟
C.张大爷去时走上坡路,回家时走下坡路D.张大爷去时的速度比回家时的速度慢
18.(2011年山东济宁)“五一”期间,为了满足广大人民群众的消费需求,某商店计划用
(1)
洗衣机各多少台?
(2)若在现有资金160 000元允许的范围内,购买上表中三类家电共100台,其中彩电台数和冰箱台数相同,且购买洗衣机的台数不超过购买彩电的台数,请你算一算:有几种进货方案?哪种进货方案能使商店销售完这批家电后获得的利润最大?并求出最大利润(利润=售价-进价).。