matlab图像处理实验报告
matlab图象处理实验报告
对图像lena.bmp 添加高斯噪声,并分别进行均值滤波和中值滤波。
程序:I=imread('d:\lena.bmp');subplot(2,2,1),imshow(I)title('原始图像')I=imnoise(I,'gaussian',0,0.02); % 添加均值为0,方差为0.02的高斯噪声 subplot(2,2,2),imshow(I)title('加噪图像')h=[1 1 1;1 1 1;1 1 1];h=h/9; % 产生3×3的均值滤波模板 J1=filter2(h,I,'same'); % 用均值模板对图像I 滤波 subplot(2,2,3),imshow(J1,[])%subplot(2,2,3),imshow(J1/255)%J1=uint8(J1);subplot(2,2,3),imshow(J1)title('均值滤波结果')J2=medfilt2(I); % 用3×3的滤波窗口对图像I 进行中值滤波 subplot(2,2,4),imshow(J2)title('中值滤波结果')结果:加噪图像中值滤波结果原始图像均值滤波结果I=imread('d:\lena.bmp');subplot(2,2,1),imshow(I)title('原始图像')hx=[-1 -2 -1;0 0 0;1 2 1]; % 生成Sobel 垂直梯度模板 hy=hx'; % 生成Sobel 水平梯度模板 gradx=filter2(hx,I,'same');gradx=abs(gradx); % 计算图像的Sobel 垂直梯度 subplot(2,2,2),imshow(gradx,[])title('图像的Sobel 垂直梯度')grady=filter2(hy,I,'same');grady=abs(grady);% 计算图像的Sobel 水平梯度 subplot(2,2,3),imshow(grady,[])title('图像的Sobel 水平梯度')grad=gradx+grady;% 得到图像的Sobel 梯度subplot(2,2,4),imshow(grad,[])title('图像的Sobel 梯度')结果:图像的Sobel 垂直梯度图像的Sobel 梯度原始图像图像的Sobel 水平梯度。
matlab数字图像处理实验报告
学通大重庆交告生实验报学实验课程名称《数字图像处理》课程上机实验河海学院仿真实验室开课实验室河海学院学院级地理信息系统08 年级专业姓学生名学号08260129时间2011 至2012 学年第 1 学期实验一图像显示本次实验得分【实验内容】)1 imread读取图像。
使用 MATLAB图像读取函数)2显示图像。
MATLAB图像显示函数imshow使用)3为图像添加色带。
MATLAB添加色带函数colorbar使用【实验目的】)1图像读取和显示函数的应用方法。
掌握MATLAB)2了解如何为图像添加色带。
【实验结果】(放置处理前图像)(放置处理后图像)2-1 2-5-3 2-10【程序说明】bw1 a=imread('yq.jpg'); e=imread('yq.jpg');whosa=double(a); imshow(e);2-5-3 iptsetpref('ImshowTrues%a=uint8(a); 结果图% ize','manual'); imshow(a);figure,imshow(e);%save saturn.dat a 使用一个调色板来显示一%iptsetpref('ImshowTrues-ascii;副二进制图像ize','auto'); save yu.text a -ascii; figure,imshow(bw,[1 0bw1=zeros(20,20); 结果图%2-1 0;0 0 1]); bw1(2:2:18,2:2:18)=1; 2-10%结果图figure,imshow(bw1,'notruesize');实验二图像运算本次实验得分【实验内容】)1 MATLAB使用滑动邻域操作函数nlfilter对图像进行处理。
)2使用 MATLAB分离邻域操作函数blkproc对图像进行处理。
matlab图像处理实验
matlab图像处理实验实验⼀ Matlab语⾔、数字图象基本操作⼀、实验⽬的1、复习MATLAB语⾔的基本⽤法;2、掌握MATLAB语⾔中图象数据与信息的读取⽅法;3、掌握在MATLAB中绘制灰度直⽅图的⽅法,了解灰度直⽅图的均衡化的⽅法。
⼆、实验原理MATLAB是集数值计算,符号运算及图形处理等强⼤功能于⼀体的科学计算语⾔。
作为强⼤的科学计算平台,它⼏乎能够满⾜所有的计算需求。
MATLAB软件具有很强的开放性和适⽤性。
在保持内核不变的情况下,MATLAB可以针对不同的应⽤学科推出相应的⼯具箱(toolbox)。
⽬前,MATLAB已经把⼯具箱延伸到了科学研究和⼯程应⽤的诸多领域,诸如数据采集、概率统计、信号处理、图像处理和物理仿真等,都在⼯具箱(Toolbox)家族中有⾃⼰的⼀席之地。
在实验中我们主要⽤到MATLAB提供图象处理⼯具箱(Image ProcessingToolbox)。
1、MATLAB与数字图像处理MATLAB全称是Matrix Laboratory(矩阵实验室),⼀开始它是⼀种专门⽤于矩阵数值计算的软件,从这⼀点上也可以看出,它在矩阵运算上有⾃⼰独特的特点。
实际上MATLAB中的绝⼤多数的运算都是通过矩阵这⼀形式进⾏的。
这⼀特点也就决定了MATLAB在处理数字图像上的独特优势。
理论上讲,图像是⼀种⼆维的连续函数,然⽽在计算机上对图像进⾏数字处理的时候,⾸先必须对其在空间和亮度上进⾏数字化,这就是图像的采样和量化的过程。
⼆维图像进⾏均匀采样,就可以得到⼀幅离散化成M×N样本的数字图像,该数字图像是⼀个整数阵列,因⽽⽤矩阵来描述该数字图像是最直观最简便的了。
⽽MATLAB的长处就是处理矩阵运算,因此⽤MATLAB处理数字图像⾮常的⽅便。
MATLAB⽀持五种图像类型,即索引图像、灰度图像、⼆值图像、RGB图像和多帧图像阵列;⽀持BMP、GIF、HDF、JPEG、PCX、PNG、TIFF、XWD、CUR、ICO等图像⽂件格式的读,写和显⽰。
matlab图像处理实验报告
matlab图像处理实验报告《Matlab图像处理实验报告》摘要:本实验报告通过使用Matlab软件进行图像处理实验,对图像进行了灰度化、二值化、边缘检测、图像增强等处理,通过实验结果分析,验证了Matlab在图像处理领域的实用性和有效性。
1. 实验目的本实验旨在通过Matlab软件进行图像处理实验,掌握图像处理的基本方法和技术,提高对图像处理算法的理解和应用能力。
2. 实验原理图像处理是对图像进行数字化处理的过程,主要包括图像获取、图像预处理、图像增强、图像分割和图像识别等步骤。
Matlab是一种功能强大的科学计算软件,具有丰富的图像处理工具箱,可用于图像的处理、分析和识别。
3. 实验内容(1)图像灰度化首先,通过Matlab读取一幅彩色图像,并将其转换为灰度图像。
利用Matlab 中的rgb2gray函数,将RGB图像转换为灰度图像,实现图像的灰度化处理。
(2)图像二值化接着,对灰度图像进行二值化处理,将图像转换为黑白二值图像。
利用Matlab 中的im2bw函数,根据设定的阈值对灰度图像进行二值化处理,实现图像的二值化处理。
(3)边缘检测然后,对二值图像进行边缘检测处理,提取图像的边缘信息。
利用Matlab中的edge函数,对二值图像进行边缘检测处理,实现图像的边缘检测处理。
(4)图像增强最后,对原始图像进行图像增强处理,改善图像的质量和清晰度。
利用Matlab 中的imadjust函数,对原始图像进行图像增强处理,实现图像的增强处理。
4. 实验结果分析通过实验结果分析,可以发现Matlab在图像处理领域具有较高的实用性和有效性。
通过Matlab软件进行图像处理实验,可以快速、方便地实现图像的处理和分析,提高图像处理的效率和精度,为图像处理技术的研究和应用提供了重要的工具和支持。
5. 结论本实验通过Matlab图像处理实验,掌握了图像处理的基本方法和技术,提高了对图像处理算法的理解和应用能力。
数字图像处理matlab版实验报告
数字图像处理实验报告(matlab版)一.实验目的:熟悉数字图像处理中各种椒盐噪声的实质,明确各种滤波算法的的原理。
进一步熟悉matlab的编程环境,熟悉各种滤波算法对应的matlab函数。
实验结果给以数字图像处理课程各种算法处理效果一个更直观的印象。
二.实验原理:1.IPT(图像处理工具箱)基本函数介绍1. imread函数该函数用于从图形文件中读出图像。
格式A=IMRAED(FILENAME,FMT)。
该函数把FILENAME 中的图像读到A中。
若文件包含一个灰度图,则为二维矩阵。
若文件包含一个真彩图(RGB),则A为一三维矩阵。
FILENAME指明文件,FMT指明文件格式。
格式[X,MAP]=IMREAD(FILENAME,FMT).把FILENAME中的索引图读入X,其相应的调色板读到MAP中.图像文件中的调色板会被自动在范围[0,1]内重新调节。
FMT的可能取值为jpg 或jpeg,tif或tiff,bmp,png,hdf,pcx,xwd。
2.imwrite函数该函数用于把图像写入图形文件中。
格式IMWRITE(A,FILENAME,FMT)把图像A写入文件FILENAME中。
FILENAME指明文件名, FMT指明文件格式。
A既可以是一个灰度图,也可以是一个真彩图像。
格式IMWRITE(X,MAP,FILENAME,FMT)把索引图及其调色板写入FILENAME中。
MAP必须为合法的MATLAB调色板,大多数图像格式不支持多于256色的调色板。
FMT的可能取值为tif或tiff,jpg或jpeg,bmp,png,hdf,pcx,xwd。
3. imshow函数显示图像。
格式IMSHOW(I,N).用N级离散灰度级显示灰度图象I。
若省略N,默认用256级灰度显示24位图像,64级灰度显示其他系统。
格式IMSHOW(I,[LOW HIGH]),把I 作为灰度图显示。
LOW值指定为黑色,HIGH指定为白色,中间为按比例分布的灰色。
MATLAB图像处理实验程序及结果
1.建立输入图像,在64⨯64的黑色图像矩阵的中心建立16⨯16的白色矩形图像点阵,形成图像文件。
对输入图像进行二维傅立叶变换,将原始图像及变换图像(三维、中心化)都显示于屏幕上。
clear N=100; f=zeros(64,64);f(24:39,24:39)=1;subplot(1, 2 ,1),imshow(f,'notruesize') title('原始图像') F=fft2(f,N,N)F2=fftshift(abs(F));subplot(1, 2 ,2),x=1:N;y=1:N; mesh(x,y,F2(x,y)); title('傅里叶变换')原始图像100傅里叶变换2.调整输入图像中白色矩形的位置,再进行变换,将原始图像及变换图像(三维、中心化)都显示于屏幕上,比较变换结果。
clear N=100; f=zeros(64,64);f(10:25,10:25)=1;subplot(1, 2 ,1),imshow(f,'notruesize') title('原始图像') F=fft2(f,N,N)F2=fftshift(abs(F));subplot(1, 2 ,2),x=1:N;y=1:N; mesh(x,y,F2(x,y)); title('傅里叶变换')原始图像0100傅里叶变换3.调整输入图像中白色矩形的尺寸(40⨯40,4⨯4),再进行变换,将原始图像及变换图像(三维、中心化)都显示于屏幕上,比较变换结果。
clear N=100;f=zeros(64,64); f(12:51,12:51)=1;subplot(1, 2 ,1),imshow(f,'notruesize') title('原始图像') F=fft2(f,N,N)F2=fftshift(abs(F));subplot(1, 2 ,2),x=1:N;y=1:N; mesh(x,y,F2(x,y)); title('傅里叶变换')原始图像100clear N=100; f=zeros(64,64);f(30:33,30:33)=1;subplot(1, 2 ,1),imshow(f,'notruesize') title('原始图像') F=fft2(f,N,N)F2=fftshift(abs(F));subplot(1, 2 ,2),x=1:N;y=1:N; mesh(x,y,F2(x,y)); title('傅里叶变换')原始图像1001.显示图像(cameraman.tif )及灰度直方图。
matlab简单图像处理实验报告
实验一:图像文件类型转换实验目的:理解数字图像文件的几种基本类型掌握在MATLAB中进行图象文件类型转换的方法观察图象转换前后的效果加深对图象文件类型的理解熟悉图象格式、颜色系统间的转换实验内容:1)灰度图像与索引图像的相互转换2)RGB图像与索引图像的相互转换3)将图像转换为二值化图像实验方法:利用MATLAB工具进行实验一、灰度图像到索引图像的转换clear>> info=imfinfo('rice.png')info =Filename: 'rice.png'FileModDate: '26-Jan-2003 00:03:06'FileSize: 44607Format: 'png'FormatVersion: []Width: 256Height: 256BitDepth: 8ColorType: 'grayscale'FormatSignature: [137 80 78 71 13 10 26 10]Colormap: []Histogram: []InterlaceType: 'none'Transparency: 'none'SimpleTransparencyData: []BackgroundColor: []RenderingIntent: []Chromaticities: []Gamma: []XResolution: []YResolution: []ResolutionUnit: []XOffset: []YOffset: []OffsetUnit: []SignificantBits: []ImageModTime: '27 Dec 2002 19:57:12 +0000'Title: []Author: []Description: 'Rice grains'Copyright: 'Copyright The MathWorks, Inc.'CreationTime: []Software: []Disclaimer: []Warning: []Source: []Comment: []OtherText: []RGB=imread('rice.png');>> figure(3);>> imshow(RGB);>> figure(1);>> [RGB1,map1]=gray2ind(RGB,128);>> imshow(RGB1,map1);>> figure(2);>> [RGB2,map2]=gray2ind(RGB,16);>> imshow(RGB2,map2);>> imwrite(RGB1,map1,'3.bmp');>> imwrite(RGB2,map2,'4.bmp');图3 图1图2实验结果分析:从上述实验结果,我们可以看出灰度级不同,图像的亮度也不一样。
数字图像处理实验1 MATLAB图像处理编程基础 实验报告
实验报告课程名称数字图像处理实验项目MATLAB图像处理编程基础指导教师学院光电信息与通信工程__专业电子信息工程班级/学号学生姓名______ __________实验日期______ _成绩______________________实验1 MATLAB图像处理编程基础一、实验目的1.了解MATLAB产品体系和了解MATLAB图像处理工具箱。
2.掌握MATLAB的基本应用方法。
3.掌握MATLAB图像存储/图像数据类型/图像类型。
4.掌握图像文件的读/写/信息查询。
5.掌握图像显示--显示多幅图像、4种图像类型的显示方法、特殊图像的显示技术6.编程实现图像类型间的转换和图像算术操作。
二、实验的硬件、软件平台硬件:计算机软件:操作系统:Windows XP应用软件:MATLAB 7.0.1三、MATLAB图像处理工具箱的功能图像处理工具箱是一个函数的集合,它扩展了matlab数值计算环境的能力。
这个工具箱支持了大量图像处理操作,包括:空间图像变换 Spatial image transformations形态操作 Morphological operations邻域和块操作 Neighborhood and block operations线性滤波和滤波器设计 Linear filtering and filter design格式变换 Transforms图像分析和增强 Image analysis and enhancement图像登记 Image registration清晰化处理 Deblurring兴趣区处理 Region of interest operations四、说明使用MATLAB进行图像处理所需函数调用步骤在Command Window中,以命令行单句调用某一函数只需写xxx(函数名)xxxxxxx)这样就可以调用了.五、给出MATLAB图像处理工具箱的数据类型和4种基本图像类型工具箱里的函数都是M文件,可以通过type function_name来查看代码,也可以通过写自己的matlab函数来扩展工具箱。
matlab图像处理综合实验实验报告
《数字图像处理》实验报告学院:专业:班级:姓名:学号:实验一实验名称:图像增强实验目的:1.熟悉图像在Matlab下的读入,输出及显示;2.熟悉直方图均衡化;3.熟悉图像的线性指数等;4.熟悉图像的算术运算及几何变换.实验仪器:计算机,Matlab软件实验原理:图像增强是为了使受到噪声等污染图像在视觉感知或某种准则下尽量的恢复到原始图像的水平之外,还需要有目的性地加强图像中的某些信息而抑制另一些信息,以便更好地利用图像。
图像增强分频域处理和空间域处理,这里主要用空间域的方法进行增强。
空间域的增强主要有:灰度变换和图像的空间滤波。
图像的直方图实际上就是图像的各像素点强度概率密度分布图,是一幅图像所有像素集合的最基本统计规律,均衡化是指在每个灰度级上都有相同的像素点过程。
实验容如下:I=imread('E:\cs.jpg');%读取图像subplot(2,2,1),imshow(I),title('源图像')J=rgb2gray(I)%灰度处理subplot(2,2,2),imshow(J) %输出图像title('灰度图像') %在原始图像中加标题subplot(2,2,3),imhist(J) %输出原图直方图title('原始图像直方图')I=imread('E:\cs.jpg');%读取图像subplot(1,2,1),imshow(I);theta = 30;K = imrotate(I,theta);subplot(1,2,2),imshow(K)对数运算:I=imread('E:\dog.jpg');subplot(2,2,1),imshow(I),title('源图像')J=rgb2gray(I)%灰度处理subplot(2,2,2),imshow(J),title('灰度变换后图像') J1=log(1+double(J));subplot(2,2,3),imshow(J1,[]),title('对数变换后')指数运算:I=imread('E:\dog.jpg');f=double(I);g=(2^2*(f-1))-1f=uint8(f); g=uint8(g);subplot(1,2,1);subimage(f),title('变换一') subplot(1,2,2);subimage(g),title('变换二')加法运算:clc;clear all;close all; i = imread('E:\dog.jpg');j = imnoise(i,'gaussian',0,0.02);subplot(1,3,1),imshow(i),title('图一') subplot(1,3,2),imshow(j),title('图二') k=zeros(242,308); for p=1:100j = imnoise(i,'gaussian',0,0.02); j1 = im2double(j); k = k + j1; end k=k/100;subplot(1,3,3),imshow(k),title('图三')变换一200400600100200300400500变换二200400600100200300400500实验二实验名称:图像变换实验目的:(1)进一步对matlab的了解和使用;(2)学习如何在matlab中对数字图像的处理;实验原理:图像和其他信号一样,既能在空间域处理,也能在频率域处理。
MATLAB实验报告3
MATLAB实验报告3MATLAB实验报告3一、实验目的1.掌握MATLAB程序的调试方法;2.掌握MATLAB中的矩阵操作;3.熟悉MATLAB中处理图像的基本操作。
二、实验内容1.用MATLAB调试程序;2.用MATLAB进行矩阵运算;3.用MATLAB处理图像。
三、实验原理及步骤1.MATLAB程序的调试方法在MATLAB中调试程序可以采用设置断点、逐行运行、单步调试等方法。
设置断点可以在程序中的其中一行上点击左键,会出现一个红色的圆点表示断点已设置。
逐行运行可以通过点击Editor界面上的运行按钮实现。
单步调试可以通过点击断点所在行的左侧按钮实现。
2.矩阵运算在MATLAB中,对于矩阵的运算可以使用一些基本的函数,如矩阵加法、减法、乘法等。
矩阵加法可以使用"+"操作符实现,减法可以使用"-"操作符实现,乘法可以使用"*"操作符实现。
另外,MATLAB还提供了一些更复杂的矩阵运算函数,如矩阵的转置、逆等。
3.图像处理在MATLAB中,可以使用imread函数加载图像文件,使用imshow函数显示图像,使用imwrite函数保存图像。
另外,还可以使用一些图像处理函数对图像进行处理,如灰度化、二值化、平滑滤波等。
四、实验步骤1.调试程序首先,在MATLAB的Editor界面中打开要调试的程序文件。
然后,在程序的其中一行上点击左键,即设置了一个断点。
最后,点击运行按钮,程序会在断点处停下,然后可以通过单步调试和逐行运行来逐步查看程序的执行过程和变量的取值。
2.矩阵运算首先,定义两个矩阵A和B,并赋值。
然后,使用"+"操作符对两个矩阵进行相加,得到矩阵C。
最后,使用disp函数显示矩阵C的值。
3.图像处理首先,使用imread函数加载一张图像。
然后,使用imshow函数显示加载的图像。
接着,使用rgb2gray函数将彩色图像转换为灰度图像。
matlab图像处理基础实验,数字图像处理实验报告Matlab图像处理基础
matlab图像处理基础实验,数字图像处理实验报告Matlab图像处理基础《数字图像处理实验报告 Matlab图像处理基础》由会员分享,可在线阅读,更多相关《数字图像处理实验报告 Matlab图像处理基础(27页珍藏版)》请在⼈⼈⽂库⽹上搜索。
1、院系:计算机科学学院专业:计算机科学和技术年级: 2012级课程名称:数字图像处理组号:姓名(学号):指导教师:⾼志荣2015年5⽉25⽇学年2012年度班号1学号专业计算机科学和技术姓名实验名称Matlab图像处理的基础实验室204果实检查眼睛的和要拜托了⼀、实验⽬的:(熟悉Matlab开发环境(掌握Matlab中数字图像读取、显⽰、保存的基本⽅法的使⽤(3)把握不同种类的数字图像间的变换⽅法(4)加深空间分辨率和灰度分辨率对图像显⽰效果的影响(熟悉Matlab中的傅⽴叶变换(基于Matlab的数字图像程序设计⽅法⼆、实验内容:(在Matlab中使⽤imread函数读取1张RGB图像(从实验。
2、素材中任意选择),调查该图像的尺⼨、数据类型信息,将该图像转换为灰度图像并以bmp形式保存。
(使⽤imread函数读取1张灰度图像(从实验素材中任意选择),分别进⾏2个采样、4个采样和8个采样,以相同⼤⼩显⽰原图像和采样后的3张结果图像,⽐较空间分辨率对图像显⽰效果的影响。
(使⽤imread函数读取1张灰度图像(从实验素材中任意选择),分别以5、10、50的间隔将该灰度再次均匀量化,以相同⼤⼩显⽰原图像和再量化后的3张结果图像,⽐较灰度分辨率对图像显⽰效果的影响。
(4)读取⼀张灰度图像,对其进⾏快速傅⽴叶变换,在同⼀窗⼝中显⽰原始的空间区域图像和变换后的频域图像。
三、实验要求:(1)关于具体的。
3、实验内容,分别给出命令(或m⽂书)、输出结果、成因分析、经验总结。
(2)所有⽣成的图像或m⽂件,均须命名。
例如,图n :描述图像信息的*.m⽂件:描述⽂件信息。
matlab图像处理综合实验实验报告
《数字图像处理》实验报告学院:专业:班级:姓名:学号:实验一实验名称:图像增强实验目的:1.熟悉图像在Matlab下的读入,输出及显示;2.熟悉直方图均衡化;3.熟悉图像的线性指数等;4.熟悉图像的算术运算及几何变换.实验仪器:计算机,Matlab软件实验原理:图像增强是为了使受到噪声等污染图像在视觉感知或某种准则下尽量的恢复到原始图像的水平之外,还需要有目的性地加强图像中的某些信息而抑制另一些信息,以便更好地利用图像。
图像增强分频域处理和空间域处理,这里主要用空间域的方法进行增强。
空间域的增强主要有:灰度变换和图像的空间滤波。
图像的直方图实际上就是图像的各像素点强度概率密度分布图,是一幅图像所有像素集合的最基本统计规律,均衡化是指在每个灰度级上都有相同的像素点过程。
实验内容如下:I=imread('E:\cs.jpg');%读取图像subplot(2,2,1),imshow(I),title('源图像')J=rgb2gray(I)%灰度处理subplot(2,2,2),imshow(J) %输出图像title('灰度图像') %在原始图像中加标题subplot(2,2,3),imhist(J) %输出原图直方图title('原始图像直方图')0100200subplot(1,2,2),imshow(K)对数运算:I=imread('E:\dog.jpg');subplot(2,2,1),imshow(I),title('源图像')J=rgb2gray(I)%灰度处理subplot(2,2,2),imshow(J),title('灰度变换后图像') J1=log(1+double(J));subplot(2,2,3),imshow(J1,[]),title('对数变换后')指数运算:I=imread('E:\dog.jpg');f=double(I);g=(2^2*(f-1))-1f=uint8(f);g=uint8(g);subplot(1,2,1);subimage(f),title('变换一') subplot(1,2,2);subimage(g),title('变换二')100 200 300100 200 300加法运算:clc;clear all;close all;i = imread('E:\dog.jpg');j = imnoise(i,'gaussian',0,0.02); subplot(1,3,1),imshow(i),title('图一') subplot(1,3,2),imshow(j),title('图二') k=zeros(242,308);for p=1:100j = imnoise(i,'gaussian',0,0.02);j1 = im2double(j);k = k + j1;endk=k/100;subplot(1,3,3),imshow(k),title('图三')实验二实验名称:图像变换实验目的:(1)进一步对matlab的了解和使用;(2)学习如何在matlab中对数字图像的处理;实验原理:图像和其他信号一样,既能在空间域处理,也能在频率域处理。
matlab图像处理实验报告
matlab图像处理实验报告Matlab图像处理实验报告引言:图像处理是一门研究如何对图像进行获取、存储、传输、处理和显示的学科。
而Matlab作为一种强大的科学计算软件,被广泛应用于图像处理领域。
本实验报告旨在介绍Matlab在图像处理中的应用。
一、图像获取与显示在图像处理的第一步,我们需要获取图像并进行显示。
Matlab提供了丰富的函数和工具箱来实现这一目标。
我们可以使用imread函数来读取图像文件,imwrite函数来保存图像文件。
而imshow函数则可以用于图像的显示。
通过使用这些函数,我们可以轻松地加载图像文件,并在Matlab中显示出来。
二、图像的基本操作在图像处理中,我们经常需要对图像进行一些基本的操作,如图像的缩放、旋转、裁剪等。
Matlab提供了一系列的函数来实现这些操作。
通过imresize函数,我们可以实现图像的缩放操作。
而imrotate函数则可以用于图像的旋转。
此外,imcrop函数可以用于图像的裁剪。
三、图像的滤波处理图像的滤波处理是图像处理中的重要内容之一。
Matlab提供了多种滤波函数,如均值滤波、中值滤波、高斯滤波等。
这些滤波函数可以用于图像的平滑处理和噪声的去除。
通过调用这些函数,我们可以有效地改善图像的质量。
四、图像的边缘检测边缘检测是图像处理中的一项重要任务,它可以用于提取图像中的边缘信息。
在Matlab中,我们可以使用多种边缘检测算法来实现这一目标,如Sobel算子、Prewitt算子、Canny算子等。
这些算子可以有效地提取图像中的边缘,并将其显示出来。
五、图像的特征提取图像的特征提取是图像处理中的关键步骤之一,它可以用于提取图像中的重要特征。
在Matlab中,我们可以使用各种特征提取算法来实现这一目标,如颜色直方图、纹理特征、形状特征等。
通过提取这些特征,我们可以对图像进行分类、识别等任务。
六、图像的分割与识别图像的分割与识别是图像处理中的热门研究方向之一。
MATLAB图像处理命令及图形基本操作实验报告
实验(一)常用MATLAB图像处理命令及图形基本操作
end
end
end
for i=1:m
for j=1:n
out(i,j,1)=R(i,j);
% imshow(out)
out(i,j,2)=G(i,j);
out(i,j,3)=B(i,j);
end
end
out=out/256;
figure(1),imshow(out)
%imshow(out)
size(out)
imwrite(out,'PseudoColor.tiff');
end
4、读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题。
RGB=imread('f:\1.jpg')
gray = rgb2gray(RGB)
I = im2bw(RGB,0.5)
subplot(3,1,1);imshow(a);title('原图像');
subplot(3,1,2);imshow(i);title('灰度图像');colormap(gray);
subplot(3,1,3);imshow(I);title('二值图像');
实验结果如图所示:
四、实验总结:
Imread 是读入文件的操作代码,subplot是将多个图画到一个平面上的工具本次实验在老师的带领下熟悉了matlab软件的具体操作
通过书写代码,操作程序实现了灰度图像转换为伪彩色图像;
通过书写代码实现了读入一幅RGB图像,并将其变换为灰度图像和二值图像,然后在同一个窗口中显示RGB图像和灰度图像。
matlab实验报告实验二
matlab实验报告实验二Matlab实验报告实验二引言Matlab是一种功能强大的数学软件,广泛应用于科学研究和工程实践中。
在实验二中,我们将探索Matlab的图像处理功能,并通过实际案例来展示其应用。
图像处理基础图像处理是指对图像进行数字化处理的过程,其目的是改善图像质量、提取有用信息或实现特定的应用需求。
在Matlab中,我们可以利用各种函数和工具箱来实现图像处理的各种任务,如图像增强、滤波、分割和特征提取等。
实验步骤1. 图像读取与显示在Matlab中,我们可以使用imread函数读取图像文件,并使用imshow函数将图像显示在屏幕上。
例如,我们可以读取一张名为"lena.jpg"的图像,并显示出来:```matlabimg = imread('lena.jpg');imshow(img);```2. 图像灰度化图像灰度化是将彩色图像转换为灰度图像的过程。
在Matlab中,我们可以使用rgb2gray函数将彩色图像转换为灰度图像。
例如,我们可以将上一步读取的图像转换为灰度图像:```matlabgray_img = rgb2gray(img);imshow(gray_img);```3. 图像二值化图像二值化是将灰度图像转换为二值图像的过程,其中只包含黑色和白色两种颜色。
在Matlab中,我们可以使用imbinarize函数将灰度图像二值化。
例如,我们可以将上一步得到的灰度图像二值化:```matlabbinary_img = imbinarize(gray_img);imshow(binary_img);```4. 图像平滑图像平滑是指去除图像中的噪声或细节,使得图像更加平滑和清晰。
在Matlab 中,我们可以使用imfilter函数对图像进行平滑处理。
例如,我们可以对上一步得到的二值图像进行平滑处理:```matlabsmooth_img = imfilter(binary_img, fspecial('average'));imshow(smooth_img);```5. 图像边缘检测图像边缘检测是指提取图像中物体边缘的过程,常用于目标检测和图像分割。
matlab 图像 实验报告
matlab 图像实验报告Matlab图像实验报告引言:Matlab是一种强大的计算机编程语言和开发环境,广泛应用于科学计算、数据分析和图像处理等领域。
本实验报告旨在介绍基于Matlab的图像处理实验,包括图像读取、图像处理和图像显示等方面的内容。
一、图像读取图像读取是图像处理的第一步,通过读取图像可以获取图像的像素信息。
在Matlab中,可以使用imread函数来读取图像文件。
例如,通过以下代码可以读取一张名为"image.jpg"的图像:```matlabimage = imread('image.jpg');```二、图像处理1. 灰度化处理灰度化处理是将彩色图像转换为灰度图像的过程。
在Matlab中,可以使用rgb2gray函数来实现灰度化处理。
以下是一个简单的示例:```matlabgray_image = rgb2gray(image);```2. 图像增强图像增强是通过一系列的处理方法来改善图像的质量和视觉效果。
在Matlab中,有多种图像增强方法可供选择,如直方图均衡化、滤波和边缘检测等。
以下是一个直方图均衡化的示例:```matlabenhanced_image = histeq(gray_image);```3. 图像分割图像分割是将图像划分为若干个区域的过程,每个区域具有相似的特征。
在Matlab中,可以使用各种图像分割算法,如阈值分割和基于区域的分割。
以下是一个简单的阈值分割示例:```matlabthreshold = graythresh(enhanced_image);binary_image = imbinarize(enhanced_image, threshold);```三、图像显示图像显示是将处理后的图像展示给用户的过程。
在Matlab中,可以使用imshow函数来显示图像。
以下是一个简单的示例:```matlabimshow(binary_image);```四、实验结果与讨论本次实验中,我们选择了一张名为"image.jpg"的彩色图像进行处理。
matlab实验报告
matlab实验报告引言:Matlab(矩阵实验室)是一款功能强大的数值计算和科学计算软件,广泛应用于工程、科学和经济等领域。
本实验报告将探讨我在使用Matlab进行实验过程中的心得体会和实验结果。
实验一:图像处理在这个实验中,我使用Matlab对一张图像进行了处理,并应用了各种图像处理算法。
这包括图像增强、边缘检测和图像分割等技术。
通过Matlab的图像处理工具箱,我能够轻松调用各种算法函数,并对图像进行快速处理。
实验结果表明,Matlab图像处理工具箱提供了丰富的函数和算法,极大地方便了我们的图像处理工作。
实验二:模拟信号处理模拟信号处理是Matlab中的一个重要应用领域。
在这个实验中,我模拟了一个带噪声的正弦信号,并使用Matlab进行了噪声滤波和频谱分析。
通过使用Matlab的滤波函数,我能够有效地去除信号中的噪声,并还原出原始信号。
同时,Matlab提供了功能强大的频谱分析工具,我可以轻松地对信号的频率特性进行分析和可视化。
实验三:数据分析与统计数据分析与统计是Matlab的另一个重要应用领域。
在这个实验中,我使用Matlab对一组实验数据进行了分析和统计。
通过使用Matlab的统计函数和工具,我能够计算出数据的均值、方差、标准差等统计指标,并绘制出数据的直方图和散点图。
这些统计分析结果对我的实验研究提供了有力的支持,并帮助我更好地理解实验数据。
实验四:数值计算与优化数值计算与优化是Matlab的核心功能之一。
在这个实验中,我使用Matlab进行了一组数值计算和优化实验。
通过使用Matlab的数值计算函数和优化工具箱,我能够快速计算出复杂的数学问题,并找到最优解。
同时,在进行优化实验时,我可以设置各种约束条件和目标函数,从而得到最优解的参数值。
这些数值计算和优化工具极大地提高了我的研究效率和准确度。
结论:通过这些实验,我深刻认识到Matlab的强大功能和广泛应用领域。
无论是图像处理、信号处理、数据分析还是数值计算与优化,Matlab都提供了丰富的函数和工具,让我们能够快速高效地完成实验和研究工作。
matlab 数字图像处理实验报告(五份)
《数字图像处理实验报告》实验一图像的增强一.实验目的1.熟悉图像在MATLAB下的读写、输出;2.熟悉直方图;3.熟悉图像的线性指数等;4.熟悉图像的算术运算和几何变换。
二.实验仪器计算机、MATLAB软件三.实验原理图像增强是指根据特定的需要突出图像中的重要信息,同时减弱或去除不需要的信息。
从不同的途径获取的图像,通过进行适当的增强处理,可以将原本模糊不清甚至根本无法分辨的原始图像处理成清晰的富含大量有用信息的可使用图像。
其基本原理是:对一幅图像的灰度直方图,经过一定的变换之后,使其成为均匀或基本均匀的,即使得分布在每一个灰度等级上的像素个数.f=H等或基本相等。
此方法是典刑的图像空间域技术处理,但是由于灰度直方图只是近似的概率密度函数,因此,当用离散的灰度等级做变换时,很难得到完全平坦均匀的结果。
频率域增强技术频率域增强是首先将图像从空间与变换到频域,然后进行各种各样的处理,再将所得到的结果进行反变换,从而达到图像处理的目的。
常用的变换方法有傅里叶变换、DCT变换、沃尔什-哈达玛变换、小波变换等。
假定原图像为f(x,y),经傅立叶变换为F(u,v)。
频率域增强就是选择合适的滤波器H(u,v)对F(u,v)的频谱成分进行处理,然后经逆傅立叶变换得到增强的图像。
四.实验内容及步骤1.图像在MATLAB下的读写、输出;实验过程:>> I = imread('F:\image\624baf9dbcc4910a.jpg');figure;imshow(I);title('Original Image');text(size(I,2),size(I,1)+15, ...'IMG_20170929_130307.jpg', ...'FontSize',7,'HorizontalAlignment','right');Warning: Image is too big to fit on screen; displaying at 25% > In imuitools\private\initSize at 86In imshow at 196Original Image2.给定函数的累积直方图。
基于MATLAB图像处理报告
基于MATLAB图像处理报告一、设计题目图片叠加。
二、设计要求将一幅礼花图片和一幅夜景图片做叠加运算,使达到烟花夜景的美图效果。
三、设计方案3.1、设计思路利用matlab强大的图像处理功能,通过编写程序,实现对两幅图片的像素进行线性运算,利用灰度变换的算法使图片达到预期的效果。
3.2、软件介绍MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室)。
是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。
它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。
MATLAB和Mathematica、Maple并称为三大数学软件。
它在数学类科技应用软件中在数值计算方面首屈一指。
MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。
MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。
在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。
可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,此外许多的MATLAB爱好者都编写了一些经典的程序,用户直接进行下载就可以用。
3.3、常见简单程序语句及算法分析(1)CLC;清零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图像处理实验报告
姓名:陈琼暖
班级:07计科一班
学号:20070810104
目录:
实验一:灰度图像处理 (3)
实验二:灰度图像增强 (5)
实验三:二值图像处理 (8)
实验四:图像变换 (13)
大实验:车牌检测 (15)
实验一:灰度图像处理题目:直方图与灰度均衡
基本要求:
(1) BMP灰度图像读取、显示、保存;
(2)编程实现得出灰度图像的直方图;
(3)实现灰度均衡算法.
实验过程:
1、BMP灰度图像读取、显示、保存;
⏹图像的读写与显示操作:用imread( )读取图像。
⏹图像显示于屏幕:imshow( ) 。
⏹
2、编程实现得出灰度图像的直方图;
3、实现灰度均衡算法;
⏹直方图均衡化可用histeq( )函数实现。
⏹imhist(I) 显示直方图。
直方图中bin的数目有图像的类型决定。
如果I是个灰度图像,imhist将
使用默认值256个bins。
如果I是一个二值图像,imhist使用两bins。
实验总结:
Matlab 语言是一种简洁,可读性较强的高效率编程软件,通过运用图像处理工具箱中的有关函数,就可以对原图像进行简单的处理。
通过比较灰度原图和经均衡化后的图形可见图像变得清晰,均衡化后的直方图形状比原直方图的形状更理想。
实验二:灰度图像增强
题目:图像平滑与锐化 基本要求:
(1)使用邻域平均法实现平滑运算; (2)使用中值滤波实现平滑运算; (3)使用拉普拉斯算子实现锐化运算.
实验过程: 1、
使用邻域平均法实现平滑运算;
步骤:对图像添加噪声,对带噪声的图像数据进行平滑处理; ⏹ 对图像添加噪声
J = imnoise(I,type,parameters)
2、使用中值滤波实现平滑运算;
3、使用拉普拉斯算子实现锐化运算;
⏹采用可根据图像的局部方差来调整滤波器输出的自适应滤波对图像进行平滑,及采用拉氏算子运算使
图像的模糊部分得到增强。
⏹在Matlab 中,各种滤波方法都是在空间域中通过不同的卷积模板即滤波算子实现,可用fspecial( )
函数创建预定义的滤波算子,然后用filter2( )或conv2( )函数在实现卷积运算的基础上进行滤波。
⏹而锐化技术采用的是频域上的高通滤波方法,通过增强高频成分减少图像中的模糊,特别是模糊的边
缘部分得到了增强,但同时也放大了图像的噪声。
实验三:二值图像处理
题目:数学形态学运算
基本要求:
(1)实现腐蚀与膨胀运算;
(2)实现开、闭运算
(3)实现细化运算
实验过程:
1、实现腐蚀与膨胀运算;
⏹imerode 函数,该函数能够实现二值图像的腐蚀操作;
⏹imdilate函数,该函数能够实现二值图像的膨胀操作;
2、实现开、闭运算;
⏹strel用于膨胀腐蚀及开闭运算等操作的结构元素对象。
⏹imclose函数,该函数功能是对灰度图像执行形态学闭运算,即使用同样的结构元素先对图像进行膨
胀操作后进行腐蚀操作。
⏹imopen函数,该函数功能是对灰度图像执行形态学开运算,即使用同样的结构元素先对图像进行腐蚀
操作后进行膨胀操作。
3、实现细化运算
⏹remove:去掉内点,即若像素的4邻域都为1,则像素为0;
⏹skel:With n = Inf, 提取物体的骨架,即去除物体外边缘的点,但是保持物体不发生断裂。
实验总结:
通过掌握并应用matlab图像处理工具箱函数进行简单的图像处理;
实验四:图像变换
题目:傅立叶变换
基本要求:
(1)实现快速傅立叶变换和反变换算法
实验过程:
图形函数的傅立叶变换时,坐标原点在函数图形的中心位置处,而计算机在对图像执行傅立叶变换时是以图像的左上角为坐标原点。
所以使用函数fftshift进行修正,使变换后的直流分量位于图形的中心;
实验总结:
图像变换是图像处理的重要工具。
通过变换,改变图像的表示域,可以对图像的后继处理带来极大的方便。
大实验之车牌检测
实验题目:汽车车牌的号码识别
实验目的:通过车牌检测实验进一步加深了解matlab图像处理中灰度图像处理、灰度图像增强:二值图像处理、图像变换的各个操作过程。
基本要求:应用MATLAB软件对拍摄获取彩色汽车车牌号图片进行相应处理(如,彩色图像变为灰度图像、
边缘检测、去噪,去除背景提取目标,边缘分割,轮廓提取等)最终从一幅图像中提取车牌中的字母和数字。
实验内容:
1:灰度图像处理
由于彩色图像包含大量颜色信息,会占用计算机较多的存储空间,且处理时也会降低系统的执行速度,
因此对图像进行识别等处理时,通常将彩色图像转换为灰度图像,以加快处理速度。
实验结果为:
2:车牌边缘处理(灰度图像增强:二值图像处理)
由于目前得到还是整张车牌图片,未得到所需的车牌号码部分。
为去除不需要的图像部分,首先对图像进行边缘处理,以有利于以后的号码提取。
在边缘提取后,利用腐蚀将汽车大部分其他不需要的边缘去掉。
在填充图片将所需的车牌部分还原,最后利用形态滤波对车牌号码进行平滑与锐化处理。
2:车牌定位
在通过预处理后的图片中将车牌的位置进行定位。
3:字符分割和识别
2:字符分割和识别
对分割出的车牌图像进行几何校正、去噪、二值化以及字符分割以从车牌图像中分离出组成车牌号码的单个字符图像,对分割出来的字符进行预处理(二值化、归一化),然后分析提取,对分割出的字符图像进行识别给出文本形式的车牌号码。
实验总结:
通过该实验,用实际事例来实践之前各个实验,通过车牌检测实验进一步加深了解matlab图像处理中灰度图像处理、灰度图像增强:二值图像处理、图像变换的各个操作过程。